文档库 最新最全的文档下载
当前位置:文档库 › 世代方差的遗传分析

世代方差的遗传分析

世代方差的遗传分析
世代方差的遗传分析

世代方差的遗传分析

莫惠栋

A Genetic Analysis for Generation Variances

一、群体性质和方差分量

在遗传学上,根据等位基因的是否相同,可把基因型分为两类:(1)纯合的(homozygous ),即等位基因相同的,如AA ;这种基因型的自交后裔不会分离,除非发生突变。(2)杂合的(heterozugous ),即等位基因不同,如Aa ;这种基因型的有性后裔必发生分离,从而产生遗传方差,即由遗传因素而造成的变异。

一个世代群体,可由单一或若干基因型组成。如果由单一基因型组成,则不论纯合或杂合,该群体即为同质的(homogeneous );如果由若干不同基因型,则该群体称为异质的(heterogeneous )。

根据以上定义,常见的植物育种群体可归类为:(1)同质纯合群体,如自交作物的品种;(2)同质杂合群体,如自交作物杂交的1F 、无性繁殖系;(3)异质纯合群体,如自交作物杂交后代的高世代品系群和地方品种;(4)异质杂合群体,如自交作物杂交后代的分离世代、异交作物的品种。一个群体的表型方差分量,随该群体的同质或异质而异。

(一)同质群体的方差分量 同质群体的组成基因型不存在遗传差异,故一般而论,其变异属于环境效应。因而同质群体中每一个体观察值的线性模型可给定为:

(1,2,

,)i i Y m i N ε=+=

(1)

(1)中的i Y 为第i 个体的表型值,m 为群体平均数或遗传背景效应(genetic backgroud effect ),i ε为第i 个体的环境效应,N 为群体容量。由(1)可得群体的表型方差2

p σ和环境方差2e

σ为:2

2

2221

1

1

()

,()N

N N

p

i e

i i Y m N Y m N σσε=

-==-∑∑∑

即有:22

p e σσ=

(2)

所以,一个同质的世代群体,不论其基因型为纯合或杂合,其表型方差即环境方差;这种群体只能为我们提供一个群体平均数m 和一个环境方差2

e σ。这里需要注意的是:i ε和2

e σ不一定纯由环境变异造成,常常还混杂着基因型在发育上的不稳定性(或谓对环境敏感)和基因型×环境互作而产生的变异。只是为简化头绪,我们暂不考虑这些问题。

(二)异质群体的方差分量 异质群体除环境效应外,还有因组成基因型不同而产生的遗传效应。设一群体的某一性状有k 种基因型,每一基因型有N 个个体,则个体观察值得线性模型为:(1,2,

,;1,2,,)ij i ij Y m g i k j N ε=++==

(3)

(3)中的ij Y 和ij ε分别为第i 个体的表型值和环境效应;()i i g m m =-为第i 基因型的遗传

效应(i m 为第i 基因型群体平均数),m 同(1)。由(3)可得表型方差2p σ、遗传方差2

g σ和

环境方差2

e σ分别为:

2

2

22

221

1

1

1

(),(),()kN k k N

p

ij g

i e

ij i Y m kN m m Y m σσσ=-=-=-∑∑∑∑

因而有:22

2p g e σσσ=+

(4)

(4)说明,异质群体的表型方差2p σ可分解为2g σ和2

e σ两个分量。如果遗传(基因型)效

应g 可以再分解(这与交配设计有关),则2

g σ亦可作相应得分解。例如,在加性-显性模

型下,g 可再分解为加性效应d 和显性效应h ,即i i i g d h =+,则2

g σ就可再分解为加性方

差2d σ和显性方差2h σ,即222

g d h σσσ=+。

在育种实践中,2g σ的估计是极其重要的。一个育种群体的选择潜力,与2

g σ(对自交作物是2

d σ)成比例;只有当2g σ存在且足够大(与2

e σ相比较)时,才能对选择压力产生响应。若2g σ=或0→(群体趋于同质),选择即不再有效。

二、自交作物世代群体的方差分量

以下以自交作物的世代群体为例,讨论在加性-显性模型下的群体方差和分量。 (一)亲本和1F 群体 自交作物的亲本和1F 群体都是同质的,故根据(2)有:

1

2

1

222

2P P F e σσσσ===

即1P 、2P 和1F 群体的表型方差都是环境方差。当由样本均方1P V 、2P V 和1F V 估计时,即有

1212?P P F e V V V E σ

====。在各群体的样本容量相似时,一般可用算术平均数估计2e σ,即1211()3P P F E V V V =++或121

()2

P P E V V =+

(5) 或1F E V =

(6)

(6)一般用于异交作物的自交系间杂种品种。因自交系对环境反应敏感,缺少生物学代表性,故由1F 代估计之。

(二)2F 群体

由于1F 代杂合,其基因分离使2F 代成为异质群体,故2F 的表型方差

2

2F p σ可根据(4)而完成:2

2

2

222F p F g F e σσσ=+。在表1以1对等位基因的分离为例,可导

得加性-显性模型下的22F g σ为:2222222

1111122224()F g d h h d h

σ=+-=+ 当推广于k 对独立等位基因时则有:22221111

2

4

241

1

k

k

F g

i

i

d

h

D H σ=+

=+∑∑

这里的2

1

12

2i

d

D =∑和21

144i h H

=∑,即2F 世代遗传方差中的加性方差和显性方差,

可分别记为22F d σ和22

F h σ。

对于22

F e σ,由于每对等位基因的分离

都是14AA 、12Aa 和1

4aa ,故:

2

1

2

1

2222111

442F e P P F σσσσ=++

因此,当由样本均方估计时:

222222111

12144221124??F F e P P F F F p F E V V V V D H E σσ?==++??==++??

(7)

(三)3F 群体 在一对等位基因时,2F 代自交而得3F 代群体遗传组成为3

8

AA 、1

4

Aa 和3

8aa ,平均数为14h 。故3F 群体的遗传方差为:

32

2

222223131338

484416F g d h d h d h σ????=++-=+ ? ?????

当推广于k 对独立等位基因时则为:

3

2223333

416416

k k F g

i i d h D H σ=+=+∑∑ 以上说明,3F 群体的遗传方差中,加性方差32

34F d D σ=,显性方差32316

F h H σ=。将之与2F 代的相应方差相比较,可以看出:32

3

2

2

222

,F d F d F h F h

σσσσ>

<。这是由于3F 代比2F 代,纯合体比率提高,杂合体比率减少。随着自交代数的增加,这种趋势将继续发展下去,

直至2

g σ即2d σ为止(即20h σ=,这时的世代群体已成为异质纯合)。

对于32

F e σ,则显然有:

3

1

2

1

2222

3

31884

F e P P F σσσσ=++

故由样本均方估计时,即有:

33111333

22331?88433???416F F e P P F F F p F E V V V V D H E σ

σ?==++??

??==++??

(8)

如果在试验设计时,将2F 代各植株皆种成一个3F 家系,则还可以追溯32

F g σ中的遗传变异来

源: 1

因1F 代基因分离而产生的遗传方

差,其方差记作32

(1)F g σ。这是3F 家系平均数间的方差(因3F 的每一家系可追溯为2F 的一个植株和1F 的一粒种子)。由于2F 的AA 和aa 个体在3F 家系的型值

仍分别为d 和d -,而Aa 个体的3F 家系型值则由于分离而成为12h (表2)

,故:322

222

22(1)111111142244216F g d h d h d h σ??????=++-=+?? ? ?

???

????? 当推广于k 对独立基因时则为:32

(1)11

216

F g D H σ=+ 2

因2F 代基因分离而增加的遗传变异,其方差可记为32

(2)F g σ。它是3F 家系内方差的平均

数。由于2F 的AA 和aa 个体在3F 成为家系时,系内遗传方差为0,而在Aa 个体在3F 成为家系时,系内遗传方差为

22

1124

d h +(相当于1F 的Aa 在2F 的遗传方差)

,故:

()()3

2

2222

(2)1111111004224448

F g d h d h σ??=

+++=+ ??? 在k 对独立基因时则为:

3

2

(2)1148

F g D H σ=

+ 因此得到:333

2

22

(1)

(2)F g F g F g

σσσ=+。上述结果说明:2F 代的加性方差(由1F 代基因分离产生的)

12D 仍保留至3F 代,但2F 代杂合体进一步分离又使加性方差增加1

4

D ,所以

3

2311

244F d D D D σ=+=;2F 代的显性方差(由1F 代基因分离产生的)

14

H 至3F 代减少了316H ,成为1

16

H ,但2F 代杂合体的基因分离仍保留着18H ,所以

3211316816F h H H H σ=+=,仅比22

F h

σ减少116

H 。 在实际分析时,只能得到家系平均数间的样本均方31F V 和家系内平均均方32F V ,用以估计

3

2(1)F g σ和3

2

(2)F g σ。但3

1F V 和3

2F V 是有抽样方差和环境误差的,故必须进一步定义其分量。

设家系内(小区内)和家系间(小区间)的非遗传变异分别为w E 和b E (其中3w F E E =),则32F V 中显然有分量w E ,而31F V 中有分量1

b w E E n

+(n 为每一家系的样本容量)

。但3F 家系平均数还有抽样变异,其分量为

321

()F V n

(若家系内的n 不相等,则为3201()F V n ,0n 为i

n 的调和平均数)。这个321()F V n 当然包括了1

w E n

但还有一些遗传变异。因此可得31F V 和32F V 的分量为:

333

1

22111??()21611??48F b F F w V D H E V n

V D H E ?

=+++?

???=++??

(9)

(四)4F 和更高代群体 3F 自交的4F 代,其群体遗传组成为

71,168AA Aa 和7

16

aa ,平均数为1

8

h ,故遗传方差为:

42

2

222227171771681688

64F g

d h d h d h σ??=++-=+ ??? 推广于k 对独立的等位基因时则为:

4

2

77864

F g D H σ=

+ 而环境方差则为:

4

121222277116168

F e P P F σσσσ=

++ 故由样本均方估计时有:

44121444

227711616877??864F F e P P F F F p F E V V V V D H E σσ?

==

++??

??==++??

(10)

以上42

F g σ可按世代来源而分为三个部分:(1)由1F 代基因分离产生的遗传变异而保留至4

F 代的,这是4F 家系平均数间的遗传变异(一个4F 家系群可追溯为3F 的一个家系,2F 的一

个植株和1F 的一粒种子),记为42(1)F g σ。(2)由2F 代杂合体的基因分离产生的遗传变异而保留至4F 代的,这是4F 各家系群内家系平均数间的遗传变异,记作32(2)F g σ。(3)由3F 代杂合体的基因分离而增加的遗传变异,这是4F 各家系内方差的平均数,记作42(3)F g σ。仿照

处理3F 群体的方法可导得:

4

444

2

(1)2

(2)2

(3)2

1126411432118167

7864

F g F g

F g

F g D H D H D H D H σσσσ?

=+?

?

?=+???=+??

=

+

而由表型估计的家系群平均数间均方41F V 、家系群内平均数间均方42F V 和家系内均方平均数

4

3F V 的分量则为:

1444442'233111??()264111??()43211??816F F F b F F w V D H V n

V D H E V n V D H E ?=

++??

?=+++???=++??

(11)

(11)中的'

n 为每一家系群所含的家系数;n 为每一家系所含的个体数;4w F E E =。

5F 和更高世代的群体,皆可类推。设世代序为t (1,2,

;t =如5F 的5t =)

,而遗传差异的来源可追溯为(1,2,,1)q q t =-的世代的配子分离。则各世代通用的主要公式可

归纳于下:

()

121222

112

111222

21121212421122t t t t t F p F g F e t t F g

t t t F e P P F t t D H σσσσσσσσ-------??=+?

?????--?=+? ? ?????????-?=++ ?????

(12)

()

121112111

2112121??

?24211

?22t t t t t t t F F p

F t t t F F e P P F t t V D H E E V V V σ

σ-------?????--==++? ? ??????

???-?==++ ?????

(13)

()()

21

211

()22t

q t q F q g D H σ--=+

(14)

(五)回交群体 1B 世代为11F P ?的后裔,在一对等位基因时的群体组成为1

2AA 和12

Aa ,平均数为()

12d h +;2B 世代为12F P ?的后裔,群体组成为11

22Aa aa +,平均数为()12

h d -。故遗传方差为:

()()1

2

2

222221111112224242

2

2

2

2

2

1111112

2

2

4

2

4

B g B g

d h d h d dh h

d h h d d dh h

σσ=+-+=-+????=+--=++????

推广于k 对独立等位基因时,令

dh F =∑,即可得到:

12

211142421

114

2

4B g B g

D F H

D F H

σσ=-+=++

环境方差为:

1

1

1

1

1

2

2222221111

2222;B e P F B e F P

σσσσσσ=+=+ 当由样本估计时,则有:

11121

21111

2222,B P F B F P E V V E V V =+=+ (15)

1122111424111424??????B B B B V D F H E V D F H E ?=-++?

?=+++??

(16)

并得到:

122

1122??2B B F V V D H E +=++ (17)

(六)一个最简单的实例 以番茄加6131()P ×

佛强秘9112()P ,得1P 、2P 、1F 、2F 、

1B 、2B 世代茄果中茄红素含量(mg /100g )的平均数和均

方于表3。根据(7)和(17),由表3可得:

21

14

2

112

41122(0.31640.1678)(0.3399)0.2910

?? 2.20370.2910 1.9127??

1.3313 1.57272(0.2910)

2.3220

F E D H D H =++=+=-=+=+-= 因而得到:

??3.0068, 1.6372D

H == 需注意,以上结果是以加性-显性模型为基础的。当不存在

上位性效应时,?D

和?H 的估计无偏;若存在上位性效应,则估计有偏。 (待续)

伴性遗传--题型总结--超级好用

伴性遗传与遗系谱图 一.遗传系谱图解法: 1.确定是否伴Y遗传:基因只在Y染色体上,没有显隐性之分,患者全为男性,具有世代连续性,女性都正常。若患者男女都有,则不是伴Y遗传。再进行以下判定。 2.确定系谱中的遗传病是显性还是隐性遗传。 双亲正常,其子代中有患者,一定是隐性遗传病。 双亲患病,其子代中有正常者,一定是显性遗传病。 3.确定是常染色体遗传还是伴X的遗传: 在已确定隐性遗传中: 若有父亲正常,女儿患病;或者母亲患病,儿子正常,一定是常染色体遗传。 在已确定显性遗传中: 若有父亲患病,女儿正常;或者母亲正常,儿子患病,一定是常染色体遗传。 人类遗传病判定口诀:无中生有为隐性,有中生无为显性。 隐性遗传看女病,父子无病非伴性。 显性遗传看男病,母女无病非伴性。 4.若无明显特征只能做可能性判定: 在系谱中若该病代代相传:显性可能性大。 若患者男女各半,性状表现无明显的性别差异,常染色体的可能性大; 若患者女多男少,性状表现有性别差异,X染色体可能性大。 在系谱中若该病隔代相传,隐性可能性大: 若患者男女各半,性状的表现无明显的性别差异,常染色体的可能性大; 若患者男多女少,性状表现有性别差异,X染色体的可能性大。

二、判一判 结论:该病是位于常染色体上的隐性遗病。 结论:初步认定该病为伴X染色体隐性遗传病 结论:初步认定该病为伴X染色体显性遗传病 三、专题练习 题型一:遗传系谱图 1、遗传工作者在进行遗传病调查时发现了一个甲、乙两种单基因遗传病的家系,系谱如下图所示,请回 答下列回答(所有概率用分数表示) (1)甲病的遗传方式是▲。 (2)乙病的遗传方式不可能是▲。 (3)如果II-4、II-6不携带致病基因.按照甲、乙两种遗传病最可能的遗传方式.请计算: ①双胞胎(IV-1与IV-2)同时患有甲种遗传病的概率是▲。

基因频率的计算与伴性遗传

基因频率的计算专项训练 笔者在进行高三复习教学时发现,很多学生对“基因频率”的计算题目特别容易错解,有关解答“基因频率”的常规方法和哈代-温伯格平衡(遗传平衡)定律法在解题时不能灵活应用。针对此问题,本文首先对常规方法和遗传平衡定律法的内涵和实质进行阐述,再结合教学实际,对几种常见题型采用何种解题方法较好,进行归纳总结。 一、哈代-温伯格平衡定律法和常规方法的内涵 哈代-温伯格平衡定律指出:在一个有性生殖的自然种群中,并符合以下5个条件的情况下,各等位基因的频率和等位基因的基因型频率在一代一代的遗传中是稳定不变的,或者说是保持着基因平衡。这5个条件是:①群体足够大,不会由于任何基因型传递而产生频率的随意或太大的波动; ②必须是随机交配而不是选择交配;③没有突变发生;④种群之间不存在个体的迁移或基因交流; ⑤没有自然选择。 一个达到遗传平衡的种群,若基因位于常染色体上,设其一对等位基因A和a的频率依次为p和q,则p+q=1,(p+q)2=1,p2 +2pq + q2=1,基因型AA的频率为p2,aa的频率为q2,Aa的频率为2pq,各基因频率和基因型频率在每一代中保持不变。因为在在这个群体中,产生的精子的基因型有两种,其比例为:A:a=p:q,产生的卵细胞基因型也是两种,其比例也为:A:a=p:q,由 该群体子一代的基因型有:AA,Aa,aa,其频率分别为p2,2pq ,q2。据此基因型频率可推算出子一代的基因频率: A=(p2×2+2pq×1)/2=2p(p+q)/2=p a=(q2×2+2pq×1)/2=2q(p+q)/2=q 子一代中A的基因频率还是p,a的基因频率还是q。同理,推导出任何一个子代的基因频率仍是P和q,亲代和任何一个子代的基因型频率分别为p2,2pq ,q2。总之,这个种群中基因A 和基因a的频率在每一代中永远保持p和q,基因型AA,Aa,aa的频率也保持为p2,2pq ,q2[1]。 一个达到遗传平衡的种群,若基因位于X染色体上,设其一对等位基因X B和X b的频率为p 和q,则p+q=1,(p+q)2=1,p2 +2pq + q2=1。 因为在该种群中,卵细胞有X B和X b两种,频率为p和q,这两种卵细胞与含有Y染色体的精子的结合机会又是相等的,所以产生的雄性子一代中基因型为X B Y和X b Y的频率依次为p和q,即可推出雄性子一代中基因为X B和X b的频率依次为p和q。 在该种群中,卵细胞和精子都有X B和X b两种,频率也都为p和q,且这些卵细胞与精子的结合机会又是相等的,所以产生的雌性子一代中基因型为X B X B、X B X b、X b X b的频率依次为p2,2pq ,q2,即可推出雌性子一代中基因为X B和X b的频率也依次为p和q。 在整个种群中,雌雄数目比例为1:1,因此,在这个遗传平衡的种群中,整个子一代基因型为X B X B、X B X b、X b X b、X B Y和X b Y的频率依次1/2p2,pq ,1/2q2,1/2p和1/2q,即可推出在整个子一代中基因为X B和X b的频率也依次为p和q。 同理,可推导发现,每一代:整个种群中的X B和X b的基因频率和雄性群体中、雌性群体中X B和X b基因频率都相等,分别为p和q。 常规方法适用于任何群体处于任何条件下。解题中先要判断题目中所给的群体是否满足哈代-温伯格平衡的5个条件,如果满足,用以上遗传平衡法解题更迅速方便,如果缺乏这些条件,比如群体中存在基因突变、自然选择、遗传漂变、迁移,则基因频率和基因型频率都会改变,或者群体是自交非随机交配,则基因频率不变,但基因型频率会发生改变,此时就不能保持群体的遗传平衡,就不能应用遗传平衡定律法解题,只能用常规方法。 基因频率=(某种基因的数目/控制同种性状的等位基因的总数)×100% 基因型频率=(该基因个体数/该群体个体总数)×100% 若基因位于常染色体上,则: A的基因频率=[这个群体中A基因的个数/(群体个体总数×2)]×100% a的基因频率=[这个群体中a基因的个数/(群体个体总数×2)]×100% 若基因位于X染色体上,则: X B的基因频率=[这个群体中X B基因的个数/(雌性个体总数×2+雄性个体总数)]×100% X b的基因频率=[这个群体中X b基因的个数/(雌性个体总数×2+雄性个体总数)]×100% 二、经典例题剖析和归纳: 1、常染色体上基因的基因频率计算 例1: (2008年高考江苏卷)某植物种群中,AA个体点16%,aa个体占36%,该种群随机交配产生的后代中AA个体百分比、A基因频率和自交产生的后代中AA个体百分比、A基因频率的变化依次为A.增大,不变;不变,不变B.不变,增大;增大,不变 C.不变,不变;增大,不变D.不变,不变;不变,增大

第一节方差分析原理.doc

第一节方差分析原理 一、方差分析基本思想 方差分析( analysis of variance ,或缩写 ANOVA )又称变异数分析,是一种应用非常广 泛的统计方法。其主要功能是检验两个或多个样本平均数的差异是否有统计学意义,用以推断它们的总体均值是否相同。它是真正用来进行上述“多组比较”问题的正确方法,从这个意 义上说,它可看成是t 检验等“两组比较法”的推广。理解方差分析的原理,主要在于其基本思想,而不在于数学推导。 以单因素完全随机化实验设计为例(这是最简单的多组实验设计)介绍方差分析的原理。注意下面列出的该种设计的数学模式,假设有 k 个处理,每个处理下有n 个被试,一共有nk 个被试。 K 个处理下的数据构成比较中的k 个组或 k 个样本。 理T 1 T 2 ?T j ?T k X 11 X 12 ?X 1j ?X 1k X 21 X 22 ?X 2j ?X 2k 各?????? 数据X i1 X i2 ?X ij ?X ik ?????? X n1 X n2 ?X nj ?X nk 不失一般地,其对应的图示如下:

根据测量学中的真分数理论,观测值等于真值和误差之和;据此,对照上面的数据可得到下面的数学模型: 其中: X ij 指第 j 个处理下的第 i 个被试的实验数据; μ 指总体均值;在图中样本数据中,即红色线表示的总平均; μ 指第 j 个处理的均值; j τ 称为第 j 个处理的效应;通常,τj=μj–μ,也即各组均值偏离总平均的离差; j ε ij 为随机误差( idd 表示误差独立同分布);在该模型中,误差就是各组中数据偏离 其组均值的离差。因为根据单因素完全随机化设计的特点,同组中的被试,其各方面条件都相同,接受的处理也相同,其观测值间的差异只能归结为随机误差。 首先对检验的零假设进行变换: 下面我们就需要构造一个统计量使得它在Ho"下无未知量且有精确的分布,以进行假设2 检验。由于τj是每个处理的平均数与总平均之差,所以我们考虑从数据的离均差的平方 入手来构造统计量: 对每个观测数据: 即:任意一个数据与总平均数的离差= 该数与所在组平均数的离差+ 所在组的平均数与总平均数的离差。 我们针对第j 组中每个数据的上述分解式的平方求和得:

伴性遗传习题解题方法的总结

有关伴性遗传的常见习题解题方法的总结 人类遗传病的判定 解题方法:先要判断出致病基因的位置以及显隐性,然后根据题目要求分别写出个体的写出基因型及表现型及子代基因型表现型的比例。其中遗传病的性质可以依据以下步骤来判断: 第一步:确认或排除Y 第二步:判断致病基因是显性还是隐性。 (1)无中生有为隐性 (2)有中生无为显性 (3)有无生有无显隐都可能,这时我们可以看患者代代(指各亲代与子代之间)是否具有连续性。如果有连续性的往往是显性致病基因控 制的遗传病(可能性大但不是否定隐性遗传);不连续的则由隐性 致病基因控制。 X染色体上。 首先考虑后者,只有不符合X染色体显性或隐性遗传病的特点时,才可判断为常染色体显性或隐性遗传病;否则两种染色体上的情况都要考虑。 口诀:无中生有为隐性,隐性遗传看女病,父子患病为伴性; 有中生无为显性,显性遗传看男病,母女患病为伴性。

以下是几种常见的家系图谱,仅供参考

练习: 1. 如图所示为四个遗传系谱图,则下列有关叙述正确的是 ( ) A.肯定不是红绿色盲遗传家系的是甲、丙、丁 B.家系乙中患病男孩的父亲一定是该病基因的携带者

C.四图都可能表示白化病遗传的家系 D.家系丁中这对夫妇若再生一个女儿,正常的几率为3/4 2.(2006天津卷)某种遗传病受一对等位基因控制,下图为该遗传病的系谱图。 下列叙述正确的是() A.该病为伴X染色体隐性遗传病,Ⅱ1为纯合子 B.该病为伴X染色体显性遗传病,Ⅱ4为纯 合子 C.该病为常染色体隐性遗传病,Ⅲ2为杂合子 D.该病为常染色体显性遗传病,Ⅱ3为纯合子 3. (06广东)下图为某家系遗传病的遗传图解,该 病不.可能是() A. 常染色体显性遗传病 B. 常染色体隐性遗传病 C. X染色体隐性遗传病 D.细胞质遗传病 【答案】1A 2C 3C 4.右图为某单基因遗传病的系谱图,致病基因为A或a,请分析回答下列问题: (1)该病的致病基因在染色体上,是 性遗传病。 (2)Ⅰ—2和Ⅱ—3的基因型相同的概率 是。 (3)Ⅱ—2的基因型可能是。 (4)Ⅲ—2若与一携带致病基因的女子结婚,生育出患病女孩的概率

高中生物必修二-伴性遗传概率计算

伴性遗传概率计算 【解题攻略】: 1.判断该性状(遗传病)的遗传方式 2.判断亲本的基因型 3.计算子代的概率 注:一种性状(遗传病)的考查比较简单,按基因分离定律进行计算即可;涉及到两种性状(遗传病)的考查,一般采用独立分析法,即先一种性状一种性状地分析,然后再把两种性状的情况组合起来,与基因自由组合定律的算法相似,只不过要注意到伴性遗传的情况。 专项训练 1.下图是一种伴性遗传病的家系图。下列叙述错误的是 A.该病是显性遗传病,Ⅱ一4是杂合子 B.Ⅲ一7与正常男性结婚,子女都不患病 C.Ⅲ一8与正常女性结婚,儿子都不患病 D.该病在男性人群中的发病率高于女性人群 2.分析下面家族中某种遗传病的系谱图,下列相关叙述中正确的是 A.该遗传病为伴x染色体隐性遗传病 B.Ⅲ8和Ⅱ3基因型相同的概率为2/3 C.Ⅲ10肯定有一个致病基因是Ⅰ1由传来的 D.Ⅲ8和Ⅲ9婚配,后代子女发病率为1/4 3.一对正常夫妇,双方都有耳垂(控制耳垂的基因位于常染色体上),结婚后生了一个色盲、白化且无耳垂的孩子,若这对夫妇再生一儿子,为有耳垂、色觉正常但患白化病的概率多大 A.3/8 B.3/16 C.3/32 D.3/64 4.有一对表现型正常的表兄妹婚配,生了一个既有白化病(基因a)又有色盲(基因b)的小孩。这位表兄的基因型,已生小孩的性别和再生一个小孩患两病的几率分别是A.AaX B Y、男孩、1/4 B.AaX B Y、男孩、1/16 C.AAX B Y、女孩、1/16 D.AaX b Y、男孩、1/16 5.下图是患甲、乙病两种遗传病的系谱图,且已知Ⅱ-4无致病基因。有关分析正确的是(多选)

伴性遗传基因频率计算

伴性遗传基因频率计算 特别提示:请同学们先做完再看解析 1某工厂有男女职工各200名,调查发现,女性色盲基因的携带者为15人,患者5人,男性患者11人。那么这个群体中色盲基因的频率是() A. 4.5% B. 6% C. 9% D. 7.8% 2、从某个种群中随机抽出100个个体,测知基因型为X B X B、X B X b、X b X b和X B Y、X b Y的个体分别是44、5、1和4 3、7,则X B和X b的基因频率为() A、43%、7% B、21.5%、3.5% C、90.7%、9.3% D、45.35%、4.65% 3、.在某个岛上,每1万人中有500名男子患红绿色盲。则该岛上的人群中,女性携带者的数量为每万人中有()人(设男女比例1:1) A、1000 B、 900 C、 800 D、700 4、在对欧洲某学校的学生进行遗传调查时发现,血友病患者占0.7%(男:女=2:1),血友病携带者占5%,那么,这个种群中X h的频率是() A、3.96% B、7.92% C、0.7% D、12.1% 5、若在果蝇种群中,X B的基因频率为90%,X b的基因频率为10%,雌雄果蝇数相等,理论上X b X b、X b Y的基因型比例依次为( ) A.1%、2% B.0.5%、5% C.10%、10% D.5%、0.5% 6、(2010四川卷)果蝇的某一对相对性状由等位基因(N,n)控制,其中一个基因在纯合时能使合子致死(注:NN,X n X n,X n Y等均视为纯合子)。有人用一对果蝇杂交,得到F1代果蝇共185只,其中雄蝇63只。 ①控制这一性状的基因位于___________染色体上,成活果蝇的基因型共有________种。 ②若F1代雌蝇仅有一种表现型,则致死基因是________,F1代雌蝇基因型为_________。 ③若F1代雌蝇共有两种表现型,则致死基因是___________。让F1代果蝇随机交配,理论上F2代成活个体构成的种群中基因N的频率为__________。 方法总结 1、随机抽取的小样本中: ①该种群可能未达遗传平衡(如第1、2题),或不具备种群特点(第4题),因此 不能用遗传平衡定律计算,只能根据概念直接计算。 ②由于男女性(雌雄性)中X染色体数量不等,因此,来自男女性(雌雄性) 中的基因总数就不等,计算时要注意区别对待。 【解析】:第1题:X b的基因频率:(15+5×2+11)/(200×2+200)=0.06 第2题;随机抽取的100个个体中,男女比例应该相等,各有50个。则X B的基因频率:(44×2+5+43)/(50×2+50)≈0.907,X b的基因频率:1-0.907=0.093 第4题:假定有学生100人,男女生各50人,血友病患者共有0.7个;由于患病男女比为2:1,则X h X h的个数为0.7×1/3, X h Y的个数为0.7×2/3。X H X h的个数为5个。则X h的基因频率为:(0.7×1/3×2+0.7×2/3+5)/(50×2+50)=0.0396 2、随机交配的大样本中 ①一个随机交配的或较大的自然种群可视作遗传平衡种群(第3题、第5题)。在这类 种群中,算基因频率一般用遗传平衡定律法(或配子随机结合法)

伴性遗传解题思路总结

伴性遗传的常见习题解题方法的总结 与性别决定有关的遗传设计: 子代性别的的选择: 解题方法:原理是用一种性状来指示性别的雌雄,而能用来指示性别的性状,其基因位于雌雄共有的性染色体上。选用的亲本是:隐性性状的性纯合子(如X a X a)×显性性状的性杂合子(如X A Y),表现显性性状的子代为性纯合子,表现隐性性状的子代为性杂合子。 例1.桑蚕中发现雄蚕产丝多,质量好。为了在幼虫时期及时鉴别雌雄,以便淘汰雌蚕保留雄蚕,人们根据伴性遗传的原理,设计了一个杂交组合方案,较好地解决了这个问题。现提供以下资料和条件: (1)家蚕的性染色体为ZW型(即雄性为zz雌性为zw) (2)正常蚕幼虫的皮肤不透明,是由显性基因A控制。“油蚕”幼虫的皮肤透明如油纸(可以看到内部器官)是由隐性基因a控制。A对a显性,他们都位于Z染色体上。 (3)现在正常蚕和“油蚕”两个品种雌雄幼虫若干条。请根“油蚕”据提供的资料和条件,利用伴性遗传的原理。设计一个杂交组合方案,能在幼虫时,就根据皮肤特性把雌雄蚕区分开来。 分析:从题意中我们可以分析到的蚕雄性是性纯合子ZZ,雌性是性杂合子ZW套用解题方法亲本是隐性性状的性纯合子×显性性状的性杂合子即×,表现显性性状的子代为性纯合子,表现隐性性状的子代为性杂合子。 参考答案:设计如下:以Z a Z a(雄油蚕)与Z A W(雌正常蚕)交配,子代中凡是正常蚕均为雄性Z A Z a,油蚕均为雌性Z a W。 例2有一种雌雄异株的草本经济植物,属XY型性别决定。已知其叶片上的斑点是由X染色体上的隐性基因(b)控制的。某园艺场要 通过杂交培育出一批在苗期就能识别雌雄的植株,则应选择: (1)表现型为__________的植株作母本,其基因型为___________。表现型为___________的植株作父本,其基因型为_____________。 (2)子代中表现型为_________的是雌株;子代中表现型为_________的是雄株。 分析:从题意中我们可以分析到这种草本植物的雌性是性纯合子,雄性是性杂合子套用解题方法亲本是隐性性状的性纯合子×显性性状的性杂合子即X b X b×X B Y表现显性性状的子代为性纯合子雌性,表现隐性性状的子代为性杂合子雄性参考答案:(1)叶片上有斑点X b X b 叶片上无斑点X B Y (2)叶片上无斑点叶片上有斑点 练习:芦花鸡的雏鸡的头上绒羽有黄色斑点,成鸡羽毛有横斑,是黑白相间。已知芦花基因(A)对非芦花基因(a)显性,它们都位于Z染色体上(鸡的性别决定方式为ZW型,雌鸡是ZW,雄鸡是ZZ)。某养禽场为了提高鸡的生产性能(多产蛋、多孵雏鸡),需要选择雌性雏鸡进行养殖,但在雏鸡时,无法直接辨别雌雄,那么,可供利用的一个交配组合是___________________________(写出亲本的表现型和基因型),它们的子代生活能力强,而且在孵化后即可根据头上绒羽上有无____ ____,就可把雏鸡的雌雄区别开来,其中_________________为雄鸡,_____________________为雌鸡。 分析:从题意中我们可以分析到鸡的雄性是性纯合子ZZ,雌性是性杂合子ZW 套用解题方法亲本是隐性性状的性纯合子×显性性状的性杂合子即×,表现显性性状的子代为性纯合子,表现隐性性状的子代为性杂合子。 参考答案:非芦花公鸡(ZaZa)×芦花母鸡(ZAW)黄色斑点无黄色斑点有黄色斑点 人类遗传病的判定 解题方法:先要判断出致病基因的位置以及显隐性,然后根据题目要求分别写出个体的写出基因型及表现型及子代基因型表现型的比例。其中遗传病的性质可以依据以下步骤来判断: 第一步:确认或排除Y染色体遗传。 第二步:判断致病基因是显性还是隐性。 (1)无中生有为隐性 (2)有中生无为显性 (3)有无生有无显隐都可能,这时我们可以看患者代代(指各亲代与子代之间)是否具有连续性。如果有连续性的往往是显性致病基因控制的遗传病(可能性大但不是否定隐性遗传);不连续的则由隐性致病基因控制。 第三步:确定致病基因是位于常染色体上还是位于X染色体上。 首先考虑后者,只有不符合X染色体显性或隐性遗传病的特点时,才可判断为常染色体显性或隐性遗传病;否则两种染色体上的情况都要考虑。 口诀:无中生有为隐性,隐性遗传看女病,父子患病为伴性; 有中生无为显性,显性遗传看男病,母女患病为伴性。

伴性遗传知识点归纳知识讲解

【生物】2016高考几类遗传规律试题的解题技巧 遗传规律历来都是高考中重点考查的内容,该部分考查内容多变、形式多样,其中主要有基因自由组合定律、遗传规律中的“特殊”类型、遗传概率的计算和系谱图的分析推断等。这类试题所考查的知识一般都有一定的综合性,而且题目的信息量大,信息呈现形式不拘一格,有些试题信息隐蔽,这些特点使试题具有一定的难度和新颖度,同时也使试题具有较好的区分度,能充分体现高考作为选拔性考试的功能特点。这类遗传规律试题对考生的能力要求高,不仅需要考生熟练掌握和理解遗传规律的有关知识,还要求考生有较强的获取信息、处理信息和分析推理的逻辑思维能力,此外,解答这类试题也需要考生掌握相关的技巧和方法。下面分别介绍这类试题的解题技巧和方法。 一、基因自由组合类试题 基因自由组合定律的实质在于亲本产生配子的过程中,等位基因的分离和非等位基因的组合是互不干扰的。由于每对基因的遗传都遵循基因分离定律,因此,对于基因自由组合类问题的分析,可以分两步进行:先简化为几个基因分离问题分别进行分析;再将各自分析的结果组合相乘(这种解题方法称为“分解组合相乘法”)。 【方法点拨】常见的基因自由组合类试题有两种类型,一种是顺推型,即已知亲本的基因型求解产生的配子类型及子代中基因型或表现型的情况。这类题型,按照上述方法可以比较简捷地解答。另一种是逆推型,这类试题一般告知亲本和子代的表现型以及子代各种表现型的数量或比例,要求求解亲本的基因型。对于逆推型自由组合类试题,也可以运用基因分离定律先单独进行分析,但对分析的结果不是组合相乘,而是综合各个分析结果最终得出亲本的基因型,其一般解题思路是:先对子代每对相对性状按照基因分离定律单独进行分析,确定性状的显隐性关系,再利用表现型的比例关系推知亲本的基因型,最后将各个分析结果进行综合。 二、几类“特殊”遗传规律试题 具有一对等位基因的个体(如Aa)自交,后代中会出现两种表现型,比例为3∶1。具有两对等位基因的个体(如AaBb)自交,后代中会出现四种表现型,比例为9∶3∶3∶1。然而,上述性状遗传规律只是在比较纯粹的情况下才会出现,如完全显性、没有致死现象、一对基因只控制一对相对性状而且一对相对性状也只由一对基因控制,基因之间互不影响。但如果情况与上述不符合,后代中将不会出现3∶1或9∶3∶3∶1等一些常见的比例关系,这类遗传称为遗传规律中的“特殊”类型,现分类列举如下。 (一)9∶3∶3∶1的变式试题 【方法点拨】(1)具有两对等位基因的个体自交,只有在每对基因分别决定一对相对性状的情况下,后代才会出现9∶3∶3∶1的性状分离比。但如果一对基因决定两对相对性状,或者一对相对性状受到两对基因的控制或影响,则后代的性状分离比将是9∶3∶3∶1的变式。9∶3∶3∶1的变式有9∶7、9∶3∶4、12∶3∶1、9∶6∶1等一些类型。 (2)充分利用“拆分法”解题:运用“拆分”法解答9∶3∶3∶1变式类试题,可以使复杂的

生物必修2伴性遗传的解题技巧

高二生物辅导——伴性遗传的解题技巧 一、两大遗传定律的练习题 1、番茄红果(A)对黄果(a)是显性,圆形果(R)对长形果(r)是显性,控制两对相对性状的基因是自由组合的。用红圆果和黄长果的番茄植株杂交,所后代性状回答: (1)若后代全是结红圆果的植株,则两亲本的基因型是。 (2)若后代全是结红圆果和红长果的植株,且数量大致相等,则两亲本的基因型是。 (3)若后代全是结红圆果和黄圆果的植株,且数量大致相等,则两亲本的基因型是。 (4)若后代全是结红圆果、红长果、黄圆果、黄长果的植株,且数量大致相等,则两亲本的基因型是。 2、某农场饲养的羊群中有黑、白两种毛色,比例近1:3。已知毛色受一对基因A、a控制。某牧民让两只白色羊交配,后代中出现一只黑色小羊。请回答: (1)该遗传中,色为显性。 (2)若判断一只白色公羊是纯合子还是杂合子,方法可有以上两种,请完成鉴定方案: ①;②;③; ④;⑤;⑥。(3)请画出第一方案的遗传图解。

二、重点知识整理 1、一条染色体上有________个基因,基因在染色体上呈__________排列。 2、人的性别决定方式是________。男性体细胞染色体组成是:____________________;女性体细胞染色体组成是:______________________; 男性精子染色体组成是:_________________________________________; 女性卵细胞染色体组成是:_______________________。 3、红绿色盲是由________染色体上的隐性基因(b)控制,Y染色体上_______这种基因. 4、正常色觉男性的基因型写作:_______,红绿色盲男性的基因型写作:_____;正常色觉女性的基因型写作:_______;红绿色盲女性的基因型写作:_________。 5、红绿色盲的遗传特点:患者中____性多于_____性;多有________现象。女性若患病,其______、______必患病。 6、凡由细胞组成的生物,其遗传物质是_______;有些病毒的遗传物质是_______,也有些病毒的遗传物质是_______。 三、伴性遗传的解题技巧 ⑴仔细审题,明确或判断显隐性; 规律:具有一对相对性状的两亲本杂交,若后代只表现一种性状,则该性状为显性; 双亲都没有的性状在子一代出现,则新出现性状为隐性性状; 双亲都具有的性状未在子一代出现,则原有性状为显性性状。 ⑵确定所研究基因的位置(常染色体、X染色体,伴Y遗传略): 步骤:先假设所研究基因在X染色体上,代入题目,若符合则假设成立;否则位于常染色 体上。 *在已经确定的隐性遗传中,双亲都正常,有女儿患病,一定 ..是常染色体隐性遗传; *在已经确定的显性遗传中:双亲都有病,有女儿表现正常,一定 ..是常染色体显性遗传病; 伴X隐性遗传的规律性现象:母患子必患,女患父必患; 伴X显性遗传的规律性现象:父患女必患,子患母必患。 常染色体隐性常或X染色体隐性常染色体显性常或X染色体显性 遗传口诀:无中生有为隐性,隐性遗传找女病,女病男正非伴性; 有中生无为显性,显性遗传找男病,男病女正非伴性。 ⑶根据题意初步写出亲本、子代基因型,显性性状须留空、隐性性状必纯合(伴性遗传男性

伴性遗传练习题答案和解析(供参考)

伴性遗传专题练习(答案解析) 第一部分:选择题专练 14.【2013广东】(双选)果蝇红眼对白眼为显性,控制这对性状的基因位于X染色体。果蝇缺失1条Ⅳ号染色体仍能正常生存和繁殖,缺失2条则致死。一对都缺失1条Ⅳ号染色体的红眼果蝇杂交(亲本雌果蝇为杂合子),F1中 A.白眼雄果蝇占1/4 B.红眼雌果蝇占1/4 C.染色体数正常的红眼果蝇占1/4 D.缺失1条Ⅳ号染色体的白眼果蝇占1/4 选AC。 VI是常染色体,设有染色体VI为A,无为a。则题目就变成:AaXBXb、AaXBY进行杂交,产生的F1眼色:白雄1/4, 红雌1/2,红雄1/4。白1/4, 红3/4。所以A正确,B错误。 F1染色体: AA:Aa:aa=1:2:1,其中,aa是VI染色体2条都缺失,致死。所以只有AA:Aa=1:2,即染色体正常占1/3,缺一条的占2/3。 C选项:染色体正常1/3,红眼3/4,所以是1/4。正确。D选项:染色体缺1条2/3,白眼1/4,所以是1/6。错误。 第二部分:非选择题 【题型】遗传系谱图 1.(2013江苏卷,31)调查某种遗传病得到如下系谱图,经分析得知,两对独立遗传且表现完全显性的基因(分别用字母Aa、Bb表示)与该病有关,且都可以单独致病。在调查对象中没有发现基因突变和染色体变异的个体。请回答下列问题: (1)该种遗传病的遗传方式(是/不是)伴X隐性遗传,因为第Ⅰ代第个体均不患病。进一步分析推测该病的遗传方式是。 (2)假设Ⅰ-1和Ⅰ-4婚配、Ⅰ-2和Ⅰ-3婚配,所生后代患病的概率均为0,则Ⅲ-1的基因型为,Ⅱ-2的基因型为。在这种情况下,如果Ⅱ-2与Ⅱ-5婚配,其后代携带致病基因的概率为。 【答案】 (1)不是1、3 常染色体隐性 (2)AaBb AABB 或AaBB(AABB 或AABb)5/9 【解析】(1)由于Ⅰ1、Ⅰ2正常,而Ⅱ3患病,Ⅰ3、Ⅰ4正常,而Ⅱ6患病,可判断该遗传病属于常染色体隐性遗传。 (2)由于两对基因可单独致病,由于Ⅱ3和Ⅱ4的后代Ⅲ1正常,所以Ⅲ1基因型是AaBb, Ⅱ3和Ⅱ4基因型分别是AAbb、aaBB(或aaBB、AAbb),所以Ⅰ1、Ⅰ2基因型是AABb、AABb,Ⅰ3、Ⅰ4基因型是AaBB、AaBB,则Ⅱ2基因型是1/3AABB或2/3AABb,Ⅱ5基因型是1/3AABB或2/3AaBB,Ⅱ2与Ⅱ5婚配,后代不携带致病基因(AABB)的概率是4/9,则携带致病基因的概率是5/9。2.(2008广东) 下图为甲病(A—a)和乙病(B—b)的遗传系谱图,其中乙病为伴性遗传病,请回答下列问题: (1)甲病属于,乙病属于。 A.常染色体显性遗传病B.常染色体隐性遗传病 C.伴X染色体显性遗传病D.伴X染色体隐性遗传病 E.伴Y染色体遗传病(2)Ⅱ一5为纯合体的概率是,Ⅱ一6的基因型为,Ⅲ一13的致病基因来自于。(3)假如Ⅲ一10和Ⅲ一13结婚,生育的孩子患甲病的概率是,患乙病的概率是,不患病的概率是。 3. (2012·苏州二模)G6PD(葡糖-6-磷酸脱氢酶)缺乏症是由X染色体上的显性基因控制,患者因红细胞中缺乏G6PD而导致溶血,同时女性的红细胞内常出现一条X染色体随机性失活,导致红细胞中只有一条X染色体上的基因能表达。研究人员调查发现某个家系存在有两种单基因遗传病,分别是FA贫血症(有关基因用B、b表示)与G6PD缺乏症(有关基因用D、d表示),并构建了该家系系谱如下,已知Ⅱ3携带FA贫血症基因。 (1)FA贫血症的遗传方式是________染色体________性遗传。

统计学教案习题05方差分析

第五章方差分析 一、教学大纲要求 (一)掌握内容 1.方差分析基本思想 (1)多组计量资料总变异的分解,组间变异和组内变异的概念。 (2)多组均数比较的检验假设与F值的意义。 (3)方差分析的应用条件。 2.常见实验设计资料的方差分析 (1)完全随机设计的单因素方差分析:适用的资料类型、总变异分解(包括自由度的分解)、方差分析的计算、方差分析表。 (2)随机区组设计资料的两因素方差分析:适用的资料类型、总变异分解(包括自由度的分解)、方差分析的计算、方差分析表。 (3)多个样本均数间的多重比较方法: LSD-t检验法;Dunnett-t检验法;SNK-q检验法。 (二)熟悉内容 多组资料的方差齐性检验、变量变换方法。 (三)了解内容 两因素析因设计方差分析、重复测量设计资料的方差分析。 二、教学内容精要 (一) 方差分析的基本思想 1.基本思想 方差分析(analysis of variance,ANOVA)的基本思想就是根据资料的设计类型,即变异的不同来源将全部观察值总的离均差平方和(sum of squares of deviations from mean,SS)和自由度分解为两个或多个部分,除随机误差外,其余每个部分的变异可由某个因素的作用(或某几个因素的交互作用)加以解释,如各组均数的变异SS组间可由处理因素的作用加以解释。通过各变异来源的均方与误差均方比值的大小,借助F分布作出统计推断,判断各因素对各组均数有无影响。 2.分析三种变异 (1)组间变异:各处理组均数之间不尽相同,这种变异叫做组间变异(variation among groups),组间变异反映

(完整word版)伴性遗传学案

2.3 伴性遗传 学案 姜 【教学目标】1.伴性遗传的传递规律 2.伴性遗传的特点 3.伴性遗传在实践中的应用 【教学重点】伴性遗传的特点。 【教学难点】伴性遗传的传递规律及有关计算 【学法指导】遗传部分,既牵扯试验又要深入理解,那你只有上课认真听老师讲,听老师怎么分析这类问题,平时多做题,多分析,掌握分析解题方法最重要。还是那句话,想学好并不难,关键是你要下工夫去学。相信你一定能学好,加油! 温故知新: 1.下图是果蝇细胞分裂示意图,请回答: (1)图Ⅱ的细胞叫 ,每个细胞有 对同源染色体, 个染色单体。 (2)若图Ⅳ是果蝇细胞分裂过程中,部分染色体.....的示意图,则该图表示的过程应该在方框 (填①或②)的位置。 (3)若图Ⅳ中染色体的基因组成是AaBb ,请在此分裂图中正确标出所有A (a )、B (b )基因(不考虑基因突变)。 (4)已知果蝇的红眼(W )对白眼(w )显性,这对基因位于X 染色体上。若上图中的a 与一只红眼雌果蝇产生的卵细胞结合发育成一只白眼雄果蝇,则b 与该红眼雌果蝇产生的卵细胞结合发育成的果蝇表现型为 。 教学目标 学生活动 一:伴性遗传 1、概念: 2.伴X 隐性遗传特点 这种遗传方式叫伴性遗传 1.X Y 染色体 2.人的正常色觉和红绿色盲的基因型和表现型(请完成表格) 女性 男性 基因型 X b X b X b Y 表现型 正常 正常(携带者) 正常 探究讨论:色盲调查结果显示,人群中男性色盲患病率(7﹪)远远高于女性(0.49%)为何会出现这么大的差距?

伴X隐性遗传特点: 伴X显性遗传特点: 伴Y遗传特点: 亲代:女性正常×男性色盲3、红绿色盲遗传的主要婚配方式 及子代发病率 (1)正常女性与男性红绿色色盲婚配 的图解配子: 子代: 表现型 比例 (2)女性色盲携带者 与正常男性的婚配图解亲代:女性携带者×男性正常 配子 子代 表现型 比例 (1)男性患者多于女性患者。 (2)交叉遗传。即男性(色盲)→女性(色盲基因携带者, 男性的女儿)→男性(色盲,男性的外孙,女性的儿子)。 (3)一般为隔代遗传。即第一代和第三代有病,第二代一般 为色盲基因携带者。 ⑷女性患者的父亲和儿子一定是患者。 ⑴女性患者多于男性患者; ⑵具有世代连续性(代代都有患者); ⑶男患者的母亲和女儿一定是患者。 ⑴患者全为男性; ⑵遗传规律是父传子,子传孙。(全男) 例2:有一对色觉正常的夫妇,他们各自的父亲都是色盲患 者,从理论上分析: (1)这对夫妇所生孩子中患色盲的可能是。 (2)这对夫妇所生的孩子中,儿子患色盲的可能性 是。 (3)这对夫妇所生的男孩中患色盲的可能性是。 (4)预测这对夫妇再生一个儿子患色盲的可能性是。

方差分析的基本思想

方差分析的基本思想 试验指标的变化可以用指标值的方差反映,导致试验指标值发生变化的原因有两方面:一是可控因素,二是不可控 因素或未加控制因素。方差分析就是将试验指标值的方差分解成条件变差与随机误差,然后,将各因素形成的条件 变差与随机误差进行比较,评价由某种因素所引起的变异是否具有统计学意义。 方差分析结果 不拒绝H0,表示拒绝总体均数相等的证据不足; ————>分析终止。 拒绝H0,接受H1,表示总体均数不全相等. 哪两两均数之间相等?哪两两均数之间不等? ————>需要进一步作多重比较 对于变量之间的因果关系,统计学的任务是查明因果关系是否存在,若存在,判定强弱,并找出揭示这种关系的模 型,用于预测、控制、优化。对于相关关系(又叫相依关系),统计学的任务是找出刻画这种关系强弱的指标,并 用于判定这种关系存在性及强弱。前者就是回归分析,后者就是相关分析。 回归分析与相关分析的联系:研究在专业上有一定联系的两个变量之间是否存在直线关系以及如何求得直线回归方程等问题,需进行直线相关和回归分析。从研究的目的来说,若仅仅为了了解两变量之间呈直线关系的密切程度和方向,宜选用线性相关分析;若仅仅为了建立由自变量推算因变量的直线回归方程,宜选用直线回归分析。 从资料所具备的条件来说,作相关分析时要求两变量都是随机变量(如:人的身长与体重、血硒与发硒);作回归分析时要求因变量是随机变量,自变量可以是随机的,也可以是一般变量(即可以事先指定变量的取值,如:用药的剂量)。 在统计学教科书中习惯把相关与回归分开论述,其实在应用时,当两变量都是随机变量时,常需同时给出这两种方法分析的结果;另外,若用计算器实现统计分析,可用对相关系数的检验取代对回归系数的检验,这样到了化繁为简的目的。 回归分析和相关分析都是研究变量间关系的统计学课题,它们的差别主要是: 1、在回归分析中,y被称为因变量,处在被解释的特殊地位,而在相关分析中,x与y处于平等的地位,即研究x与y的密切程度和研究y与x的密切程度是一致的; 2、相关分析中,x与y都是随机变量,而在回归分析中,y是随机变量,x可以是随机变量,也可以是非随机的,通常在回归模型中,总是假定x是非随机的; 3、相关分析的研究主要是两个变量之间的密切程度,而回归分析不仅可以揭示x对y的影响大小,还可以由回归方程进行数量上的预测和控制。 方差分析一旦确定各组均值间存在差异显著,多重比较检测可以求出均值相等的组; 其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。包括单因素方差分析即完全随机设计或成组设计的方差分析和多因素方差分析。

伴性遗传和遗传病概率计算

伴性遗传和遗传病概率的计算 知识点一:写出性染色体组成 人类:男性女性 果蝇:雄性雌性 知识点二:常见性别决定方式 雄性染色体雌性染色体 1、XY型 2、ZW型 思考:两种性别决定方式的同配性别和异配性别 知识点三:基因型种类 一对基因(B/b)在常染色体上,我们可以写出共种基因型 一对基因(B/b)只位于染色体上,我们可以写出共种基因型一对基因位于XY同源区段,我们可以写出 共种基因型 知识点四:婚配方式,常染色体上一对基因,可以写出种婚配方式;一对基因只位于X染色体上,我们可以写出种婚配方式;位于XY同源区段的一对基因,我们可写出种婚配方式。 请写出位于X染色体上的一对基因B和b的所有婚配方式,并分析其遗传规律 1、 2、 3、 4、 5、 6、 知识点五:总结伴X隐性遗传的规律 1 2 3 4 习题:如图为患红绿色盲的某家族系谱图,该病为隐性伴性遗传,下列叙述错误的有: (如右图)() A、7号的致病基因只能来自2号 B、4、6、7号的基因型相同 C、2、5号的基因型不一定相同 D、5、6号再生一个女孩患病率是1/2

知识点六:总结伴X显性遗传的规律 1 2 3 4 知识点七:伴性遗传在实践中的应用: 1、根据子代表现型判断性别 例:鸡的性别决定 (1)雌性个体的两条性染色体是的(ZW)。 (2)雄性个体的两条性染色体是的(ZZ) 2、根据雏鸡的羽毛特征来区分雌性和雄性。图解如下: P:(芦花鸡)×(非芦花鸡) 配子: F1(芦花雄鸡)(非芦花雌鸡) 总结方法:同配用性,异配用性 知识点八:判断基因位置 例1:已知果蝇的长翅与残翅是一对相对性状(显性基因用A表示,隐性基因用a表示);红眼与白跟是另一对相对性状(显性基因用B表示,隐性基因用b表示)。两只亲代果蝇杂交,子一代中雌蝇及雄蝇的表现型比例如下表所示。请回答下列问题 (1)果蝇体细胞中有4对染色体,对其基因组进行研究应测序____ 条染色体。在精子的形成过程中,当染色体第二次移向细胞两极时,细胞中有____ 个着丝点。 (2)控制红眼与白眼的基因位于____ (填“X”或“常”)染色体上,子一代表现型为长翅红眼的雌蝇中,纯合子与杂合子的比例为。 (3)控制翅形的基因位于染色体上,判断依据是 例2 现有翅型为裂翅的果蝇新品系,裂翅(A)对非裂翅(a)为显性。杂交实验如图1。请回答:

高中生物必修二 伴性遗传概率计算

伴性遗传概率计算 【解题攻略】: 1.判断该性状(遗传病)得遗传方式 2.判断亲本得基因型 3.计算子代得概率 注:一种性状(遗传病)得考查比较简单,按基因分离定律进行计算即可;涉及到两种性状(遗传病)得考查,一般采用独立分析法,即先一种性状一种性状地分析,然后再把两种性状得情况组合起来,与基因自由组合定律得算法相似,只不过要注意到伴性遗传得情况。 专项训练 1.下图就是一种伴性遗传病得家系图。下列叙述错误得就是 A.该病就是显性遗传病,Ⅱ一4就是杂合子 B.Ⅲ一7与正常男性结婚,子女都不患病 C.Ⅲ一8与正常女性结婚,儿子都不患病 D.该病在男性人群中得发病率高于女性人群 2.分析下面家族中某种遗传病得系谱图,下列相关叙述中正确得就是 A.该遗传病为伴x染色体隐性遗传病 B.Ⅲ8与Ⅱ3基因型相同得概率为2/3 C.Ⅲ10肯定有一个致病基因就是Ⅰ1由传来得 D.Ⅲ8与Ⅲ9婚配,后代子女发病率为1/4 3.一对正常夫妇,双方都有耳垂(控制耳垂得基因位于常染色体上),结婚后生了一个色盲、白化且无耳垂得孩子,若这对夫妇再生一儿子,为有耳垂、色觉正常但患白化病得概率多大 A.3/8 B.3/16 C.3/32 D.3/64 4.有一对表现型正常得表兄妹婚配,生了一个既有白化病(基因a)又有色盲(基因b)得小孩。这位表兄得基因型,已生小孩得性别与再生一个小孩患两病得几率分别就是 A.AaX B Y、男孩、1/4 B.AaX B Y、男孩、1/16 C.AAX B Y、女孩、1/16 D.AaX b Y、男孩、1/16 5.下图就是患甲、乙病两种遗传病得系谱图,且已知Ⅱ-4无致病基因。有关分析正确得就是(多选)

t检验和方差分析的前提条件及应用误区

t检验和方差分析的前提条件及应用误区 用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。 若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t 分布作为其理论依据的检验方法。 值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。 t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。简单、熟悉加上外界的要求,促成了t检验的流行。但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。以上两种情况,均不同程度地增加了得出错误结论的风险。而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。 医学论文中常见的统计方法误用 一、等级资料用卡方检验代替秩和检验

相关文档
相关文档 最新文档