文档库 最新最全的文档下载
当前位置:文档库 › 解直角三角形复习(二)

解直角三角形复习(二)

解直角三角形复习(二)
解直角三角形复习(二)

解直角三角形复习(二)

一:转化思想在解直角三角形中的应用

转化的思想在数学中应用十分广泛,在不含直角三角形的图形中(如斜三角形、梯形等),我们应通过作适当的垂线构造直角三角形,从而转化为解直角三角形问题,希望同学们在不断地学习中总结这种添加垂线的技巧.

例1. 在△ABC 中,已知AB=6,∠B=45°,∠C=60°,求AC 、BC 的长.

例2. 如图所示,△ABC 中,∠BAC=120°,AB=5,AC=3,求sinB·sinC 的值.

例3.如图,在ΔABC 中,∠C=90°,∠A 的平分线交BC 于D ,则

CD

AC

AB 等于( ).

A .sin A B. cos A C . tan A D . cot A

例4.如图所示,在ΔABC 中,∠B=60°,且∠B 所对的边b=1,AB+BC=2,求AB 的值.

例5.已知:在ΔABC 中,∠B=60°,∠C=45°,BC=5,求ΔABC 的面积.

例6.如图,ΔABC 中,∠A=90°,AB=AC ,D 是AC 上的一点,且AD ∶DC=1∶3,求tan ∠DBC 的值.

二:可解的非直角三角形的类型与解法

解这类三角形一般都需要三个条件,它的解题思路是:作垂线,构造含特殊角的直角三角形来解决,下面分类举例说明,供同学们参考.

一、“SSS ”型:例1.已知:如图1,BC=2,

1,求△ABC

各内角的度数.

二、“SAS ”型:例2.已知:如图,△ABC 中,∠

A=1500,AB=5,AC=4,求△ABC 的面积

三、“AAS ”型:例3.已知:如图3,△ABC 中,∠C=600,∠A=750,BC=3+, 求AB 、AC 的长. 四、“ASA ”型:例4.已知等腰?ABC 的底边长为2,底角为75°,求腰长.

五、其他类型:例5.已知:如图,△ABC 中,∠B=600,AB=5,AC 和BC 的长.

相关强化练习:1.等腰三角形底边为20,面积为3

100

3,求各角的大小.

2.如图,四边形BCDG 为矩形,∠ABG=45°,GB=20,BC=4,tanE=3,求EC 的长度.

3.已知:如图,在△ABC 中,BC=6,AC=63,∠A=30°,求AB 的长.

C

B

D

A B

A C D

图2 图4

B

A D

C 图1 B

A C

D 图5

解直角三角形复习(二)

一:转化思想在解直角三角形中的应用

转化的思想在数学中应用十分广泛,在不含直角三角形的图形中(如斜三角形、梯形等),我们应通过作适当的垂线构造直角三角形,从而转化为解直角三角形问题,希望同学们在不断地学习中总结这种添加垂线的技巧.

例1. 在△ABC 中,已知AB=6,∠B=45°,∠C=60°,求AC 、BC 的长.

解:作AD ⊥BC 于D ,如图所示. 在Rt △ABD 中,∵∠B=45°,∴AD=DB=AB ·sin45°=6×

22

=3.在Rt △ACD 中,∵tanC=CD AD ,∴CD=?60tan AD =33=1.

∴BC=BD +DC=3+1.∴AC=?60tan AD

=233=2.

点拨:应避免将△ABC 看作直角三角形.本题有两个特殊角,因此应把这两个特殊角构造在直角三角形中.

例2. 如图所示,△ABC 中,∠BAC=120°,AB=5,AC=3,求sinB·sinC 的值. 解:作CE ⊥BA ,交BA 的延长线于点E . ∵∠BAC=120°,∴∠CAE=60°,∠ACE=30°.

∵AC=3,∴AE=21AC=23,EC=2

2AE AC -=23

3.

∴BC=2

2CE BE +=7.∴sinB=BC EC =1433.同理可得sinC=143

5.∴sinB·sinC=19645.

例3.如图,在ΔABC 中,∠C=90°,∠A 的平分线交BC 于D ,则

CD

AC

AB -等于( ).

A .sin A B. cos A C . tan A D . cot A

分析:要判断

CD AC

AB -的比是∠A 的哪一个三角函数,联想锐角三角函数定义,

首先考虑CD

AC

AB -等于哪两条线段的比?再联想角平分线的性质,在图中作出表示AB-AC 的线段,为此,

作DE ⊥AB 于E ,由∠C=90°,可得RtΔADE ≌RtΔADC ,所以AC=AE ,DE=DC ,于是BE=AB-AC ,又

∠BDE=90°-∠B=∠A ,∴

CD

AC AB -=DE BE

=tan ∠BDE=tanA ,或由DE BE =cotB=tanA .C . 例4.如图所示,在ΔABC 中,∠B=60°,且∠B 所对的边b=1,AB+BC=2,求AB 的值.

解:作AD ⊥BC 于D ,设BD=x ,在RtΔABD 和RtΔACD 中, ∵∠B=60°,∴ AB=2x , AD=3x ,DC=

22AD AC -=231x -,

∴AB+BC=2x+x+231x -=3x+231x -=2,解得:x=

2

1

经检验是原方程的根,则AB=2x=1 例5.已知:在ΔABC 中,∠B=60°,∠C=45°,BC=5,求ΔABC 的面积.

解:作AD ⊥BC 于D ,∠C=45°,∴ AD=DC ,设AD=x ,则DC=x , BD=5-x ,又∠B=60°,∴ tanB=

BD AD =x

x

-5, ∴

x x -5=3.解之,得 x=1335+=2

5

(3-3).∴ S ΔABC =21BC·AD=425 (3-3) 例6.如图,ΔABC 中,∠A=90°,AB=AC ,D 是AC 上的一点,且AD ∶DC=1∶3,求tan ∠DBC 的值. 解:作DE ⊥BC 于D ,并设AD=k ,DC=3k ,AB=AC=4k ,

∵∠A=90°,∴BC=2AC=42k ,又∠C=45°,∴∠EDC=45°, DE=EC , 在RtΔDEC 中,DE 2+EC 2=DC 2, 设DE=x ,则x 2+x 2=9k 2,x 2=

29k 2, x=223k(负值舍去)∴ DE=EC=2

2

3k , ∴ BE=BC-EC=42k-223k=2

2

5k ,∴ tan ∠DBC=

532

25223==k k

BE DE . 二:可解的非直角三角形的类型与解法

解这类三角形一般都需要三个条件,它的解题思路是:作垂线,构造含特殊角的直角三角形来解决,下面分类举例说明,供同学们参考.

一、“SSS ”型:例1.已知:如图1,BC=2,

1,求△ABC

各内角的度数. 析解:作CD ⊥AB ,垂足为D ,设BD=x ,则1-x , 因为BC 2-BD 2=CD 2=AC 2-AD 2,所以4-x 21-x)2, 解得x=1,cosB=

12BD BC =,所以∠B=600,因为cosA=2

AD AC =, 所以∠C=450,由三角形内角和定理得∠ACB=750.

二、“SAS ”型:例2.已知:如图,△ABC 中,∠A=1500,AB=5,AC=4,求△ABC 的面积

析解::作CD ⊥AB ,垂足为D ,因为∠BAC=1500, 所以∠CAD=300,DC=Acsin300=2,所以1

52

ABC S AB CD =

= . 三、“AAS ”型:例3.已知:如图3,△ABC 中,∠C=600,∠A=750,BC=3+ 求AB 、AC 的长.

析解:作AD ⊥BC ,垂足为D ,则∠B=450,设DC=x , 则在Rt △ADC 中,

1

cos 2

DC C AC ==,所以AC=2x , AD=tan C CD = ,在Rt △ABD 中,AD=tan B BD BD = ,

C

B

D A

B

A

C

D

图2

B

A

D

C 图1

图3

所以

,sin AD

AB B =

=,

由3x =

,得x =

四、“ASA ”型:例4.已知等腰?ABC 的底边长为2,底角为75°,求腰长.

解:如图2,作CD ⊥AB 于D ,在Rt ?ADC 中,∠A=300

设CD=x ,则AC=2x ,

,BD=(

x ,在Rt △CBD 中,

BD 2

+CD 2

=BC 2

,即[(

x]2

+x 2

=4,解得:

五、其他类型:例5.已知:如图,△ABC 中,∠B=600,AB=5,

AC 和BC 的长. 析解:本题不同于以上四种类型,但它也是“可解的非直角三角形”. 作AD ⊥BC ,垂足为D ,在Rt △ABD 中,AD=sinB ·

AB=

2

, BD=cosB ·AB=52,在Rt △ACD

中,sin AD

AC C =

=,因为DC 2=AC 2-AD 2=94, 所以3

2

DC =,BC=4.

综上所述:“可解的非直角三角形”的解题方法是恰当地作垂线,使特殊角、特殊线段尽量多地含在所作的三角形中,采用特殊角的三角函数值易于求解.

相关强化练习:1.等腰三角形底边为20,面积为3

100

3,求各角的大小.

2.如图,四边形BCDG 为矩形,∠ABG=45°,GB=20,BC=4,tanE=3,求EC 的长度.

3.已知:如图,在△ABC 中,BC=6,AC=63,∠A=30°,求AB 的长. 参考答案:1.解:如上图,作AD ⊥BC 交BC 于D 点,则AB=AC ,BC=20,

S △ABC =33

100,∴AD=BC S ABC △2=33200×201=3

310.

又∵BD=21BC=10,在Rt △ABD 中,tanB=BD AD =3

310×101=33

∴∠B=30°.∴∠C=∠B=30°.∴∠BAC=180°-(∠B +∠C )=120°.

图4

B

A

C

D 图5

思路点拨:已知等腰三角形,常作底边上的高,构建等腰三角形“三线合一”的结构. 2.解:在Rt △AGB 中,∠ABG=45°,GB=20,∴AG=20.

又∵BC=4,四边形BCDG 为矩形,∴DG=4,CD=20.∴AD=AG +GD=24.

在Rt △ADE 中,tanE=3,∴ED=E AD tan =33

×24=83.∴EC=ED +DC=83+20.

思路点拨:先求局部线段长,再求其和,是一种解题策略.

3.解:作CD ⊥AB 于D .∵在Rt △CAD 中,∠A=30°,AC=63,

∴CD=AC ·sinA=21

AC=33<6=BC .∴BC <CD ,点D 在线段AB 上或在线段AB 的延长线上.

(1)当点D 在线段AB 上时,如图(1).

∵在Rt △ADC 中,AC=63,∠A=30°,∴AD=CD/tan30°=9. 在Rt △CDB 中,DB=2

2

CD BC =3,∴AB=AD +BD=9+3=12.

(2)当点D 在线段AB 的延长线上时,如图(2),由(1)有AD=9,BD=3,∴AB=AD -BD=9-3=6,故AB 的长是12或6.

(完整版)初中解直角三角形练习题

解直角三角形练习题 一、 真空题: 1、 在Rt △ABC 中,∠B =900,AB =3,BC =4,则sinA= 2、 在Rt △ABC 中,∠C =900,AB =,35cm BC cm = 则SinA= cosA= 3、 Rt △ABC 中,∠C =900,SinA=5 4 ,AB=10,则BC = 4、α是锐角,若sin α=cos150,则α= 若sin53018\=0.8018,则cos36042\= 5、 ∠B 为锐角,且2cosB -1=0则∠B = 6、在△ABC 中,∠C =900,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,a =9,b =12,则sinA= sinB= 7、 Rt △ABC 中,∠C =900,tanA=0.5,则cotA= 8、 在Rt △ABC 中,∠C =900,若b a 32=则tanA= 9.等腰三角形中,腰长为5cm ,底边长8cm ,则它的底角的正切值是 10、若∠A 为锐角,且tan 2A+2tanA -3=0则∠A = 11、Rt △ABC 中,∠A =600,c=8,则a = ,b = 12、在△ABC 中,若32=c ,b =3,则tanB= ,面积S = 13、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC = 14、在△ABC 中,∠B =900,AC 边上的中线BD =5,AB =8,则tanACB=

二、选择题 1、在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦值 ( ) A 、都扩大2倍 B 、都扩大4倍 C 、没有变化 D 、都缩小一半 2、若∠A 为锐角,且cotA <3,则∠A ( ) A 、小于300 B 、大于300 C 、大于450且小于600 D 、大于600 3、在Rt △ABC 中,已知a 边及∠A ,则斜边应为 ( ) A 、asinA B 、 A a sin C 、acosA D 、A a cos 4、等腰三角形底边与底边上的高的比是2:3,则顶角为( ) A 、600 B 、900 C 、1200 D 、1500 5、在△ABC 中,A ,B 为锐角,且有sinA =cosB ,则这个三角形是( ) A 、等腰三角形 B 、直角三角形 C 、钝角三角形 D 、锐角三角形 6、有一个角是300的直角三角形,斜边为1cm ,则斜边上的高为( ) A 、41cm B 、21cm C 、43cm D 、2 3 cm

解直角三角形教案(完美版)

在线分享文档地提升自我 By :麦群超 解直角三角形 一、教育目标 (一)知识与技能 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的 两个锐角互余及锐角三角函数解直角三角形. (二)过程与方法 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角 三角形,逐步培养学生分析问题、解决问题的能力. (三)情感态度与价值观 渗透数形结合的数学思想,培养学生良好的学习习惯. 二、重、难点 重点:直角三角形的解法. 难点:三角函数在解直角三角形中的灵活运用. 三、教学过程 (一)明确目标 1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系 sin ;cos ;t an ;cot b a b a B B B B c c a b ====; sin ;cos ;tan ;cot a b a b A A A A c c b a ==== 如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成. 的对边的邻边 ;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠= ∠∠=∠=∠= cot tan cos sin (2)三边之间关系 a 2 +b 2 =c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°. 以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二)整体感知 教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习巩固.同时,本课又为以后的应用举例打下基础,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.

解直角三角形练习题

解直角三角形练习 一、耐心填一填 1.如图1,某车间的人字屋架为等腰三角形,跨度14AB =米,CD 为中柱,则上弦AC 的长是________米(用A ∠的三角函数表示). 2.如图2,在菱形ABCD 中,AE BC ⊥于E ,1EC =,5cos 13B =,则这个菱形的面积是________. 3.计算:22sin 302sin 60tan 45tan 60cos 30++-+= ________. 4.如图3,测量队为了测量某地区山顶P 的海拔高度,选择M 点 作为观测点,从M 点测得山顶P 的仰角为30°,在比例尺为1∶ 50000的该地区等高线地形图上,量得这两点间的图上距离为3cm , 则山顶P 的海拔高度约为________m .(取3 1.732≈). 5.已知ABC △中,90C ∠=,A B C ∠∠∠,,所对的边分别是a b c ,,,且3c a =,则cos A =________. 二、精心选一选 6.在ABC △中,90C ∠=,若2B A ∠=∠,则cos A 等于( ) A.3 B.32 C.12 D.23 7.在ABC △中,90C ∠=,AC BC =,则sin A 的值等于( ) A.12 B.22 C.32 D.1 8.ABC △中,90C ∠=,3sin 5A = ,则:BC AC 等于( ) A.3:4 B.4:3 C.3:5 D.4:5 9.如图4,Rt ABC △中,90C ∠=,D 为BC 上一点,30DAC ∠=, 2BD =,23AB =,则AC 的长是( ) A.3 B.22 C.3 D.332 10.Rt ABC △中,90C ∠=,:3:4a b =,运用计算器计算,A ∠的度数(精确到1°)

人教版 数学 九年级 下册 第28章 28.2 解直角三角形 教案

28.2.1 解直角三角形 1.理解解直角三角形的意义和条件;(重点) 2.根据元素间的关系,选择适当的关系式,求出所有未知元素.(难点) 一、情境导入 世界遗产意大利比萨斜塔在1350年落成时就已倾斜.设塔顶中心点为B, 塔身中心线与垂直中心线夹角为∠A ,过点B 向垂直中心线引垂线,垂足为点C .在Rt △ABC 中,∠C =90°,BC =5.2m ,AB =54.5m ,求∠A 的度数. 在上述的Rt △ABC 中,你还能求其他未知的边和角吗? 二、合作探究 探究点一:解直角三角形 【类型一】 利用解直角三角形求边或角 已知在Rt △ABC 中,∠C =90°,∠A 、 ∠B 、∠C 的对边分别为a ,b ,c ,按下列条件解直角三角形. (1)若a =36,∠B =30°,求∠A 的度数和边b 、c 的长; (2)若a =62,b =66,求∠A 、∠B 的度数和边c 的长. 解析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形. 解:(1)在Rt △ABC 中,∵∠B =30°,a =36,∴∠A =90°-∠B =60°,∵cos B =a c ,即c =a cos B =36 3 2=243,∴b =sin B ·c =12×243=123; (2)在Rt △ABC 中,∵a =62,b =66,∴tan A =a b =33 ,∴∠A =30°,∴∠B =60°,∴c =2a =12 2. 方法总结:解直角三角形时应求出所有未知元素,解题时尽可能地选择包含所求元素与两个已知元素的关系式求解. 变式训练:见《学练优》本课时练习“课堂达标训练” 第4题 【类型二】 构造直角三角形解决长度问题

解直角三角形知识点

一、直角三角形的性质: 1、两个锐角互余 ∵∠C=90°∴∠A+∠B=90° 2、在直角三角形中,30°角所对的直角边等于斜边的一半。 ∵∠C=90°∠A=30°∴ BC= 2 1 AB 3、直角三角形斜边上的中线等于斜边的一半 ∵∠ACB=90° D 为AB 的中点 ∴ CD= 2 1 AB=BD=AD 4、勾股定理:222c b a =+ :22 2 a b c +=还可以变形为2 2 2 a c b =-,2 2 2 b c a =-. 5、射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项 ∵∠ACB=90°CD ⊥AB ∴ BD AD CD ?=2 AB AD AC ?=2 AB BD BC ?=2 6、常用关系式 由三角形面积公式可得:AB ?CD=AC ?BC 二、锐角三角函数 1、锐角三角函数定义:在RT ABC ?中,∠C=90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,则: sin A a A c ∠= =的对边斜边 cos A b A c ∠==的邻边斜边 tan A a A A b ∠= =∠的对边的邻边 c o t A b A A a ∠==∠的邻边的对边 常用变形:sin a c A = ;sin a c A =等,由同学们自行归纳 2、锐角三角函数的有关性质: (1)当 °<∠A<90°时,0sin 1A <<;0cos 1A <<;tan 0A >;cot 0A > (2)在0° 90°之间,正弦、正切(sin 、tan )的值,随角度的增大而增大;余弦、余切(cos 、cot )的值,随角度的增大而减小。 3、同角三角函数的关系: A C B D

华师大版解直角三角形教案

第19章 解直角三角形 第1课时 §19.1 测 量 【教学目标】本节主要研究如何利用已学知识尤其是相似三角形的相关知识解 决生活中某些测量问题。 【教学重点】探究和解决生活中的某些测量问题。 【教学难点】探究解决生活中的某些测量问题的方法。 【教学方法】探究法 【教具准备】皮尺、测角仪 【教学过程】 一、问题引入 1.测量操场旗杆有多高? 如图19.1.1,站在操场上,请你的同学量出你在太阳下的影子长度、旗杆的影子长度,再根据你的身高,便可以计算出旗杆的高度。 图19.1.1 2.如果就你一个人,又遇上阴天,那怎么办呢?人们想到了一种可行的方法,还是利用相似三角形的知识。 二、试一试 如图19.1.2所示,站在离旗杆BE 底部10米处的D 点,目测旗杆的顶部,视线AB 与水平线的夹角∠BAC 为34°,并已知目高AD 为1米.现在请你按1∶500的比例将△ABC 画在纸上,并记为△A ′B ′C ′,用刻度直尺量出纸上B ′C ′的长度,便可以算出旗杆的实际高度. 你知道计算的方法吗?(请你量一量、算一算。) 实际上,我们利用图19.1.2(1)中 已知的数据就可以直接计算旗杆的高度,而这一问题的解决将涉及到直角三角 图19.1.2

形中的边角关系.直角三角形中,三条边有什么关系?它的边与角又有什么关系?这一切都是本章要探究的内容。 三、归纳小结: 两种测量的方法: 方法一:构造可以测量的与原三角形相似的小三角形,利用对应线段成比例的性质计算出所求线段的长; 方法二:利用比例尺在纸上画一个与实物三角形相似的小三角形,通过直尺测量出所求线段在纸上的长度,再利用比例尺计算出实际长度。 四、课堂练习 1.在一次数学活动课上,老师让同学们到操场测量旗杆的高度,然后回来交流各自的测量方法。小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图所示),然后沿BC方向走到D处,这时目测旗杆顶部A到竹竿顶部E处恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高。你认为这种测量方法是否可行?请说明理由。 2.请你与你的同学一起设计两种方案,测量你们学校楼房的高度。 五.课后作业P99(习题19.1) 第2课时§19.2勾股定理(1) 【教学目标】1.研究直角三角形的特殊性质:勾股定理; 2.运用勾股定理进行简单的计算。

解直角三角形练习题及答案

解直角三角形 一、选择题 1、如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于( ) (A).1 (B).2 (C).22 (D).22 2、如果α是锐角,且54 cos =α,那么αsin 的值是( ). (A )259 (B ) 54 (C )53 (D )2516 3、等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ). (A )513 (B )12 13 (C )1013 (D )5 12 4、. 以下不能构成三角形三边长的数组是 ( ) (A )(1,3,2) (B )(3,4,5) (C )(3,4,5) (D )(32,42,52) 5、在Rt △ABC 中,∠C =90°,下列式子中正确的是( ). (A )B A sin sin = (B )B A cos sin = (C )B A tan tan = (D )B A cot cot = 6、在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且53 cos =α, AB = 4, 则AD 的长为( ). (A )3 (B )316 (C )320 (D )516 7、某市在“旧城改造”中计划在一 块如图所示的三角形空地上种植某种草皮以美 化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ). (A )450a 元 (B )225a 元 (C )150a 元 (D )300a 元 8、已知α为锐角,tan (90°-α)=3,则α的度数为( ) (A )30° (B )45° (C )60° (D )75° 9、在△ABC 中,∠C =90°,BC =5,AB =13,则sin A 的值是( ) (A )135 (B )1312 (C )125 (D )512 10、如果∠a 是等边三角形的一个内角,那么cos a 的值等于( ).

解直角三角形教案设计

解直角三角形教案设计 教学建议 1.知识结构: 本小节主要学习解直角三角形的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法. 2.重点和难点分析: 教学重点和难点:直角三角形的解法. 本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地解直角三角形的关键. 3. 深刻认识锐角三角函数的定义,理解三角函数的表达式向方程的转化. 锐角三角函数的定义: 实际上分别给了三个量的关系:a、b、c是边的长、、和是由用不同方式来决定的三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中. 当这三个实数中有两个是已知数时,它就转化为一个一元方程,解这个方程,就求出了一个直角三角形的未知的元素. 由此看来,表达三角函数的定义的4个等式,可以转化为求

边长的方程,也可以转化为求角的方程,所以成为解三角形的重要工具. 4. 直角三角形的解法可以归纳为以下4种,列表如下: 5. 注意非直角三角形问题向直角三角形问题的转化 由上述(3)可以看到,只要已知条件适当,所有的直角三角形都是可解的.值得注意的是,它不仅使直角三角形的计算问题得到彻底的解决,而且给非直角三角形图形问题的解决铺平了道路.不难想到,只要能把非直角三角形的图形问题转化为直角三角形问题,就可以通过解直角三角形而获得解决.请看下例. 例如,在锐角三角形ABC中,,求这个三角形的未知的边和未知的角(如图) 这是一个锐角三角形的解法的问题,我们只需作出BC边上的高(想一想:作其它边上的高为什么不好.),问题就转化为两个解直角三角形的问题. 在Rt中,有两个独立的条件,具备求解的条件,而在Rt中,只有已知条件,暂时不具备求解的条件,但高AD可由解时求出,那时,它也将转化为可解的直角三角形,问题就迎刃而解了. 掌握非直角三角形的图形向直角三角形转化的途径和方法 是十分重要的,如 (1)作高线可以把锐角三角形或钝角三角形转化为两个直角

解直角三角形测试题与答案

解直角三角形测试题与答案 一.选择题(共12小题) 1.(2014义乌市)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是() A.1B.C.2D.3 2.(2014巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为() A.B.C.D. 3.(2014凉山州)在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是() A.45°B.60°C.75°D.105° 4.(2014随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为() D.50米 A.100米B.50米C. 米 5.(2014凉山州)拦水坝横断面如图所示,迎水坡AB的坡比是1:,坝高BC=10m,则坡面AB的长度是() A.15m B.20m C.10m D.20m 6.(2014百色)从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是() A.(6+6)米B.(6+3)米C.(6+2)米D.12米 7.(2014苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()

A.4km B.2km C.2km D.(+1)km 8.(2014路北区二模)如图,△ABC的项点都在正方形网格的格点上,则cosC的值为() A.B.C.D. 9.(2014长宁区一模)如图,在△ABC中,∠ACB=90°,CD⊥AB于D,下边各组边的比不能表示sinB的() A.B.C.D. 10.(2014工业园区一模)若tan(α+10°)=1,则锐角α的度数是() A.20°B.30°C.40°D.50° 11.(2014鄂州四月调考)在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是() A.B.C.D. 12.(2014邢台一模)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于() A.B.C.D. 二.填空题(共6小题) 13.(2014济宁)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为_________. 14.(2014徐汇区一模)如图,已知梯形ABCD中,AB∥CD,AB⊥BC,且AD⊥BD,若CD=1,BC=3,那么∠A的正切值为_________. 15.(2014虹口区一模)计算:cos45°+sin260°=_________. 16.(2014武威模拟)某人沿坡度为i=3:4斜坡前进100米,则它上升的高度是_________米. 17.(2014海门市模拟)某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB的顶点A的仰角为30°,然后向建筑物AB前进20m到达点D处,又测得点A的

《解直角三角形》典型例题

《解直角三角形》典型例题 例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ; (2)由a b B = tan ,知 ; (3)由c a B = cos ,知860cos 4 cos =? == B a c . 说明 此题还可用其他方法求b 和c . 例 2在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形. 解法一 ∵ ∴ 设 ,则 由勾股定理,得 ∴ . ∴ . 解法二 13 3 330tan =? =?=b a 说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中, 于D ,若 ,解三 角形ABC .

分析“解三角形ABC”就是求出的全部未知元素.本题CD不是 的边,所以应先从Rt入手. 解在Rt中,有: 在Rt中,有 说明(1)应熟练使用三角函数基本关系式的变形,如: (2)平面几何中有关直角三角形的定理也可以结合使用,本例中 “”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值: 所以解直角三角形问题,应开阔思路,运用多种工具. 例4在中,,求. 分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差; (2)不是直角三角形,可构造直角三角形求解.

解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有 ,且有 ; 在中,,且 , ∴; 于是,有 , 则有 说明还可以这样求:

解直角三角形练习题1(含答案)

解直角三角形练习题1 一. 选择题:(每小题2分,共20分) 1. 在△EFG 中,∠G=90°,EG=6,EF=10,则cotE=( ) A.43 B. 34 C. 53 D. 3 5 2. 在△ABC 中,∠A=105°,∠B=45°,tanC 的值是( ) A. 21 B. 3 3 C. 1 D. 3 3. 在△ABC 中,若2 2cos =A ,3tan = B ,则这个三角形一定是( ) A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 等腰三角形 4. 如图18,在△EFG 中,∠EFG=90°,FH ⊥EG ,下面等式 中,错误的是( ) A.EG EF G =sin B. EF EH G =sin C. FG GH G =sin D. FG FH G =sin 5. sin65°与cos26°之间的关系为( ) A. sin65°cos26° C. sin65°=cos26° D. sin65°+cos26°=1 6. 已知30°<α<60°,下列各式正确的是( ) A. B. C. D. 7. 在△ABC 中,∠C=90°,5 2 sin = A ,则sin B 的值是( ) A.32 B.52 C.54 D. 5 21 8. 若平行四边形相邻两边的长分别为10和15,它们的夹角为 60°,则平行四边形的面积是( )米2 A. 150 B.375 C. 9 D. 7 9. 如图19,铁路路基横断面为一个等腰梯形,若腰的坡度为i= 2∶3,顶宽是3米,路基高是4米,则路基的下底宽是( ) A. 7米 B. 9米 C. 12米 D. 15米 10. 如图20,两条宽度都为1的纸条,交叉重叠放在一起,且它 们的交角为α,则它们重叠部分(图中阻影部分)的面积为( ) A. αsin 1 B. α cos 1 C. αsin D. 1 二. 填空题:(每小题2分,共10分) 11. 已知0°<α<90°,当α=__________时,2 1 sin =α,当α=__________时,Cota=3. 12. 若 ,则锐角α=__________。 13. 在Rt △ABC 中,∠C=90°,5 3 sin = A ,36=++c b a ,则a=__________,b=__________,c=__________,cotA=__________。 14. 若一个等腰三角形的两边长分别为2cm 和6cm ,则底边上的高为__________cm ,底角的余弦值为__________。

解直角三角形教学设计及反思.doc

解直角三角形教学设计及反思 教学内容分析: 本节内容是在学习了“锐角三角函数” “勾股定理”等内容的基础上进一步探究如何利用所学知识解直角三角形。通过直角三角形中边角之间关系的学习,学生将进一步体会数学知识之间的联系,如比和比例、图形的相似、推理证明等。将为一般性地学习三角形的知识及进一步学习其他数学知识奠定基础。对部分学生来说,有一定的难度。 教学目标: 1、知识技能:使学生掌握直角三角形的边角关系,会选用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。 2、过程与方法:经历探求直角三角形边角关系的过程,体会三角函数在解决问题过程中的作用,感受理论来源于实践又反作用于实践的唯物主义思想。 3、情感态度与价值观:形成数形结合的数学思想,体会数学与实践生活的紧密联系。从而增强学生的数学应用意识,激励学生敢于面对数学学习中的困难。通过获取成功的体验和克服困难的经历,增进学习数学的信心, 养成良好的学习习惯。 教学课时:一课时教学重难点:

创设情境: 2.4米时,梯子与地面所称的角a 等于多少(精 重点:理解并掌握直角三角形边角之间的关系。 难点:从条件出发,正确选用适当的边角关系解题。 教学过程: 问题1:如图所示,一棵大树在一次强大台风中折断倒下,树干折断处距 地面3米,且树干与地面的夹角是30° ,大树折断之前高多少米? 问题2:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所 成的角Q —般要满足50° W a W 75。(如图),现有一个长6米的梯 子,问: (1)使用这个梯子最高可以安全攀上多高的墙(结果保留小数点后一位) 确到1。)?这时人是否能够安全使用这个梯子 ? (2)当梯子底端距离墙

(完整版)解直角三角形单元测试题

解直角三角形单元测试题 班级__________姓名__________ 分数__________ 一、填空题(每题3分,共30分) 1.若直角三角形两条直角边长分别为5和12,则斜边上的中线长为________. 2.若等腰直角三角形的一边长是2,则它的面积为___________. 3.△ABC 中,∠C =90°,a =6,b =8,则sinA =_____________. 4.在△ABC 中,∠C =90°,13 5 sin =B ,则cosB =___________. 5.若2 3 sin = a ,则锐角a =__________度. 6.Rt △ABC 中,∠C =90°,220,20==c a ,则∠B =_________度. 7.△ABC 中,∠C =90°,10,5 4 sin == AB A ,则AC =_________. 8.在离大楼15m 的地面上看大楼顶部仰角为65°,则大楼高约__________m(精确到lm). 9.在电线杆离地面8m 的地方向地面拉一条缆绳以固定电线杆,如果缆绳与地面成60°角,那么需要缆绳__________m(忽略打结部分). 10.一个斜坡的坡度是1:3,高度是4m ,则他从坡底到坡顶部所走的路程大约是___________m(精确到0.1m). 二、选择题(每题3分,共15分) 11.直角三角形的两条边长分别为3、4,则第三条边长为 ( ) A .5 B .7 C .7 D .5或7 12.如图,菱形ABCD 的对角线AC =6,BD =8,∠ABD =a ,则下列结论正确的是 ( ) (12题) (13题) A .54sin =a B .53cos =a C .34tan =a D .3 4 cot =a 13.如图,在Rt △ABC 中,∠C =90°,BC =4,AC =3,CD ⊥AB 于D ,设∠ACD =a ,则cos a 的值为 ( ) A .54 B .43 C .34 D .5 3 14.△ABC 中,∠C =90°,且a ≠b ,则下列式子中,不能表示△ABC 面积的是 ( ) A .ab 21 B .B ac sin 21 C .A b tan 212 D .B A c cos sin 2 1 2? 15.如图,钓鱼竿AC 长6m ,露在水面上的鱼线BC 长23m ,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到C A '的位置,此时露在水面上的鱼线C B ''为33,则鱼竿转过的角度是 ( ) A .60° B .45° C .15° D .90° 三、解答题(共75分) 16.计算(每题5分,共10分) (1)2cos30°+cot60°-2tan45°·tan60°

解直角三角形练习题(二)及答案

解直角三角形数学测试题 一、填空题 1、如图:P 是∠α的边OA 上一点,且P 点的坐标为(3,4), 则sin (900 - α)=_____________. 2、3 2 可用锐角的余弦表示成__________. 3、在△ABC 中,∠ACB =900,CD ⊥AB 于D ,若AC =4,BD =7, 则sinA = , tanB = . 4、若α为锐角,tan α= 2 1,则sin α= ,cos α= . 5、当x = 时,x x x x cos sin cos sin -+无意义.(00<x <900 ) 6、求值:=???45cos 2 260sin 21 . 7、如图:一棵大树的一段BC 被风吹断,顶端着地与地面成 300角,顶端着地处C 与大树底端相距4米,则原来大树高 为_________米. 8、已知直角三角形的两直角边的比为3:7,则最小角的正弦值为_______. 9、如图:有一个直角梯形零件ABCD 、AD ∥BC ,斜腰DC 的长为10cm ,∠D =120°,则该零件另一腰AB 的长是__________cm. 10、已知:tanx=2 ,则 sinx+2cosx 2sinx -cosx =____________. 二、选择题 1、在Rt △ABC 中,∠C =90°,a =1,c =4,则sinA 的值是( ) A. 1515 B. 13 C. 14 D. 154

2、已知△ABC中,∠C=90°,tanA·tan 50°=1,那么∠A的度数是() A. 50° B. 40° C. ( 1 50 )° D. ( 1 40 )° 3、已知∠A+∠B=90°,且cosA=1 5 ,则cosB的值为( ) A. 1 5 B. 4 5 C. 26 5 D. 2 5 4、在Rt△ABC中,∠C=90°,已知a和A,则下列关系式中正确的是() A. c=α·sinA B. c= α sinA C. c=α·cosB D. c= α cosA 5、如果α是锐角,且cosα=4 5 ,那么sinα的值是() A. 9 25 B. 4 5 C. 3 5 D. 16 25 6、1米长的标杆直立在水平的地面上,它在阳光下的影长为0.8米;在同一时刻,若某电视塔的影长为100米,则此电视塔的高度应是( ) A.80米 B. 85米 C. 120米 D. 125米 7、化简(1-sin50°)2-(1-tan50°)2的结果为( ) A. tan50°-sin50° B. sin50°-tan50° C. 2-sin50°-tan50° D. -sin50°-tan50° 8、在Rt△ABC中,∠C=90°,tan A=3,AC等于10,则S△ABC等于( )

解直角三角形的应用教案

解直角三角形的应用教案

解直角三角形的应用教案 ―-俯角仰角问题教学目标: 1、了解仰角、俯角的概念。 2、能根据直角三角形的知识解决与仰角、俯角有关的实际 问题。 3、能够借助辅助线解决实际问题,掌握数形结合的思想方 法。 教学重点: 解直角三角形在实际中的应用。 教学难点: 将某些实际问题中的数量关系归结为直角三角形中元素之间的关系,从而解决问题。 教学方法:三疑三探 教学过程: 一、复习引入新课 如图:在△ABC中,∠C=90°, ∠A、∠B、∠C的对边分别为 a,b,c. 则三边之间关系为; 锐角之间关系为;边角之间关系(以锐角A为例)为。 看来大家对基础知识掌握得还是比较牢固的。下面我们来看这样一个问题: 问题:小玲家对面新造 了一幢图书大厦,小玲心想: “站在地面上可以利用解直角 三角形测得图书大厦的高,站 在自家窗口能利用解直角三角 形测出大厦的高吗?他望着大厦顶端和大厦底部,可测出视线与水平线之间的夹角各一个,但这两个角如何命名呢? ο 46A B C Cο 29 A

AE =DE ×tan a =BC ×tan a =22.7×tan 22° ≈9.17 AB =BE +AE =AE +CD =9.17+1.20 ≈10.4(米) 答:旗杆的高度约为10.4米. 2、解:在ΔABC 中,∠ACB =90° ∵ ∠CAB =46° AC=32m tan ∠CAB= ∴BC=AC ·tan46° ≈33.1 在ΔADC 中,∠ACD=90° ∵ ∠CAD=29° AC=32m tan ∠CAD= ∴DC=AC ·tan29° ≈17.7 ∴BD=BC+CD=33.1+17.7=50.8≈51 答:大厦高BD 约为51m. 二、 质疑再探 在本节课的探究和学习过程中你还有那些疑惑或问题?请大胆提出来,大家共同解决。 三、 运用拓展 1、 生自编题 2、 师补充题 1、一架飞机以300角俯冲400米,则飞机的高度变化情况是( c ) C ο29D A BC AC DC AC ο46A B C

解直角三角形单元测试题

解直角三角形 单元测试 (时间:100分钟 满分:150分) 一、填空题(每题3分,共30分) 1.若直角三角形两条直角边长分别为5和12,则斜边上的中线长为________. 2.若等腰直角三角形的一边长是2,则它的面积为___________. 3.△ABC 中,∠C =90°,a =6,b =8,则sinA =_____________. 4.在△ABC 中,∠C =90°,13 5sin =B ,则cosB =___________. 5.若2 3sin =a ,则锐角a =__________度. 6.Rt △ABC 中,∠C =90°,220,20==c a ,则∠B =_________度. 7.△ABC 中,∠C =90°,10,5 4sin == AB A ,则AC =_________. 8.在离大楼15m 的地面上看大楼顶部仰角为65°,则大楼高约__________m(精确到lm). 9.在电线杆离地面8m 的地方向地面拉一条缆绳以固定电线杆,如果缆绳与地面成 60°角,那么需要缆绳__________m(忽略打结部分). 10.一个斜坡的坡度是1:3,高度是4m ,则他从坡底到坡顶部所走的路程大约是___________m(精确到0.1m). 二、选择题(每题4分,共20分) 11.直角三角形的两条边长分别为3、4,则第三条边长为 ( ) A .5 B .7 C .7 D .5或7 12.如图,菱形ABCD 的对角线AC =6,BD =8,∠ABD =a ,则下列结论正确的是 ( ) A .54sin = a B .53cos =a C .34tan =a D .3 4cot =a 13.如图,在Rt △ABC 中,∠C =90°,BC =4,AC =3,CD ⊥AB 于D ,设∠ACD =a ,则cos a 的值为 ( )

初中数学九年级下册解直角三角形(教案)教学设计

28.2.1 解直角三角形 教学目标 1.理解解直角三角形的意义和条件;(重点) 2.根据元素间的关系,选择适当的关系式,求出所有未知元素.(难点) 教学过程 一、情境导入 世界遗产意大利比萨斜塔在1350年落成时就已倾斜.设塔顶中心点为B, 塔身中心线与垂直中心线夹角为∠A ,过点B 向垂直中心线引垂线,垂足为点C .在Rt △ABC 中,∠C =90°,BC =5.2m ,AB =54.5m ,求∠A 的度数. 在上述的Rt △ABC 中,你还能求其他未知的边和角吗? 二、合作探究 探究点一:解直角三角形 【类型一】 利用解直角三角形求边或角 已知在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a ,b ,c ,按下列条件解直角三角形. (1)若a =36,∠B =30°,求∠A 的度数和边b 、c 的长; (2)若a =62,b =66,求∠A 、∠B 的度数和边c 的长. 解析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形. 解:(1)在Rt △ABC 中,∵∠B =30°,a =36,∴∠A =90°-∠B =60°,∵cos B =a c ,即c =a cos B =363 2 =243,∴b =sin B ·c =12×243=123; (2)在Rt △ABC 中,∵a =62,b =66,∴tan A =a b =33 ,∴∠A =30°,

∴∠B =60°,∴c =2a =12 2. 方法总结:解直角三角形时应求出所有未知元素,解题时尽可能地选择包含所求元素与两个已知元素的关系式求解. 【类型二】 构造直角三角形解决长度问题 一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =122,试求CD 的长. 解析:过点B 作BM ⊥FD 于点M ,求出BM 与CM 的长度,然后在△EFD 中可求出∠EDF =60°,利用解直角三角形解答即可. 解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB =90°,∠A =45°,AC =122,∴BC =AC =12 2.∵AB ∥CF ,∴BM =sin45°BC =122×22=12,CM =BM =12.在△EFD 中,∠F =90°,∠E =30°,∴∠EDF =60°,∴MD =BM tan60°=43,∴CD =CM -MD =12-4 3. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答. 【类型三】 运用解直角三角形解决面积问题 如图,在△ABC 中,已知∠C =90°,sin A =3 7,D 为边AC 上一点,∠BDC =45°,DC =6.求△ABC 的面积. 解析:首先利用正弦的定义设BC =3k ,AB =7k ,利用BC =CD =3k =6,求得k 值,从而求得AB 的长,然后利用勾股定理求得AC 的长,再进一步求解. 解:∵∠C =90°,∴在Rt △ABC 中,sin A =BC AB =37 ,设BC =3k ,则AB =7k (k >0),在Rt △BCD 中,∵∠BCD =90°,∴∠BDC =45°,∴∠CBD =∠BDC =45°,

(完整版)解直角三角形练习题(三)及答案

解直角三角形 一、 填空题: 1. 若∠A 是锐角,cosA = 2 3 ,则∠A = 。 2. 在△ABC 中,∠C =90°,若tanA =2 1 ,则sinA = ; 3. 求值:1sin 60cos 4522 ?? ?+2sin30°-tan60°+cot45=__________。 4. 在倾斜角为30°的山坡上种树,要求相邻两棵树间的水平距离为3米,那么,相邻两棵 树间的斜坡距离为 米。 5. 已知等腰三角形的周长为20,某一内角的余弦值为3 2,那么该 等腰三角形的腰长等于 。 6. 如图:某同学用一个有60°角的直角三角板估测学校旗杆AB 的高度,他将60°角的直角边水平放在1.5米高的支架CD 上,三角板的斜边与旗杆的顶点在同一直线上,他又量得D 、B 的距离为5米,则旗杆AB 的高度约为 米。(精确到1米, 3取1.732) 7. 如图,△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,且BE =2AE ,已知 AD =33,tan ∠BCE = 3 3,那么CE = 。 8. 正方形ABCD 的边长为1。如果将线段BD 绕着点B 旋转后,点D 落在BC 延长线上的点D '处,那么tan ∠BA D '= 。 二、选择题 1. 在△ABC 中,已知AC =3、BC =4、AB =5,那么下列结论成立的是( ) A 、SinA = 45 B 、cosA =53 C 、tanA =43 D 、cotA =5 4 2. 在△ABC 中,AB =AC =3,BC =2,则6cosB 等于 ( ) (A )3 (B )2 (C )33 (D ) 32 3. 为测楼房BC 的高,在距楼房30米的A 处,测得楼顶B 的仰角 为α,则楼房BC 的高为( ) E D C B A 四川03/3 D A B C α

解直角三角形的知识点总结

解直角三角形 一、锐角三角函数 (一)、锐角三角函数定义 在直角三角形ABC 中,∠C=900,设BC=a ,CA=b ,AB=c ,锐角A 的四个三角函数是: (1) 正弦定义:在直角三角形中ABC ,锐角A 的对边与斜边的比叫做角A 的正弦,记作sinA ,即 sin A = c a , (2)余弦的定义:在直角三角行ABC ,锐角A 的邻边与斜边的比叫做角A 的余弦,记作cosA ,即 cos A = c b , (3)正切的定义:在直角三角形ABC 中,锐角A 的对边与邻边的比叫做角A 的正切,记作tanA ,即 tan A =b a , (4)锐角A 的邻边与对边的比叫做∠A 的余切,记作cotA 即 a A A A b 的对边的邻边cot =∠∠= 锐角A 的正弦、余弦,正切、余切都叫做角A 的锐角三角函数。 这种对锐角三角函数的定义方法,有两个前提条件: (1)锐角∠A 必须在直角三角形中,且∠C=900; (2)在直角三角形 ABC 中,每条边均用所对角的相应的小写字母表示。 否则,不存在上述关系

注意:锐角三角函数的定义应明确(1) c a , c b ,b a ,a b 四个比值 的大小同△ABC 的三边的大小无关,只与锐角的大小有关,即当锐角A 取固定值时,它的四个三角函数也是固定的; (2)sinA 不是sinA 的乘积,它是一个比值,是三角函数记号,是一个整体,其他三个三角函数记号也是一样; (3)利用三角函数定义可推导出三角函数的性质,如同角三角函数关系,互余两角的三角函数关系、特殊角的三角函数值等; (二)、同角三角函数的关系 (1)平方关系: 12 2 s i n =?+C O S α (2)倒数关系:tan a cota=1 (3)商数关系:? ? =???= sin cos cot ,cos sin tan 注意:(1)这些关系式都是恒等式,正反均可运用,同事还要注 意它们的变形公式。 (2)()??sin sin 2 2 是 的简写,读作“?sin 的平方”,不能将 ??2 2 sin 写成sin 前者是a 的正弦值的平方,后者无意义; (3)这里应充分理解“同角”二字,上述关系式成立的前提是所涉及的角必须相同,如1cot tan ,12 2 3030 cos sin 2 2 =?=? +? ,而 1cos sin 2 2 =+ ?β就不一定成立。 (4)同角三角函数关系用于化简三角函数式。 (三)余角的函数关系式 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它

相关文档
相关文档 最新文档