文档库 最新最全的文档下载
当前位置:文档库 › 催化剂比表面积和孔结构测定

催化剂比表面积和孔结构测定

催化剂的组成与功能

催化剂的组成与功能 催化剂的组成:活性组分 载体 助催化剂 催化剂组分与功能关系: 一、 活性组分 它是催化剂的主要组分,有时由一种物质组成,有时由多种物质组成 如:乙烯氧化制环氧乙烷的银催化剂;丙烯氨氧化制丙烯腈用的钼和铋催化剂 20%40%60%80%100%2% 4% 6% 8% 10% 氨 含量 Mo的混合比 Mo-Fe合金组成与活性关系

活性组分的分类: 二、载体 载体是催化剂活性组分的分散剂、粘合剂和支撑物,是负载活性组分的骨架。 例如,乙烯氧化制环氧乙烷催化剂中的Ag就是负载在“α—Al2O3上的,这里的α—Al2O 3称为载体。 载体还常分为惰性载体与活性载体。严格来说,催化剂中的组分都不是惰性的,都对主剂与助剂有所影响,只不过活性载体的作用更为明显而已。 载体的作用与助催化剂的作用在很多方面有类似之处,不同的是载体量大,助催化剂量小;前者作用较缓和,后者较明显。另外,由于载体量大,可赋予催化剂以基本的物理结构与性能,如孔结构、比表面、宏观外形、机械强度等。此外,对主催化剂和助催化剂起分散作用,尤其对贵金属既可减少其用量,又可提高其活性,降低催化剂成本。作为高效催化剂,活

性组分与裁体的选择都非常重要。 下面是载体的分类和部分常见载体的种类: 催化剂的活性随载体比表面的增加而增加,为获得较高的活性,往往将活性组分负载于大比表面载体上。 载体与催化剂的活性、选择性、热稳定性、机械强度以及催化过程的传递特性有关,因此,在筛选和制造优良的催化剂时,需要弄清载体的物理性质和它的功能。 催化剂组分与含量的表示方法:例如:合成氨催化剂Fe—K2O—Al2O3用“—’将催化剂中的各组分隔开:加氢脱硫催化剂Co—Mo/α—Al2O3,斜线上为主剂和助剂,斜线下为载体。各组分的含量可用重量%、重量比表示,也可用原子%、原子比表示。

色谱法测定固体催化剂表面积

化工专业实验报告 实验名称:色谱法测定固体催化剂的表面积实验人员:同组人: 实验地点:天大化工技术实验中心室 实验时间: 班级/学号:级班组号 指导教师: 实验成绩: 一、实验目的 1. 掌握用流动吸附色谱法测定催化剂比表面积的方法。

2. 通过实验了解BET多层吸附理论在测定比表面积方面的应用。 二、实验原理 催化剂的表面积是其重要的物性之一。表面积的大小直接影响催化剂的效能。因此在催化剂研究、制造和应用的过程中,测定催化剂的表面积是十分重要的。 固体催化剂表面积的测定方法较多。经典的BET法,由于设备复杂、安装麻烦,应用受到一定限制。气相色谱的发展,为催化剂表面积测定提供了一种快速方法。色谱法测定催化剂固体表面积,不需要复杂的真空系统,不接触水银,操作和数据处理较简单,因此在实验室和工厂中的到了广泛应用。 色谱法色谱法测固体比表面积是以氮为吸附质、以氢气或氦气作为载气,二者按一定的比例通入样品管,当装有待测样品的样品管浸入液氮时,混合气中的氮气被样品所吸附,而载气不被吸附,He-N2混气或H2-N2混气的比例发生变化。这时在记录以上出现吸附峰。各种气体的导热系数不尽相同,氢和氦的导热系数比氮要大得多,具体各种气体的导热系数如下表 同样,在随后的每个样品解吸过程中,被吸附的N 又释放出来。氮、氦气体比例的变化 2 导致热导池与匹配电阻所构成的惠斯登电桥中A、B二端电位失去平衡,计算机通过采样板将它记录下来得到一个近似于正态分布的电位-时间曲线,称为脱附峰。最后在混合气中注入已知体积的纯氮,得到一个校正峰。根据校正峰和脱附峰的峰面积,即可计算在该相对压力下样品的吸附量。改变氮气和载气的混合比,可以测出几个氮的相对压力下的吸附量,从而可据BET公式计算表面积。BET公式: P/V(P0-P)=1/V m C+(C-1)/V m C*P/P0(1) 式中:P—氮气分压,Pa; P0—吸附温度下液氮的饱和蒸气压,Pa; 体积,ml; V m—待测样品表面形成单分子层所需要的N 2 V—待测样品所吸附气体的总体积,ml; C—与吸附有关的常数。 其中 V=标定气体体积×待测样品峰面积/标定气体峰面积 标定气体体积需经过温度和压力的校正转换成标准状况下的体积。以P/[V(P0-P)]对P/P 0作图,可得一条直线,其斜率为(C-1)/(V m C),截距为1/(V m C),由此可得: V m=1/(斜率+截距) (2)若知每个被吸附分子的截面积,可求出催化剂的表面积,即

常见的钢结构计算公式

2-5 钢结构计算 2-5-1 钢结构计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T 700 和《低合金高强度结构钢》GB/T 1591 的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20 ℃冲击韧性的合格保证。当结构工作温度等于或低于-20 ℃ 时,对Q235钢和Q345钢应具有-20 ℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃ 冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于- 20 ℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390 钢和Q420钢应具有-20 ℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z 向钢时,其材质应符合现行国家标准厚度方向性能钢板》GB/T 5313 的规定。

催化剂评定指标

催化裂化催化剂的主要理化指标及其意义 一、化学指标 催化剂的化学组成表示催化剂中的主要成分及杂质的含量,通常包括: Al2O3、Na2O、Fe2O3、、灼烧减量五个主要指标,有时还包括Re2O3。 1、Al2O3含量:催化剂中Al2O3含量表示催化剂中Al2O3的总含量,是催化剂的主要化学成分。 2、Na2O含量:Na2O含量表示催化剂中含有的Na2O杂质含量。在催化裂化过程中,特别是在掺炼钒含量较高的渣油情况下, 3、Fe2O3含量:Fe2O3含量表示催化剂中含有的Fe2O3杂质含量。Fe2O3在高温下会分解并沉积在催化剂上,积累到一定程度就会引起催化剂中毒,其结果一是使催化剂活性降低。 4、SO42-含量:SO42-含量表示催化剂中含有的SO42-杂质含量。SO42-可与具有捕钒作用的金属氧化物(如氧化铝等)反应生成稳定的硫酸盐,从而使其失去捕钒能力。所以,在掺炼渣油的情况下,SO42-的危害性较大。 5、灼烧减量:灼烧减量是指催化剂中所含水份、铵盐及炭粒等挥发组份的含量。生产中控制其减量≤13%。 6、Re2O3含量:Re2O3含量是表示催化剂性能的指标之一。稀土通常来自催化剂中的分子筛,有时在催化剂制造工艺中也引入稀土离子达到改善性能的目的。通常Re2O3含量越高,催化剂活性越高,但焦炭产率也偏高。 对于平衡催化剂,有时还需知道其中的金属含量,如Ni、V、Na等,以便了解催化剂的污染程度。 二、物理性质 物理性质表示催化剂的外形、结构、密度、粒度等性能。通常包括:比表面积、孔体积、表观松密度、磨损指数、筛分组成五个主要项目。下面分别加以简述: 1、比表面积 催化剂的比表面积是内表面积和外表面积的总和。内表面积是指催化剂微孔内部的表面积,外表面积是指催化剂微孔外部的表面积,通常内表面积远远大于外表面积。单位重量的催化剂具有的表面积叫比表面积。

钢结构计算公式.docx

螺栓或铆钉的最大、最小允许距离表2-90 注:1. d0为螺栓或铆钉的孔径,t为外层较薄板件的厚度。 2 ?钢板边缘与刚性构件(如角钢、槽钢等)相连的螺栓或铆钉的最大间距,可按中间排的数值采用。 常见型钢及其组合截面的回转半径的近似值见表2-91。 常见型钢及其组合截面的回转半径的近似值表表2-91

-I JK=O32 Λiy =0.28? w =0.18 I I=O.18 ?+? ∕χ=10.21A ?=≈0.2l??=0.185Λ "0-2 M ι20.21b iχ=0,45Λ?=0.24? J y S y IH).25tf ?=0,3S? Iy =0.44? ?=0.41Λ ?-0.12fr ∕χ=0.28λ ?=024? Jχ=0.42? ? =0.226?≡0.44Λ?~0.32A Pl ?-0J0Λ —r ? =^0.306 L.-√ h-0.l95Λ ∣χ=0.32A Jy -0.20ΔJX=O29Λ ? =O 456 ■J h =O .20片~j?=0 21h ?=0.29Λ ?→29? r*=0 29h ? =0.5Ofc -0.54? h =OJOh h =0.2150 ?=O.38Λ ? -0.60? -B?-___J□ φ=7?R.30λ ?-0.!7fe ?=0,40A ?≡021fe A =0.43 A i j=0 24b ?≡0.4θ? iχ =0?2ι4ft?p ?=0.4l ?flp ________ ?=0.44? ι=0.35? ■?≡045A ? =0- 235? ?=0 43h A=O 43? h=O39A ?≡O20? f—∣<=0.38Λ 王于」42防 h=0.32? ?=0 58? <χ=O.32 ? 6 =0.40? {≡- P ? ∕χ=0.365λ ?=0.275? s td E h=035A ?*0.56? IX =039Λ iy≈0 29b -C 戸 y Γ -U "1 J 厂 -I=Y _ ■ ■ ■ y π L ≡ ^?≡=0.39Λ 「?=0一 530 强度和稳定性计算表表2-93 ^=O 50? b≡Q39f>

产品结构设计准则--洞孔

产品结构设计准则--洞孔(Hole) 转自:手机研发论坛 在塑胶件上开孔使其和其它部件相接合或增加产品功能上的组合是常用的手法,洞孔的大小及位置应尽量不会对产品的强度构成影响或增加生产的复杂性,以下是在设计洞孔时须要考虑的几个因素。 相连洞孔的距离或洞孔与相邻产品直边之间的距离不可少於洞孔的直径,如孔离边位或内壁边之要点图。与此同时,洞孔的壁厚理应尽量大,否则穿孔位置容易产生断裂的情况。要是洞孔内附有螺纹,设计上的要求即变得复杂,因为螺纹的位置容易形成应力集中的地方。从经验所得,要使螺孔边缘的应力集中系数减低至一安全的水平,螺孔边缘与产品边缘的距离必须大於螺孔直径的三倍。 孔离边位或内壁边之要点 穿孔 从装配的角度来看,穿孔的应用远较盲孔为多,而且较盲孔容易生产。从模具设计的角度来看,穿孔的设计在结构上亦较为优胜,因为用来穿孔成型的边钉的两端均可受到支撑。穿孔的做法可以是靠单一边钉两端同时固定在模具上、或两枝边钉相接而各有一端固定在模具上。一般来

说,第一种方法被认为是较好的;应用第二种方法时,两条边钉的直径应稍有不同以避免因为两条边钉轴心稍有偏差而引致产品出现倒扣的情况,而且相接的两个端面必须磨平。 盲孔 盲孔是靠模具上的哥针形成,而哥针的设计只能单边支撑在模具上,因此很容易被溶融的塑料使其弯曲变形,形成盲孔出现椭圆的形状,所以哥针的长度不能过长。一般来说,盲孔的深度只限於直径的两倍。要是盲孔的直径只有或於1.5mm,盲孔的深度更不应大於直径的尺寸。 盲孔的设计要点 钻孔 大部份情况下,额外的钻孔工序应尽量被免,应尽量考虑设计孔穴可单从模具一次成型,减低生产成本。但当需要成型的孔穴是长而窄时”即孔穴的长度比深度为大〔,因更换折断或弯曲的哥针构成的额外成本可能较辅助的後钻孔工序为高,此时,应考虑加上後钻孔工序。钻孔工序应配合使用钻孔夹具加快生产及提高品质,亦可减少因断钻咀或经常番磨钻咀的额外成本及时间;另一做法是在塑胶成品上加上细而浅的定位孔以代替使用钻孔夹具。 侧孔 侧孔往往增加模具设计上的困难,特别是当侧孔的方向与开模的方向成一直角时,因为侧孔容易形成塑胶产品上的倒扣部份。一般的方法是使用角针”Angle Pin〔及活动侧模”Split Mould〔,或使用油压抽哥。留意哥针在胶料填充时会否受压变形或折断,此情况常见於长而直径小的哥针上。因模具的结构较为复杂,模具的制造成本比教高,此外,生产时间亦因模具必须抽走哥针才可脱模而相应增加。

常见的钢结构计算公式

2-5 钢结构计算 2-5-1钢结构计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T700和《低合金高强度结构钢》GB/T1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77采用。钢铸件的强度设计值应按表2-78采用。连接的强度设计值应按表2-79至表2-81采用。 钢材的强度设计值(N/mm2) 表2-77

催化剂的指标及其意义

催化剂的各项指标及其意义 一、化学指标 催化剂的化学组成表示催化剂中的主要成分及杂质的含量,通常包括: Al2O3、Na2O、Fe2O3、、灼烧减量五个主要指标,有时还包括Re2O3。 1、Al2O3含量:催化剂中Al2O3含量表示催化剂中Al2O3的总含量,是催化剂的主要化学成分。 2、Na2O含量:Na2O含量表示催化剂中含有的Na2O杂质含量。在催化裂化过程中,特别是在掺炼钒含量较高的渣油情况下, 3、Fe2O3含量:Fe2O3含量表示催化剂中含有的Fe2O3杂质含量。Fe2O3在高温下会分解并沉积在催化剂上,积累到一定程度就会引起催化剂中毒,其结果一是使催化剂活性降低。 4、SO42-含量:SO42-含量表示催化剂中含有的SO42-杂质含量。SO42-可与具有捕钒作用的金属氧化物(如氧化铝等)反应生成稳定的硫酸盐,从而使其失去捕钒能力。所以,在掺炼渣油的情况下,SO42-的危害性较大。 5、灼烧减量:灼烧减量是指催化剂中所含水份、铵盐及炭粒等挥发组份的含量。生产中控制其减量≤13%。 6、Re2O3含量:Re2O3含量是表示催化剂性能的指标之一。稀土通常来自催化剂中的分子筛,有时在催化剂制造工艺中也引入稀土离子达到改善性能的目的。通常Re2O3含量越高,催化剂活性越高,但焦炭产率也偏高。 对于平衡催化剂,有时还需知道其中的金属含量,如Ni、V、Na等,以便了解催化剂的污染程度。 二、物理性质

物理性质表示催化剂的外形、结构、密度、粒度等性能。通常包括:比表面积、孔体积、表观松密度、磨损指数、筛分组成五个主要项目。下面分别加以简述: 1、比表面积 催化剂的比表面积是内表面积和外表面积的总和。内表面积是指催化剂微孔内部的表面积,外表面积是指催化剂微孔外部的表面积,通常内表面积远远大于外表面积。单位重量的催化剂具有的表面积叫比表面积。 比表面积是衡量催化剂性能好坏的一个重要指标。不同的产品,因载体和制备工艺不同,比表面积与活性没有直接的对应关系。 测定比表面积采用的方法是氮吸附容量法。 2、孔体积 孔体积是描述催化剂孔结构的一个物理量。孔结构不仅影响催化剂的活性、选择性,而且还能影响催化剂的机械强度、寿命及耐热性能等。 孔体积是多孔性催化剂颗粒内微孔的体积总和,单位是毫升/克。孔体积的大小主要与催化剂中的载体密切相关。对同一类催化剂而言,在使用过程中孔体积会减小,而孔直径会变大。 孔体积测量采用的方法是水滴法。 3、磨损指数 一个优良的催化裂化催化剂,除了要具有活性高、选择性好等特点以外,还要具有一定的耐磨损机械强度。机械强度不好的催化剂,不但操作过程中跑损多、增大催化剂用量、污染环境,严重时会破坏催化剂在稀、密相的合理分布,甚至使生产装置无法运转。

最新----碳材料孔控制研究进展

----碳材料孔控制研 究进展

碳材料孔控制研究进展 简要说明炭材料孔的形成、分类和描述,之后评述了控制碳材料孔结构技术的的重要性。评述了四种碳材料成孔机理和多种孔描述技术的优略,然后从VOC处理及回收利用、水净化、汽车尾气处理、CO2的可逆不可逆吸附和电极材料5个方面来说明在碳材料中孔结构控制的重要性。最后介绍了孔结构控制技术,包括大孔控制、中孔控制、微孔控制。 Abstract: Techniques for controlling the pore structure and its importance in carbon materials are reviewed after a brief explanation on formation mechanism and classification and characterization of pores. The understanding of four kinds of pore-forming processes are reviewed and then five application areas are presented to show the importance of pore structure control in carbon materials, which included VOC treatment and recycling,Water purification,gasoline vapor adsorption, CO2 capture, and carbon electrodes for electric double layer capacitors. Pore structure control techniques are shown, including the macroporous control, mesoporous control and micropore control. 活性炭是一种具有丰富内部孔隙结构、高空隙率和较高比表面积的六方晶格型碳。因活性炭性价比高、化学稳定性好[1]、吸附性能优良、热稳定性好及便于再生利用和相当的硬度等优点而成为吸附技术中首选的吸附剂材料。活性炭广泛应用于食品、医药、电池、催化、电能储存、黄金提取和多成份有机气体分离[2]等,。对环境安全和污染控制关注的提高为活性炭吸附的应用开辟了新的领域,在很多化工厂,如印刷,涂料,纺织印染,聚合物加工等。活性炭孔隙分布规律性差,活性炭工业制作无法实现控制孔径大小及分布,当今科学、工程和技术一个特殊的应用需要一个特殊的孔结构[3–6],有文献报道,当孔隙大小为吸附分子的2~4倍时最有利于吸附,可以根据吸附质分子选择吸附性能最好的活性炭,但一般活性炭的孔径并不均一,选择性吸附效果差。因此,精确控制活性炭的孔结构在不同应用领域有很强的需求。常规活性炭主要包含小

钢结构计算公式

钢结构计算 2-5-1 钢结构计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T 700和《低合金高强度结构钢》GB/T 1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0 C但高于-20 C时,Q235钢和Q345钢应具有0 C C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20 C冲击韧性的合格保证。当结构工作温度等于或低于-20C时,对Q235钢和Q345钢应具有-20C冲击韧性的合格保证;对Q390钢和Q420钢应具有-40 C冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20C时,对Q235钢和Q345钢应具有0C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20 C冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z 向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T 5313 的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77 采用。钢铸件的强度设计值应按表2-78 采用。连接的强度设计值应按表2-79 至表2-81 采用。

学术干货丨孔结构与物理吸附经典问答之应用篇(上)

学术干货丨孔结构与物理吸附经典问答之应用篇(上) 序渐进原则,本专题从基础篇、实验篇逐渐讲到应用篇,本专题共100问,分四期。由于内容较多,我们将应用篇分为上下两篇进行讲述,每篇25问。往期回顾,请见: 学术干货丨孔结构与物理吸附经典问答之基础篇 学术干货丨孔结构与物理吸附经典问答之实验篇 51. 含有微孔的吸附等温线是什么样的?我们从中能得到哪些信息? 样品一旦清洁后,就要转移至外置的杜瓦瓶(或其它恒温浴)中使其处于恒温状态。然后,使少量的气体(被吸附物,即吸附质)逐步进入被抽真空的样品管。进入样品管的吸附质分子很快便到达固体样品(即吸附剂)上每一个孔的表面。如果样品既有微孔也有介孔,那么其吸附等温线应该包含如下几个阶段:?1) 极低压力下的微孔填充(相对压力小于0.01)区:含微孔样品的等温线初始段呈明显大而陡的上升,然后弯曲成平台。这一段曲线的数据可以表征微孔体积和微孔分布。因为其孔径接近于气体分子直径,所以选择正确的吸附质气体是十分必要的。 ?2) 单层吸附区:随着越来越多的气体分子被导入系统,当微孔被填满,吸附质分子会在整个吸附剂表面形成一个薄层。吸附等温线呈现像膝盖似的弯曲。

?3) 多层吸附区:紧接着吸附曲线进入平台区,表明在这里发生了表面多层吸附。BET 理论恰恰需要在这个阶段的吸附曲线数据计算比表面积。 ?4) 毛细管凝聚区:当相对压力大于0.4时,持续地多层吸附伴随着毛细管凝聚过程。毛细管凝聚即在孔道中的被吸附气体随分压比增高转化为液体的过程,描述这一过程的经典方程是开尔文方程。该方程量化了平衡气体压力与可以凝聚气体的毛细管尺寸的比例。利用Barrett,?Joyner? and?Halenda? (BJH)?法等计算方法可以根据平衡气体压力计算孔径,得到累积的或微分孔径分布图。?? 随着吸附质平衡压力趋于饱和,吸附剂的孔道将被吸附质完全填充。如果知道吸附质的密度,就可以计算出其所占的体积,然后就可以相应地计算出样品的总孔体积。如果此时我们将吸附过程逆向操作,从系统中逐步减少气体量,就可以得到脱附等温线。????? 由于吸附和脱附的机理不同,吸附和脱附等温线很少能够重叠。等温线的回滞现象与固体颗粒的孔形有关 52. 吸附等温线都有哪些类型? 在1985年,IUPAC建议物理吸附等温线分为六种类型。然而,经过30年的发展,各种新的特征类型等温线已经出现,并证明了与其密切相关的特定孔结构。所以,于2015年,IUPAC更新了原有的分类。新规范的主要变化是I类、IV类

各种钢结构重量计算公式

各种钢结构重量计算公式 材料重量计算 圆钢重量(公斤)=0.00617×直径×直径×长度 方钢重量(公斤)=0.00785×边宽×边宽×长度 六角钢重量(公斤)=0.0068×对边宽×对边宽×长度 八角钢重量(公斤)=0.0065×对边宽×对边宽×长度 螺纹钢重量(公斤)=0.00617×计算直径×计算直径×长度 角钢重量(公斤)=0.00785×(边宽+边宽-边厚)×边厚×长度 扁钢重量(公斤)=0.00785×厚度×边宽×长度 钢管重量(公斤)=0.02466×壁厚×(外径-壁厚)×长度 六方体体积的计算 公式①s20.866×H/m/k 即对边×对边×0.866×高或厚度 各种钢管(材)重量换算公式 钢管的重量=0.25×π×(外径平方-内径平方)×L×钢铁比重其中:π = 3.14 L=钢管长度钢铁比重取7.8 所以,钢管的重量=0.25×3.14×(外径平方-内径平方)×L×7.8 * 如果尺寸单位取米(M),则计算的重量结果为公斤(Kg) 钢的密度为:7.85g/cm3 (注意:单位换算) 钢材理论重量计算 钢材理论重量计算的计量单位为公斤(kg )。其基本公式为: W(重量,kg )=F(断面积mm2)×L(长度,m)×ρ(密度,g/cm3)×1/1000 各种钢材理论重量计算公式如下: 名称(单位) 计算公式 符号意义 计算举例 圆钢盘条(kg/m) W= 0.006165 ×d×d d = 直径mm 直径100 mm 的圆钢,求每m 重量。每m 重量= 0.006165 ×1002=61.65kg 螺纹钢(kg/m) W= 0.00617 ×d×d d= 断面直径mm

常见的钢结构计算公式

2-5钢结构计算 2-5-1钢结构计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构 的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T 700和《低合金高强度结构钢》GB/T 1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保 证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当 结构工作温度等于或低于0 C但高于-20 C时,Q235钢和Q345钢应具有0 C C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20 C冲击韧性的合格保证。当结构工作温度等于或低于-20C时,对Q235钢和Q345钢应具有-20C冲击韧性的合格保证;对Q390钢和Q420钢应具有-40 C冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20C时,对Q235钢和Q345钢应具有0C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20 C冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现 行国家标准《厚度方向性能钢板》GB/T 5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77采用。钢铸件的强度设计值应按表2-78采用。连接的强度设计值应按表2-79至表2-81采用。 钢材的强度设计值(N/mm2)表2-77

烟气脱硝催化剂之比表面积及孔径分布

烟气脱硝催化剂之比表面积及孔径分布 选择性催化还原技术(SCR)是目前最成熟的烟气脱硝技术, 它是一种炉后脱硝方法, 最早由日本于 20 世纪 60~70 年代后期完成商业运行, 是利用还原剂(NH3, 尿素)在金属催化剂作用下, 选择性地与 NOx 反应生成 N2 和H2O, 而不是被 O2 氧化, 故称为“ 选择性” 。世界上流行的 SCR工艺主要分为氨法SCR和尿素法 SCR 2种。此2种方法都是利用氨对NOx的还原功能,在催化剂的作用下将 NOx (主要是NO)还原为对大气没有多少影响的 N2和水,还原剂为 NH3。 在SCR中使用的催化剂大多以TiO2为载体,以V2O5或V2 O5 -WO3或V2O5-MoO3为活性成分,制成蜂窝式、板式或波纹式三种类型。应用于烟气脱硝中的SCR催化剂可分为高温催化剂(345℃~590℃)、中温催化剂(260℃~380℃)和低温催化剂(80℃~300℃),不同的催化剂适宜的反应温度不同。如果反应温度偏低,催化剂的活性会降低,导致脱硝效率下降,且如果催化剂持续在低温下运行会使催化剂发生永久性损坏;如果反应温度过高,NH3容易被氧化,NOx生成量增加,还会引起催化剂材料的相变,使催化剂的活性退化。国内外SCR系统大多采用高温,反应温度区间为315℃~400℃。 优点:该法脱硝效率高,价格相对低廉,广泛应用在国内外工程中,成为电站烟气脱硝的主流技术。 缺点:燃料中含有硫分, 燃烧过程中可生成一定量的SO3。添加催化剂后, 在有氧条件下, SO3 的生成量大幅增加, 并与过量的 NH3 生成 NH4HSO4。NH4HSO4具有腐蚀性和粘性, 可导致尾部烟道设备损坏。虽然SO3 的生成量有限, 但其造成的影响不可低估。另外,催化剂中毒现象也不容忽视。 关于烟气脱硝催化剂性能指标,比表面积、孔容、孔径及孔径分布是非常重要的物性指标,是直接影响催化剂脱硝效果的重要因素。北京精微高博科学技术有限公司,是一家专业研发、生产、销售比表面积、孔容、孔径分布测试仪的国家级高新技术企业,通过ISO9001:2008质量管理体系认证及欧盟CE认证,公司主营产品有:JW-BK112经典型单站比表面积及孔径分析仪、JW-BK222双站高效型比表面积及孔径分析仪、JW-BK122W普通型比表面积介孔微孔分析仪、JW-BK132F高端精密型比表面积介孔微孔分析仪等等,是专业检测火电厂烟气脱硝催化剂的仪器。JW系列产品通过了由中国分析测试协会组织的科学技

钢结构承载计算公式

钢结构计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T 700和《低合金高强度结构钢》GB/T 1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T 5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77采用。钢铸件的强度设计值应按表2-78采用。连接的强度设计值应按表2-79至表2-81采用。 钢材的强度设计值(N/mm2)表2-77

常见的钢结构计算公式

2-5 钢结构计算 2-5-1 钢结构计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T700和《低合金高强度结构钢》GB/T 1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77采用。钢铸件的强度设计值应按表2-78采用。连接的强度设计值应按表2-79至表2-81采用。 钢材的强度设计值(N/mm2) 表2-77

钢结构计算公式-大全

钢结构计算公式-大全

钢结构计算公式汇总 第一章:钢结构连接计算公式总汇 一. 焊接连接 1. 对接焊缝连接 (1) 钢板 or w v w w t w w w c w t w f t l V f t l N t l M f f t l N ≤= ≤+= ≤=5.16,/2 τσσ (2) 工字形钢 w t eq w v w w w t w w v w w w t w w f f t I VS f I h M f t I VS f A N W M 1.13221210 1 10 10 ≤+=≤= ≤= ≤=≤+= τσστστσ 2. 角焊缝连接 (1) 侧焊缝 (N) w f w f f f l h N ≤=∑)7.0/(τ (2) 端焊缝 (N) w f w f f f f l h N ≤=∑)7.0/(βτ (3) 斜焊缝 (Nx, Ny) 3 /sin 1/1)7.0/(2 θββτθθ-=≤=∑f w f w f f f f l h N (4) 围焊缝(N ) w f w f f f f l h N ≤=∑)7.0/(βτ (5) 角钢围焊缝 (N) )7.02/(2/)7.02/(2/23221311w f f f w f w f f f w f f N k b h l h f N k b h l h ?=+?=+ββ

or ) 7.02/(2/)7.02/(2/231311w f f f w f f f w f f N k b h f N k b h l h ?=?=+ββ (6) 角焊缝(M, N, V ) f A M fAz I My /=σ f B M fBz I My /=σ f C M fCz I My /=σ f D M fDz I My /=σ fw V fwy f N fz A V A N //==τ σ w f V fwy f M CDz N fz w f V fwy f M fCz N fz w f f M fBz N fz w f f M fAz N fz f f f f ≤++≤++≤+≤+2 22222 /)(/)(/)(/)(τβσστ βσ σ βσσβσσ (7) 角焊缝 (Fx, Fy, T) w f f F fy T fAy F fx T fAx f y F fy f x F fx fp A T fAy fp A T fAx f A F A F I Tx I Ty y x y x ≤+++====222/)()(////βττττττττ 二. 螺栓连接 1. 普通螺栓连接 (1) 抗剪螺栓 7 .0)150/(1.1) ,min()4/(01min 2≥-==??==∑d l N N N f t d N f d n N b c b v b v b c b c b v v b v βπ

催化剂与催化作用_参考答案

1、催化剂定义 催化剂是一种能够改变化学反应速度而不能改变反应的热力学平衡位置,且自身不被明显消耗的物质。 2、催化剂活性、表示方法 (1)活性定义:一般,指定条件下(压力、温度)一定量催化剂上的反应速率(来衡量)。 (2)表示方法:对于反应, ,速率 3、催化剂选择性、表示方法 (1)定义:当反应可以按照热力学上几个可能的方向进行时,催化剂可以选择性地加速其中的某一反应。 4、载体具有哪些功能和作用?8 ①分散作用,增大表面积,分散活性组分;②稳定化作用,防止活性组分熔化或者再结晶;③支撑作用,使催化剂具备一定机械强度,不易破损;④传热和稀释作用,能及时移走热量,提高热稳定性;⑤助催化作用,某些载体能对活性组分发生诱导作用,协助活性组分发生催化作用。 5、催化剂选择考虑因素:选择性>寿命>活性>价格 工业催化剂: 6、催化剂一般组成 1)活性组份或称主催化剂2)载体或基质3)助催化剂 7.催化剂分类 按物相均一性:均相催化、多相催化、酶催化 按作用机理:氧化还原催化,酸碱催化(离子型机理,生成正碳离子或负碳离子)配位催化:催化剂与反应物分子发生配位作用而使反应物活化。 按反应类型分类:加氢、脱氢、部分氧化、完全氧化、水煤气、合成气、酸催化、氯氧化、羰基化、聚合8、多相催化反应的过程步骤可分为哪几步?实质上可分为几步? (1)外扩散—扩散—化学吸附—表面反应—脱附—扩散—外扩散 (2)物理过程—化学过程—物理过程 9、吸附是如何定义的?物理吸附与化学吸附的本质不同是什么? 吸附:气体与固体表面接触时,固体表面上气体的浓度高于气相主体浓度的现象。 固体表面吸附:物理吸附: 作用力:van der Waals力 静电力:具有永久偶极矩的分子间的静电吸引力 诱导力:容易极化的分子被极性分子诱导产生的诱导偶极子和永久偶极子之间的作用力 色散力:原子电子密度的瞬时诱导邻近原子产生偶极而致的两个瞬时偶极子之间的相互作用力 化学吸附:作用力:价键力,形成化学键

孔结构对催化剂性能的影响

孔结构对硫磺回收催化剂性能的影响 1.硫磺回收的基本原理 对于非均相催化反应催化剂来说,由于孔结构的阻塞可以造成催化剂活性的下降,例如:积炭可以造成加氢裂化和加氢精制催化剂/蒸汽重整和甲烷化催化剂/合成氨催化剂/汽车尾气处理催化剂的失活。 对于硫磺回收催化剂来说,硫酸盐化和液硫的沉积是造成催化剂失活的主要原因之一。 对于硫磺回收催化剂来说,由SO2的存在,氧化铝催化剂的硫酸盐化是不可避免的。 硫磺回收的主要反应机理: 其中a=0~2 n=2~8,特殊条件下可能更大 图1.在1atm下H2S与化学计量的空气进行反应生成硫蒸气和水的理论平衡转化率 通过图1可以看出,硫的平衡转化率是温度的函数,热力学的数据表明克劳斯反应是强放热反应,克劳斯反应器应该在低温下操作更有利于提高硫的回收率。

一般三级克劳斯的反应器操作温度是如何确定的呢? 第一反应器的温度是根据确保 COS和CS2完全水解的温度来确定的: COS +H2O=H2S+CO2 CS2+H2O=H2S+CO2 这两个反应是反应速度受动力学控制的,水解率是随着温度的升高而升高的,只有达到合适的温度才能保证完全水解。合适的温度是 316~350℃。 第二反应器和第三反应器的操作温度理论上来讲只要在硫的露点温度以上来操作就是最合适的了。 但是由于毛细凝聚现象的存在,硫蒸汽在低于硫的饱和蒸气压以下就开始在催化剂的毛细孔中凝聚,硫在毛细孔中的凝聚直接导致了催化剂性能的下降。原因是凝结的液硫覆盖了催化剂的表面,二硫本身是不具有催化活性的。 尽管很早就认识到硫的冷凝沉积是造成催化剂失活的原因之一,但问题的实质并没有搞清楚,而且就如何据此有化催化剂的设计研究的不够。 根据毛细凝聚现象的物理模型,来估算液硫可能阻塞的催化剂的孔体积与催化反应器的操作温度之间的函数关系,以及找到催化反应器的操作温度与液硫露点温度之间的温度差,从而确定不同催化剂的最合适的操作温度。 2.毛细凝聚的原理 在毛细孔内的液滴的蒸气压低于在表面的正常的饱和蒸气压,在部分充满的毛细孔内存在如下关系式: (1) 式中 d---含有液滴的毛细管或毛细孔的直径,mm γ---液体的表面张力,dyne/cm V-液体的摩尔体积,cc/mole Θ—接触角,度 R-通用气体常数=8.314×107erg/mole/K T-绝对温度,K P-在毛细管或孔中凝结的液滴的气相分压,mmHg

常见的钢结构计算公式

精心整理 2-5钢结构计算2-5-1钢结构计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 或低于钢和Q420Q345 钢应具有-202-77 钢材的强度设计值(N/mm 2)表2-77

注:1.自动焊和半自动焊所采用的焊丝和焊剂,应保证其熔敷金属的力学性能不低于现行国家标准《碳素钢埋弧焊用焊剂》GB/T5293和《低合金钢埋弧焊用焊剂》GB/T12470中相关的规定; 2.焊缝质量等级应符合现行国家标准《钢结构工程施工质量验收规范》GB50205的规定。其中厚度小于8mm 钢材的对接焊缝,不宜用超声波探伤确定焊缝质量等级;

3.对接焊缝抗弯受压区强度设计值取f c w,抗弯受拉区强度设计值取f t w。 螺栓连接的强度设计值(N/mm2)表2-80 2)在单个零件和构件上按设计孔径分别用钻模钻成的孔; 3)在单个零件上先钻成或冲成较小的孔径,然后在装配好的构件上再扩钻至设计孔径的孔。2.在单个零件上一次冲成或不用钻模钻成设计孔径的孔属于II类孔。 计算下列情况的结构构件或连接时,上述强度设计值应乘以相应的折减系数:1.单面连接的单角钢 1)按轴心受力计算强度和连接0.85; 2)按轴心受压计算稳定性 等边角钢0.6+0.0015δ,但不大于1.0:

短边相连的不等边角钢0.5+0.0025δ,但不大于1.0; 长边相连的不等边角钢0.70; 几为长细比,对中间无连接的单角钢压杆,应按最小回转半径计算,当δ<20时,取δ=20; 2.无垫板的单面施焊对接焊缝0.85; 3.施工条件较差的高空安装焊缝和铆钉连接0.90; 4.沉头和半沉头铆钉连接0.80。 注:当几种情况同时存在时,其折减系数应连乘。 注:1.l为受弯构件的跨度(对悬臂梁和伸臂梁为悬伸长度的2倍)。

相关文档
相关文档 最新文档