文档库 最新最全的文档下载
当前位置:文档库 › 第九讲:热力学第二定律3-孤立系统熵增原理

第九讲:热力学第二定律3-孤立系统熵增原理

熵增原理

热力学第一定律就是能量守恒与转换定律,但是它并未涉及能量状态的过程能否自发地进行以及可进行到何种程度。热力学第二定律就是判断自发过程进行的方向和限度的定律,它有不同的表述方法: 克劳修斯的描述①热量不可能自发地从低温物体传到高温物体,即热量不可能从低温物体传到高温物体而不引起其他变化; 开尔文的描述②不可能从单一热源取出热量使之全部转化为功而不发生其他影响; 因此第二类永动机是不可能造成的。热力学第二定律是人类经验的总结,它不能从其他更普遍的定律推导出来,但是迄今为止没有一个实验事实与之相违背,它是基本的自然法则之一。 由于一切热力学变化(包括相变化和化学变化)的方向和限度都可归结为热和功之间的相互转化及其转化限度的问题,那么就一定能找到一个普遍的热力学函数来判别自发过程的方向和限度。可以设想,这种函数是一种状态函数,又是一个判别性函数(有符号差异),它能定量说明自发过程的趋势大小,这种状态函数就是熵函数。 如果把任意的可逆循环分割成许多小的卡诺循环,可得出 0i i Q r T δ=∑ (1) 即任意的可逆循环过程的热温商之和为零。其中,δQi 为任意无限小可逆循环中系统与环境的热交换量;Ti 为任意无限小可逆循环中系统的温度。上式也可写成 0Qr T δ=? (2) 克劳修斯总结了这一规律,称这个状态函数为“熵”,用S来表示,即 Qr dS T δ= (3) 对于不可逆过程,则可得 dS>δQr/T (4) 或 dS-δQr/T>0 (5) 这就是克劳修斯不等式,表明了一个隔离系统在经历了一个微小不可逆变化后,系统的熵变大于过程中的热温商。对于任一过程(包括可逆与不可逆过程),则有 dS-δQ/T≥0 (6) 式中:不等号适用于不可逆过程,等号适用于可逆过程。由于不可逆过程是所有自发过程之共同特征,而可逆过程的每一步微小变化,都无限接近于平衡状态,因此这一平衡状态正是不可逆过程所能达到的限度。因此,上式也可作为判断这一过程自发与否的判据,称为“熵判据”。 对于绝热过程,δQ=0,代入上式,则 dSj≥0 (7) 由此可见,在绝热过程中,系统的熵值永不减少。其中,对于可逆的绝热过程,dSj =0,即系统的熵值不变;对于不可逆的绝热过程,dSj >0,即系统的熵值

逆卡诺循环的应用小论文

逆卡诺循环在空气能热泵的应用 [摘要]“空气能”热泵热水技术采用目前最先进的新能源技术。产品利用空气压缩机驱动冷媒进行逆卡诺循环,将大量低品位的热源(空气中的热量)通过压缩机和制冷剂,转变为高品位的可利用热能,将水加热制取生活热水,其输出能量是输入电能3倍以上,被业界誉为第四代热水器。 [关键词]空气能;中央热水;逆卡诺循环 这种新型热水器一般由空气能热泵热水机组、保温水箱、水泵及相应的管道阀门等部分组成。而空气能热泵热水机组一般由压缩机、水侧换热器、空气侧换热器、节流装置、低压储液罐、水路调节阀等部分组成,安装不受建筑物或楼层限制,使用不受气候条件限制,既可用作家庭的热水供应中心,也能为单位集体集中供热水。由于使用环境各方面新型专利技术,该产品不仅安全舒适,而且环保节能,实际使用费仅分别相当于电热水器的1/4,燃气热水器的1/3,将150升水箱中的水加热到65℃,春秋季节需要消耗2 度电,如果采用低谷电价只需要0.6元钱,这箱贮存的热水足够一家3-5口生活热水之用;如果采用一个水龙头放水洗澡,该热水器可以源源不断供应热水。 工作原理 根据逆卡诺循环基本原理: 低温低压制冷剂经膨胀机构节流降压后,进入空气交换机中蒸发吸热,从空气中吸收大量的热量Q2; 蒸发吸热后的制冷剂以气态形式进入压缩机,被压缩后,变成高温高压的制冷剂(此时制冷剂中所蕴藏的热量分为两部分:一部分是从空气中吸收的热量Q2,一部分是输入压缩机中的电能在压缩制冷剂时转化成的热量Q1; 被压缩后的高温高压制冷剂进入热交换器,将其所含热量(Q1+Q2)释放给进入热换热器中的冷水,冷水被加热到60℃直接进入保温水箱储存起来供用户使用; 放热后的制冷剂以液态形式进入膨胀机构,节流降压......如此不间断进行循环。 冷水获得的热量Q3=制冷剂从空气中吸收的热量Q2+驱动压缩机的电能转化成的热量Q1,在标准工况下:Q2=3.6Q1,即消耗1份电能,得到4.6份的热量。 制冷原理:逆卡诺循环 8世纪,瓦特发明了蒸汽机,人类找到了把热能转变为机械能的具体方法。蒸汽机的问世使人类进入了工业社会,生产力得到快速发展。但当时蒸汽机的效率非常低,一般只能达到5%左右。于是,改进蒸汽机,提高其热效率,就成为许多科学家和工程师毕生追求的目标。法国工程师卡诺就是其中杰出代表。他认为,要想改进热机,只有从理论上找出依据。卡诺从热力学理论的高度着手研究热机效率,设计了两条等温线,两条绝热线构成的卡诺循环(如右图所示):第一阶段,温度为T1的等温膨胀过程,系统从高温热源T1吸收热量Q1;第二阶段,绝热膨胀过程,系统温度从T1降到T2;第三阶段,温度为T2的等温压缩过程,系统把热量Q2释放给低温热源T2;第四阶段,绝热压缩过程,系统温度从T2升高到T1。他研究的结论,就是人们总结的卡诺定理,其核心内容是:在相同高温热源T1与相同低温

工程热力学 思考题

工程热力学第五章思考题 5-1 热力学第二定律的下列说法能否成立? (1)功量可以转换成热量,但热量不能转换成功量。 答:违反热力学第一定律。功量可以转换成热量,热量不能自发转换成功量。 热力学第二定律的开尔文叙述强调的是循环的热机,但对于可逆定温过程,所吸收的热量可以全部转换为功量,与此同时自身状态也发生了变化。从自发过程是单向发生的经验事实出发,补充说明热不能自发转化为功。 (2)自发过程是不可逆的,但非自发过程是可逆的。 答:自发过程是不可逆的,但非自发过程不一定是可逆的。 可逆过程的物理意义是:一个热力过程进行完了以后,如能使热力系沿相同路径逆行而回复至原态,且相互作用中所涉及到的外界也回复到原态,而不留下任何痕迹,则此过程称为可逆过程。自发过程是不可逆的,既不违反热力学第一定律也不违反第二定律。根据孤立系统熵增原理,可逆过程只是理想化极限的概念。所以非自发过程是可逆的是一种错误的理解。 (3)从任何具有一定温度的热源取热,都能进行热变功的循环。 答:违反普朗克-开尔文说法。从具有一定温度的热源取热,才可能进行热变功的循环。 5-2 下列说法是否正确? (1)系统熵增大的过程必须是不可逆过程。 答:系统熵增大的过程不一定是不可逆过程。只有孤立系统熵增大的过程必是不可逆的过程。 根据孤立系统熵增原理,非自发过程发生必有自发补偿过程伴随,由自发过程引起的熵增大补偿非自发过程的熵减小,总的效果必须使孤立系统上增大或保持。可逆过程只是理想化极限的概念。 (2)系统熵减小的过程无法进行。 答:系统熵减小的过程可以进行,比如系统的理想气体的可逆定温压缩过程,系统对外放热,熵减小。 (3)系统熵不变的过程必须是绝热过程。 答:可逆绝热过程就是系统熵不变的过程,但系统熵不变的过程可能由于熵减恰等于各种原因造成的熵增,不一定是可逆绝热过程。 (4)系统熵增大的过程必然是吸热过程,它可能是放热过程吗? 答:因为反应放热,所以体系的焓一定减小。但体系的熵不一定增大,因为只要体系和环境的总熵增大反映就能自发进行。而放热反应会使环境获得热量,熵增为ΔH/T。体系的熵也可以减小,只要减小的量小于ΔH/T,总熵就为正,反应就能自发进行。 (5)系统熵减少的过程必须是放热过程。可以是吸热过程吗? 答:放热的过程同时吸热。 (6)对不可逆循环,工质熵的变化∮ds?0。 答:∮ds=0。 (7)在相同的初、终态之间,进行可逆过程与不可逆过程,则不可逆过程中工质熵的变化大于可逆过程工质熵的变化。

制冷原理逆卡诺循环

制冷原理: 逆xx 卡诺循环1824年,法国青年工程师卡诺研究了一种理想热机的效率,这种热机的循环过程叫做“卡诺循环”。这是一种特殊的,又是非常重要的循环,因为采用这种循环的热机效率最大。 卡诺循环是由四个循环过程组成,两个绝热过程和两个等温过程。它是1824年N.L.S.卡诺(见卡诺父子)在对热机的最大可能效率问题作理论研究时提出的。卡诺假设工作物质只与两个恒温热源交换热量,没有散热、漏气、磨擦等损耗。为使过程是准静态过程,工作物质从高温热源吸热应是无温度差的等温膨胀过程,同样,向低温热源放热应是等温压缩过程。因限制只与两热源交换热量,脱离热源后只能是绝热过程。作卡诺循环的热机叫做卡诺热机。 xx进一步证明了下述xx定理: ①在相同的高温热源和相同的低温热源之间工作的一切可逆热机的效率都相等,与工作物质无关,为,其中T 1、T2分别是高温和低温热源的绝对温度。②在相同的高温热源和相同的低温热源之间工作的一切不可逆热机的效率不可能大于可逆卡诺热机的效率。可逆和不可逆热机分别经历可逆和不可逆的循环过程。 阐明 卡诺定理阐明了热机效率的限制,指出了提高热机效率的方向(提高T 1、降低T 2、减少散热、漏气、摩擦等不可逆损耗,使循环尽量接近卡诺循环),成为热机研究的理论依据、热机效率的限制、实际热力学过程的不可逆性及其间联系的研究,导致热力学第二定律的建立。 在卡诺定理基础上建立的与测温物质及测温属性无关的绝对热力学温标,使温度测量建立在客观的基础之上。此外,应用卡诺循环和卡诺定理,还可以研究表面张力、饱和蒸气压与温度的关系及可逆电池的电动势等。还应强调,

卡诺定理这种撇开具体装置和具体工作物质的抽象而普遍的理论研究,已经贯穿在整个热力学的研究之中。 逆卡诺循环奠定了制冷理论的基础,逆卡诺循环揭示了空调制冷系数(俗称EER或COP)的极限。一切蒸发式制冷都不能突破逆卡诺循环。 理论 在逆卡诺循环理论中间,要提高空调制冷系数就只有以下二招: 1。提高压机效率,从上面推导可以发现小型空调理论上只存在效率提高空间19%;大型螺杆水机效率提高空间9%。 2。膨胀功损失与内部摩擦损失(所谓内部不可逆循环): 其中减少内部摩擦损失几乎没有空间与意义。在我们songrui版主的液压马达没有问世之前,解决膨胀功损失的唯一方法是采用比容大的制冷剂,达到减少输送质量的目的。如R410A等复合冷剂由于比容较R22大,使膨胀功损失有所减少,相对提高了制冷系数。但是就目前情况看通过采用比容大的制冷剂,制冷系数提高空间不会超过6%。(极限空间12%) 工作原理 根据逆xx基本原理: 高温高压气态制冷剂经膨胀机构节流处理后变为低温低压的液态制冷剂,进入空气交换机中蒸发吸热,从空气中吸收大量的热量Q2; 蒸发吸热后的制冷剂以气态形式进入压缩机,被压缩后,变成高温高压的制冷剂(此时制冷剂中所蕴藏的热量分为两部分: 一部分是从空气中吸收的热量Q2,一部分是输入压缩机中的电能在压缩制冷剂时转化成的热量Q1; 被压缩后的高温高压制冷剂进入热交换器,将其所含热量(Q1+Q2)释放给进入热换热器中的冷水,冷水被加热到60℃直接进入保温水箱储存起来供用户使用;

宇宙的熵增

宇宙会消亡吗 主流猜想——宇宙”热寂” 宇宙热寂的由来 热力学第二定律:能量可以转化,但是无法100%利用。在转化过程中,总是有一部分能量会被浪费掉。 这部分浪费掉能量命名为熵。熵不断在增加。 热力学第二定律也叫熵增原理。就是孤立热力学系统的熵不减少,总是增大或者不变。用来给出一个孤立系统的演化方向。说明一个孤立系统不可能朝低熵的状态发展即不会变得有序。 考虑到宇宙的能量总和是一个常量,而每一次能量转化,必然有一部分”有效能量”变成”无效能量”(即”熵”),因此不难推论,有效能量越来越少,无效能量越来越多。直到有一天,所有的有效能量都变成无效能量,那时将不再有任何能量转化,这就叫宇宙的”热寂”。 结论宇宙就会进入一个死寂的状态。 我的观点,宇宙不会”热寂”。 宇宙是无限的,动态循环的。这个宇宙是总称,不是有人提的这里一个宇宙,那里一个,多少年前或者远处还有一个宇宙。这种分法应该叫天体,为什么还要叫宇宙呢? 宇宙存在自发的熵减的过程。 物质合久必分,分久必合。基本微观粒子质子、电子、中子、光子等聚合原子、分子等物质,这种聚合靠物质自身的引力、电磁力等自发完成。分子组成有序多样的宏观世界。这种聚合可以在某处相对孤立系统中完成,不需要外部干涉。这个过程是熵减的。 星系是宇宙的常见的单元。星系的核心是恒星,恒星的质量足够大,引力也足够大。最初恒星的物质含有的内能(主要是核能)充足,反应活跃与引力平衡,释放出光芒。当能量消耗到一定程度,内能不足以抵抗引力,不能再向外释放能

量。恒星不断收缩、坍塌,并且不断吸收外界物质,此时“恒星”只进不出,形成“黑洞”,黑洞缓慢吸收飞来的各种物质和能量,质量超大,大到吞噬星系的大部分行星和尘埃,甚至是相邻的星系的一部分。黑洞也有生命周期,这个也许比恒星的生命更长。黑洞碾碎了大部分物质(分子原子)分解成基本粒子,喷射出去。这一过程是熵增的。 粒子聚合成原子分子直至形成新的星系或者被其他星系吸收,形成循环。 宇宙各处随机重复着这一过程。每一个循环周期都是极漫长的。 物质的多样性是基本粒子聚合的随机性造成的。如同生物的多样性,生物演化出动、植物、细菌等等。 生物的生成发展也主要是熵减的过程。但是这种熵减的体量相对于星系的熵增是微不足道的。生物不改变星系毁灭的历程。 星系中存在生物也许是偶然的。智慧生命逃出一个星系的衰变毁灭,应该是概率很小的。 路过万丈红尘

工程热力学 第五章 思考题

工程热力学第五章思考题 工程热力学第五章思考题 5-1 热力学第二定律的下列说法能否成立 1功量可以转换成热量但热量不能转换成功量。答违反热力学第一定律。功量可以转换成热量热量不能自发转换成功量。热力学第二定律的开尔文叙述强调的是循环的热机但对于可逆定温过程所吸收的热量可以全部转换为功量与此同时自身状态也发生了变化。从自发过程是单向发生的经验事实出发补充说明热不能自发转化为功。 2自发过程是不可逆的但非自发过程是可逆的。答自发过程是不可逆的但非自发过程不一定是可逆的。可逆过程的物理意义是一个热力过程进行完了以后如能使热力系沿相同路径逆行而回复至原态且相互作用中所涉及到的外界也回复到原态而不留下任何痕迹则此过程称为可逆过程。自发过程是不可逆的既不违反热力学第一定律也不违反第二定律。根据孤立系统熵增原理可逆过程只是理想化极限的概念。所以非自发过程是可逆的是一种错误的理解。 3从任何具有一定温度的热源取热都能进行热变功的循环。答违反普朗克-开尔文说法。从具有一定温度的热源取热才可能进行热变功的循环。 5-2 下列说法是否正确 1系统熵增大的过程必须是不可逆过程。答系统熵增大的过程不一定是不可逆过程。只有孤立系统熵增大的过程必是不可逆的过程。根据孤立系统熵增原理非自发过程发生必有自发补偿过程伴随由自发过程引起的熵增大补偿非自发过程的熵减小总的效果必须使孤立系统上增大或保持。可逆过程只是理想化极限的概念。 2系统熵减小的过程无法进行。答系统熵减小的过程可以进行比如系统的理想气体的可逆定温压缩过程系统对外放热熵减小。 3系统熵不变的过程必须是绝热过程。答可逆绝热过程就是系统熵不变的过程但系统熵不变的过程可能由于熵减恰等于各种原因造成的熵增不一定是可逆绝热过程。 4系统熵增大的过程必然是吸热过程它可能是放热过程吗答因为反应放热所以体系的焓一定减小。但体系的熵不一定增大因为只要体系和环境的总熵增

卡诺循环与卡诺定理上课讲义

卡诺循环与卡诺定理

卡诺循环与卡诺定理 一、卡诺热机 1.卡诺定理的提出 从19世纪起,蒸汽机在工业、交通运输中起到愈来愈重要的作用。但是,蒸汽机的效率是很低的,还不到5%,有95%以上的热量都没有得到利用。在生产需要的推动下,一大批科学家和工程师开始由理论上来研究热机的效率。萨迪·卡诺(Sadi Carnot,1796—1832),这位法国工程师正是其中的一位。 当时盛行热质说,普遍认为热也是一种没有重量、可以在物体中自由流动的物质。卡诺也信奉热质说,他在他的论文《关于热的动力的思考》中有这样一段话:“我们可以恰当地把热的动力和一个瀑布的动力相比。……瀑布的动力依赖于它的高度和水量;热的动力依赖于所用的热质的量和我们可以称之为热质的下落高度,即交换热质的物体之间的温度差。”在这里,卡诺关于“热只在机器中重新分配,热量并不消耗”的观点是不正确的,他没有认识到热和功转化的内在的本质联系。但是卡诺定理的提出,却是一件具有划时代意义的事。 2.卡诺循环 热力学理论指出,要实现一个可逆循环过程,必须使循环过程中的每一分过程都是可逆的。而要实现过程的可逆,除了要使过程没有摩擦存在以外,更重要 的就是要求过程的进行是准静态的。如下图: 要完成一个双热源的可逆循环,其方式应当是由两个等温过程与两个绝热过程组成,如下图: 卡诺循环的效率为: 其中T2为低温热源的温度,T1为高温热源的温度。 3.卡诺定理及其推论 (1). 卡诺定理(Carnot principle):在两个不同温度的恒温热源间工作的所有热 机,以可逆热机的热效率为最高。即在恒温T1、T2下,ηt,IR≤ηt,R.

熵增加原理

熵增加原理 热力学第一定律是能量的定律,热力学第二定律是熵的法则.相对于“能量”,“熵”的概念比较抽象.但随着科学的发展,“熵”的意义愈来愈重要.本文从简述热力学第二定律的建立过程着手,从各个侧面讨论“熵”的物理本质、科学内涵,以加深对它的理解. “熵”是德国物理学家克劳修斯在1865年创造的一个物理学名词,其德语为entropie,简单地说,熵表示了热量与温度的比值,具有商的意义.1923年5月25日,普朗克在南京的东南大学作“热力学第二定律及熵之观念”的学术报告时,为其作现场翻译的我国著名物理学家胡刚复根据entropie的物理意义,创造了“熵”这个字,在“商”旁加火字表示这个热学量. 一、热力学第二定律 1.热力学第二定律的表述 19世纪中叶,克劳修斯(R.E.Clausius,德,1822—1888)和开尔文(KelvinLord即W.Thomson,英1824—1907)分别在证明卡诺定理时,指出还需要一个新的原理,从而发现了热力学第二定律. 克劳修斯1850年的表述为,不可能把热量从低温物体传到高温物体而不引起其他变化.1865年,克劳修斯得出了热力学第二定律的普遍形式:在孤立系统中,实际发生的过程总是使整个系统的熵值增加,所以热力学第二定律又称“熵增加原理”.其数学表示为 SB-SA= , 或 dS≥dQ/T(无穷小过程). 式中等号适用于可逆过程. 开尔文1951年的表述为,不可能从单一热源吸热使之完全变成有用的功而不引起其他变化,开氏表述也可以称为,第二类永动机是不可能造成的.所谓第二类永动机是指能从单一热源吸热,使之完全变成有用的功而不产生其他影响的机器,该机不违反热力学第一定律,它能从大气或海洋这类单一热源吸取热量而做功. 2.热力学第二定律的基本含义 热力学第二定律的克氏表述和开氏表述具有等效性,设想系统经历一个卡诺循环,可以证明,若克氏表述不成立,则开氏表述也不成立;反之,亦能设想系统完成一个逆卡诺循环,如果开氏表述不成立,则克氏表述也不成立. 克氏表述和开氏表述直接指出,第一,摩擦生热和热传导的逆过程不可能自动发生,也就是说摩擦生热和热传导过程具有方向性;第二,这两个过程一经发生,就在自然界留下它的后果,无论用怎样曲折复杂的方法,都不可能将它留下的后果完全消除,使一切恢复原状.只有无摩擦的准静态过程被认为是可逆过程.

熵与熵增原理

2.2 熵的概念与熵增原理 2.2.1 循环过程的热温商 T Q 据卡诺定理知: 卡诺循环中热温商的代数和为:0=+H H L L T Q T Q 对应于无限小的循环,则有: 0=+H H L L T Q T Q δδ 对任意可逆循环过程,可用足够多且绝热线相互恰好重叠的小卡诺循环逼近.对每一个卡诺可逆循环,均有: 0,,,,=+ j H j H j L j L T Q T Q δδ 对整个过程,则有: 0)( )( ,,,,==+ ∑∑j R j j j H j H j L j L j T Q T Q T Q δδδ 由于各卡诺循环的绝热线恰好重叠,方向相反,正好抵销.在极限情况下,由足够多的小卡诺循环组成的封闭曲线可以代替任意可逆循环。故任意可逆循环过程热温商可表示为: ?=0)( R T Q δ 即在任意可逆循环过程中,工作物质在各温度所吸的热(Q )与该温度之比的总和等于零。 据积分定理可知: 若沿封闭曲线的环积分为,则被积变量具有全微分的性质,是状态函数。 2.2.2 熵的定义——可逆过程中的热温商 在可逆循环过程,在该过程曲线中任取两点A 和B,则可逆曲线被分为两条,每条曲线所代表的过程均为可逆过程.对这两个过程,有: 0)()(=+??B A A B R R b a T Q T Q δδ 整理得: ??=B A B A R R b a T Q T Q )( )( δδ 这表明,从状态A 到状态B,经由不同的可逆过程,它们各自的热温商的总和相等.由于所选的可逆循环及曲线上的点A 和B 均是任意的,故上列结论也适合于其它任意可逆循环过程. 可逆过程中,由于?B A R T Q )( δ的值与状态点A 、B 之间的可逆途径无关,仅由始末态决定, 具有状态函数的性质。同时,已证明,任意可逆循环过程中r T Q ??? ??δ 沿封闭路径积分一周为 p V p

发动机原理

名词解释: 热力过程、比热、定压比热、定容比热、热力系统、状态参数、卡诺循环、膨胀功、导热、热力循环、正向循环、逆向循环、对流换热、黑体、热辐射、辐射换热、升功率、传热过程、过量空气系数、空燃比、平均指示压力、平均有效压力、燃油消耗率、强迫着火、自燃着火、速度密度控制、质量流量控制、节流速度控制、早火、表面点火、爆震、二次喷射、隔次喷射、续断喷射、终*温度(干点)、闪点、辛烷值、十六烷值、汽醇、惊奇马赫数、充气效率、残余废气系数 低热值、高热值、放热规律、燃烧噪声、示功图、示热图。 补充知识:热工基础知识: 1、在最高温度及最高压力一定时,内燃机的混**热循环和定容循环的热效率大小关系是怎样的,利用T-S图进行分析。 2、什么是卡诺循环,请写出它的热效率公式。 3、热机循环的循环净功越大则循环热效率也越高,写出热机循环的计算公式。 第一章、发动机的性能 一、什么是发动机的指示指标和有效指标?主要有哪些? 二、指出指示热效率、有效效率、机械效率三者间的关系。 三、(1)内燃机的机械损失主要由哪几部分组成? (2)简要介绍测量内燃机机械损失的几种方法。 四、(1)表示动力性和经济性的指标有哪些? (2)采取何种措施可提高内燃机的动力性和经济性? 五、试述内燃机的实际循环与理论循环的差异。 六、平均有效压力和升功率作为评定发动机动力性能方面有何区别? 七、(1)内燃机的三种基本理论循环是什么?各由哪几个过程组成?它们分别适用于哪种发动机? 2、指出压缩比e,压力升高比“入”、预胀比p和绝热指数k对循环功W0以及理论热效率n的影响。 (3)为什么柴油机的热效率要显著高于汽油机? 八、内燃机实际循环由哪五个过程组成?试逐个分析各过程的特点。 第二章、发动机的换气过程 一、(1)为什么内燃机进、排气门要早开、迟闭? (2)各自所对应角度的大小对内燃机的性能有何影响? (3)增压和非增压内燃机的气门叠开角有何差异?为什么? 二、什么是进气马赫数?它对充气系数有什么影响? 三、什么是可变配气定时?其目的是什么? 四、讨论提高四冲程内燃机充气效率的措施。 五、(1)从哪些方面(指标)来综合评定内燃机配气定时的合理性? (2)通过哪一配气定时角度可调整上述评定指标? 六、讨论降低进气系统流通阻力的技术措施。

19.循环过程和卡诺循环

《大学物理》作业 No.19 循环过程和卡诺循环 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ 一、选择题 1.定量理想气体经历的循环过程用V —T 曲线表示如图,在此循环过程中,气体从外界吸热的过程是 [ ] (A) A →B. (B) B →C. (C)C →A. (D) B →C 和C →A. 2. 如果卡诺热机的循环曲线所包围的面积从图中的a b c d a 增大为 a b 'c 'd a ,那么循环a b c d a 与a b 'c 'd a 所作的功和热机效率变化情况是: [ ] (A) 净功增大,效率提高。 (B) 净功增大,效率降低。 (C) 净功和效率都不变。 (D) 净功增大,效率不变。 3.一定量某理想气体所经历的循环过程是:从初态(V 0 ,T 0)开始,先经绝热膨胀使其体积增大1倍,再经等容升温回复到初态温度T 0, 最后经等温过程使其体积回复为V 0 , 则气体在此循环过程中 [ ] (A) 对外作的净功为正值. (B) 对外作的净功为负值. (C) 内能增加了. (D) 从外界净吸收的热量为正值. 二、 填空题 1.如图的卡诺循环:(1)abcda ,(2)dcefd ,(3)abefa ,其效率分别为: η1= ; η2= ; η3= . 2.卡诺致冷机,其低温热源温度为T 2=300K,高温热源温度为T 1=450K,每一循环从低温热源吸热Q 2=400J,已知该致冷机的致冷系数ω=Q 2/A=T 2/(T 1-T 2) (式中A 为外界对系统作的功), 则每一循环中外界必须作功A = . 3.以理想气体为工作物质的热力学系统,经历一循环过程,回到初始状态,其内能的增量 = 。

工程热力学知识点

工程热力学复习知识点 一、知识点 基本概念的理解和应用(约占40%),基本原理的应用和热力学分析能力的考核(约占60%)。 1.基本概念 掌握和理解:热力学系统(包括热力系,边界,工质的概念。热力系的分类:开口系,闭口系,孤立系统)。 掌握和理解:状态及平衡状态,实现平衡状态的充要条件。状态参数及其特性。制冷循环和热泵循环的概念区别。 理解并会简单计算:系统的能量,热量和功(与热力学两个定律结合)。 2.热力学第一定律 掌握和理解:热力学第一定律的实质。 理解并会应用基本公式计算:热力学第一定律的基本表达式。闭口系能量方程。热力学第一定律应用于开口热力系的一般表达式。稳态稳流的能量方程。 理解并掌握:焓、技术功及几种功的关系(包括体积变化功、流动功、轴功、技术功)。 3.热力学第二定律 掌握和理解:可逆过程与不可逆过程(包括可逆过程的热量和功的计算)。 掌握和理解:热力学第二定律及其表述(克劳修斯表述,开尔文表述等)。卡诺循环和卡诺定理。 掌握和理解:熵(熵参数的引入,克劳修斯不等式,熵的状态参数特性)。

理解并会分析:熵产原理与孤立系熵增原理,以及它们的数学表达式。热力系的熵方程(闭口系熵方程,开口系熵方程)。温-熵图的分析及应用。 理解并会计算:学会应用热力学第二定律各类数学表达式来判定热力过程的不可逆性。 4.理想气体的热力性质 熟悉和了解:理想气体模型。 理解并掌握:理想气体状态方程及通用气体常数。理想气体的比热。 理解并会计算:理想气体的内能、焓、熵及其计算。理想气体可逆过程中,定容过程,定压过程,定温过程和定熵过程的过程特点,过程功,技术功和热量计算。 5.实际气体及蒸气的热力性质及流动问题 理解并掌握:蒸汽的热力性质(包括有关蒸汽的各种术语及其意义。例如:汽化、凝结、饱和状态、饱和蒸汽、饱和温度、饱和压力、三相点、临界点、汽化潜热等)。蒸汽的定压发生过程(包括其在p-v和T-s图上的一点、二线、三区和五态)。 理解并掌握:绝热节流的现象及特点 6.蒸汽动力循环 理解计算:蒸气动力装置流程、朗肯循环热力计算及其效率分析。能够在T-S图上表示出过程,提高蒸汽动力装置循环热效率的各种途径(包括改变初蒸汽参数和降低背压、再热和回热循环)。 7、制冷与热泵循环 理解、掌握并会计算:空气压缩制冷循环,蒸汽压缩制冷循环的热力计算及制冷系数分析。能够在T-S图上表示出过程,提高制冷系数和热泵系数的

论卡诺循环

论卡诺循环 一.引言 通过将近一学期物理化学的学习,对物理化学这一学科有了粗略的认识以及肤浅的理解。其中,对卡诺循环,卡诺热机这一方面比较感兴趣,并且查阅了相关材料,还有自己对其的理解,写了此篇物化小论文。 二.尼古拉·雷奥纳德·卡诺 尼古拉·雷奥纳德·卡诺(Nicolas Leonard Sadi Carnot,1796~1823)法国物理学家、军事工程师。卡诺提出了作为热力学重要理论基础的卡诺循环和卡诺定理,从理论上解决了提高热机效率的根本途径。1832年8月24日卡诺因染霍乱症在巴黎逝世,年仅36岁。 三.卡诺热机的由来 随着蒸汽机的发明,第一次工业革命在欧洲逐渐兴旺起来。蒸汽机在法国和英国等国家创造了极大的价值,使工业话生产极大的代替了手工生产,增加了国力和财力。作为法国人的卡诺亲自经历了这次巨大的变革,然而,他也切实的看到人们仅仅是能运用热机代替人力,但是对热机效率及工作原理的理论认识还不够深入。为了解决当时对热机的两个集中的问题:(1)热机效率是否有一极限?(2)什么样的热机工作物质是最理想的?卡诺不是盲从但是主流的工程师们就事论事,从热机的适用性、安全性和燃料的经济性几个方面来改进热机。卡诺是采用了截然不同的途径,他不是研究个别的热机,而是寻求一种可以作为一般热机的比较标准的理想热机。 卡诺抛弃“热质”学说的原因,首先是受菲涅耳(A.J.Fresnel,1788-1827)的影响。菲涅耳认为光和热是一组相似的现象,既然光是物质粒子振动的结果,那么热也应当是物质粒子振动的结果,是物质的一种运动形式,而不是什么虚无缥缈没有质量的东西。卡诺接受了菲涅耳的设想,他一方面运用热的动力学新概念重新审度他在1824年提出的热机理论,发现只要用“热量”一词代替“热质”,他的理论仍然成立。另一方面,他又深入研究伦福德伯爵(C.Rrmford)和戴维(H.Davy)的磨擦生热的实验,并计划用实验来揭示在液体或气体中的磨擦热效应的定量关系,他计算出热功当量为3.7焦耳/卡,比焦耳(J.P.Joule)的工作超前将近20年。

卡诺循环

卡诺循环 一.关键字:卡诺热机、物理、化学、卡诺循环、等温压缩、绝热膨胀、状态、压缩、效率、温度、原理、定温。 二.引言 通过将近一学期物理的学习,对物理这一学科有了粗略的认识以及肤浅的理解。其中,对卡诺循环,卡诺热机这一方面比较感兴趣,并且查阅了相关材料,还有自己对其的理解,写了此篇文章。 物理学与化学,作为自然科学的两个分支,关系十分密切,任何一种化学变化总是伴随着物理变化,物理因素的作用也都会引起化学变化,自然科学中化学和物理历来是亲如兄弟、相辅相成的两个基本学科,它们虽曾有过约定俗成的分工,各司其职,但非各自为战,“化学和物理合在一起,在自然科学中形成了一个轴心”。就拿卡诺循环来说,卡诺循环在物理学与化学方面都有重要应用。下面我从三方面介绍卡诺循环。 三.尼古拉·雷奥纳德·卡诺 尼古拉·雷奥纳德·卡诺(Nicolas Leonard Sadi Carnot,1796~1823)法国物理学家、军事工程师。卡诺提出了作为热力学重要理论基础的卡诺循环和卡诺定理,从理论上解决了提高热机效率的根本途径。1832年8月24日卡诺因染霍乱症在巴黎逝世,年仅36岁。 四.卡诺循环的定义 卡诺循环(Carnot cycle) 是由法国工程师尼古拉·莱昂纳尔·萨迪·卡诺于1824年提出的,以分析热机的工作过程,卡诺循环包括四个步骤:等温膨胀,绝热膨胀,等温压缩,绝热压缩。即理想气体从状态1(P1,V1,T1)等温膨胀到状态2(P2,V2,T2),再从状态2绝热膨胀到状态3(P3,V3,T3),此后,从状态3等温压缩到状态4(P4,V4,T4),最后从状态4绝热压缩回到状态1。这种由两个等温过程和两个绝热过程所构成的循环称为卡诺循环。 五.卡诺热机的原理 设一热机中有一定量的工质,工作在温度分别为T1和T2的两恒温热源间。卡诺循环由两个可逆的定温过程和两个可逆的绝热过程(定熵)组成 四个过程的顺序如下:

工程热力学(第五版)第5章练习题

第5章 热力学第二定律 5.1 本章基本要求 理解热力学第二定律的实质,卡诺循环,卡诺定理,孤立系统熵增原理,深刻理解熵的定义式及其物理意义。 熟练应用熵方程,计算任意过程熵的变化,以及作功能力损失的计算,了解火用、火无 的概念。 5.2 本章重点: 学习本章应该掌握以下重点内容:, l .深入理解热力学第二定律的实质,它的必要性。它揭示的是什么样的规律;它的作用。 2.深入理解熵参数。为什么要引入熵。是在什么基础上引出的。怎样引出的。它有什么特点。 3.系统熵变的构成,熵产的意义,熟练地掌握熵变的计算方法。 4.深入理解熵增原理,并掌握其应用。 5.深入理解能量的可用性,掌握作功能力损失的计算方法 5.3 本章难点 l .过程不可逆性的理解,过程不可逆性的含义。不可逆性和过程的方向性与能量可用性的关系。 2.状态参数熵与过程不可逆的关系。 3.熵增原理的应用。 4.不可逆性的分析和火用 分析. 5.4 例题 例1:空气从P 1=0.1MP a ,t 1=20℃,经绝热压缩至P 2=0.42MP a ,t 2=200℃。求:压缩过程工质熵变。(设比热为定值)。 解:定压比热: k kg kJ R C P ?=?==/005.1287.02 727

由理想气体熵的计算式: k kg kJ P P R T T C S P ?=-=-=?/069.01.042.0ln 287.0293473ln 005.1ln ln 1 21212 例2:刚性容器中贮有空气2kg ,初态参数P 1=0.1MP a ,T 1=293K ,内装搅拌器,输入轴功率W S =0.2kW ,而通过容器壁向环境放热速率为kW Q 1.0.=。求: 工作1小时后孤立系统熵增。 解:取刚性容器中空气为系统,由闭系能量方程:U Q W s ?+=. . 经1小时, ()12..36003600T T mC Q W v s -+=()K mC Q W T T v 5447175 .021.02.036002933600..12=?-+=??? ??-+= 由定容过程:1212T T P P =, MPa T T P P 186.0293 5441.01212=?== 取以上系统及相关外界构成孤立系统: sur sys iso S S S ?+?=? K kJ T Q S sur /2287.1293 1.036000=?==? K kJ S iso /1 2.22287.18906.0=+=? 例3:压气机空气由P 1=100kP a ,T 1=400K ,定温压缩到终态P 2=1000kP a ,过程中实际消耗功比可逆定温压缩消耗轴功多25%。设环境温度为T 0=300K 。 求:压缩每kg 气体的总熵变。 解:取压气机为控制体。按可逆定温压缩消耗轴功: kg kJ P P RT v v RT W SO /3.2641000 100ln 400287.0ln ln 2112-=?=== 实际消耗轴功: ()kg kJ W S /4.3303.26425.1-=-= 由开口系统能量方程,忽略动能、位能变化:21h q h W S +=+ 因为理想气体定温过程:h 1=h 2

热力学第二定律和卡诺循环

热力学第二定律与卡诺循环 203 汪艺塍 各位看到这个标题时,麻烦等下再翻下一版。毕竟有(tao )趣(yan )的热力学第二定律,可以被讨(you )厌(qu )的人们拿去发展为宇宙的“热寂说”、买彩票中奖的几率甚至是离婚的原因blabla 的。由此可见其重要性。而且2016年全国卷涉及热学内容,希望有兴趣的同学能继续看下去。 热力学第零定律和第一定律向来没有太多质疑,而对于热力学第二定律,却自提出之日起却争议不断。最有影响力的质疑当属麦克斯韦提出的“麦克斯韦妖”① 。不过目前尚未能否定此定律的正确性。 热力学第二定律实际上是对热力学过程不可逆性的表述,即物质总是趋向于混乱的,一切自发进行的过程都不可自发复原。 早在1824年,卡诺提出的卡诺定理②已十分接近热力学第二定律,但卡诺是已当时流 行的“热质说”③加上能量守恒定律解释。如果不从“热质说”而正确推导出卡诺定理,那么就缺乏一条定律。克劳修斯据此提出热力学第二定律。 热力学第二定律有两种主要表述: (1)克劳修斯表述(1850年) 不可能把热量从低温物体传到高温物体而不引起其他变化; (2)开尔文(汤姆孙)表述(1851年) 不可能从单一热源吸取热量,使之完全转化为有用功而不产生其他影响 或表述为:第二类永动机④不可能存在。 我们想要论证二者等价性,此时引入卡诺循环。 这是卡诺提出的一种理想的可逆热机,其工作时的V -p 图象如下所示: ①过程B A →为等温膨胀,温度为1T ,吸热ab Q ; ②过程C B →为绝热膨胀,温度由1T 降为2T , =ab Q 吸热为0; ③过程D C →为等温压缩,温度为2T ,放热cd Q ; ④过程A D →为绝热压缩,温度由1T 升为2T ,放 热为0。 由理想气体状态方程、热力学第一定律和绝热过程泊松公式⑤ ?????=+?=?=)(常数C pV W Q U RT pV γν 可以得到: (1)对于等温过程①和③:

概述卡诺循环

概述卡诺循环 摘要:本文简述了卡诺当时是如何提出这一理想循环过程的,以及卡诺热机理论---热机只能在具有温差的两个热源之间工作;热机的效率于工作介质无关而主要取决于两个热源之间的温差。卡诺循环的基本原理,P-V图,热机效率。卡诺循环是理想化的可逆循环,其效率是最高的,但是实际热机的效率都比理想化的可逆卡诺热机效率低得多。 关键词:卡诺循环;绝热过程;卡诺循环原理;P-V图;热机效率 一、卡诺循环的提出 尼古拉·雷奥纳德·卡诺(Nicolas Leonard Sadi Carnot,1796~1823)生于巴黎,是法国物理学家、军事工程师。其父L.卡诺是法国有名的数学家、将军和政治活动家,学术上很有造诣,对卡诺的影响很大。卡诺提出了作为热力学重要理论基础的卡诺循环和卡诺定理,从理论上解决了提高热机效率的根本途径。1832年8月24日卡诺因染霍乱症在巴黎逝世,年仅36岁。按照当明的防疫条例,霍乱病者的遗物一律付之一炬。卡诺生前所写的大量手稿被烧毁,幸得他的弟弟将他的小部分手稿保留了下来,其中有一篇是仅有21页纸的论文----《关于适合于表示水蒸汽的动力的公式的研究》,其余内容是卡诺在1824-1826年间写下的23篇论文。 卡诺当时是如何提出这一理想循环过程的?他研究的方法是什么?具体地说就是,为什么卡诺认为理想热机的循环过程中,从高、低温热源吸、放热过程一定要是等温过程?卡诺为何要选气体(理想)作为理想热机的工质?具体分析如下:随着蒸汽机的发明,第一次工业革命在欧洲逐渐兴旺起来。蒸汽机在法国和英国等国家创造了极大的价值,使工业化生产极大的代替了手工生产,增加了国力和财力。作为法国人的卡诺亲自经历了这次巨大的变革,然而,他也切实的看到人们仅仅是能运用热机代替人力,但是对热机效率及工作原理的理论认识还不够深入。蒸汽机发明以后,它的效率很低。到18世纪末,只有3%左右,即有约97%的热量得不到利用。当时有不少人为提高其效率而继续进行研究。为了解决当时对热机的两个集中的问题:(1)热机效率是否有一极限?(2)什么样的热机工作物质是最理想的?卡诺不是盲从当时主流的工程师们就事论事,从热机的适用性、安全性和燃料的经济性几个方面来改进热机。卡诺是采用了截然不同的途径,他不是研究个别的热机,而是寻求一种可以作为一般热机的比较标准的理想热机。 卡诺的父亲是法国大革命中“胜利的组织家”拉萨尔·卡诺。1816年,因其父被流放而从军中退役,专心研究热机理论。他给自己提出的目标是,阐明热机的工作原理,找出热机不完善的原因,以提高热机的效率。当时,卡诺相信热质说。于是,他把热量从高温热源经过热动力机传入低温热源时能够做功,看作水从高

逆卡诺循环原理

第1章空调制冷原理与基础 采用压缩机使气态制冷剂增压的制冷机称蒸气压缩式制冷机(简称蒸气制冷机)。对制冷剂蒸气只进行一次压缩,称为蒸气单级压缩。单级蒸气压缩式制冷机是目前应用最广泛的一种制冷机。这类制冷机设备比较紧凑,可以制成大、中、小型,以适应不同场合的需要,能达到的制冷温度范围比较宽广,从稍低于环境温度至-150℃,在普通制冷温度范围内具有较高的循环效率,被广泛地应用于国民经济的各个领域中。 蒸气压缩式制冷循环,根据实际应用有单级、多级、复叠式等循环之分,在各种蒸气压缩式制冷机中,单级压缩制冷机应用最广,是构成其他蒸气压缩式制冷机的基础,据不完全统计,全世界单级蒸气压缩式制冷机的数量是制冷机总数的75%以上。因此,我们的介绍主要针对单级压缩式制冷机。

1.单级蒸气压缩式制冷循环——逆卡诺循环 在日常生活中我们都有这样的体会,如果给皮肤上涂抹酒精液体时,就会发现皮肤上的酒精很快干掉,并给皮肤带来凉快的感觉,这是什么原因呢?这是因为酒精由液体变为气体时吸收了皮肤上热量的缘故。由此可见,液体汽化时要从周围物体吸收热量。单级蒸气压缩式制冷,就是利用制冷剂由液体状态汽化为蒸气状态过程中吸收热量,被冷却介质因失去热量而降低温度,达到制冷的目的。制冷剂 1.1 逆卡诺循环——理想制冷循环 几个概念 焓h=U+PV 表示工质流动能和内能之和。 熵S=△Q/T 表示工质热量变化与工质温度之商。 温熵图 它由两个等温过程和两个绝热过程组成。假设低温热源(即被冷却物体)的温度为T0,高温热源(即环境介质)的温度为T k, 则工质的温度在吸热过程中为T0,在放热过程中为T k, 就是说在吸热和放热过程中工质与冷源及高温热源之间没有温差,即传热是在等温下进

熵最大原理

一、熵 物理学概念 宏观上:热力学定律——体系的熵变等于可逆过程吸收或耗散的热量除以它的绝对温度(克劳修斯,1865) 微观上:熵是大量微观粒子的位置和速度的分布概率的函数,是描述系统中大量微观粒子的无序性的宏观参数(波尔兹曼,1872) 结论:熵是描述事物无序性的参数,熵越大则无序。 二、熵在自然界的变化规律——熵增原理 一个孤立系统的熵,自发性地趋于极大,随着熵的增加,有序状态逐步变为混沌状态,不可能自发地产生新的有序结构。 当熵处于最小值, 即能量集中程度最高、有效能量处于最大值时, 那么整个系统也处于最有序的状态,相反为最无序状态。 熵增原理预示着自然界越变越无序 三、信息熵 (1)和熵的联系——熵是描述客观事物无序性的参数。香农认为信息是人们对事物了解的不确定性的消除或减少,他把不确定的程度称为信息熵(香农,1948 )。 随机事件的信息熵:设随机变量ξ,它有A1,A2,A3,A4,……,An共n种可能的结局,每个结局出现的概率分别为p1,p2,p3,p4,……,pn,则其不确定程度,即信息熵为 (2)信息熵是数学方法和语言文字学的结合。一个系统的熵就是它的无组织程度的度量。熵越大,事件越不确定。熵等于0,事件是确定的。 举例:抛硬币, p(head)=0.5,p(tail)=0.5 H(p)=-0.5log2(0.5)+(-0.5l og2(0.5))=1 说明:熵值最大,正反面的概率相等,事件最不确定。 四、最大熵理论 在无外力作用下,事物总是朝着最混乱的方向发展。事物是约束和自由的统一体。事物总是在约束下争取最大的自由权,这其实也是自然界的根本原则。在已知条件下,熵最大的事物,最可能接近它的真实状态。

相关文档
相关文档 最新文档