文档库 最新最全的文档下载
当前位置:文档库 › 弗兰克赫兹实验思考题

弗兰克赫兹实验思考题

弗兰克赫兹实验思考题
弗兰克赫兹实验思考题

1、夫兰克-赫兹实验中,发生什么过程导致U-I 曲线?

玻尔原子模型理论指出:

1. 原子只能处在一些不连续的稳定状态(定态)中,其中每一定态相应于一定的能量Ei(i=1, 2, 3, …m …n)。

2.当一个原子从某定态Em 跃迁到另一定态En 时,就吸收或辐射一定频率的电磁波,频率的大小决定于两定态之间的能量差En —Em ,并满足以下关系:

h ν=En —Em

式中普朗克常数h=6.63×10-34J ·s 。

原子在正常情况下处于基态,当原子吸收电磁波或受到其他有足够能量的粒子碰撞而交换能量时,可由基态跃迁到能量较高的激发态。从基态跃迁到第一激发态所需要的能量称为临界能量。当电子与原子碰撞时,如果电子能量小于临界能量,则发生弹性碰撞,电子碰撞前后能量不变,只改变运动方向。如果电子动能大于临界能量,则发生非弹性碰撞,这时电子可把数值为△E=En —E1的能量交给原子(En 是原子激发态能量,E1是基态能量),其余能量仍由电子保留。

如初始能量为零的电子在电位差为U0的加速电场中运动,则电子可获得的能量为eU0;如果加速电压U0恰好使电子能量eU0等于原子的临界能量,即eU0=E2—E1,则U0称为第一激发电位,或临界电位。测出这个电位差U0,就可求出原子的基态与第一激发态之间的能量差E 2—E 1。

原子处于激发态是不稳定的。不久就会自动回到基态,并以电磁辐射的形式放出以前所获得的能量,其频率可由关系式h ν=eU0求得。在玻尔发表原子模型理论的第二年(1914),夫兰克(James Franck,1882—1964)和赫兹(Gustav Hertz,1887—1975)参照勒纳德创造反向电压法,用慢电子与稀薄气体原子(Hg ;He )碰撞,经过反复试验,获得了图2的曲线。

实验原理如图3所示,在充氩的夫兰克-赫兹管中,电子由阴极K 发出,阴极K 和第一栅极G1之间的加速电压K G V 1 及与第二栅极G2之间的加速电压K G V 2使电

图3 夫兰克-赫兹原理图

子加速。在板极A 和第二栅极G2之间可设置减速电压A G V 2 ,管内空间电压分布见图4。

图4 夫兰克-赫兹管内空间电位分布原理图

注意:第一栅极G1和阴极K 之间的加速电压K G V 1约1.5伏的电压,用于消除阴极电压散射的影响。

当灯丝加热时,阴极的外层即发射电子,电子在G1和G2间的电场作用下被加速而取得越来越大的能量。但在起始阶段,由于电压K G V 2较低,电子的能量较小, 即使在运动过程中,它与原子相碰撞(为弹性碰撞)也只有微小的能量交换。这样,穿过第二栅极的电子所形成的电流A I 随

第二栅极电压K G V 2的增加而增大(见图2 ab 段)。

当K G V 2达到氩原子的第一激发电位时,电子在第二栅极附近与氩原子

相碰撞(此时产生非弹性碰撞)。电子把从加速电场中获得的全部能量传递给氩原子,使氩原子从基态激发到第一激发态,而电子本身由于把全部能量传递给了氩原子,它即使穿过第二栅极,也不能克服反向拒斥电压而被折回第二栅极。所以板极电流A I 将显著减小(如图2 ab 段 )。氩原子

在第一激发态不稳定,会跃迁回基态,同时以光量子形式向外辐射能量。以后随着第二栅极电压K G V 2的增加,电子的能量也随之增加,与氩原子相碰撞后还留下足够的能量,这就可以克服拒斥电压的作用力而到达板极A ,这时电流又开始上升(如图2 bc 段),直到K G V 2是2倍氩原子的第一激发电位时,电子在G2与K 间又会因第二次弹性碰撞失去能量,因而双造成了第二次板极电流A I 的下降(如图2 cd 段),这种能量转移随着加速电压的增加而呈周期性的变化。若以K G V 2为横坐标,以板极电流值A I 为纵坐标就可以得到谱峰曲线,两相邻谷点(或峰尖)间的加速电压差值,即为氩原子的第一激发电位值。

这个实验就说明了夫兰克-赫兹管内的电子缓慢地与氩原子碰撞,能使原子从低能级被激发到高能级,通过测量氩的第一激发电位值(11.5V 是一个定值,即吸收和发射的能量是完全确定,不连续的)说明了玻尔原子能级的存在。

2.第一激发电位的物理含义是什么?有没有第二激发电位?

第一激发电位:如初始能量为零的电子在电位差为U0的加速电场中运动,则电子可获得的能量为eU0;如果加速电压U0恰好使电子能量eU0等于原子的临界能量,即eU0=E2—E1,则U0称为第一激发电位,或临界电位。

第二激发电位:电子碰撞原子使其从基态到第二激发态所需的最低能量叫第二激发电位。

怎样测第二激发电位:加速电压Ug1k 和U2A 都是标准参数,不能改变,而要测第二激发电位需要使电子获得能量,必须增大Ug1k 。

3.管中还能充什么其它气体,为什么?

汞蒸气或其他稀有气体。因为汞是单原子分子,结构简单,而且在常温下是液态,只要改变温度就能大幅度改变汞原子的密度,同时还由于汞的原子量大,电子与其原子碰撞时,能量损失极小。

4.能否用三极管?三极管与四极管的优缺点

能用三极管,但是效果没有四极管好。由杨福家教授的《原子物理学》一书

上相关内容可知,三极管的缺点:三极管无法使汞原子受激到更高的能态,以致于只能证实汞原子的4.9eV这个量子态。四极管相对于三极管有以下优势:1、在原来的阴极K前加上一极板,以达到旁热式加热,其目的是使电子均匀发射,从

,并让管内的而把电子的能量测得更加精准;2、在靠近阴极K处加了一个栅极G

1

的间距小于电子在汞蒸气中的平均自由程,目的是气体变得更加稀薄,以使KG

1

建立一个无碰撞的加速区,使电子在这个区域内只加速不碰撞;3、使G

与靠近A

1这两个栅极处于同电位,即建立一个等势区来作为碰撞区,电子在这个区极的G

2

域内只碰撞不加速。这样,改进后的装置最大的特点就是,把加速与碰撞分在两个区域内进行,从而避免了原先装置中的缺点,可使电子在加速区获得相当高的能量。

半导体三极管又称“晶体三极管”或“晶体管”。在半导体锗或硅的单晶上制备两个能相互影响的PN结,组成一个PNP(或NPN)结构。中间的N区(或P 区)叫基区,两边的区域叫发射区和集电区,这三部分各有一条电极引线,分别叫基极B、发射极E和集电极C,是能起放大、振荡或开关等作用的半导体电子器件。

三极管放大时管子内部的工作原理:NPN

1、发射区向基区发射电子(形成发射极电流)

发射结施加正向电压且掺杂浓度高,所以发射区多子自由电子越过发射结扩散到基区,发射区的自由电子由直流电源补充,从而形成了发射极电流。(同时,基区的多数载流子也会扩散到发射区,成为发射极电流的一部分。由于基区很薄,且掺杂浓度较低,因此由基区多子空穴形成的电流可以忽略不计。)

2、自由电子在基区和空穴复合,形成集区电流,并继续向集电区扩散

自由电子进入基区后,先在靠近发射结的附近密集,渐渐形成电子浓度差,在浓度差的作用下,促使电子流在基区中向集电结扩散,被集电结电场拉入集电区形成集电极电流。也有很小一部分电子(因为基区很薄)与基区的空穴复合(基区中的空穴由直流电源补充),扩散的电子流与复合电子流之比例决定了三极管的放大能力。

3、集电区收集自由电子,形成集电极电流

由于集电结加反向电压且面积很大,这个反向电压产生的电场力将阻止集电区电子向基区扩散,同时将扩散到集电结附近的电子拉入集电区从而形成集电极主电流Icn。另外集电区的少数载流子(空穴)也会产生漂移运动,流向基区形成反向饱和电流,用Icbo来表示,其数值很小,但对温度却异常敏感。

四极管种类很多,常见的有:束射四极管,直热四极管和多子四极管等。四极管,有音色浑厚,具有速度感等特点,实际上纯粹意义的四极管只是在电子管的发展史上作为验证管出现过而没有进入实用,这是另一话题不去说它,下面就说前面提及的目前在商品功放里超过半数以上的机种用的这东西----束射四极管

四极管就有两个栅极,一个和三极管中的栅极功能一样(称为控制栅极或者栅极1号),另一个(称为帘栅或者栅极2号)是用于减少控制栅极和金属板间的电容。

5、查历史(弗兰-赫兹)——真确的实验,错误的解释

(1)弗兰赫兹实验历史

1914年,弗兰克(Franck,J.1882—1964)和赫兹在

研究中发现电子与原子发生非弹性碰撞时能量的转移是量子化的。他们的精确测定表明,电子与汞原子碰撞时,电子损失的能量严格地保持4.9eV,即汞原子只接收4.9eV的能量。这个事实直接证明了汞原子具有玻尔所设想的那种“完全确定的、互相分立的能量状态”,是对玻尔的原子量子化模型的第一个决定性的证据。由于他们的工作对原子物理学的发展起了重要作用,曾共同获得1925年的物理学诺贝尔奖[1]。在本实验中可观测到电子与汞蒸汽原子碰撞时的能量转移的量子化现象,测量汞原子的第一激发电位,从而加深对原子能级概念的理解。【仪器】弗兰克—赫兹管(简称F—H管)、加热炉、温控装置、F—H管电源组、扫描电源和微电流放大器、微机X—Y记录仪。F—H管是特别的充汞四极管,它由阴极、第一栅极、第二栅极及板极组成。为了使F—H管内保持一定的汞蒸气饱和蒸气压,实验时要把F—H管置于控温加热炉内。加热炉的温度由控温装置设定和控制。炉温高时,F—H管内汞的饱和蒸气压高,平均自由程较小,电子碰撞汞原子的概率高,一个电子在两次与汞原子碰撞的间隔内不会因栅极加速电压作用而积累较高的能量。温度低时,管内汞蒸气压较低,平均自由程较大,因而电子在两次碰撞间隔内有可能积累较高的能量,受高能量的电子轰击,就可能引起汞原子电离,使管内出现辉光放电现象。辉光放电会降低管子的使用寿命,实验中要注意防止。F—H管电源组用来提供F—H管各极所需的工作电压。其中包括灯丝电压UF,直流1V~5V连续可调;第一栅极电压UG1,直流0~5V连续可调;第二栅极电压UG2?,直流0~15V连续可调。扫描电源和微电流放大器,提供0~90V的手动可调直流电压或自动慢扫描输出锯齿波电压,作为F—H管的加速电压,供手动测量或函数记录仪测量。微电流放大器用来检测F—H管的板流,其测量范围为10-8A、10-7A、10-6A三挡。微机X—Y记录仪是基于微机的集数据采集分析和结果显示为一体的仪器。供自动慢扫描测量时,数据采集、图像显示及结果分析用。【原理】玻尔的原子理论指出:①原子只能处于一些不连续的能量状态E1、E2……,处在这些状态的原子是稳定的,称为定态。原子的能量不论通过什么方式发生改变,只能是使原子从一个定态跃迁到另一个定态;②原子从一个定态跃迁到另一个定态时,它将发射或吸收辐射的频率是一定的。如果用Em和En分别代表原子的两个定态的能量,则发射或吸收辐射的频率由以下关系决定:hv=|Em-En|(45—1)式中:h为普朗克常量。原子从低能级向高能级跃迁,也可以通过具有一定能量的电子与原子相碰撞进行能量交换来实现。本实验即让电子在真空中与汞蒸气原子相碰撞。设汞原子的基态能量为E1,第一激发态的能量为E2,从基态跃迁到第一激发态所需的能量就是E2-E1。初速度为零的电子在电位差为U的加速电场作用下具有能量eU,若eU小于E2-E1这份能量,则电子与汞原子只能发生弹性碰撞,二者之间几乎没有能量转移。当电子的能量eU≥E2-E1时,电子与汞原子就会发生非弹性碰撞,汞原子将从电子的能量中吸收相当于E2-E1的那一份,使自己从基态跃迁到第一激发态,而多余的部分仍留给电子。设使电子具有E2-E1能量所需加速电场的电位差为U0,则eU0=E2-E1(45—2)式中:U0为汞原子的第一激发电位(或中肯电位),是本实验要测的物理量。实验方法是,在充汞的F—H管中,电子由热阴极发出,阴极K和第二栅极G2之间的加速电压UG2K?使电子加速。第一栅极对电子加速起缓冲作用,避免加速电压过高时将阴极损伤。在板极P和G2间加反向拒斥电压UpG2?。当电子通过KG2空间,如果具有较大的能量(≥eU

pG2?)就能冲过反向拒斥电场而达到板极形成板流,被微电流计pA检测出来。如果电子在KG2空间因与汞原子碰撞,部分能量给了汞原子,使其激发,本身所剩能量太小,以致通过栅极后不足以克服拒斥电场而折回,通过电流计pA的电流就将显著减小。实验时,使栅极电压UG2K?由零逐渐增加,观测pA表的板流指示,就会得出如图45—2所示Ip~UG2K?关系曲线。它反映了汞原子在KG2空间与电子进行能量交换的情况。当UG2K?逐渐增加时,电子在加速过程中能量也逐渐增大,但电压在初升阶段,大部分电子达不到激发汞原子的动能,与汞原子只是发生弹性碰撞,基本上不损失能量,于是穿过栅极到达板极,形成的板流Ip随UG2K?的增加而增大,如曲线的oa段。当UG2K?接近和达到汞原子的第一激发电位U0时,电子在栅极附近与汞原子相碰撞,使汞原子获得能量后从基态跃迁到第一激发态。碰撞使电子损失了大部分动能,即使穿过栅极,也会因不能克服反向拒斥电场而折回栅极。所以Ip显著减小,如曲线的ab段。当UG2K?超过汞原子第一激发电位,电子在到达栅极以前就可能与汞原子发生非弹性碰撞,然后继续获得加速,到达栅极时积累起穿过拒斥电场的能量而到达板极,使电流回升(曲线的bc段)。直到栅压UG2K?接近二倍汞原子的第一激发电位(2U0)时,电子在KG2间又会因两次与汞原子碰撞使自身能量降低到不能克服拒斥电场,使板流第二次下降(曲线的cd段)。同理,凡(45—3)处,Ip都会下跌,形成规则起伏变化的Ip~UG2K?曲线。而相邻两次板流Ip下降所对应的栅极电压之差,就是汞原子的第一激发电位U0。处于第一激发态的汞原子经历极短时间就会返回基态,这时应有相当于eU0的能量以电磁波的形式辐射出来。由式(45—2)得eU0=hν=h·c/λ(45—4)式中:c为真空中的光速;λ为辐射光波的波长。利用光谱仪从F—H管可以分析出这条波长λ=253.7(nm)的紫外线。【实验要求】1)测绘F—H管Ip~UG2K?曲线,确定汞原子的第一激发电位(1)加热炉加热控温。将温度计棒插入炉顶小孔,温度计棒上有一固定夹用来调节此棒插入炉中的深度,固定夹的位置已调整好,温度计棒插入小孔即可。温度计棒尾端电缆线连接到“传感器”专用插头上,将此传感器插头插入控温仪后面板专用插座上。接通控温电源,调节控温旋钮,设定加热温度(本实验约180℃),让加热炉升温30min,待温控继电器跳变时(指示灯同时跳变)已达到预定的炉温。(2)测量F—H管的Ip~UG2K?曲线。实验仪的整体连接可参考图45—3,将电源部分的UF调节电位器、扫描电源部分的“手动调节”电位器旋钮旋至最小(逆时针方向)。扫描选择置于“手动”挡。微电流放大器量程可置于10-7A或10-8A挡(对充汞管)。待炉温到达预定温度后,接通两台仪器电源。根据提供的F—H管参考工作电压数据,分别调节好UF、UG1、UG2?,预热3~5min。(a)手动工作方式测量。缓慢调节“手动调节”电位器,增大加速电压,并注意观察微电流放大器出现的峰谷电流信号。加速电压达到50V~60V时约有10个峰出现。在测量过程中,当加速电压加到较大时,若发现电流表突然大幅度量程过载,应立即将加速电压减少到零,然后检查灯丝电压是否偏大,或适当减小灯丝电压(每次减小0.1V~0.2V为宜)再进行一次全过程测量。逐点测量Ip~UG2K?的变化关系,然后,取适当比例在毫米方格纸上作出Ip~UG2K?曲线。从曲线上确定出Ip的各个峰值和谷值所对应的两组UG2K?值,把两组数据分别用逐差法求出汞原子的第一激发电位U0的两个值再取平均,并与标准值4.9V比较,求出百分差。若在全过程测量中,电流表

指示偏小,可适当加大灯丝电压(每次增大0.1V~0.2V为宜)(b)自动扫描方式测量。将“手动调节”电位器旋到零,函数记录仪先不通电,调节“自动上限”电位器,设定锯齿波加速电压的上限值。可先将电位器逆时针方向旋到最小,此时输出锯齿波加速电压的上限值约为50V,然后将“扫描选择”开关拨到“自动”位置。当输出锯齿波加速电压时,从电流表观察到峰谷信号。锯齿波扫描电压达到上限值后,会重新回复零,开始一次新的扫描。在数字电压表、电流表上观察到正常的自动扫描及信号后,可采用函数记录仪记录。记录仪的X输入量程可置于5V/cm档,Y输入量程可按电流信号大小来选择,一般可先置于0.1V/cm档。开启记录仪,即可绘出完整的Ip变化曲线。【注意事项】(1)实验装置使用220V交流单相电源,电源进线中的地线要接触良好,以防干扰和确保安全。(2)函数记录仪的X输入负端不能与Y输入的负端连接,也不能与记录仪的地线(⊥)连接,否则要损坏仪器。(3)实验过程中若产生电离击穿(即电流表严重过载现象)时,要立即将加速电压减少到零。以免损坏管子。(4)加热炉外壳温度较高,移动时注意用把手,导线也不要靠在炉壁上,以免灼伤和塑料线软化。

(2)夫兰克----赫兹人物历史

1924年诺贝尔物理学奖授予德国格丁根大学的弗兰克(JamesFranck,1882—1964)和哈雷大学的G.赫兹(Gustav Hertz,1887—1975),以表彰他们发现了原子受电子碰撞的定律。

弗兰克-赫兹实验为能级的存在提供了直接的证据,对玻尔的原子理论是一个有力支持。弗兰克擅长低压气体放电的实验研究。1913 年他和G.赫兹在柏林大学合作,研究电离电势和量子理论的关系,用的方法是勒纳德(P.Lenard )创造的反向电压法,由此他们得到了一系列气体,例如氦、氖、氢和氧的电离电势。后来他们又特地研究了电子和惰性气体的碰撞特性。1914年他们取得了意想不到的结果,他们的结论是:

(1)汞蒸气中的电子与分子进行弹性碰撞,直到取得某一临界速度为止;

(2)此临界速度可测准到0.1V,测得的结果是:这速度相当于电子经过4.9V的加速;

(3)可以证明4.9伏电子束的能量等于波长为2536 的汞谱线的能量子;

(4)4.9伏电子束损失的能量导致汞电离,所以4.9伏也许就是汞原子的电离电势。

弗兰克和G.赫兹的实验装置主要是一只充气三极管。电子从加热的铂丝发射,铂丝外有一同轴圆柱形栅极,电压加于其间,形成加速电场。电子多穿过栅极被外面的圆柱形板极接受,板极电流用电流计测量。当电子管中充以汞蒸气时,他们观测到,每隔4.9V电势差,板极电流都要突降一次。如在管子里充以氦气,也会发生类似情况,其临界电势差约为21V。

弗兰克和G.赫兹最初是依据斯塔克的理论,斯塔克认为线光谱产生的原因是原子或分子的电离,光谱频率ν与电离电势V有如下的量子关系:hν=eV。

弗兰克和G.赫兹在1914年以后有好几年仍然坚持斯塔克的观点,他们相信自己的实验无可辩驳地证实了斯塔克的观点,认为4.9V电势差引起了汞原子的电离。他们也许因为战争期间信息不通,对玻尔的原子理论不甚了解,所以还在论文中表示他们的实验结果不符合玻尔的理论。其实,玻尔在得知弗兰克-赫兹的实验后,早在1915年就指出,弗兰克-赫兹实验的4.9V正是他的能级理论中预言的汞原子的第一激发电势。

1919年,弗兰克和G.赫兹表示同意玻尔的观点。弗兰克在他的诺贝尔奖领奖词中讲道:“在用电子碰撞方法证明向原子传递的能量是量子化的这一科学研究的发展中,我们所作的一部分工作犯了许多错误,走了一些弯路,尽管玻尔理论已为这个领域开辟了笔直的通道。后来我们认识到了玻尔理论的指导意义,一切困难才迎刃而解。我们清楚地知道,我们的工作所以会获得广泛的承认,是由于它和普朗克,特别是和玻尔的伟大思想和概念有了联系。”

弗兰克1882年8 月26日出生于汉堡。他在这里上了威廉中学后,在海德堡大学学了一年化学,后来又在柏林大学学物理。在这里,他的主要导师是瓦尔堡和德鲁德(P.Drude)。1906年在瓦尔堡的指导下,1902年入柏林大学学习物理学,1906年获博士学位。在法兰克福大学担任助教不久,又返回柏林大学任鲁本斯(H.Rubens)的助教。1911年获得柏林大学物理学“大学授课资格”,在柏林大学讲课直到1918年(由于战争而中断了教学。战争中曾获一级铁十字勋章),后成为该大学的物理学副教授。1917年起任威廉皇帝物理化学研究所的分部主任。1921年受聘为格丁根大学教授,并担任第二实验物理学研究所主任。1933年为抗议希特勒反犹太法,弗兰克公开发表声明并辞去教授职务,离开德国去哥本哈根;一年后移居美国,成为美国公民。1935年— 1938年任约翰·霍布金斯大学物理系教授。1938年起任芝加哥大学物理化学教授,直到1949年退休。第二次世界大战期间,他参加了研制原子弹有关的工程,但与大多数科学家一样,他反对对日本使用原子武器。在芝加哥大学期间,弗兰克还担任该校光合作用实验室主任,对各种生物过程、特别是光合作用的物理化学机制进行了研究。

1964年弗兰克在访问格丁根时于5月21日逝世。

G.赫兹1887年7月22日出生于汉堡。他是电磁波的发现者H.赫兹的侄子。赫兹在汉堡的约翰尼厄姆学校毕业后,于1906年进入格丁根大学,后来又在慕尼黑大学和柏林大学学习,1911年毕业。1913年任柏林大学物理研究所研究助理。由于爆发了第一次世界大战,赫兹于1914年从军,1915年在一次作战中负重伤,1917年回到柏林当校外教师。1920年到1925年间,赫兹在埃因霍温的菲利普白炽灯厂物理研究室工作。

1925年赫兹被选为哈雷大学的教授和物理研究所所长。1928年回到柏林任夏洛腾堡工业大学物理教研室主任。1935年由于政治原因辞去了主任职务,又回到工业界,担任西蒙公司研究室主任。从1945年到1954年在苏联工作,领导一个研究室,这期间他被任命为莱比锡卡尔·马克思大学物理研究所所长和教授。1961年退休,先后在莱比锡和柏林居住。

从研究课题来说,赫兹早年研究的是二氧化碳的红外吸收以及压力和分压的关系。1913年和弗兰克一起开始研究电子碰撞。1928年,赫兹回到柏林的第一个任务是重建物理研究所和学校。他为这一目标不停地工作。在此期间,他负

责用多级扩散方法分离氖的同位素。

G.赫兹发表了许多关于电子和原子间能量交换的论文和关于测量电离电势的论文。有些是单独完成的,有些是和弗兰克、克洛珀斯合作的。他还有一些关于分离同位素的著作。

G.赫兹是柏林德国科学院院士,1975年在柏林去世。

弗兰克赫兹实验

弗兰克-赫兹实验 1.实验目的 (1)用实验的方法测定汞或氩原子的第一激发电位,从而证明原子分立态的存在; (2)练习使用微机控制的实验数据采集系统。 2.实验原理 根据玻尔的原子模型理论,原子是由原子核和以核为中心沿各种不同轨道运动的一些电子构成的。对于不同的原子,这些轨道上的电子束分布各不相同。一定轨道上的电子具有一定的能量。当同一原子的电子从低能量的轨道跃迁到较高能量的轨道时,原子就处于受激状态。若轨道1为正常态,则较高能量的2和3依次称为第一受激态和第二受激态,等等。但是原子所处能量状态并不是任意的,而是受到玻尔理论的两个基本假设的制约: (1)定态假设。原子只能处在稳定状态中,其中每一状态相应于一定的能量值Ei (i =1,2,3,…),这些能量值是彼此分立的,不连续的。 (2)频率定则。当原子从一个稳定状态过渡到另一个稳定状态时,就吸收或放出一定频率的电磁辐射。频率的大小取决于原子所处两定态之间的能量差,并满足如下关系: n m h E E ν=- 其中34 6.6310 h J s -=??称作普朗克常数。 原子状态的改变通常在两种情况下发生,一是当原子本身吸收或放出电磁辐射时,二是当原子与其他粒子发生碰撞而交换能量时。本实验就是利用具有一定能量的电子与汞原子相碰撞而发生能量交换来实现汞原子状态的改变。 由玻尔理论可知,处于基态的原子发生状态改变时,其所需能量不能小于该原子从基态跃迁到第一受激态时所需的能量,这个能量称作临界能量。当电子与原子碰撞时,如果电子能量小于临界能量,则发生弹性碰撞;若电子能量大于临界能量,则发生非弹性碰撞。这时,电子给予原子以跃迁到第一受激态时所需要的能量,其余能量仍由电子保留。 一般情况下,原子在受激态所处的时间不会太长,短时间后会回到基态,并以电磁辐射的形式释放出所获得的能量。其频率υ满足下式 g h eU ν= 式中g U 为汞原子的第一激发电位。所以当电子的能量等于或大于第一激发能时,原子就开始发光。 弗兰克-赫兹实验的原理可用图 来说明。其中弗兰克-赫兹管是一个具有双栅极结构的柱面型充汞四极管。第一栅极1G 的作用主要是消除空间电荷对阴极电子发射的影响提高发射效率。第一栅极1G 与阴极K 之间的电位差由电源G U 提供。电源f U 加热灯丝FF ,使旁热式阴极K 被加热,从而产生慢电子。扫描电源a U 加在栅极2G 和阴极K 之间,建立一个加速场,使得从阴极发出的电子被加速,穿过管内汞蒸汽朝栅极2G 运动。由于阴极到栅极2G 之间的距离比较大,在适当的汞蒸气压下,这些电子与汞原子可以发生多次碰撞。电源R U 在栅极2G 和极板P 之间建立一拒斥场,到达2G 附近而能量小于R eU 的电子不能到达极板。极板电路中的电流强度P I 用微电流放大器A 来测量,其值大小反映了从阴极到达极板的电子数。实验中保持R U 和G U 不变,直接测量极板电流P I 随加速电压a U 变化的关系。 加速电压a U 刚开始升高时,板极电流也随之升高,直到加速电压a U 等于或稍大于汞原子的第一激发电位,这时在栅极2G 附近电子与汞原子发生非弹性碰撞,把几乎全部的能量交给汞原子,使汞原子激发。这些损失了能量的电子不能越过R U 产生的拒斥场,到达板极的电子数减少,所以电流开始下降,继续增加a U ,电子在与汞原子碰撞后还能在到达2G 前被加

弗兰克赫兹实验报告-有数据

弗兰克赫兹实验报告-有数据

弗兰克赫兹实验 作者 luckydog8686 实验背景:1914年,德国物理学家夫兰克和赫兹对勒纳用来测量电离电位的实验装置作了改进。他们采取慢电子(几个到几十个电子伏特)与单元素气体原子碰撞的办法,着重观察碰撞后电子发生什么变化(勒纳则观察碰撞后离子流的情况)。通过实验测量,电子和原子碰撞时会交换某一定值的能量,且可以使原子从低能级激发到高能级,独立证明了原子波尔理论的正确性,由此获得了1925年诺贝尔物理学奖。 一、实验目的 1.通过测定汞原子的第一激发点位,证明原子能记得存在。 2.学习测量微电流的方法。 二、实验原理 (一)原子能级 根据玻尔理论,原子只能处在一些不连续的定态中,每一定态相应于一定的能量,常称为能级。受激原子在能级间跃迁时,要吸收或发射一定频 率的光子。然而,原子若与具有一定 能量的电子发生碰撞,也可使原子从 低能级跃迁到高能级。夫兰克-赫兹 实验正是利用电子与原子的碰撞实现

这种跃迁的。电子在加速电压U的作用下获得能量,表现为电子的动能2 /2mv ,当2 /2n m eU mv E E ==-时,即可实现跃迁。若原子吸收能量0eU 。从基态跃迁到第一激发态,则称0 U 为第一激发电位或中肯电位。 汞原子基态之上的最低一组能级如右图所示。汞原子基态为由二个6s 电子组成的1 S ,较近的激发态为由一个6s 电子和一个6p 的电子构成的11P 单能级和32P , 3 1 P 和30P 组成的三能级。只有31P 为允许自发跃迁态:31 10 P S →,发出波长为253.7nm 的紫外光,对应能量为0 4.9U eV =。32P 和3 P 为亚稳态,因3110P S →的跃迁属于禁戒跃迁,所以通常把3 1 P 态称为汞的第一激发态。 (二)原理说明 实验原理图如图2和图3所示,充汞的夫兰克 -赫兹管,其阴极K 被灯丝H 加热,发射电子。电子在K 和栅极G 之间被加速电压KG U 加速而获得能量,并与汞原子碰撞,栅极与板极A 之间加反向拒斥电压GA U ,只有穿过栅极后仍有较大动能的电子,才能克服拒斥电场作用,到达板极形成板流A I 。 图3

夫兰克-赫兹实验

夫兰克-赫兹实验 20世纪初,在原子光谱的研究中确定了原子能级的存在。原子光谱中的每根谱线就是原子从某个较高能级向较低能级跃迁时的辐射形成的。原子能极的存在,除了可由光谱研究证实外,还可利用慢电子轰击稀薄气体原子的方法来证明。1914年夫兰克-赫兹采用这种方法研究了电子与原子碰撞前后电子能量改变的情况,测定了汞原子的第一激发电位,从而证明了原子分立态的存在。后来他们又观测了实验中被激发的原子回到正常态时所辐射的光,测出的辐射光的频率很好地满足了玻尔假设中的频率定则。夫兰克-赫兹实验的结果为玻尔的原子模型理论提供了直接证据,他们获得了1925年度的诺贝尔物理奖。 [实验目的] (1)用实验的方法测定汞或氩原子的第一激发电位,从而证明原子分立态的存在; (2)练习使用微机控制的实验数据采集系统。 [实验原理] 根据玻尔的原子模型理论,原子是由原子核和以核为中心沿各种不同轨道运动的一些电子构成的(图 1)。对于不同的原子,这些轨道上的电子数分布各不相同。一定轨道上的电子具有一定的能量。当同一原子的电子从低能量的轨道跃迁到较高能量的轨道时(如图1中从Ⅰ到Ⅱ),原子就处于受激状态。若轨道Ⅰ为正常状态,则较高能量的Ⅱ和Ⅲ依次称为第一受激态和第二受激态,等等。但是原子所处的能量状态并不是任意的,而是受到玻尔理论的两个基本假设 的制约: (1)定态假设。原子只能处在稳定状态中,其 中每一状态相应于一定的能量值i E (i =1,2,3…),这些能量 值是彼此分 立的,不连续的。 (2)频率定则。当原子从一个稳定状态过渡到 另一个稳定状态时,就吸收或放出一定频率的电磁辐射。频 率的大小取决于原子所处两定态之间的能量差,并满足如下关系: m n E E hv -= (1) 图1 原子结构示意图(玻尔模型)

实验七 弗兰克 赫兹实验

实验七弗兰克—赫兹实验 1913年,丹麦物理学家玻尔(N.Bohr)在卢瑟福原子核式模型的基础上,结合普朗克的量子理论提出了原子能级的概念并建立了原子模型理论,成功地解释了原子的稳定性和原子的线状光谱现象,成为原子物理学发展史上的一个重要里程碑。在玻尔原子结构理论发表的第二年,弗兰克(J.Frank)和赫兹(G .Hertz)在研究汞放电管的气体放电现象时,发现透过汞蒸气的电子流随电子能量呈现周期性的变化,同年又观察到汞光谱线253.7nm 的发射光谱。1920年,弗兰克他们改进了装置,测得了汞原子的亚稳能级和较高的激发能级,进一步证明了原子内部量子化能级的存在,以及原子发生跃迁时吸收和发射的能量是完全确定的、不连续的,给玻尔的原子理论提供了直接的而且是独立于光谱研究方法的实验证据。弗兰克和赫兹由于他们在实验上的卓越成就,共同获得了1925年的诺贝尔物理学奖。弗兰克—赫兹实验至今仍是探索原子内部结构的主要手段之一。 一、实验目的 1.通过测定氩原子的第一激发电位,证明原子能级的存在,了解弗兰克和赫兹研究原子内部结构的基本思想和方法。 2.了解电子与原子碰撞和能量交换的微观图象以及影响这个过程的主要物理因素。 二、实验仪器 FD-FH-1型弗兰克—赫兹仪、双踪示波器。 三、实验原理 玻尔的原子模型指出:原子是由原子核和核外电子组成的。原子核位于原子的中心,电子沿着以核为中心的各种不同直径的轨道运动。对于不同的原子,在轨道上运动的电子分布各不相同。 在一定轨道上运动的电子,具有对应的能量。当一个原子内的电子从低能量的轨道跃迁到较高能量的轨道时,该原子就处于一种受激状态。如图35-l 所示,若轨道Ⅰ上为正常状态,则电子从轨道Ⅰ跃迁到轨道Ⅱ时,该原子处于第一激发态;若电子跃迁到轨道Ⅲ,原子处于第二激发态。图中,E 1、E 2、E 3分别是与轨道Ⅰ、Ⅱ、Ⅲ相对应的能量。当原子状态改变时,伴随着能量的变化。若原子从低能级E n 态跃迁到高能级E m 态,则原子需吸收一定的能量△E m n E E E ?=-(35-1)

实验报告 弗兰克赫兹实验报告内容

弗兰克赫兹实验报告内容 弗兰克-赫兹实验为能级的存在提供了直接的证据,对玻尔的原子理论是一个有力支持,那么,下面是给大家整理收集的弗兰克赫兹实验报告内容,供大家阅读参考。 弗兰克赫兹实验报告内容1 仪器 弗兰克-赫兹管(简称F-H管)、加热炉、温控装置、F-H管电源组、扫描电源和微电流放大器、微机X-Y记录仪。 F-H管是特别的充汞四极管,它由阴极、第一栅极、第二栅极及板极组成。为了使F-H管内保持一定的汞蒸气饱和蒸气压,实验时要把F-H管置于控温加热炉内。加热炉的温度由控温装置设定和控制。炉温高时,F-H管内汞的饱和蒸气压高,平均自由程较小,电子碰撞汞原子的概率高,一个电子在两次与汞原子碰撞的间隔内不会因栅极加速电压作用而积累较高的能量。温度低时,管内汞蒸气压较低,平均自由程较大,因而电子在两次碰撞间隔内有可能积累较高的能量,受高能量的电子轰击,就可能引起汞原子电离,使管内出现辉光放电现象。辉光放电会降低管子的使用寿命,实验中要注意防止。 F-H管电源组用来提供F-H管各极所需的工作电压。其中包括灯丝电压UF,直流1V~5V连续可调;第一栅极电压UG1,直流0~5V连续可调;第二栅极电压UG2,直流0~15V连续可调。 扫描电源和微电流放大器,提供0~90V的手动可调直流电压或自动慢扫描输出锯齿波电压,作为F-H管的加速电压,供手动测量或函

数记录仪测量。微电流放大器用来检测F-H管的板流,其测量范围为10^-8A、10^-7A、10^-6A三挡。 微机X-Y记录仪是基于微机的集数据采集分析和结果显示为一体的仪器。供自动慢扫描测量时,数据采集、图像显示及结果分析用。 原理 玻尔的原子理论指出:①原子只能处于一些不连续的能量状态E1、E2……,处在这些状态的原子是稳定的,称为定态。原子的能量不论通过什么方式发生改变,只能是使原子从一个定态跃迁到另一个定态;②原子从一个定态跃迁到另一个定态时,它将发射或吸收辐射的频率是一定的。如果用Em和En分别代表原子的两个定态的能量,则发射或吸收辐射的频率由以下关系决定: hv=|Em-En|(1) 式中:h为普朗克常量。 原子从低能级向高能级跃迁,也可以通过具有一定能量的电子与原子相碰撞进行能量交换来实现。本实验即让电子在真空中与汞蒸气原子相碰撞。设汞原子的基态能量为E1,第一激发态的能量为E2,从基态跃迁到第一激发态所需的能量就是E2-E1。初速度为零的电子在电位差为U的加速电场作用下具有能量eU,若eU小于E2-E1这份能量,则电子与汞原子只能发生弹性碰撞,二者之间几乎没有能量转移。当电子的能量eU≥E2-E1时,电子与汞原子就会发生非弹性碰撞,汞原子将从电子的能量中吸收相当于E2-E1的那一份,使自己从基态跃迁到第一激发态,而多余的部分仍留给电子。设使电子具有E2-E1

弗兰克赫兹实验思考题答案

弗兰克—赫兹实验思考题答案 [预习思考题] 1、什么是能级?玻尔的能级跃迁理论是如何描述的? 答:在玻尔的原子模型中,原子是由原子核和核外电子所组成,原子核位于原子的中心,电子沿着以核为中心的各种不同直径的轨道运动。在一定轨道上运动的电子,具有对应的能量,轨道不同,能量的大小也不相同。这些与轨道相联系、大小不连续的能量构成了能级。 当原子状态改变时,伴随着能量的变化。若原子从低能级En跃迁到高能级Em,则原子需吸收一定的能量,该能量的大小为△E: △E=Em-En 若电子从高能级Em跃迁到低能级En,则原子将放出能量△E。 2、为什么I G2A-U G2K曲线上的各谷点电流随U G2K的增大而增大? 答:电子与汞原子的碰撞有一定的几率,总会有一些电子逃避了碰 撞,穿过栅极而到达板极。随着U G2K的增大,这些电子的能量增大,因此在I G2A-U G2K曲线上的各谷点电流也随着增大。 [实验后思考题] 1、温度对充汞F-H管的I G2A-U G2K曲线有什么影响? 答:当温度过大时,单位体积内的汞原子数增加,电子的平均自由程减小,电子与汞原子的碰撞次数增加,因此,在整个加速过程中,弹性碰撞的总能量损失相应增大,其I G2A电流减小。

2、在I G2A-U G2K曲线上,为什么对应板极电流I G2K第一个峰的加速电压U G2K不等于4.9V? 答:对应板极电流I G2K第一个峰的加速电压U G2K不等于4.9V的主要原因是:由于阴极与栅极不是由同一种材料组成,其间存在接触电势差。3、如何利用该套实验设备测出汞原子的电离电势? 答:利用该套实验设备测量汞原子的电离电势的方法是:降低炉温,重新选择U G1K、U G2A,谨慎地选择灯丝电压,使得在第二个第一激发电位峰出现后即出现电离峰,以电离曲线中的第一个峰(对应4.9V)为定标标准,求出电离峰与第一峰的距离,即可知电离电位。或在不改变温度的情况下,选择合适的U G1K、U G2A,遏止全部电子,将全部离子拉向板极,测量离子电流与U G2K的曲线,则该曲线拐点处即为电离电位。

弗兰克—赫兹实验报告

弗兰克—赫兹实验

一、实验目的 1、了解弗兰克--赫兹试验的原理和方法; 2、学习测定氩原子的第一激发电位的方法; 3、证明原子能级的存在,加强对能级概念的理解。 二、实验原理 玻尔提出的原子理论指出:原子只能较长地停留在一些稳定的状态。原子在这种状态时,不发射或吸收能量。各定态有一定的能量,其数值是彼此分隔得。原子的能量不论通过什么方式改变,它只能从一个状态跃迁代另一个状态。原子从一个状态跃迁到另一个状态而发射或吸收能量时,辐射的频率是一定的。于是有如下关系: n E m E hv -=, 式中,h 为普朗克常数。为了使原子从低能级想高能级跃迁,可以通过具有一定能量的电子与燕子相碰撞进行能量交换的办法来实现。 图1 弗兰克-赫兹管结构图 夫兰克一赫兹实验原理(如图1所示),阴极K ,板极A ,G 1 、G 2分别为第一、第二栅极。

K-G 1-G 2加正向电压,为电子提供能量。1G K U 的作用主要是消除空间电荷对阴极电子发射的影响,提高发射效率。G 2-A 加反向电压,形成拒斥电场。 电子从K 发出,在K-G 2区间获得能量,在G 2-A 区间损失能量。如果电子进入G 2-A 区域时动能大于或等于e 2G A U ,就能到达板极形成板极电流I . 电子在不同区间的情况: 1. K-G 1区间 电子迅速被电场加速而获得能量。 2. G 1-G 2区间 电子继续从电场获得能量并不断与氩原子碰撞。当其能量小于氩原子第一激发态与基态的能级差 E =E 2E 1 时,氩原子基本不吸收电子 的能量,碰撞属于弹性碰撞。当电子的能量达到E ,则可能在碰撞中被氩原子吸收这部分能量,这时的碰撞属于非弹性碰撞。 E 称为临界能量。 3. G 2-A 区间 电子受阻,被拒斥电场吸收能量。若电子进入此区间时的能量小于eU G2A 则不能达到板极。 由此可见,若eUG2K< E ,则电子带着 eUG2K 的能量进入G2-A 区域。随着UG2K 的增加,电流I 增加(如图2中Oa 段)。 若eUG2K = E 则电子在达到G2处刚够临 界能量,不过它立即开始消耗能量了。继续增大 UG2K ,电子能量被吸收的概率逐渐增加,板极电流逐渐下降(如图2中ab 段)。 继续增大UG2K ,电子碰撞后的剩余能量也增加,到达板极的电子又会逐渐增多(如图2中bc 段)。 若eUG2K>n E 则电子在进入G2-A 区域之前可能n 次被氩原子碰撞而损 失能量。板极电流I 随加速电压 2G K U 变化曲线就形成n 个峰值,如图2所示。 图2弗兰克-赫兹实验2 G K U ~I 曲线 a b c I (nA) 2G K (V) U O U 1 U 2 U 3 U 4 U 5 U 6 U 7

弗兰克赫兹实验数据处理

数据处理 (1) 计算第一激发电势和相对误差 IA--UG2K 曲线数据 2.8V 2.6V 3.0V 电流/uA 电压/V 电流/uA 电压/V 电流/uA 电压/V 峰1 32.6 124.9 32.6 35.7 33.0 251.4 谷1 36.9 71.4 37.1 19.6 36.9 151.5 峰2 43.0 308.7 43.2 91.0 43.4 657.7 谷2 48.1 103.5 48.3 26.8 48.0 220.5 峰3 54.6 560.3 54.6 169.5 54.7 1258.4 谷3 59.5 157.0 59.7 42.8 59.4 369.4 峰4 66.4 851.2 66.2 258.7 66.5 2004.2 谷4 71.5 289.1 71.5 80.3 71.1 742.7 0.0500.0 1000.0 1500.0 2000.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 2.8V 2.6V 3.0V I A ~ U G2K 曲线 I A /μA U G2K /V

用逐差法求氩原子第一激发电势U=(66.4+54.6-43-32.6)/4=11.35V 相对误差E R=(11.35-11.5)/11.5*100%=1.30% 误差在允许范围内 通过比较有: ①灯丝电压的变化对极板电流有比较大的影响; ②在其他因素相同的情况下,灯丝电压越大,极板电流越大。 分析:灯丝电压变大导致灯丝的实际功率变大,灯丝的温度升高,在其他的因素相同的情况下,单位时间到达极板的电子数增加,从而极板电流增大。(2)改变灯丝电压,研究其对实验的影响。 反向拒斥电压U G2A =8.5 V,,分别测量拒斥电压U=10.5 V.,U=6.5 V,情况下的实验数据。 IA--UG2K曲线数据 8.5V 10.5V 6.5V 电流/uA 电压/V 电流/uA 电压/V 电流/uA 电压/V 峰1 32.6 124.9 33.5 61.5 32.2 141.8 谷1 36.9 71.4 38.3 25.8 36.0 98.9 峰2 43.0 308.7 44.1 189.9 42.8 338.0 谷2 48.1 103.5 49.2 29.3 47.0 163.2 峰3 54.6 560.3 55.5 388.0 53.8 607.5 谷3 59.5 157.0 60.9 43.6 58.6 263.1 峰4 66.4 851.2 67.1 625.3 65.6 914.4 谷4 71.5 289.1 72.5 113.2 70.4 448.7

夫兰克-赫兹实验思考题(DOC)

一、夫兰克-赫兹管的伏安特性曲线的奇异性的来源 玻尔原子模型理论指出: 1. 原子只能处在一些不连续的稳定状态(定态)中,其中每一定态对应于一定的能量(1,2,3,)i E i =。 2.当一个原子从某定态m E 跃迁到另一定态n E 时,就吸收或辐射一定频率 的电磁波,频率的大小决定于两定态之间的能量差m n E E -,并满足以下关系: m n hv E E =- 式中普朗克常数346.62610h J s -=??。 原子在正常情况下处于基态,当原子吸收电磁波或受到其他有足够能量的粒子碰撞而交换能量时,可由基态跃迁到能量较高的激发态。从基态跃迁到第一激发态所需要的能量称为临界能量。当电子与原子碰撞时,如果电子能量小于临界能量,则发生弹性碰撞,电子碰撞前后能量不变,只改变运动方向。如果电子能量大于临界能量,则发生非弹性碰撞,这时电子可把数值为21E E E ?=-的能量传递给原子(2E 是原子第一激发态能量,1E 是基态能量),其余能量仍由电子保 留。 在充氩的夫兰克-赫兹管中,电 子由阴极K 发出,阴极K 和第一栅 极1G 之间的加速电压1G K V 及与第二 栅极2G 之间的加速电压2G K V 使电 子加速。在板极A 和第二栅极2G 之 间可设置拒斥电压2G A V ,管内空间 电压分布如图2所示。 当灯丝加热时,阴极的外层即 发射电子,电子在1G 和2G 间的电场 图 1 夫兰克-赫兹实验原理图 作用下被加速而取得越来越大的

能量。但在起始阶段, 由于电压2G K V 较低,电 子的能量较小,即使 在运动过程中,它与 原子相碰撞(弹性碰 撞)也只有微小的能 量交换。这样,穿过 图 2 夫兰克-赫兹管内空间电位分布原理图 第二栅极的电子所形成的电流A I 随第二栅极电压2G K V 的增加而增大(图 3 oa 段)。当2G K V 达到氩原子的第一激发电位时,电子在第二栅极附近与氩原子相碰撞(非弹 性碰撞)。电子把从加 图 3 夫兰克-赫兹管的伏安特性曲线 速电场中获得的全部能量传递给氩原子,使氩原子从基态激发到第一激发态,而电子本身由于把全部能量传递给了氩原子,即使它穿过第二栅极,也不能克服拒斥电压2G A V 从而被折回第二栅极,所以板极电流A I 将显著减小(图3 ab 段)。氩原子在第一激发态不稳定,会跃迁回基态,同时以光量子形式向外辐射能量。以后随着第二栅极电压2G K V 的增加,电子的能量也随之增加,与氩原子相碰撞后还留下足够的能量,这样就可以克服拒斥电压2G A V 的作用力而到达板极A ,这时电流又开始上升(图3 bc 段)。直到2G K V 是2倍氩原子的第一激发电位时,电子在2G 与K 间又会因第二次弹性碰撞失去能量,因而造成了第二次板极电流A I 的下降(图3 cd 段)。这种能量转移随着加速电压的增加而呈周期性的变化。若以2G K V 为横坐标, 以板 10 50 100 2G (V)

弗兰克-赫兹实验实验报告

弗兰 克-赫兹实验 一实验目的 通过测定汞原子的第一激发电位,证明原子能级存在。 二实验原理 1激发电势 玻尔的原子能级理论 (1)原子只能长时间的停留在一些稳定的状态,(简称定态)。原子在这些状态时,不发射或吸收能量;各定态有一定的能量,其数值是彼此分隔的。原子的能量不论通过什么方式发生改变,它只能从一个定态跃迁到另一个定态。 (2)原子从一个定态跃迁到了另一个定态而发射或吸收一定的能量,辐射频率是一定的,满足 n m E E hv -=(1) 原子实现能级跃迁的途径之一,就是通过具有一定能量的电子与原子碰撞的方式来实现的。 设初速度为零的电子在电势差为U 的加速电场作用下,获得的能量为eU ,当具有这种能量的电子与稀薄气体中的原子发生碰撞时,就会发生能量交换,如以E 1带表汞原子的基态能量,E 2代表汞原子第一激发态的能量,那么当汞原子从电子传递来的能量恰好为 120E E eU -=(2) 时,汞原子就会从基态跃迁到第一激发态。相应的电势差称为汞的第一激发电势(中肯电势)。 夫兰克-核子实验原理如图1示。 在充汞的夫兰克赫兹管中, GK 供电子加速。在板极A 和栅极G 示。当电子通过KG 空间进入GA 空间时,如果有较大的能量(≥eU AG ),就能冲过反向拒斥电场而到达板极形成电流,为微电流计PA 检测出。如果电子在KG 空间与汞原子碰

撞,把自己的一部分能量给了汞原子而使后者激发的话,电子本身剩余的能量很少,以致功过栅极后不足以克服拒斥电场而被折回到栅极。这时,通过微电流计的电流将显着的减小。 实验时,观察电流计的电流随U GK 逐渐增加时的现象。如果原子能级确实存在的话,而且基态与第一激发态有确定的能量差,就能观察到如图3示的I A -U GK 曲线。曲线反映了汞原子在KG 空间与电子进行能量交换的情况。当KG 空间电压逐渐增加时,电子在KG 空间被加速而取得越来越大的能量。但起始阶段,由于电压较低,电子的能量较少,即使在运动过程中它与原子碰撞也只有较少的能量交换(弹性碰撞)。穿过栅极的电子形成的板流IA 将随栅极电压的增加而增大(图中OA 段)。当KG 间的电压达到汞原子的第一激发电势U0时,电子在栅极附近与汞原子相碰撞,将自己从加速电场中获得的全部能量都交给后者,并且使后者从基态激发到第一激发态。而电子本身由于能量全部交给了汞原子,即使穿过了栅极也不能克服拒斥电场而被折回栅极。所以板极电流IA 将显着减小(图AB 段)。随着栅极电压的正家,电子的能量也随着增加,在与汞原子碰撞后还留下足够的能量,可以克服反向拒斥电场而达到板极A ,这时电流有开始上升(BC 段)。直到KG 间电压是二倍的汞原子的第一激发电势时,电子在KG 空间又会因为二次碰撞而失去能量,因而又造成了第二次板极电流的下降(CD 段),同理 0nU U GK =(n=1,2,3,……)(3) 凡符合(3)式的地方板极电流都会下跌,形成规则起伏变化的IA-UGK 曲线。而各次板极电流下降相对应的阴、栅极电压差m m U U -+1应该是汞原子的第一激发电势。 三实验仪器 FH-1A 夫兰克-赫兹实验仪(加热炉、微电流测量放大器)、温度计。 四实验内容及步骤 1、正确连接线路,A 、G 、H 、K 连线一一对应,不可混接或短路。 2、将微电流放大器,工作选择置于DC ,工作状态置于R ,栅极电压调到最小,预热5分钟。 3、接通加热炉电源,温度升至180℃时调零(10-5档位)和满度(FULL )。 4、缓慢增加栅极电压,粗略全面观察一次IA 的起伏变化,当μA 表满度时相应的改变倍率。

弗兰克赫兹实验报告记录有数据

弗兰克赫兹实验报告记录有数据

————————————————————————————————作者:————————————————————————————————日期:

图1 弗兰克赫兹实验 作者 luckydog8686 实验背景:1914年,德国物理学家夫兰克和赫兹对勒纳用来测量电离电位的实验装置作了改进。他们采 取慢电子(几个到几十个电子伏特)与单元素气体原子碰撞的办法,着重观察碰撞后电子发生什么变化(勒纳则观察碰撞后离子流的情况)。通过实验测量,电子和原子碰撞时会交换某一定值的能量,且可以使原子从低能级激发到高能级,独立证明了原子波尔理论的正确性,由此获得了1925年诺贝尔物理学奖。 一、实验目的 1. 通过测定汞原子的第一激发点位,证明原子能记得存在。 2. 学习测量微电流的方法。 二、实验原理 (一)原子能级 根据玻尔理论,原子只能处在一些不连续的定态中,每一定态相应于一定的能量,常称为能级。受激原子在能级间跃迁时,要吸收或发射一定频率的光子。然而,原子若与具有一定能量的电子发生碰撞,也可使原子从低能级跃迁到高能级。夫兰克-赫兹实验正是利用电子与原子的碰撞实现这种跃迁的。电子在 加速电压U的作用下获得能量,表现为电子的动能2 /2mv ,当2/2n m eU mv E E ==-时,即可实现跃迁。 若原子吸收能量0eU 。从基态跃迁到第一激发态,则称0U 为第一激发电位或中肯电位。 汞原子基态之上的最低一组能级如右图所示。汞原子基态为由二个 6s 电子组成的1 0S ,较近的激发态为由一个6s 电子和一个6p 的电子构成的11P 单能级和32P , 31P 和30P 组成的三能级。只有31P 为允许自发跃迁态:3110P S →,发出波长为253.7nm 的紫外光,对应能量为 0 4.9U eV =。32P 和30P 为亚稳态,因3110P S →的跃迁属于禁戒跃迁, 所以通常把3 1P 态称为汞的第一激发态。

夫兰克-赫兹实验(Ar管)

3 夫兰克——赫兹实验 1913年玻尔模型提出后,成功地解释了氢光谱,从而解开了近三十年之久的巴尔末公式之谜,以及对类氢离子光谱的成功解释。当这一消息传到爱因斯坦那里时,他也心悦城服并称玻尔的理论是一个“伟大的发现”。但任何一个重要的物理模型要上升为理论必须得到两种独立的实验方法的验证。夫兰克和赫兹在玻尔理论发表后不久,就用了一种独立于光谱研究的方法直接验证了玻尔理论,正是这个实验使我们感受到了原子内部这个迄今为止人类无法看到的美妙世界的跃动。1925年夫兰克和赫兹共同分享了诺贝尔物理学奖。 通过这一实验可以了解原子内部能量量子化的情况,学习和体验夫兰克和赫兹研究气体放电现象中低能电子和原子间相互作用的实验思想和实验方法。 【实验目的】 1、了解夫兰克——赫兹实验的原理和方法。 2、测定氩原子的第一激发电位,验证原子能级的存在,研究原子内部能量的量子化。 【实验原理】 根据玻尔理论原子只能处在某一些状态,每一状态对应一定的能量,其数值彼此是分立的,原子在能级间进行跃迁时吸收或发射确定频率的光子,当原子与一定能量的电子发生碰撞可以使原子从低能跃迁到高能级(激发)如果是基态和第一激发态之间的跃迁则有: 012e 1E E v m 2 1eV -== 电子在电场中获得的动能和原子碰撞时交给原子,原子从基态跃迁到第一激发态,V 1称为原子第一激发电势(位)。 本次实验测定氩原子的第一激发能,其标准值约为11.4eV , 因此只需几十伏电压就能观察到多个峰值。于四极式的F-H 碰撞 管,实验线路连接如图(1)所示。 图中:V F 为灯丝加热电压,V G1K 为正向小电压,V G2K 为加速电压, V G2P 为减速电压。 F-H 管中的电位分布如图(2)所示。 图(2)电子由阴极发出经电场V G2K 加速趋向阳极,只要 电子能量达到克服减速电场V G2P 就能穿过栅极G 2到达板极P 形 成电子流I P 。由于管中充有气体原子,电子前进的途中要与原 子发生碰撞。如果,电子能量小于第激发能eV 1,它们之间的 碰撞是弹性的,根据弹性碰撞前后系统动量和动能守恒定理不 难推出电子损失的能量极小,电子能如期地到达阳极;如果电 子能量达到或超过eV 1,电子与原子将发生非弹性碰撞,电子把 能量eV 1传给气体原子,要是非弹性碰撞发生在G 2栅极附近, 损失了能量的电子将无法克服减速场V G2P 到达板极。 这样,从阴极发出的电子随着V G2K 从零开始增加板极上将有电流出现并增加,如果加速到G 2栅极的电图(1) 图(2)

弗兰克赫兹含思考题

弗兰克赫兹含思考题

西安交通大学实验报告 成绩 第1 页(共9 页)课程:_______近代物理实验_______ 实验日期:年月日 专业班号______组别_______交报告日期:年月日 姓名__Bigger__学号__报告退发:(订正、重做) 同组者__ ________教师审批签字: 实验名称:弗兰克-赫兹实验 一、实验目的 1)通过测氩原子第一激发电位,了解Franck和Hertz在研究原子内部能量量 子化方面所采用的实验方法。 2)了解电子和原子碰撞和能量交换过程的微观图像。 二、实验仪器 FH—1A、Franck-Hertz实验仪、示波器等。 三、实验原理 图1是充氩四极Franck-Hertz实验原理图。

图1 Franck-Hertz 实验原理图 电子与原子的碰撞过程可以用一下方程描述: 22221111 ''2222 e e m v MV m v MV E +=++? (2.1) 式中: m e ——原子质量; M ——电子质量; v ——电子碰撞前的速度; v ’——电子碰撞后的速度; V ——原子碰撞前的速度; V ’——原子碰撞后的速度; ΔE ——原子碰撞后内能的变化量。 按照波尔原子能级理论, ΔE = 0 弹性碰撞; ΔE = E 1 - E 0 非弹性碰撞; 式中: E 0——原子基态能量; E 1——原子第一激发态能量。 电子碰撞前的动能1/2m e v 2 < E 1 - E 0时,电子与原子的碰撞为完全弹性碰撞,ΔE = 0,原子仍然停留在基态。电子只有在加速电场的作用下碰撞前获得的动能1/2m e v 2 ≥ E 1 - E 0,才能在电子产生非弹性碰撞,使得电子获得某一值(E 1 - E 0)的内能从基态跃迁到第一激发态,调整加速电场的强度,电子与原子由弹性碰撞到非弹性碰撞的变化过程将在电流上显现出来。Franck-Hertz 管即是为此目的而专门设计的。 在充入氩气的F-H 管中(如图2所示),阴极K 被灯丝加热发射电子,第一栅极(G1)与阴K 之间的电压V G1K 约为1.5V ,其作用是消除空间电荷对阴极K 的影响。当灯丝加热时,热阴极K 发射的电子在阴极K 与第二栅极(G2)之间正电压形成的加速电场作用下被加速而取得越来越大的动能,并与V G2K 空间分布的气体氩原子发生如(2.1)式所描述的碰撞而进行能量交换。第二栅极(G2)和A 极之间的电压称为拒斥电压,起作用是使能量损失较大的电子无法达到A

弗兰克赫兹实验报告

弗兰克-赫兹实验 一.实验目的 测量F-H 管传统情况下加速电压与板极电流的关系曲线。 二.实验原理 1.激发电势 (1)玻尔的原子理论 原子只能较长地停留在定态,原子在这些状态时,不发射也不吸收能量。各定态有一定的能量,其数值是彼此分割的。原子的能量不论通过什么方式发生改变,它只能从一个定态跃迁到另一个定态。 原子从一个定态跃迁到另一个定态而发射或吸收辐射时,辐射频率是一定的,如果用 m E 和n E 分别表示有关两定态的能量,辐射的频率ν决定如下关系: n m E E h -=ν 式中,h 为普朗克常量,为了使原子从低能级向高能级跃迁,可以通过具有一定能量的电子与原子相碰撞进行能量交换的办法来实现。 (2)设初速度为零的电子在电势差为0U 的加速电场作用下,获得能量 0eU ,当具有这种能量的汞电子与稀薄气体的原子发生碰撞时,就会发生能量 交换。如以1E 代表汞原子的基态能量,2E 代表汞原子的第一激发态能量,那么当汞原子吸收从电子传递来的能量恰为 021eU E E =- (1) 汞原子就会从基态跃迁到第一激发态,相应的电势差称为汞的第一激发电势。测定出这个电势差0U ,就可以根据公式(1)求出汞原子的基态和第一激发态之间的能量差了。 2.弗兰克-赫兹管 K5BKGP]BYN.png" \* MERGEFORMATINET K5BKGP]BYN.png" \* MERGEFORMATINET

图一: 21G G 短接, 21G G 为等势区,电子由热阴极发出,经加速电压 K G U 2使电 子加速,电子可达到任意位置。如果电子在空间中与汞原子碰撞,把自己一部分能量传给汞原子。从阴极射出来的电子能量不同,从小到大分布,能量大的原子 传递给汞原子能量,先进入激发状态。 图二:加速电压的正极接G 1;图三:加速电压的正极接G 2。这样连接的电路 ,能保证没有热电子打到板极上,只有正离子会从加速电压正极向板极加速运动。此时由于原子电离可以测到板极电流。 三.实验装置 1.弗兰克--赫兹管 弗兰克-赫兹管为实验仪的核心部件,弗兰克-赫兹管采用间热式阴极、双栅极和板极的四极形式,各极均为圆筒状。弗兰克--赫兹管充汞气,玻璃封装。 2.工作电源:F —H 管电源组用来提供F —H 管各极所需的工作电压。其中包括灯丝电压UF ,直流0V ~6.3V 连续可调;第一栅极电压UG1K ,直流0~5V 连续可调;第二栅极电压UG2K ,直流0~100V 连续可调。 3.扫描电源和微电流放大器:提供0~12V 的手动可调直流电压或自动慢扫描输出锯齿波电压,作为F —H 管的加速电压,供手动测量或函数记录仪测量。 4.微电流测量仪:微电流放大器用来检测F —H 管的板流。 四.实验内容 1.了解弗兰克--赫兹管的结构

弗兰克赫兹实验思考题2

弗兰克赫兹实验思考题 一、解释伏安特性曲线的奇特性。 1.玻尔提出的量子理论指出: ⑴ 原子只能较长久地停留在一些稳定状态(简称定态),原子在这些状态时,不发射或吸收能量;各定态有一定的能量,其数值是彼此分立的,这些能量值称为能级,最低能级所对应的状态称为基态,其他高能级所对应的态称为激发态。原子的能量不论通过什么方式发生改变,它只能使原子由一个定态跃迁到另一个定态。 ⑵ 原子从一个定态跃迁到另一个定态而发射或吸收辐射时,辐射频率是一定的。如果用E m 和E n 代表有关两定态的能量,辐射的频率ν确定于普朗克公式: n m E E h -=ν (8-1) 式(8-1)中的h 为普朗克常数,其值为6.6260×10-34J ·s 。 为了使原子从低能级向高能级跃迁,可以通过具有一定频率ν的光子来实现,也可以通过具有一定能量的电子与原子碰撞(非弹性碰撞)进行能量交换的方法来实现。后者为本实验采用的方法。设初速度为零的电子在电势差为V 的加速电场作用下,获得eV 的能量。在充氩气的夫兰克—赫兹管中,具有一定能量的电子将与氩原子发生碰撞。如果以E 0代表氩原子的基态能量,E 1代表氩原子的 第一激发态的能量,当电子与氩原子相碰撞时传递给氩原子的能量恰好是 eV 0=E 1-E 0 (8-2) 则氩原子就会从基态跃迁到第一激发态,而相应的电势差V 0称为氩原子的 第一激发电位。其他元素气体原子的第一激发电位也可以按此法测量得到。 1914年,夫兰克和赫兹首次用慢电子轰击汞蒸气中汞原子的实验方法,测定了汞原子的第一激发电位。 2.夫兰克—赫兹实验的物理过程 本仪器采用的充氩四极夫兰克—赫兹管,实验原理如图8-1所示。

弗兰克赫兹实验思考题

1、夫兰克-赫兹实验中,发生什么过程导致U-I 曲线? 玻尔原子模型理论指出: 1. 原子只能处在一些不连续的稳定状态(定态)中,其中每一定态相应于一定的能量Ei(i=1, 2, 3, …m …n)。 2.当一个原子从某定态Em 跃迁到另一定态En 时,就吸收或辐射一定频率的电磁波,频率的大小决定于两定态之间的能量差En —Em ,并满足以下关系: h ν=En —Em 式中普朗克常数h=6.63×10-34J ·s 。 原子在正常情况下处于基态,当原子吸收电磁波或受到其他有足够能量的粒子碰撞而交换能量时,可由基态跃迁到能量较高的激发态。从基态跃迁到第一激发态所需要的能量称为临界能量。当电子与原子碰撞时,如果电子能量小于临界能量,则发生弹性碰撞,电子碰撞前后能量不变,只改变运动方向。如果电子动能大于临界能量,则发生非弹性碰撞,这时电子可把数值为△E=En —E1的能量交给原子(En 是原子激发态能量,E1是基态能量),其余能量仍由电子保留。 如初始能量为零的电子在电位差为U0的加速电场中运动,则电子可获得的能量为eU0;如果加速电压U0恰好使电子能量eU0等于原子的临界能量,即eU0=E2—E1,则U0称为第一激发电位,或临界电位。测出这个电位差U0,就可求出原子的基态与第一激发态之间的能量差E 2—E 1。 原子处于激发态是不稳定的。不久就会自动回到基态,并以电磁辐射的形式放出以前所获得的能量,其频率可由关系式h ν=eU0求得。在玻尔发表原子模型理论的第二年(1914),夫兰克(James Franck,1882—1964)和赫兹(Gustav Hertz,1887—1975)参照勒纳德创造反向电压法,用慢电子与稀薄气体原子(Hg ;He )碰撞,经过反复试验,获得了图2的曲线。 实验原理如图3所示,在充氩的夫兰克-赫兹管中,电子由阴极K 发出,阴极K 和第一栅极G1之间的加速电压K G V 1 及与第二栅极G2之间的加速电压K G V 2使电 图3 夫兰克-赫兹原理图 子加速。在板极A 和第二栅极G2之间可设置减速电压A G V 2 ,管内空间电压分布见图4。 图4 夫兰克-赫兹管内空间电位分布原理图 注意:第一栅极G1和阴极K 之间的加速电压K G V 1约1.5伏的电压,用于消除阴极电压散射的影响。 当灯丝加热时,阴极的外层即发射电子,电子在G1和G2间的电场作用下被加速而取得越来越大的能量。但在起始阶段,由于电压K G V 2较低,电子的能量较小, 即使在运动过程中,它与原子相碰撞(为弹性碰撞)也只有微小的能量交换。这样,穿过第二栅极的电子所形成的电流A I 随

夫兰克--赫兹实验原理

[实验原理] 根据玻尔理论,原子只能较长久地停留在一些稳定状态(即定态),其中每一状态对应于一定的能量值,各定态的能量是分立的,原子只能吸收或辐射相当于两定态间能量差地能量。如果处于基态的原子要发生状态改变,所具备的能量不能少于原子从基态跃迁到第一激发态时所需要地能量。夫兰克—赫兹实验是通过具有一定能量的电子与原子碰撞,进行能量交换而实现原子从基态到高能态地跃迁。 电子与原子碰撞过程可以用以下方程表示: ; 其中是电子质量,是原子质量,是电子的碰撞前的速度,是原子的碰撞前的速度,是电子的碰撞后速度,是原子的碰撞后速度,为内能项。因为,所以电子的动能可以转变为原子的内能。因为原子的内能是不连续的,所以电子的动能小于原子的第一激发态电位时,原子与电子发生弹性碰撞;当电子的动能大于原子的第一激发态电位时,电子的动能转化为原子的内能, 为原子的第一激发电位。 夫兰克—赫兹实验原理如图1所示,充氩气的夫兰克—赫兹管中,电子由热阴极发出,阴极和栅极之间的加速电压使电子

加速,在板极和栅极之间有减速电压。当电子通过栅极进入空间时,如果能量大于,就能到达板极形成电流。电子在空间与氩原子发生了弹性碰撞,电子本身剩余的能量小于,则电子不能到达板极,板极电流将会随着栅极电压的增加而减少。实验时使逐渐增加,观察板极电流的变化将得到如图2所示的 曲线。 随着的增加,电子的能量增加,当电子与氩原子碰撞后仍留下足够的能量,可以克服空间的减速电场而到达板极时,板极电流又开始上升。如果电子在加速电场得到的能量等于时,电子在 空间会因二次非弹性碰撞而失去能量,结果板极电流第二次下降。

在加速电压较高的情况下,电子在运动过程中,将与氩原子发生多次非弹性碰撞,在关系曲线上就表现为多次下降。对氩来说,曲线上相邻两峰(或谷)之间的之差,即为氩原子的第一激发电位。这即证明了氩原子能量状态的不连续性。 [实验内容与步骤] 一、示波器演示 1、分别用线将主机正面板上“输出”和“输出”与示波器上的“”和“”相连,将电源线插在主机后面板的插孔内,打开电源开关; 2、把扫描开关调至“自动”档,扫描速度开关调至“快速”,把电流增益波段开关拨至“”; 3、打开示波器的电源开关,并分别将“”、“”电压调节旋钮调至“”和“”,“”工作方式开关按下,“”全部打到“”; 4、分别调节、、电压至主机上部厂商标定数值,将调节至最大,此时可以在示波器上观察到稳定的氩的曲线; 二、手动测量

相关文档