文档库 最新最全的文档下载
当前位置:文档库 › 光学实验讲义

光学实验讲义

光学实验讲义
光学实验讲义

实验一 薄透镜参数的测定

引言:透镜是光学仪器中最基本的元件,反映透镜特性的一个主要参量是焦距,它决定了透镜成像的位置和性质(大小、虚实、倒立) 以便了解透镜成像的规律,掌握光路调节技术,比较各种测量方法的优缺点,为今后正确使用光学仪器打下良好的基础。

[实验目的]

1.学会测量透镜焦距的几种方法。

2.掌握简单光路的分析和光学元件同轴等高的调节方法。

3.熟悉光学实验的操作规则

实验原理:

薄透镜是指透镜中心厚度d 比透镜焦距f 小很多的透镜。透镜分为两大类:一类是凸透镜(也称为正透镜或会聚透镜),对光线起会聚作用,焦距越短,会聚本领越大;另一类是凹透镜(也称负透镜或发散透镜),对光线起发散作用,焦距越短,发散本领越大。 透镜的焦距测量用到的成像公式是高斯公式:

f

p p 111=-'

一、凸透镜焦距的测定:

透镜的焦距测量主要用到高斯公式计算焦距

1.粗略估测法:

以太阳光或较远的灯光为光源,用凸透镜将其发出的光线聚成一光点(或像),此时,p →∞,s’≈f’,即该点(或像)可认为是焦点,而光点到透镜中心(光心)的距离,即为凸透镜的焦距,此法的测量误差约在10%左右。由于这种方法误差较大,大都用在实验前作粗略估计,如挑选透镜等。

2.利用物像公式求焦距: 根据(1)式,则薄透镜焦距为

'

'

'

s

s s s f f -=

-= (2)

如图1所示,若在实验中分别测出物距s 和像距s′,

即可用式(2)求出该透镜的焦距f 。但应注意:测得量须添加符号,求得量则根据求得结果中的符号判断其物理意义。

3.自准法:

如图2所示,在待测透镜L 的一侧放置被光源照明的“1”字形物屏AB ,在另一侧放一与主光轴垂直的平面反射镜M ,移动透镜(或物屏),当物屏AB 正好位于凸透镜之前的焦平面时,物屏AB 上任一点发出的光线经透镜折射后,将变为平行光线,然后被平面反射镜反射回来。再经透镜折射后,仍会聚在它的焦平面上,即原物屏平面上,形成一个与原物大小相等方向相反的倒立实像A′B′。此时物屏到透镜之间的距离,就是待测透镜的焦距,即

s

f =

(3)

由于这个方法是利用调节实验装置本身使之产生平行光以达到聚焦的目的,所以称之为自准法,该法测量误差在1%~5%之间。

4.位移法(又称为共轭法、二次成像法或贝塞尔物像交换法): 物像公式法、粗略估测法、自准法都因透镜的中心位置不易确定而在测量中引进误差,为避免这一缺点,可取物屏和像屏之间的距离D 大于4倍焦距(4f ),且保持不变,沿光轴方向移动透镜,则必能在像屏上观察到二次成像。如图3所示,设物距为s 1时,得放大的倒立实像;物距为s 2时,得缩小的倒立实像,透镜两次成像之间的位移为

d ,根据透镜成像公式(2),将

2/)(2/)(21

2

1d D s s d D s s +=-='--='-=

代入式(2)即得

D

d D f 42

2'

-=

(4)

可见,只要在光具座上确定物屏、像屏以及透镜二次成像时其滑座边缘所在位置,就可较准确的求出焦距f′。这种方法毋须考虑透镜本身的厚度,测量误差可达到1%。

二、凹透镜焦距的测定

凹透镜是发散透镜,不能直接成像。所以要测量凹透镜的焦距,必须

借助于一凸透镜。具体的方法有以下两种。

1.成像法(又称为物距-相距法):

如图4所示,先使物AB发出的光线经凸透镜L1后形成一缩小倒立的实像A′B′,然后在L1和A′B′之间放入待测凹透镜L2,如果s2

2.自准法:

如图5所示,在光路共轴的条件下,先去掉凹透镜L2,移动凸透镜L1,使物屏上物AB发出的光经凸透镜L1成缩小的实像A′B′,然后放置并移动凹透镜L2,当O2B’=f凹时,虚物A′B′就在物屏上得到一个与其大小相等的倒立实像。由光的可逆性原理可知,由L2射向平面镜M的光线是平行光线,点B′是凹透镜L2的焦点。记录凹透镜L2和实像A′B′的位置,可直接测出f2'。

4.仪器介绍

光具座,凸透镜,凹透镜,光源,物屏,平面反射镜,水平尺等。

5.实验内容

1. 光具座上各光学元件同轴等高的调节

先利用水平尺将光具座导轨在实验桌上调节成水平,然后进行各光学元件同轴等高的粗调和细调,直到各光学元件的光轴共轴,并与光具座导轨平行为止。光学系统的共轴调节方法分为粗调和细调两步。

(1)粗调:按图6将光源、物屏、透镜、像屏等光具夹固定好,先

将它们靠拢,调节各自的的高低、左右位置和取向,凭眼睛观察,使它

们的中心处在一条和导轨平行的直线上,使透镜的主光轴与导轨平行,

并且使物(或物屏)和成像平面(或像屏)与导轨

垂直。

(2)细调:如图6(a)所示,使D>4f(f为

透镜的焦距),然后固定物屏和像屏。将凸透镜沿光

轴移到O1或O2位置都能在屏上成像,一次成大像

A1B1,一次成小像A2B2。物点A位于光轴上,则两

次像的A1和A2点都在光轴上而且重合。如果物点A

不在透镜的主光轴上,则两次像的A1和

A2点不重合,若观察到大像的A1

点在小

像A 2的下面,如图6(b )所示,可以看出物点A 在光轴之上,这时应升高透镜,反之则应升高降低透镜。如此反复调节透镜高度,使大像的中心趋向小像中心(大像追小像),直至A 1和A 2重合,即说明点A 已调到透镜的主光轴上了。

2. 凸透镜焦距的测量 (1)自准法测凸透镜焦距

1) 按如图2所示放置光源、物屏、凸透镜和平面镜。固定物屏,记录物屏的位置读数X AB 。

2) 移动凸透镜L ,由于成像清晰度的判定会有一定的误差,为减少此误差,可采用左右逼近测读法读数,测定凸透镜位置。即从左至右移动凸透镜,在物屏上刚看到与物大小相同的清晰倒像,记录此时凸透镜的位置X L ;再从右至左移动凸透镜,在物屏上刚看到与物大小相同的清晰倒像,记录此时凸透镜的位置X L ’。

3)取两次读数的平均值2/)(L

L X X '+,求该透镜的焦距2

L

L AB X X X f '+-=。要求重复

3次,求出f 及其不确定度。

(2)物距像距法测凸透镜焦距

1)按如图1所示放置光源、物屏、凸透镜和像屏。取物距约等于2f 凸,记下物屏位置与凸透镜位置的读数X AB 和X L 。

2)移动像屏,使屏上出现一个清晰的(大小与物相近)实像,同样采用左右逼近法,记下像屏的位置的读数X A ’B ’和X A ’B ’’。

3) 取两次读数的平均值2/)(B'A'B'A'X X '+即为像屏位置,计算出物距和像距,代入公

式2求出f 。要求重复3次测量,求其f 及其不确定度。

(3)位移法测凸透镜焦距(选做)

1)按如图3所示放置光源、物屏、凸透镜和像屏。使物屏和像屏距离略大于4 f 凸,并记录物屏与像屏之间的距离D 。

2)移动凸透镜。使像屏观测到两次清晰放大(或缩小)的实像,分别记下两次成像时透镜的位置X I 和X II ,从而算出d ,并由(4)式求出f '。

3)改变屏的位置,重复测3次,求其f '及其不确定度。

3. 凹透镜焦距的测量

在凹透镜焦距测量中,需要两个透镜共轴,首先采用大像追小像的方法,将物点A 调

到凸透镜的主光轴上。然后增加凹透镜(凹透镜支座需采用二维可调节支座,以便于左右调节),同样根据轴上物点的像总在轴上的道理,采用大像追小像的方法,直至凹透镜中心在凸透镜主光轴上。

(1)成像法测凹透镜焦距(选做)

1)如图4所示,调节各元件共轴后,暂不放入凹透镜,并使物屏和像屏距离略大于4 f 凸。移动凸透镜L 1,使像屏上出现清晰的、倒立的、大小适中的实像B A '',记下B A ''的位置X A 'B '。

2)保持凸透镜L 1的位置不变,将凹透镜L 2放入L 1与像屏之间,移动像屏,使屏上重新得到清晰、放大、倒立实像B A '''',记录B A ''''的位置X A ’’B ’’。

3)采用左右逼近法记录凹透镜L 2的位置X L2和X L2’,算出物距s 和像距s ',代入(2)式求出f '。

4)改变凹透镜位置,重复测3次,求f '及其不确定度。

(2)自准法测凹透镜焦距

1) 如图5所示,调节各元件共轴后,暂不放入凹透镜,取物屏与凸透镜的距离约等于2 f 凸。

2) 移动像屏,使像屏上出现清晰的、倒立的、缩小的实像B A '',采用左右逼近测读法测定像屏的位置,记下像屏的位置X A 'B '和X A 'B '’。

3)保持凸透镜L 1的位置不变,将凹透镜L 2取代像屏,平面镜紧贴近凹透镜,向凸透镜方向移动凹透镜L 2和平面镜,在物屏上得到一个与物大小相等的倒立实像,采用左右逼近测读法测定凹透镜的位置,记录凹透镜L 2′的位置读数X L2和X L2’。

4)改变凸透镜位置,要求重复3次,求出f 及其不确定度。

6.注意事项

(1)使用光学元器件要注意问题。例如,光学器件的镜面不要用手触及,光学器件易碎,要轻拿轻放,用完后光学器件要规整、整齐,码放回原处等。

(2)以“1”字屏中叉丝为物体中心,以其清晰成像确定光学元件所处位置。建议将 “1”字屏倒立,只观察叉丝到“1”字顶部成的像。 (3)多次测量时,可以采取左右逼近的读数方法。

(4)凹透镜支座需采用二维可调节支座,以便于左右调节,保证其透镜中心在物与凸透镜确定的光轴上。

7.数据及数据处理

(1)自准法测凸透镜焦距

X AB= mm

(2

X AB= mm X L= mm mm

s=

(3)位移法测凸透镜焦距(选做)

3. 凹透镜焦距的测量

(1)成像法测凹透镜焦距(选做)

(2)自准法测凹透镜焦距

【注意事项】

?透镜和光学元件的镜面均不能用手摸拭 , 应用擦镜头纸轻揩灰尘。

?应在光具座上将各光学元件调至等高共轴后再进行测量。

【思考题】

1. 如何在光具座上将各光学元件调至等高共轴 ?

2. 为什么二次成像法测透镜焦距可以避免由于透镜光心位置不易确定而带来的测量误差,物屏与像屏的距离 L为什么必须大于焦距的四倍?

3. 自准直法测量凸透镜焦距时,若透镜光心和透镜架底座读数准线不共面,会产生什么性质的误差 ?实验中如何消除这种误差?

【应用提示】

在日常生活中,人们用眼镜矫正人眼晶状体的缺陷,使物体发出的光线经眼镜和晶状体折射后在视网膜上成清晰像。配一副合适的远视眼镜(凸透镜)或近视眼镜(凹透镜)都需要准确地测量眼镜片 (透镜)的焦距。显微镜和望远镜则是由透镜组合构成,是用途极为广泛的助视光学仪器。显微镜主要是用来帮助人眼观察近处的微小物体,而望远镜则主要是帮助人眼观察远处的目标。它们的作用都在于增大被观察物体对人眼的张角,起着视角放大的作用。显微镜和望远镜的光学系统十分相似,都是由物镜和目镜两部分组成。例如显微镜,

其构造一般是由两个会聚透镜共轴组成。对于望远镜,两透镜的光学间隔近乎为零,即物镜的像方焦点与目镜的物方焦点近乎重合。望远镜可分两类:若物镜和目镜的像方焦距均为正(即两个都是会聚透镜),则为开普勒望远镜;若物镜的像方焦距为正(会聚透镜),目镜的像方焦距为负(发散透镜),则为伽利略望远镜。在生产、科研和国防等方面,光学仪器的使用已十分广泛。它不仅可以将像放大、缩小或记录储存,还可以实现不接触的高精度测量,用它可以研究原子、分子和固体的结构等。

试验2 光的等厚干涉——牛顿环

等厚干涉是薄膜干涉的一种。当薄膜层的上下表面有一很小的倾角时,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张的微粒学说而未能对它做出正确的解释。光的等厚干涉原理在生产实践中具有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微小长度、厚度和角度,检验物体表面的光洁度、平整度等。

【实验目的】

1.观察光的等厚干涉现象,了解等厚干涉的特点。

2.学习用干涉方法测量平凸透镜的曲率半径。

3. 掌握读数显微镜的使用方法。

4.学习用逐差法处理数据。

【实验原理】

牛顿环是由一块曲率半径较大的平凸玻璃,以其凸面放在一块光学平板玻璃上构成的,这样平凸玻璃的凸面和平板玻璃的上表面之间形成了一个空气薄层,其厚度由中心到边缘逐渐增加,当平行单色光垂直照射到牛顿环上,经空气薄膜层上、下表面反射的光在凸面处相遇将产生干涉。其干涉图样是以玻璃接触点为中心的一组明暗相间的同心圆环(如图9-2所示)。这一现象是牛顿发现的,故称这些环纹为牛顿环。

如图9-1所示,设平凸玻璃面的曲率半径为R,与接触点O相距为r处的空气薄层厚度为e,那么由几何关系:

R2 = (R-e)2 + r2 = R2– 2Re + e2 + r2

因R》e,所以e2项可以被忽略,有

R

r

e

2

2

=(9-1) 现在考虑垂直入射到r处的一束光,它经薄膜层上下表面反射后在凸面处相遇时其光程差

δ = 2e + λ/2

其中λ/2 为光从平板玻璃表面反射时的半波损失,把(9-1)式代入得:

2

δ+

=

R

r

(9-2) 由干涉理论,产生暗环的条件为

2

1

2

λ

δ)

K

(+

=(K=0,1,2,3,?) (9-3) 从(9-2)式和(9-3)式可以得出,第K级暗纹的半径:

λ

KR

r

K

=

2(K=0,1,2,3,?) (9-4) 由上式可知,如果已知光波波长λ,只要测出r k,即可求出曲率半径R,反之,已知R也可由(9-4)式求出波长λ。但由于接触点处机械压力引起玻璃的形变,使得接触点不可能是一个理想点,而是一个明暗不清的模糊圆斑。或者接触点处不十分干净,空气间隙层中有了尘埃,附加了光程差,干涉环中心为一亮(或暗)斑。无法确定环的几何中心,因此我们通常取两个暗环直径的平方差来计算R。

根据(9-4)式,第m环暗纹和第n环暗纹的直径可表示为:

图9-1 产生牛顿环的光路示意图图9-2 牛顿环

λ=mR D m 42

(9-5)

λ=nR D n 42 (9-6)

把(9-5)式和(9-6)式相减得到:

λ-=-R )n m (D D n m 42

2

则曲率半径

λ

--=

)n m (D D R n

m 42

2

(9-7)

上式说明,两暗环直径的平方差只与它们相隔几个暗环的数目(m-n)有关,而与它们各自的级别无关。因此我们测量时,只要测出第m 环和第n 环直径以及数出环数差m-n ,即可计算出透镜的曲率半径R 。用环数代替级数,而无须确定各环的级数,并且避免了圆心无法准确确定的困难。

由于接触点处玻璃有弹性形变,因此在中心附近的圆环将发生移位,故拟利用远离中心的圆环进行测量。

【实验仪器】

读数显微镜,钠光灯(单色光源,λ=589.3nm),牛顿环仪。

读数显微镜是一种测量微小尺寸或微小距离

变化的仪器。其结构见图9-3,它是有一个带十字叉丝的显微镜和一个螺旋测微装置所构成。

显微镜包括目镜、十字叉丝和物镜。整个显微系统与套在测位螺感得螺母管套相固定。旋转测微鼓轮,就能使测微螺杆转动,它就带着显微镜一起移动,移动的距离可由主尺和测微鼓轮读出。显微镜丝杆的螺距为1mm,测微鼓轮的圆周刻有100分格,分度值为0.01mm ,读数可估计到0.001mm 。

【实验内容】

1.观察牛顿环的干涉图样

(1) 调整牛顿环仪的三个调节螺丝,把自然光照射下的干涉图样移到牛顿环仪的中心附近。注意调节螺丝不能太紧以免中心暗斑太大甚至损坏牛顿环仪。

把牛顿环仪置于显微镜的正下方(如图9-3所示),调节读数显微镜上45?角半反射镜的位置 ,直至从目镜中能看到明亮的均匀光照。

(2) 调节读数显微镜的目镜,使十字叉丝清晰,自下而上调节物镜直至观察到清晰的干

图9-4 读数显微镜

涉图样。移动牛顿环仪,使中心暗斑(或亮斑)位于视域中心,调节目镜系统,使叉丝横丝与读数显微镜的标尺平行,消除视差,并观测待测的各环左右是否都在读数显微镜的读数范围之内。

2.测量牛顿环的直径

(1) 选取要测量的m 和n 各五个条纹,如取m 为30、29、28、27、26五个环,n 为20、19、18、17、16五个环。

(2) 转动鼓轮,先使镜筒向左移动,顺序数到35环,再向右转到30环,使叉丝尽量对准干涉条纹的中心,记录读数。然后继续转动测微鼓轮,使叉丝依次与30、29、28、27、26、20、19、18、17、16环对准,顺次记下读数。再继续转动测微鼓轮,使叉丝依次与圆心右16、17、18、19、20、26、27、28、29、30环对准,也顺次记下各环的读数,求得各环的直径:

(D 30=∣d 30左-d 30右∣)

注意在一次测量过程中,测微鼓轮应沿一个方向旋转,中途不得反转,以免引起回程差。

【注意事项】

1.牛顿环仪、透镜和显微镜的光学表面不清洁,要用专门的擦镜纸轻轻揩拭。

2.测量显微镜的测微鼓轮在每一次测量过程中只能向一个方向旋转,中途不能反转。

3.当用镜筒对待测物聚焦时,为防止损坏显微镜物镜,正确的调节方法是使镜筒移离待测物(即提升镜筒)。

附:读数显微镜

1、用途和构造

读数显微镜是将显微镜和螺旋测微计组

合起来,作为长度测量的精密仪器。主要用来精确测量微小且不能用夹持仪器(如游标尺、千分尺)测量的物体,如金属杆的线膨胀量、狭缝或干涉条纹的宽度等。读数显微镜的型号很多,常见的一种立式读数显微镜如图1-6所示。

读数显微镜由一个带十字叉丝的显微镜和一个螺旋测微装置所组成。显微镜包括目镜、十字叉丝和物镜。整个显微镜系统与套在测微螺杆的螺母套管相固定。旋转测微鼓轮,即转动测微螺杆,就可带动显微镜左右移动。

2.读数方法

如图1-6所示的读数显微镜,它的光学部分是一个长焦距的显微镜,通过上下移动可以调节聚焦。转动鼓轮能够使固定在测微轮杆套管上的显微镜沿滑动台左右平移,即沿标尺移动,移动距离可由毫米标尺和测微鼓轮上读出。常用的读数显微镜其测微螺杆螺距为1mm, 与其连接的测微鼓轮圆周上刻有100个分格,分度值为0.01mm,因而也能读到千分之一位,读数方法同螺旋测微计相同。

由于显微镜与测微螺杆的联动,存在着装置上的公差,致使它的精度低于千分尺。一般0~50mm的读数显微镜的示值误差为0.015mm。

3. 注意事项

由于螺杆从正转到反转(反之亦然)必有空转,为避免螺杆空转引起读数误差(又称螺距差或回程差),测量过程中,测微鼓轮应始终在同一方向旋转时读数。

试验三 迈克尔逊干涉仪的调整与使用

引言:迈克尔逊干涉仪是1883年美国物理学家迈克尔逊(A.A.Michelson )和莫雷(E.W.Morley )合作设计制作出来的精密光学仪器。它利用分振幅法产生双光束以实现光的干涉,可以用来观察光的等倾、等厚和多光束干涉现象,测定单色光的波长和光源的相干长度等。后人利用该仪器的原理,研究出了多种专用干涉仪,这些干涉仪在近代物理和近代计量技术中被广泛应用。它设计巧妙,试验思想丰富,具有非常重要的实验意义,对学生的试验操作能力有较高的要求,较多的物理专业的光学实验中都是必开的试验 。

一.试验目的:

1、了解迈克尔逊干涉仪的结构,学会其调节方法。

2、观察迈克尔逊干涉仪形成的干涉图样。 二.试验原理 1.干涉光路分析:

实验室常用的光路图如3-1所示,它由两块平面反射镜M 1、M 2 和两块平行平面玻璃板G 1、G 2组成。M 2的位置是固定的,称为定镜,M 2可沿导轨前后移动,称为动镜。定镜与动镜法线相互垂直。G 1、G 2是厚度和折射率都完全相同的一对平行玻璃板,与M 1、M 2均成45°角。G 1的一个表面镀有半反射、半透射膜,使射到其上的光线分为光强度差不多相等的反射光和透射光;G 1称为分光板。当光照到G 1上时,在半透膜上分成相互垂直的两束光,透

S

2

M

E

图3-1 迈克尔逊干涉仪原理图

2

S

E

图10-2 迈克尔逊干涉仪简化光路

射光(1)射到M 1,经M 1反射后,透过G 2,在G 1的半透膜上反射后射向E ;反射光(2)射到M 2,经M 2反射后,透过G 1射向E 。由于光线(2)前后共通过G 1三次,而光线(1)只通过G 1一次,有了G 2,它们在玻璃中的光程便相等了,于是计算这两束光的光程差时,只需计算两束光在空气中的光程差就可以了,所以G 2称为补偿板。当观察者从E 处向G 1看去时,除直接看到M 1外还看到M 2的像M 2ˊ于是(1)、(2)两束光如同从M 1与M 2ˊ反射来的,因此迈克尔逊干涉仪中所产生的干涉和M 1′~M 2间“形成”的空气薄膜的干涉等效。(1)(2)光在无穷远处相干涉,观察者在E 处,借助调焦于无穷远的望远镜,或者直接用眼睛就可以观察到明暗相间的干涉条纹。 2. 干涉图样的类型:

迈克尔孙干涉仪既可以形成定域干涉也可以形成非定域干涉;既可以形成等厚干涉也可以形成等倾干涉。这取决于光源的性质和两个平面反射镜的相对位置:

1、如果光源是点光源,则产生非定域干涉

2、如果光源是扩展光源,则产生定域干涉

3、如果两个平面镜严格垂直,即空气膜厚度处处相等,则形成等倾干涉条纹------同心圆环。

4、如果两个平面镜稍有倾斜,即空气膜为一个空气劈尖,则形成等厚干涉条纹------直条纹。

5、如果利用扩展白光源,则可以看到彩色条纹。

3.扩展光源的等倾干涉的光程差计算:

单两平面镜严格垂直时,所得的干涉为等倾干涉,倾角为θ,由两平面镜反射的光

线的光程差为θδcos 2d =,并由干涉条件:θδcos 2d ==λk 时出现明条纹 ,条纹定位与无穷远,放一汇聚透镜(或者用眼睛直接观察)在其焦平面上会看到一组明暗相间的干涉条纹。

3.根据条纹测量光波的波长:

在干涉圆环的中心处,θ=0,则θδcos 2d ==λk d =2

此时条纹的级次会随着两平行透镜的间距d 而改变,当移动1M 静使d 增加,中心圆环就不断“涌出”,当d 减小时中心圆环则不断“涌入”,此时在光线经过的路径上放置分划板,根据条纹移动时经过分划板上标志点的数目k ?和动镜移动的距离d ?,便可求出入射光的波

长: k

d ??=2λ

三.试验仪器:

迈克尔逊干涉仪的结构如下图所示:

读数系统2M 固定在座上,背面的三个螺丝和在它下面的两个相垂直的螺丝可用来精确的调节1M 镜的倾斜度。1M 镜是沿导轨可动的(一般1M 的倾斜度已调好,不要再动其背面的三个螺丝),它由一套精密齿轮丝杆来调节。1M 卡在螺距为1mm 的丝杆上,丝杆由一个100分格的粗调手轮带动,因此,手轮每转一格,1M 前进(或后退)1/100mm (这是粗调部分)转动一周移动1mm ,拧紧手轮上的紧固螺丝,则粗调手轮由一个标有“0.0001”字样的小鼓轮带动,鼓轮也是100分格,因此,鼓轮每转一格,1M 前进(或后退)0.0001mm (这是微调部分),这样,最小度数可估到十万分之一mm 。 四.试验的内容和步骤: 一.调节仪器:

1.点亮纳光灯,并调整方位是光线能照射到分束板上。

2.调节粗调手轮,使两反射镜到1G 镀膜面的距离大致相等,此时眼睛对准1EG 方向观察,将能够看到钠光灯的表面黑色尖状标志的两个影子(如果不能看到需要调整纳光灯的位置)

3.仔细调整定镜2M 后面的两个调整螺丝,改变1M 和2M 的相对位置,当尖状标志的两个影子相互重合时说明已经将1M 和2M 调整至相互垂直时,此时可观察到干涉条纹。

4.即使视场中看到了等倾干涉条纹,也不要急着测量,先要判断是否出现视差,判断方法是:当你上下移动眼睛,发现干涉条纹中心既不“陷入”也不“涌出”条纹,只是随着你的眼睛移动。说明没有视差,如果从中心涌出新的条纹,或者从中心缩进了一些条纹,则证明存在视差,此时要进一步缓慢调整螺丝,把视差消除。

二.测定纳光的波长

1. 转动微调手轮,使M 2前后移动,可看到干涉条纹的冒出或缩进。仔细观察,当M 2位置改变时,干涉条纹的粗细、疏密与d 的关系。

2.当视场中心出现清晰的,对比度较好的干涉圆环时,再慢慢的转动微调手轮,直到视场中心的条纹一个一个向外涌出(或缩进)当干涉环中心最亮时,记下活动镜位置读数1x ,然后继续缓慢转动微调手轮,当冒出(或缩进)的条纹数N=100时,再记下活动镜位置读数2x ,反复测量多次,由公式k

d ??=2λ 计算出波长,并与纳光的波长589.3nm 对比,计算相对不

确定度

2.数据处理: 测量数据表 λ0=589.3nm , k ? =50 单位:mm

=??=

k

d 2λ nm , =-=

?0

λλλλ %

五.注意事项:

1. 干涉仪是精密光学仪器,绝对不能用手直接触摸各部件的光学表面。

2.调节螺丝时一定要缓慢旋转,要留有调节余地,要轻、慢,决不允许强扭硬扳,防止将螺丝转死或者使得镜面变形。

3. 测量中,转动手轮只能缓慢地沿一个方向前进(或后退),否则会引起较大的空程误差。 六.问题讨论:

(1)在什么条件下产生等倾干涉条纹?什么条件下产生等厚干涉条纹? (2)迈克尔逊干涉仪产生的等倾干涉条纹与牛顿环有何不同?

阅读材料

试验四.分光计的调节及棱镜折射率测定

分光计是用来测量光线夹角的光学仪器,在光遇到不同介质的表面会发生反射和折射现象,如果能够测出入射光线和反射及折射光线的夹角,就可以测出介质的折射率,这些介质包括光学玻璃、石英玻璃、光学塑料、光学纤维等。通过对某些角度的测量,还可以测定光栅常数、光波波长、色散率等许多物理量。因而精确测量这些角度,在光学实验中显得十分重要。

分光计的调整思想、方法与技巧,在光学仪器中有一定的代表性,并且结构较为复杂,调整难度较大,对于初次使用者来说,往往会遇到一些困难。但是熟悉仪器后并且按照试验步骤和要求耐心调整,注意分析,还是能够完成试验任务的。这些对于提高学生的动手能力和试验分析能力有较大的好处。

一、试验原理:

本试验主要测量的是正三角形的三棱镜的折射率,如图所示:

AB,AC 为两工作面,其夹角为顶角?,入射光线为DE ,从AB 面入射后在经过两工作面时发生两次折射,最后从AC 面射出,出射光线为FG ,DE 和FG 的夹角称为偏向角δ,易见当入射角1i 变化时,偏向角δ也随之改变,当21i i =时,偏向角δ是最小的 称为最小偏向角m δ.三棱镜的折射率和最小偏向角有如下关系(证明略)

2

sin 2

sin A

A n m

δ+=

只要顶角A 和m 测出,折射率可测出来,而测顶角和最小偏向角就是试验任务的两个方面.

二、试验仪器 1. 分光计的结构

分光计主要由底座、望远镜、准直管、载物平台和刻度圆盘组成,每一部分都有特定的调节螺丝。

载物台是中间的圆形平台,用来放置三棱镜、光栅等光学元件,可以然中轴更随度盘一起旋转(也可以松开底部锁紧螺丝,单独旋转)两层之间有三个互成120°的调节螺钉(a 1,a 2,a 3),通过对3个螺钉的高度的调整,可调节上层平台的倾斜度。

图4-1 分光仪

(a )

三棱镜放置的位置如图所示,其三条边和螺钉(a 1,a 2,a 3)的对应边相互垂直,这样放置的目的是当调节1a 时只改变与之相对的AB 面的倾角,而不改变另一工作面AC 的倾角,当改变2a 时只调节AC 面的倾角,而不改变AB 面的倾角。

望远镜由目镜、物镜和分划板组成,其结构如图3所示。本实验所使用的分光计带有阿贝式自准目镜,物镜是一消色差的复合正透镜。分划板位于目镜和物镜之间,板的下半部粘有一块45°全反射小棱镜,板面上刻有准线,如图3(a )所示。小棱镜紧贴分划板的面上镀有不透光的薄膜,并在薄膜上刻出一个透光的小“十”字。把分划板调整到目镜的焦平面上,则通过目镜就可以看到完全清晰的准线和下部的小“十”字窗。小“十”字窗与分划板上方的十字准线(称为调整用准线)关于视场中心对称。

当照明小灯泡的光从望远镜筒下方射入后,经45°小棱镜的反射,透过空心“十”字窗从物镜出射。若此时分划板又正好位于物镜的后焦面上(同时已位于目镜的前焦面),望远镜出射平行光。在物镜前放一平面镜,经平面镜反射回来的平行光,再经过物镜又将聚焦在分划板平面上,形成空心“十”字的像(绿色)。这种物屏经过透镜和平面镜组合所成的像在物屏本身的方法,就叫做自准直。如果平面镜镜面与望远镜的光轴垂直,那么绿“十”像将落在与空心“十”字对称的位置上,即分划板上方的准线交叉点处,如图3(b)所示。

2.分光计的读数系统:

读数装置由刻度盘和游标盘两部分组成。刻度盘分为360°,最小分度为半度(30′),半度以下的角度可借助游标准确读出。游标等分为30格,正好跟刻度盘上的29小格等长,因此游标上1小格与刻度盘上1小格两者之差为1′,即分光计最小分度为1′。

角游标的读法与游标卡尺类似,以游标零线为基准,先读出大数(大于30′的部分),再利用游标读出小数(小于30′的部分),大数跟小数之和即为测量结果。例如,图4所示位置的读数为:87°30′ +15′ = 87°45′。

图4分光计的游标盘

在生产分光计时,难以做到使望远镜、刻度盘的旋转轴线与分光计中心轴完全重合。为消除因偏心而引起的误差,在游标盘同一条直径的两端各装一个读数游标。测量时两个游标都应读数,用双游标消除偏心误差。

3.利用分光计测量角度的工作原理

光源(纳光灯)发出的光线经过狭缝入射到平行光管,形成线状光源,可以调整狭缝到平行光管物镜的距离,使之产生平行光。经过三棱镜折射后由望远镜接收到光线(需要转动望远镜调整方向接收),该光线在分划板上形成谱线,测出平行光管和望远镜的夹角即为入射光线和出射光线的偏向角。

(浙江专用版)高考物理二轮复习专题七实验题题型强化第16讲力学和光学实验讲义

(浙江专用版)高考物理二轮复习专题七实验题题型强化第16讲力学和光学实验讲义 力学和光学实验 专题定位 1.熟知各种器材的特性.2.熟悉课本实验,抓住实验的灵魂——实验原理,掌握数据处理的方法,熟知两类误差分析.3.利用所学过的知识,对实验器材或实验方法加以重组,完成新的实验设计. 第16讲 力学和光学实验 1.纸带的三大应用 (1)利用逐差法求解平均加速度(如图) a 1=x 4-x 13T 2,a 2=x 5-x 23T 2,a 3=x 6-x 33T 2?a =a 1+a 2+a 33 (2)利用平均速度求瞬时速度:v n +1= x n +x n +12T (3)利用速度—时间图象求加速度. 2.光电门的应用 (1)求瞬时速度:把遮光条(宽度为d )通过光电门的时间Δt 内的平均速度看做遮光条经过光电门的瞬时速度,即v =d Δt . (2)求加速度:若两个光电门之间的距离为L ,则利用速度与位移的关系可求加速度,即a =v 22-v 122L . 3.实验的技巧 (1)要根据实验原理来判断是否需要平衡摩擦力,知道正确平衡摩擦力的方法. (2)要清楚钩码(或沙桶)与小车之间的质量关系,并且要清楚在仪器创新或实验原理创新的情形下,该条件是否需要调整. (3)要知道实验数据、图象的处理方法和运用数学知识解题的技巧. 例1 (2019·新高考研究联盟二次联考)如图甲所示,某同学用力传感器探究在小车及传感

器总质量不变时加速度跟它们所受拉力的关系. (1)实验中使用的电火花计时器,应接________电源. A .交流4~6V B .交流220V (2)该同学将实验器材如图甲所示连接后,沙桶的质量________(填“需要”或“不需要”)远小于小车及传感器总质量,实验时如将细线拉力当成小车及传感器的合外力,则________(填“需要”或“不需要”)先平衡摩擦力. (3)先接通电源,小车由静止释放,获得的一条纸带如图乙,每打5个点取一个计数点,x 1= 3.62cm ,x 4=5.12cm ,由图中数据可求得:2、3两点的距离(即x 3)约为________cm.(结果保留三位有效数字) (4)在实验中,甲、乙两位同学根据实验数据画出如图丙所示的小车的加速度a 和小车所受拉力F 的图象分别为图中的直线Ⅰ和直线Ⅱ,下面给出了关于形成这种情况原因的四种解释,其中可能正确的是________.(多选) A .实验前甲同学没有平衡摩擦力 B .甲同学在平衡摩擦力时把长木板的右端抬得过高了 C .实验前乙同学没有平衡摩擦力 D .乙同学在平衡摩擦力时,把长木板的右端抬得过高了 答案 (1)B (2)不需要 需要 (3)4.62 (4)BC 解析 (1)电火花计时器,需接220V 交流电源. (2)实验时如将细线拉力当成小车及传感器的合外力,不需要沙桶的质量远小于小车及传感器的总质量,但必须平衡摩擦力,否则细线的拉力不是合力. (3)相邻0.1s 内位移差Δx =x 4-x 1 3=0.50cm ,又x 4-x 3=Δx 故x 3=x 4-Δx =5.12cm -0.50cm =4.62cm.

大学物理 光学答案

第十七章 光的干涉 一. 选择题 1.在真空中波长为λ的单色光,在折射率为n 的均匀透明介质中从A 沿某一路径传播到B ,若A ,B 两点的相位差为3π,则路径AB 的长度为:( D ) A. 1.5λ B. 1.5n λ C. 3λ D. 1.5λ/n 解: πλπ ?32==?nd 所以 n d /5.1λ= 本题答案为D 。 2.在杨氏双缝实验中,若两缝之间的距离稍为加大,其他条件不变,则干涉条纹将 ( A ) A. 变密 B. 变稀 C. 不变 D. 消失 解:条纹间距d D x /λ=?,所以d 增大,x ?变小。干涉条纹将变密。 本题答案为A 。 3.在空气中做双缝干涉实验,屏幕E 上的P 处是明条纹。若将缝S 2盖住,并在S 1、S 2连线的垂直平分面上放一平面反射镜M ,其它条 件不变(如图),则此时 ( B ) A. P 处仍为明条纹 B. P 处为暗条纹 C. P 处位于明、暗条纹之间 D. 屏幕E 上无干涉条纹 解 对于屏幕E 上方的P 点,从S 1直接入射到屏幕E 上和从出发S 1经平面反射镜M 反射后再入射到屏幕上的光相位差在均比原来增π,因此原来是明条纹的将变为暗条纹,而原来的暗条纹将变为明条纹。故本题答案为B 。 4.在薄膜干涉实验中,观察到反射光的等倾干涉条纹的中心是亮斑,则此时透射光的等倾干涉条纹中心是( B ) A. 亮斑 B. 暗斑 C. 可能是亮斑,也可能是暗斑 D. 无法确定 解:反射光和透射光的等倾干涉条纹互补。 本题答案为B 。 5.一束波长为λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 ( B ) A. λ/4 B. λ/ (4n ) C. λ/2 D. λ/ (2n ) 6.在折射率为n '=1.60的玻璃表面上涂以折射率n =1.38的MgF 2透明薄膜,可以减少光的反射。当波长为500.0nm 的单色光垂直入射时,为了实现最小反射,此透明薄膜的最小厚度为( C ) A. 5.0nm B. 30.0nm C. 90.6nm D. 250.0nm 选择题3图

光学实验中考专题

光学专题复习——平面镜成像和凸透镜成像 姓名:___________________ 一.历年平面镜杭州中考题 (10年)36.(4分)右图为一辆轿车的俯视示意图。O点为司机眼部所在位置, 司机在右侧的后视镜AB(看作平面镜)中能看到车尾c点。 (12年)35.(6分)自行车的尾部安装一种塑料制成的反光镜,夜间骑车时,在车灯照射下,能把光 线按原来方向返回。反光镜结构如右图所示,两手面镜相互垂直,当一条光线AB人射到其中一平面镜,(1)作出所有反射光线的光路图。(2)证明经过两次反射后的反射光线会逆向射回。 (14年)34.(7分)右图为发光点S和竖直放置的平面镜的位置情况。根据光的 反射定律完成下列两小题:(1)在图中用光路图作出发光点S的像点S'(2)推导证明S′点和S点到平面镜距离相等. 二、平面镜成像实验: 某同学做“平面镜成像的特点”实验时,将一块玻璃板竖直架在一把直尺的上面,再取两段等长的蜡烛A 和B一前一后竖放在直尺上,点燃玻璃板前的蜡烛A,用眼睛进行观察,如图所示.在此实验中: 1.直尺的作用是便于比较物与像______________关系; 2. 实验中要求蜡烛A和蜡烛B ,目的是为了比较______________关系; 3.移去蜡烛B,并在像A'的位置上放一光屏,则光屏上_______接收到蜡烛A的烛焰 的像(填“能”或“不能”).这说明平面镜成的是_______像. 4.实验中应选择___________来研究平面镜成像特点(填“平面镜”或“平板玻璃”) 目的是为了_________________________________, 5.观察像时,细心的同学会发现两个几乎重叠的像,这是__________________造成的;所以应选择较______的玻璃做实验。如果有3mm厚和2mm厚的两块玻璃板,应选择________mm厚的玻璃板做实验效果好; 6.如果将蜡烛向靠近镜面的方向移动,那么像的大小将______(填“变大”、“变小”或“不变”)。 7.为便于观察,该实验最好在_______环境中进行(选填“较明亮”或“较黑暗”);此外,采用透明玻璃板代替平面镜,虽然成像不如平面镜清晰,但却能在观察到A蜡烛像的同时.也能观察到_____________,巧妙地解决了确定像的位置和大小的问题 8.点燃A蜡烛,小心地移动B蜡烛,直到与A蜡烛的像完全重合为止,这时发现像与物的大小_______;进一步观察A、B两支蜡烛在直尺上的位置发现,像和物的连线与玻璃板_______.像和物到玻璃板的距离_______.将蜡烛逐渐远离玻璃板时.它的像(填“变大”、“变小”或“不变”). 9.在探究活动中对玻璃板放置的要求是如果玻璃板没有放正,将对实验产生什么影

物理光学实验题及答案

物理光学实验题及答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

第三章光学(一)概述 光学的学生实验共有4个,它们分别是“光反射时的规律”、“平面镜成像的特点”、“色光的混合与颜料的混合”、“探究凸透镜成像的规律”。 (二)光学探究实验对技能的要求 1.明确探究目的、原理、器材和步骤。 2.会正确使用各种实验器材,知道它们的摆放要求。 3.知道各种器材在实验实践与探究能力指导 中的作用,并能根据实验原理、目的,选择除教科书规定仪器之外的其他器材完成实验。 4.会设计实验步骤并按合理步骤进行实验。 5会设计实验报告,会填写实验报告。 6.会正确记录实验数据。 7.会组装器材并进行实验。 8.明确要观察内容,会观察实验现象,并能解释实验中的一般问题。 9.会分析实验现象和数据,并归纳实验结果。 实验与探究能力培养 探究光反射时的规律 基础训练 1.为了探究光反射时的规律,小明进行了如图19所示的实验 (1)请在图19中标出反射角的度数。

(2)小明想探究反射光线与入射光线是否在同一平面内,他应如何操作 --————————————————————————————————。(3)如果让光线逆着OF的方向射向镜面,会发现反射光线沿着OE方向射出,这表明:————————————————————————————————。 图19 2.雨后天晴的夜晚,为了不踩到地上的积水,下列判断中正确的是()。 A.迎着月光走,地上暗处是水,背着月光走地上发亮处是水 B.迎着月光走,地上发亮处是水,背着月光走地上暗处是水 C.迎着月光走或背着月光走,都应是地上发亮处是水 D.迎着月光走或背着月光走,都应是地上暗处是水 探究平面镜成像的特点 基础训练 1.平面镜能成像是由于平面镜对光的————射作用,所称的想不能在光屏上 呈现, 是————像,为了探究平面镜成像的特点,可以用————代替平面镜,选用两只 相同的蜡烛是为了————。

几何光学实验讲义(最新版)资料

几何光学实验讲义 1.薄透镜焦距测量 实验目的 1.掌握薄透镜焦距的常用测定方法,研究透镜成像的规律。 2.理解明视距离与目镜放大倍数定义; 3.掌握测微目镜的使用。 实验仪器 1.LED白光点光源(需加毛玻璃扩展光源) 2.毛玻璃 3.品字形物屏 4.待测凸透镜(Φ = 50.8mm,f = 150,200mm) 5.平面反射镜 6.JX8测微目镜(15X,带分划板) 7.像屏2个(有标尺和无标尺) 8.干板架2个 9.卷尺 10.光学支撑件(支杆、调节支座、磁力表座、光学平台) 基础知识 1.光学系统的共轴调节 在开展光学实验时,要先熟悉各光学元件的调节,然后按照同轴等高的光学系统调节原则进行粗调和细调,直到各光学元件的光轴共轴,并与光学平台平行为止。 1、粗调:将目标物、凸透镜、凹透镜、平面镜、像屏等光学元件放在光具座(或光学平台)上,使它们尽量靠拢,用眼睛观察,进行粗调(升降调节、水平位移调节),使各

元件的中心大致在与导轨(平台)平行的同一直线上,并垂直于光具座导轨(平台)。 2、细调:利用透镜二次成像法来判断是否共轴,并进一步调至共轴。当物屏与像屏距离大于4f时,沿光轴移动凸透镜,将会成两次大小不同的实像。若两个像的中心重合,表示已经共轴;若不重合,以小像的中心位置为参考(可作一记号),调节透镜(或物,一般调透镜)的高低或水平位移,使大像中心与小像的中心完全重合,调节技巧为大像追小像,如下图所示。 图1-1 二次成像法中物与透镜位置变化对成像的影响 图1-1(a)表明透镜位置偏低(或物偏高),这时应将透镜升高(或把物降低)。而在图(b)情况,应将透镜降低(或将物升高)。水平调节类似于上述情形。当有两个透镜需要调整(如测凹透镜焦距)时,必须逐个进行上述调整,即先将一个透镜(凸)调好,记住像中心在屏上的位置,然后加上另一透镜(凹),再次观察成像的情况,对后一个透镜的位置上下、左右的调整,直至像中心仍旧保持在第一次成像时的中心位置上。注意,已调至同轴等高状态的透镜在后续的调整、测量中绝对不允许再变动 2.薄透镜成像公式 透镜分为会聚透镜和发散透镜两类,当透镜厚度与焦距相比甚小时,这种透镜称为薄透镜.值得注意的是,若透镜太厚,光在透镜中的传播路径便无法忽略,光在透镜里的传播路径就必须做进一步的考虑。 在实验中,必须注意各物理量所适用的符号法则。运算时已知量须添加符号,未知量则根据求得结果中的符号判断其物理意义。在讨论成像前,我们约定正负号定义(1)光由左往右前进定义为正方向传播。 (2)物体若放在透镜的左方,其物距为负,反之为正。 (3)像若形成在透镜的右方,其像距为正,反之为负。 (4)若是光线与光轴线相交,且相交的锐角是由光线顺时针方向朝光轴线方向旋转扫出来的,这个锐角定义为正,反之为负。

中考光学实验专题训练及答案

中考光学实验专题训练及答案 1、为了探究光反射时的规律,小明进行了如图3所示的实验。 ⑴请在图中标出反射角的度数。 ⑵小明想探究反射光线与入射光线是否在同一平面内,他应如何操 作? ⑶如果让光线逆着OF 的方向射向镜面,会发现反射光线沿着OE 方向射出,这表明: 2、小红同学在做“探究平面镜成像”的实验时,将一块玻璃板竖直 架在水平台上,再取两段完全相同的蜡烛A 和B ,点燃玻璃板前的蜡烛A ,进行观察,如图4所示,在此实验中: (1)小红选择玻璃板代替镜子进行实验的目的是__________. (2)所用刻度尺的作用是便于比较像与物________关系. (3)选取两段完全相同的蜡烛是为了比较像与物的__________关系. (4)移去后面的蜡烛B ,并在其所在位置上放一光屏,则光屏上__________ 接收到蜡烛烛焰的像(填“能”或“不能”).所以平面镜所成的像是__________像(填“虚”或“实”). 图3 图4

(5)小红将蜡烛逐渐远离玻璃板时,它的像__________ (填“变大”、“变小”或“不 变”). 3、某实验小组在探究光的折射规律时,将光从空气分别射入水和玻璃,测得数 据如下表: 分析表格中的数据,你肯定能得出一些规律。请写出一 条:。 4、在“探究凸透镜成像的规律”的实验中。 图4 (1)实验时,应使烛焰、凸透镜、光屏的中心大致在________。 (2)所用凸透镜的焦距为10 cm。某同学的实验数据如下表。 ①分析1、2、3次实验的数据可知_______、______、_____。 ②在第5次实验中,从_______一侧透过透镜看到在_______一侧放大的像。

物理光学实验题及答案

物理光学实验题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第三章光学 (一)概述 光学的学生实验共有4个,它们分别是“光反射时的规律”、“平面镜成像的特点”、“色光的混合与颜料的混合”、“探究凸透镜成像的规律”。(二)光学探究实验对技能的要求 1.明确探究目的、原理、器材和步骤。 2.会正确使用各种实验器材,知道它们的摆放要求。 3.知道各种器材在实验实践与探究能力指导 中的作用,并能根据实验原理、目的,选择除教科书规定仪器之外的其他器材完成实验。 4.会设计实验步骤并按合理步骤进行实验。 5会设计实验报告,会填写实验报告。 6.会正确记录实验数据。 7.会组装器材并进行实验。 8.明确要观察内容,会观察实验现象,并能解释实验中的一般问题。 9.会分析实验现象和数据,并归纳实验结果。 实验与探究能力培养 探究光反射时的规律 基础训练 1.为了探究光反射时的规律,小明进行了如图19所示的实验 (1)请在图19中标出反射角的度数。 (2)小明想探究反射光线与入射光线是否在同一平面内,他应如何操作?--————————————————————————————————。(3)如果让光线逆着OF的方向射向镜面,会发现反射光线沿着OE方向射出,这表明:————————————————————————————————。

图19 2.雨后天晴的夜晚,为了不踩到地上的积水,下列判断中正确的是()。 A.迎着月光走,地上暗处是水,背着月光走地上发亮处是水 B.迎着月光走,地上发亮处是水,背着月光走地上暗处是水 C.迎着月光走或背着月光走,都应是地上发亮处是水 D.迎着月光走或背着月光走,都应是地上暗处是水 探究平面镜成像的特点 基础训练 1. 平面镜能成像是由于平面镜对光的————射作用,所称的想不能在光屏上 呈现, 是————像,为了探究平面镜成像的特点,可以用————代替平面镜,选用两只 相同的蜡烛是为了————。 2.水平桌面上放置一平面镜,镜面与桌面成45度角,小球沿着桌面向镜滚去,如图5-3所示,那么镜中小球的像如何云动?5—3

工程光学(1)_实验讲义

实验一光学实验主要仪器、光路调整与技巧 1.引言 不论光学系统如何复杂,精密,它们都是由一些通用性很强的光学元器件组成的,因此,掌握一些常用的光学元器件的结构,光学性能、特点和使用方法,对于安排实验光路系统时,正确的选择和使用光学元器件具有重要的作用。 2.实验目的 1)掌握光学专业基本元件的功能; 2)掌握基本光路调试技术,主要包括共轴调节和调平行光。 3.实验原理 3.1光学实验仪器概述: 光学实验仪器主要包括:光源,光学元件,接收器等。 3.1.1常用光源 光源是光学实验中不可缺少的组成部分,对于不同的观测目的,常需选用合适的光源,如在干涉测量技术中一般应使用单色光源,而在白光干涉时又需用能谱连续的光源(白炽灯);在一些实验中,对光源尺寸大小还有点、线、面等方面的要求。光学实验中常用的光源可分为以下几类: 1)热辐射光源 热辐射光源是利用电能将钨丝加热,使它在真空或惰性气体中达到发光的光源。白炽灯属于热辐射光源,它的发光光谱是连续的,分布在红外光、可见光到紫外光范围内,其中红外成分居多,紫外成分很少,光谱成分和光强与钨丝温度有关。热辐射光源包括以下几种:普通灯泡,汽车灯泡,卤钨灯。 2)热电极弧光放电型光源 这类光源的电路基本上与普通荧光灯相同,必须通过镇流器接入220V点源,它是使电流通过气体而发光的光源。实验中最常用的单色光源主要包括以下两种:纳光灯(主要谱线:589.3nm、589.6nm),汞灯(主要谱线:623.4nm、579.0nm、577.0nm、546.1nm、491.6nm、435.8nm、407.9nm、404.7nm) 3)激光光源 激光(Light Amplification by Stimulated Emission of Radiation,缩写:LASER),是指通过辐射的受激辐射而实现光放大,即受激辐射的光放大。激光器作为一种新型光源,与普通光源有显著的差别。它是利用受激辐射的原理和激光腔的滤波效应,使所发光束具有一系列新的特点。①激光器发出的光束有极强的方向性,即光束的发散角很小;②激光的单色性好,或者说相干性好,其相干长度可以达十米甚至数百米;③激光器的输出功率密度大,即能量高度集中。所以激光光源是一种单色性和方向性都好的强光源,已应用于许多科技及生产领域

大学物理光学练习

单元四 (二) 杨氏双缝实验 一、填空题 1. 相干光满足的条件是1)频率相同;2)位相差恒定;3)光矢量振动方向平行,有两束相干光, 频率为ν,初相相同,在空气中传播,若在相遇点它们几何路程差为r r 21-,则相位差 )r r (c 212-= πν ??。 2. 光强均为I 0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是 0I 4。可能出现的最小光强是0。 3. 在真空中沿Z 轴负方向传播的平面电磁波,O 点处电场强度)3 t 2cos(300E x π πν+ = (SI),则O 点处磁场强度:)3 t 2cos(300 H 00y π πνμε+-=。用图示表明电场强度、磁场强度和传播速度之间的关系。 4. 试分析在双缝实验中,当作如下调节时,屏幕上的干涉条纹将如何变化? (A) 双缝间距变小:条纹变宽; (B) 屏幕移近: 条纹变窄; (C) 波长变长: 条纹变宽; (D) 如图所示,把双缝中的一条狭缝挡住,并在两缝垂直平分线上放一块平面反射镜: 看到的明条纹亮度暗一些,与杨氏双缝干涉相比较,明暗条纹相反; (E) 将光源S 向下移动到S'位置:条纹上移。 二、计算题 1. 在双缝干涉的实验中,用波长nm 546=λ的单色光照射,双缝与屏的距离D=300mm ,测得中央明条纹两侧的两个第五级明条纹之间的间距为1 2.2mm ,求双缝间的距离。 * 由在杨氏双缝干涉实验中,亮条纹的位置由λk d D x = 来确定。 用波长nm 546=λ的单色光照射,得到两个第五级明条纹之间的间距:λ?10d D x 5= ) 4(填空题) 3(填空题

中考物理专题八光学实验及其应用试题(附答案)

专题八:光学实验及其应用 考点一:探究平面镜成像特点 1.如图是验证“平面镜成像特点”的实验装置,其中A为玻璃板前点燃的蜡烛,B为玻璃板后未点燃的蜡烛。有关本实验的说法错误的是( ) A.玻璃板应该与桌面垂直 B.实验宜在较暗的环境中进行 C.眼睛应从B一侧观察成像情况 D.蜡烛燃烧较长时间后像物不再重合 2.实验室中探究“平面镜成像特点”实验时,用薄玻璃板代替平面镜做实验的情景如图所示。眼睛在A侧看到的蜡烛的像是由光的(选填“反射”或“折射”)形成的,实验中将蜡烛靠近玻璃板,像的大小。 3.(2019阜新)在“探究平面镜成像特点”实验中: (1)平面镜成像原理是_____。 (2)实验中用玻璃板代替平面镜的原因_____。

(3)为了比较像与物大小关系,选取两支_____的蜡烛。 (4)无论怎样水平移动蜡烛B,都不能与蜡烛A的像重合,原因是_____。 (5)判断平面镜成虚像的方法是_____。 (6)平面镜成像时像和物到平面镜的距离_____。 考点二:平面镜成像的应用 1.小丽面向穿衣镜,站在镜前60cm处,镜中的像与她相距( ) A.30cm B.60cm C.90cm D.120cm 2.在鞋店试穿新鞋时,小明直立面向竖直放置在地面上的“试鞋镜”,看不到镜中自己脚上的新鞋。小明做以下动作,能够让他看到镜中自己脚上的一只鞋或者两只鞋的是( ) A.站在原地下蹲 B.保持直立靠近“试鞋镜” C.站在原地竖直向上提起一只脚 D.保持直立远离“试鞋镜” 3.汽车夜间行驶,一般车内不开灯,这是因为( ) A.要节约用电 B.假如车内开灯,司机前面的玻璃会产生车内物体的像,影响司机行车安全 C.车内开灯形成漫反射,光线刺眼,影响司机视线 D.车内开灯,光射到车外的后视镜上,反射到司机眼中,影响司机行车安全 4.小明以0.5m/s的速度沿平行于平面镜的方向走动过程中,他在镜中的像相对小明的速度为m/s,若小明身高 1.8m,平面镜高度小于0.9m,他在这个平面镜中(选填“能”“不能”或“有时能”)看到自己的全身像。 5.一棵小树生长在水塘中,图中用带箭头的线段AB表示小树露出水面的部分。请在图中画出AB通过水面反射所成的像A'B'。

初中物理光学实验(整理)精编版

一、光的反射: 例:为了探究光反射时的规律,某同学将一个平面镜放在水平桌面上,再把纸板ENF放置在平面镜上,如图甲所示 1、让光沿着白纸的表面照射,这样做的目的是显示光的传播路径 2、使一束光贴着纸板EON沿某一角度入射到O点,纸板FON上观察到了反射光;接着他让白纸沿ON折叠90°,这时他只观察到了入射光,而反射光在纸上看不到了,这样做的目的是探究反射光线、入射光线和法线在同一平面上; 3、其中使用可绕ON转动的纸板的目的是①呈现反射光线;②验证反射光线与入射光线及法线在同一平面内 4、使一束光贴着纸板EON沿某一角度入射到O点,纸板FON上没有观察到反射光,原因可能是纸板EON与FON不在同一平面上(纸板没有与平面镜垂直) 5、正确操作实验,并在纸板上记录每次光的径迹,如图乙所示.取下纸板,接下来进行的操作是测量入射角和对应反射角的大小,将数据记录在表格中,并比较反射角与入射角 6、为了得到反射角等于入射角的规律,应当改变入射角大小,进行多次实验,进行多次测量. 7、实验中,放置平面镜和白纸的顺序是:先把一个小平面镜竖直立在一块长方 形木板上,然后把一张白纸平铺在木板上,使白纸边缘紧贴平面镜放置,而不 是先放白纸再把平面镜竖直立在白纸上,这样做的好处是什么? 因为法线与镜面垂直,所以先把一个小平面镜竖直立在一块长方形木板上,然 后把一张白纸平铺在木板上,使白纸边缘紧贴平面镜放置,这样能准确确定白 纸的镜面的垂直关系,而先放白纸再把平面镜竖直立在白纸上,若桌面不是水 平的,那么白纸和平面镜就不一定垂直,因此不是先放白纸再把平面镜竖直立在白纸上. 二、平面镜成像: 进行探究“平面镜成像特点”的实验.实验步骤如下: (1)将一块薄玻璃板竖直立在铺有白纸的水平桌面上; (2)取两支相同的蜡烛A和蜡烛B,点燃玻璃板前的蜡烛A,并移动玻璃板后的蜡烛B,使它与蜡烛A在玻璃板后所成的像完全重合,并用笔在白纸上标记出蜡烛A和蜡烛B的位置;(3)多次改变蜡烛A的位置,重复前面的步骤; (4)用刻度尺分别测量蜡烛A和蜡烛B到玻璃板的距离. 在此实验中:

光学系统设计讲义

实验一:单镜头设计(Singlet) 实验目的: 1、学习如何启用Zemax 2、学习如何输入波长(wavelength)、镜头数据(lens data) 3、学习如何察看系统性能(optical performance),如ray fan,OPD,点列图(spot diagrams), MTF等。 4、学习如何定义thickness solve以及变量(variables) 5、学习如何进行优化设计(optimization) 实验仪器:微机、zemax光学设计软件 实验步骤: 1、设计一个孔径为F/4的单镜头,物在光轴上,其焦距(focal length)为100mm,波长为可见光, 用BK7玻璃为材料。 2、首先运行ZEMAX,将出现ZEMAX的主页,然后点击lens data editor(LDE)。什么是LDE呢?它是你要 的工作场所,在LDE的扩展页上,可以输入选用的玻璃,镜片的radius,thickness,大小,位置等。 3、然后输入波长,在主菜单的system下,点击wavelengths,弹出波长数据对话框wavelength data,键入你 要的波长,在第一行输入0.486,它是以microns为单位,此为氢原子的F-line光谱。在第二、三行键入 0.587及0.656,然后在primary wavelength上点在0.587的位置,primary wavelength主要是用来计算光学 系统在近轴光学近似(paraxial optics,即first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes等。 4、确定透镜的孔径大小。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形成的 effective focal length F跟paraxial entrance pupil的直径的比值。所以现在我们需要的aperture就是100/4=25(mm)。于是从system menu上选general data,aperture type里选择entrance pupil,在apervalue 上键入25,然后点击ok。 5、回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源,STO 即孔径光阑aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面(surface),于是点击IMA栏,选取insert,就在STO后面再插入一个镜片,编号为2,通常OBJ为0,STO为1,而IMA为3。 6、输入镜片的材质为BK7。在STO行中的glass栏上,直接键入BK7即可。 7、孔径的大小为25mm,则第一镜面合理的thickness为4,在STO行中的thickness栏上直接键入4。Zemax 的默认单位是mm 8、确定第1及第2镜面的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为负 值。再令第2面镜的thickness为100。 9、现在数据已大致输入完毕。如何检验你的设计是否达到要求呢?选analysis中的fans,然后选择其中的 Ray Aberration,将会出现如图1-1所示的TRANSVERSE RAY FAN PLOT。

大学物理光学实验

大学物理光学实验 平行光管的调整及使用 1.测量凸透镜及透镜组的焦距 1)平行光管调整后,拿下平面镜,将被测凸透镜置于平行光管的前方,在透镜的前方放上测微目镜,调节平行光管、被测凸透镜和测微目镜,使它们大致在同一光轴上,尽量让测微目镜拉近到实验人员方便观察的位置。 2)将平行光管的十字分划板换成玻罗板,并拿下高斯目镜上的灯泡,放在直筒形光源罩上,然后装在平行光管上。 3)转动测微目镜的调节螺丝,直到从测微目镜里面能看到清晰的叉丝、标尺为止。 4)前后移动凸透镜,使被测凸透镜在平行光管中的玻罗板成像于测微目镜的标尺和叉丝上,表明凸透镜的焦平面与测微目镜的焦平面重合。 5)用测微目镜测出玻罗板像中10毫米两刻线间距的测量值y,读出平行光管的焦距实测值'f和玻罗板两刻线的实测值'y(出厂时仪器说明书中给定),重复五次,将各数据填入自拟表中。 2.用平行光管测凸透镜的鉴别率 (1)取下玻罗板,换上3号鉴别板,装上光源。 (2)将测微目镜、被测透镜、平行光管依次放在光具座上。 (3)移动被测透镜的位置,使被测透镜在平行光管的3号鉴别率板成像于测微目镜的焦平面上。用眼睛认真地从1号单元鉴别率板上开始朝下看,分辨出是哪一个号数单元的并排线条,记下号码。 (4)在表4-4-1中查出条纹宽度a值及鉴别率角值,也可将a、'f(平行光管焦距,出厂的实测值)代入(4-4-3)式,求出鉴别率角值 。

光的干涉实验 若将同一点光源发出的光分成两束,在空间各经不同路径后再会合在一起,当光程差小于光源的相干长度时,一般都会产生干涉现象。干涉现象是光的波动说的有力证据之一。“牛顿环”是一种分振幅法等厚干涉现象,1675年,牛顿首先观察到这种干涉,但由于牛顿信奉光的微粒说而未能对其作出正确的解释。干涉现象在科学研究和工业技术上有着广泛的应用,如测量光波波长,精确测量微小长度、厚度和角度,检验试件表面的光洁度,研究机械零件内应力的分布以及在半导体技术中测量硅片上氧化层的厚度等。 【实验目的】 1. 观察光的等厚干涉现象,加深对干涉现象的认识; 2. 掌握读数显微镜的使用方法,并用牛顿环测量平凸透镜的曲率半径; 3. 学习用逐差法处理实验数据。 【实验原理】 在一块平滑的玻璃片B 上,放一曲率半径很大的平凸透镜A(图1),在A 、B 之间形成一劈尖形空气薄层。当平行光束垂直地射向平凸透镜时,可以观察到在透镜表面出现一组干涉条纹,这些干涉条纹是以接触点O 为中心的同心圆环,称为牛顿环(图2)。牛顿环是由透镜下表面反射的光和平面玻璃上表面反射的光发生干涉而形成的,两束反射光的光程差(或相位差)取决于空气层的厚度,所以牛顿环是一种等厚条纹。 设透镜的曲率半径为R ,与接触点O 相距为r 处的空气膜厚度为e ,则2222222)(r e eR R r e R R ++-=+-=由于e R >>,式中可略去2e 得到: R r e 22 = (1) 两束相干光的光程差为 2 2λ +=?e (2) 其中2/λ是光从空气射向平面玻璃反射时产生的半波损失而引起的附加光程 图1 牛顿环实验装置

初中物理光学实验专题复习知识点考点梳理和练习

3.光学实验专题复习(3课时) 1.探究:光反射时的规律 一、知识考点 实验目的探究光反射时遵循什么规律 实验器材平面镜、纸板、激光电筒、、笔。 实验装置 ' 实验步骤①把平面镜放在桌面上,把纸板竖直地立在平面镜上,纸板上的直线ON垂直于镜面; 】 ②让一束光贴着纸板沿着某一角度射到o点,经平面镜反射,沿另一个方向射出,在纸板上用笔描出和的路经; ③改变光束的入射方向,重做一次,用另一种颜色的笔描出入射光和反射光的路经; ④取下纸板,用分别测量两次的入射角和反射角,记录在下表中; ⑤把纸板一半向前折或向后折,不能看到反射光线; , 实验数据* 实验次数入射角i反射角r 1— 30° 30°245° 360°

实验结论 (1)在反射现象中,反射光线、入射光线和法线都在同一个 ; (2)反射光线,入射光线分居在法线的 ; (3)反射角 入射角。 二、解答方法 " 做到“七会”: 1.会提出探究的问题; 2.会选择实验器材; 3.会安装实验装置; 4.会设计实验表格; 5.会操作实验步骤; 6.会分析实验数据得出结论; 7.会对实验进行评估。 三、典型例题 例题.如图所示,小明和小刚两位同学用激光手电、平面镜、白色硬纸板和量角器做光的反射规律实验,实验数据如下表: , 从这些数据得出的结论是: (1)入射光线偏离法线,反射光线_____ 法线;入射角增大,反射角________ ; (2)反射角_______ 入射角。(填“大于、小于、等于”); (3)当把纸板B 向后折,不能看到反射光线,说明 ; (4)入射光线垂直平面镜时,反射角为_______ 度。 四、达标检测 、 1.如图是小明探究光的反射规律的实验装置,在平面镜上放置一块硬纸板,纸板由可以 绕ON 转动的E 、F 两部分组成。 入射光线与法线的夹角 反射光线与法线的夹角 450 , 45 300 300 600 600

第一轮光学实验讲义(以分组)

实验32 分光计的调节和使用 分光计是用来精确测量角度的光学仪器,物理实验中常用来测量三棱镜的顶角,折射率,研究光栅衍射特性,测光波波长等。每一种应用都需要对分光计进行精确的调节,分光计的结构复杂而精密,调节难度大,其调节是本实验的重点和难点。因此,熟悉分光计的基本结构和掌握它的基本调节要求和方法,对调整和使用其它光学仪器具有普遍的指导意义。 【实验目的】 1. 了解分光计的结构和各部分的作用; 2. 学会用“二分之一调节法”正确调节分光计; 3. 掌握用分光计测角的方法,并测量三棱镜的顶角A。 【实验仪器、用具】 分光计,单色光源,双平面反射镜,三棱镜等。 【实验原理】 1. 分光计的结构与角度测量原理 分光计由望远镜、平行光管、刻度盘、载物台与底座5个部分组成。如图32-1所示。 1-望远镜锁紧螺钉,2-望远镜,3-载物台水平调节螺钉,4-三棱镜,5-分光计主轴,6-载物台,7-平 行光管,8-平行光管狭缝锁紧螺钉,9-平行光管水平调节螺钉,10-游标盘止动螺钉,11-底座,12- 望远镜止动螺钉,13-刻度盘与望远镜固定螺钉,14-刻度盘与游标盘,15-望远镜水平调节螺钉 图32-1 分光计结构示意图 1.1 望远镜 望远镜是由一个长焦距的物镜和一个短焦距的目镜组成。物镜的像方焦点(焦平面)与目镜的物方焦点(焦平面)几乎重合,在它们的共同焦平面处装有一块分划板,用以对望远镜进行调焦。物镜和目镜均为凸透镜的望远镜称为开普勒望远镜,目镜为凹透镜的称为伽利略望远镜。 分光计中望远镜的基本结构与开普勒望远镜一样,不同的是在其分划板上贴有一个特制的直角小棱镜及对分划板的特殊设计(如图32-2),棱镜的一个直角面紧贴在分划板上,面上除留有一个“╋”字形透光孔以外,其余部分为不透光面。棱镜的另一个直角面朝向镜筒下方,可以从其下方的开孔处射入照明光线(常用发光二极管发出的绿色光),用以照亮“╋”字窗。分划板上的调焦准线形状为“”形,即在图

大学物理光学实验报告材料

实验十:光栅衍射 一、实验目的 1.观察光线通过光栅后的衍射光谱。 2.学会用光栅衍射测定光波波长的方法。 3.学会用光栅衍射原理测定光栅常数。 4.进一步熟悉分光计的调整和使用方法。 二、实验仪器 分光计 光栅 钠光灯 平面反射镜 三、实验原理 光栅是有大量的等间隔、等宽度的狭缝平行放置组成的一种光学元件。设狭缝宽度(透光部分)为a ,不透光部分为b ,则a b +为光栅常数。 设单色光垂直照射到光栅上,光透过各个狭缝后,向各个方向发生衍射,衍射光经过透镜后会聚后相互干涉,在焦平面上形成一系列的被相当宽的暗区分开的明亮条纹。 衍射光线与光栅平面的夹角称为衍射角。设衍射角为θ的一束衍射光经透镜会聚到观察屏的点。在P 点出现明条纹还是暗条纹决定于这束衍射光的光程差。 由于光栅是等宽、等间距,任意两个相邻缝的衍射光的光程差是相等的,两个相邻狭缝的衍射光的光程差为()sin a b θ+,如果光程差为波长的整数倍,在P 点就出现明条纹,即 ()sin a b k θλ+=± (0,1,2,)k = 这就是光栅方程。 从上式可知,只要测出某一级的衍射角,就可计算出波长。 四、实验步骤 1、调整分光计。 使望远镜、平行光管和载物台都处于水平状态, 平行光管发出平行光。 2、安置光栅 将光栅放在载物台上,让钠光垂直照射到光栅上 。 可以看到一条明亮而且很细的零级光谱,左右转动望远 镜观察第一、二级衍射条纹。 3.测定光栅衍射的第一、二级衍射条纹的衍射角θ,并记录。 五、数据记录 ()

'111[()θθθ=-(右边读数)+'11()θθ-(右边读数)]/4 '222[()θθθ=-(右边读数)+'22()θθ-(右边读数)]/4 六、数据处理 将上表中的1θ、2θ分别代入光栅方程()sin a b k θλ+=计算出6个波长,(1 300 a b mm += ) 1λ= 2λ= 3λ= 4λ= 5λ= 6λ= 计算平均波长:λ= 绝对误差:λ?= (取平均波长与6个波长的差中的最大者) 相对误差:100%E λλ λ ?= ?= 结果表示:()nm λλλ=±?= nm 。 七、思考题

光学实验自测题

实验一薄透镜焦距测定05-06-2 1.下面哪项实验结果可能是对凹透镜焦距测定数据正确的表示?(-59.95cm) 2.光学实验中常把各种光学元件组合成光学系统调整到各元件主轴等高和共轴, 一般细调使用的方法可以称为:大像追小像 3. 4.采用“虚物成实像法”测定发散透镜焦距时,对于像距,应取正值。 5.薄透镜焦距测量实验要求成像必须尽可能清晰,以下哪项不是清晰像的判据: 成像大 6.在实验中常把各种光学元件组合成光学系统,按照一般光学光路通用调节方 法,首要任务是调整好各元件主轴的等高和共轴;调节分两步:一般先粗调,后微调。 7.薄透镜焦距测定中用到低压汞灯,汞灯属于气体放电光源,发出复合光。使 用时需要启动预热,断电后需要冷却。 8.透镜成像的高斯公式中各物理量的符号法则是:距离自参考点(薄透镜光心) 量起,与光线行进方向一致时为正,反之为负。 9.薄凸透镜焦距测定主要的三种方法有:物距像距法,大像小像(二次成像) (共轭法)法,自准直法。 10.远方物体经过透镜成像的像距为什么可以视为焦距? [参考答案] 根据高斯公式(成像公式),物距为无穷远,代入得焦距等于像距。 11.用自准直法测量凸透镜焦距时,透镜光心偏离底座中心坐标时,应如何解决? [参考答案] 由于透镜的光心不一定在底座刻线的平面内,所测结果可能偏大或偏小,要消除这一系统误差,可将透镜反转180度,再测量一次,然后取其平均值。 12.不同物距的物体经过凸透镜成像时,像的清晰区大小是否相同? [参考答案]不相同,原因有二:一是不同区间的物成像区间范围不相同,二是由于近轴光线条件不能满足,致使存在色像差。 13.在等高共轴调节中可以小像追大像吗? [参考答案] 不可以,越调越远 14.测量薄凹透镜焦距主要有哪些方法? [参考答案] (1)虚物成实像法;(2)有平面镜辅助确定虚像位置法。 15.光学系统的等高共轴调节方法是什么? [参考答案] 关键词:粗调细调二次成像法,大像追小像 16.测透镜焦距时存在误差的主要原因有哪些? [参考答案] (1)等高共轴调节不好;(2)成像清晰范围找得不准;(3)由于物屏所放位置不能测量或者倾斜没有进行修正。

初中物理光学实验题练习

初中物理光学实验精选 1. 平面镜成像 1.小明利用平板玻璃、两段完全相同的蜡烛等器材探究平面镜成像的特点。 (1)选用玻璃板的目的是 。 (2)选取两段完全相同蜡烛的目的是 。如果将点燃的蜡烛远离玻璃板, 则像将 移动。 2..在探究“平面镜成像规律”时 (1) 用平面镜做实验(填“能”与“不能”) (2)用平板玻璃代替平面镜做实验,其好处是: 。 3..一组同学在探究平面镜成像的特点时,将点燃的蜡烛A 放在玻璃板的一侧,看到玻璃板后有蜡烛的像。 (1)此时用另一个完全相同的蜡烛B 在玻璃板后的纸面 上来回移 动,发现无法让它与蜡烛A 的像完全重合(图甲)。你分析出现 这种情况的原因可能是: 。 (2)解决上面的问题后,蜡烛B 与蜡烛A 的像能够完全重合,说 明 。 (3)图乙是他们经过三次实验后,在白纸上记录的像与 物对应点的位置。他们下一步应该怎样利用和处理这张“白纸” 上的信息得出实验结论。 ____________________________________________。 (4)他们发现,旁边一组同学是将玻璃板和蜡烛放在方格纸上进行 实验的。你认为选择白纸和方格纸哪种做法更好?说出你的理由: ____________________________________________。 2. 凸透镜成像 1.小明用蜡烛、凸透镜和光屏做“探究凸透镜成像的规律”实验(如图): ⑴要使烛焰的像能成在光屏的中央,应将蜡烛向 ▲ (填“上”或“下”)调整. ⑵烛焰放距凸透镜20cm 处,移动光屏至某位置,在光屏 上得到一个等大清晰的像,则凸透镜的焦距是 cm . ⑶使烛焰向右移动2cm ,此时应该将光屏向 (填“左” 或“右”)移至另一位置,才能得到一个倒立、 (填“放大”、“缩小”或“等大”)的清晰实 2.在“探究凸透镜成像规律”时,所用的凸透镜的焦距为10cm 。 ①现将凸透镜、蜡烛和光屏放在如图16所示的光具座上进行实验。若图中C 位置上放置光屏,则B 位置上应放置______。 ②如图16所示,,现要在光屏上成缩小 的像,蜡烛应向______移动,光 屏应向_____移动。(填“左”或 “右”) 3.关于凸透镜: (1)在探究凸透镜成像的实验中,王聪同学先将凸透镜对着太阳光, 调整凸透镜和白纸间的距离,直到太阳光在白纸上会聚成一个最小、 最亮的点,如图所示,这一操作的目的是 ; 图乙 原放置 玻璃板图甲 纸

初中光学实验讲义

五、光的反射实验 (1)实验目的:探究反射光线沿什么方向射出 (2)器材:可折叠的白纸板,平面镜、刻度尺、量角器、笔 (3)步骤:①将平面镜放在“水平桌面”上,白纸板“垂直”立在平面镜上。 平面镜:充当反射面,可以使反射光线更加明亮,易于观察和记录 白纸板:发生漫反射,显示光的传播径迹,记录实验数据,验证“三 线共面”。 ②将一束光AO 紧贴E 板沿某一个角度声响O 点,观察F 板上出现的 反射光线OB ,保持E 板不动,前后绕着ON 轴转动F 板,观察在F 板上能否看到反射光线OB 。 结论: ①反射时,反射光线、入射光线和法线在同一平面内。 ②反射光线与入射光线分居发现两侧 ③将一束光AO 紧贴E 板沿某一个角度射向O 点,观察F 板上出现的反射光线OB ,在纸板上用铅笔描出入射光线AO 和反射光线OB 的径迹,改变光束入射的角度在做3次,用不同颜色的笔记录每次光的径迹。取下纸板,用量角器量出ON 两侧的∠i 和∠r 的度数,将数据记录在表格中 归纳结论:反射角等于入射角 ④将一束光从F 板射入,会看到反射光线从E 板射出, 结论:反射光线与入射光线分居发现两侧 ⑤将蓝色光束在F 板逆着BO 射入,看到在E 板的反射光线逆着OA 射出。 结论:反射时光路可逆 ⑥将一束光从NO 射入(垂直射入),会看到反射光线逆着原路沿ON 射出,此时∠i=∠r=0o 总结:光的反射定律(略) ⑦如果探究反射角与入射角的关系,则实验要做6次,目的是使结论更趋近于实际关系 六、平面镜成像实验 1、平面镜的作用:(1)改变光路 潜望镜······ (2)成像 2、平面镜成像实验 (1)器材:激光笔、薄玻璃板、支架、大白纸一张、刻度尺、一对一模一样的蜡烛AB 、量角器 (2)方法:等效替代法 用B 蜡烛替代A 蜡烛,与像重合。 (3)步骤: ①将大白纸铺在水平桌面上,用刻度尺在白纸中央画一条直线,用支架将玻璃板垂直立在白纸中央的直线上。 ②将A 蜡烛点燃,放在玻璃板左侧某一位置上,透过玻璃板,看到在玻璃板的右侧出现蜡烛A 的像A ′, ③移动B 蜡烛,使之与A ′重合,在白纸上记录下A 蜡烛与像A ′(即B 蜡烛)对应点的位置。

相关文档
相关文档 最新文档