文档库 最新最全的文档下载
当前位置:文档库 › 高二数学平面和空间直线

高二数学平面和空间直线

空间直线与平面的方程及其位置关系

空间直线与平面的方程及其位置关系

————————————————————————————————作者: ————————————————————————————————日期:

空间直线与平面的方程以及位置关系 高天仪 20101105295 数学科学学院 数学与应用数学专业 10级汉二班 指导教师 李树霞 摘 要 解析几何中,在建立平面与空间直线的方程与讨论他们的性质时,充分运用了向量这一工具,通过向量来处理这类问题的好处是与坐标的选取是无关的。平面与空间直线方程的建立,就使得有关平面与空间直线的几何问题转化为这些稽核对象的方程的代数问题了。 关键词 空间直线、方向向量、参数方程、方向数 1 空间直线的方程 1.1 直线的对称式(点向式)方程 空间给定了一点0M 与一个非零向量v ,那么通过点0M 且与向量v 平行的直线l 就被唯一确定,向量v 叫直线l 的方向向量. 任何一个与直线l 平行的非零向量都可以作为直线l 的方向向量. 直线l 过点),,(0000z y x M ,方向向量{}Z Y X v ,,= .设),,(z y x M 为l 上任意一 点,00r OM =, r OM =,由于M M 0与v (非零向量)共线, 则 v t r r =-0 即 v t r r +=0 (1.1-1) 叫做直线l 的向量式参数方程,(其中t为参数)。 如果设},,{0000z y x r = ,},,{z y x r = 又设},,{Z Y X v = ,那么 (1.1-1)式得 ?? ? ??+=+=+=Zt z z Yt y y Xt x x 000 (1.1-2) (1.1-1)叫做直线l 的坐标式参数方程。

异面直线间的距离(高中全部8种方法详细例题)

异面直线间的距离 求异面直线之间距离的常用策略:求异面直线之间的距离是立体几何重、难点之一。常有利用图形性质,直接找出该公垂线,然后求解;或者通过空间图形性质,将异面直线距离转化为直线与其平行平面间的距离,或转化为分别过两异面直线的平行平面间的距离,或转为求一元二次函数的最值问题,或用等体积变换的方法来解。 常用方法有: 1、定义法 2、垂直平面法(转化为线面距) 3、转化为面面距 4、代数求极值法 5、公式法 6、射影法 7、向量法 8、等积法 1 定义法就是先作出这两条异面直线的公垂线,然后求出公垂线的长,即异面直线之间的距离。

例1 已知:边长a 为的两个正方形ABCD 和CDEF 成1200的二面角,求异面直线CD 与AE 间的距离。 思路分析:由四边形ABCD 和CDEF 是正方形,得 CD ⊥AD ,CD ⊥DE ,即CD ⊥平面ADE ,过D 作DH ⊥AE 于H ,可得DH ⊥AE ,DH ⊥CD ,所以DH 是异面直线AE 、CD 的公垂线。在⊿ADE 中,∠ADE=1200,AD=DE=a ,DH=2 a 。即异面直线CD 与AE 间的距离为2 a 。 2 垂直平面法:转化为线面距离,若a 、b 是两条异面直线,过b 上一点A 作a 的平行线a /,记a /与b 确定的平面α。从而,异面直线a 、b 间的距离等于线面a 、α间的距离。 例1 如图,BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,和棱分别成α、β角,又它们和棱的交点间的距离为d ,求两条异面直线BF 、AE 间的距离。 思路分析:BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,∠EAB=α,∠FAB=β,AB=d ,在平面Q 内,过B 作BH ‖AE ,将异面直线BF 、AE 间的距离转化为AE 与平面BCD 间的距离,即为A 到平面BCD 间的距离,又因二面角P-AB-Q 是直二面角,过A 作

空间直线和平面总结 知识结构图+例题

【同步教育信息】 一. 本周教学内容: 期中复习 [知识串讲] 空间直线和平面: (一)知识结构 (二)平行与垂直关系的论证 1、线线、线面、面面平行关系的转化: 线线∥ (a//b,b//c a//c) αβ αγβγ //,// ==???? a b a b 面面平行性质 线面平行性质 a a b a b ////αβαβ?=???? ? ? 面面平行性质1 αβαβ ////a a ??? ? ? 面面平行性质 αγβγαβ //////?? ?? A b 2. 线线、线面、面面垂直关系的转化:

面面垂直判定 面面垂直定义 αβαβ αβ =-- ?⊥ ? ? ? l l ,且二面角 成直二面角 3. 平行与垂直关系的转化: 面面∥ 面面平行判定2 面面平行性质3 a b a b // ⊥ ?⊥ ? ? ? α α a b a b ⊥ ⊥ ? ? ? ? α α // a a ⊥ ⊥ ? ? ? ? α β αβ // αβ α β // a a ⊥ ⊥ ? ? ? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: (三)空间中的角与距离 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90°

(2)直线与平面所成的角:0°≤θ≤90° (时,∥或)θαα=??0b b (3)二面角:二面角的平面角θ,0°≤θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角; (2)证明其符合定义; (3)指出所求作的角; (4)计算大小。 3. 空间距离:将空间距离转化为两点间距离——构造三角形,解三角形,求该线段的长。 4. 点到面的距离,线线间距离、线面间距离、面面间距离都可转化为点到面的距离。 常用方法:三垂线法、垂面法、体积法、向量法等。 简单几何体: (一)棱柱(两底面平行,侧棱平行的多面体) 性质侧棱都相等侧面是平行四边形对角面是平行四边形两个底面与平行于底面的截面是全等的多边形直截面周长侧棱长底面积高直截面面积侧棱长侧柱S V =?=?=??? ? ????????

空间中直线和平面之间的位置关系

空间中直线与平面之间的位置关系知识点一直线与平面的位置关系 1、直线和平面平行的定义 如果一条直线和一个平面没有公共点,那么这条直线和这个平面平行。 2、直线与平面位置关系的分类 (1)直线与平面位置关系可归纳为

(2)在直线和平面的位置关系中,直线和平面平行,直线和平面相交统称直线在平面外, 我们用记号α?a 来表示a ∥α和A a =α 这两种情形. (3)直线与平面位置关系的图形画法: ①画直线a 在平面α内时,表示直线α的直线段只能在表示平面α的平行四边形内, 而不能有部分在这个平行四边形之外,这是因为这个用来表示平面的平行四边形的四周应是 无限延伸而没有边界的,因而这条直线不可能有某部分在某外; ②在画直线a 与平面α相交时,表示直线a 的线段必须有部分在表示平面a 的平行四边 形之外,这样既能与表示直线在平面内区分开来,又具有较强的立体感; ③画直线与平面平行时,最直观的画法是用来表示直线的线在用来表示平面的平行四边形之外,且与某一边平行。 例1、下列命题中正确的命题的个数为 。 ①如果一条直线与一平面平行,那么这条直线与平面内的任意一条直线平行;②如果一 条直线与一平面相交,那么这条直线与平面内的无数条直线垂直;③过平面外一点有且只有 一条直线与平画平行;④一条直线上有两点到一个平面的距离相等,则这条直线平行于这个 平面。 变式1、下列说法中正确的是 。 ①直线l 平行于平面α内无数条直线,则l αααα?b αα?b α.1 C ?答案:B 变式3、 若直线l 上有两个点到平面α的距离相等,讨论直线l 与平面α的位置关系. 图3 解:直线l 与平面α的位置关系有两种情况(如图3),直线与平面平行或直线与平面相交. 例2、若两条相交直线中的一条在平面α内,讨论另一条直线与平面α的位置关系.

高二数学空间直线和平面单元练习

高二数学空间直线和平面单元练习 一、选择题 1.下列各条件可以确定平面的是( ) A.六边形 B.两两相交的三条直线 C.两两平行的三条直线 D.梯形 2.正方形的一条对角线与正方体的棱所组成的异面直线有( ) A.12对 B.10对 C.8对 D.6对 3.给出下列四个命题: (1)如果一个平面内有两条直线分别平行于另一个平面,那么这个平面平行; (2)如果一个平面内有无数条直线分别平行于另一个平面,那么这两个平面平行; (3)如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行; (4)垂直于同一平面的两平面平行. 其中正确的是( ) A.(1)(3)(4) B.(2)(3)(4) C.(3) D.(4) 4.经过空间一点作直线,使它与异面直线都成60°角,则这样的直线有( ) A.2条 B.2条或3条 C.4条 D.2条或3条或4条 5.异面直线在同一平面的射影不可能是( ) A.两条平行直线 B.两相交线 C.一点与一直线 D.同一直线 6.空间四边形ABCD四条边的中点为E、F、G、H,且EFGH为菱形,则空间四边形ABCD 的对角线 AC与BD的关系是( ) A.AC⊥BD B.AC与BD共面 C.AC=BD D.不能确定 7.已知ABCD为正方形,过A作SA⊥平面ABCD,若AB=SA,则面SAB与面SCD所构成二面角的度数是( ) A.30° B.45° C.60° D.90° 8.异面直线所成角取值集合为A,直线与平面所成角取值集合为B,平面斜线与平面所成角取值集合为C,则它们角的集合关系为( ) A.A B C B.B A C C.C A B D.C B A 9.一直线与直二面角的两个面所成角分别为θ1与θ2,则θ1+θ2的值是( ) A.90° B.不超过90° C.不小于90° D.以上三种情况都可能 10.如图,PC⊥平面α于C,ABα,PB⊥AB,则线段PB、PA、PC的关系式是( ) A.PA>PC>PB B.PC>PB>PA C.PA>PB>PC D.PB>PA>PC 11.矩形ABCD中,AB=2,BC=6,沿对角线AC折起成直二面角,则AC与BD的距离为( ) A.22 B.2 C.1 D.23 12.等边△ABC的边长为1,BC上的高是AD,若沿AD折成直二面角,则A到BC的距离

高中数学 空间点,直线和平面的位置关系公式

空间点,直线和平面的位置关系 一,线在面内的性质: 定里1. 如果一条直线的两点在一个平面内,那么这条直线上所有点都在这个平面内。 二,平面确定的判定定理: 定里2. 经过不在同一直线上的三点有且只有一个平面。 定里3.经过一条直线和直线外一点,有且只有一个平面。 定里4. 经过两条相交直线有且只有一个平面。 定里5.经过两条平行直线有且只有一个个平面。 三,两面相交的性质: 定里6. 如果两个平面有一个公共点,那么还有其它公共点,则这些公共点的集合是一条直线。 四,直线平行的判定定理: 定里7. 平行于同一直线的两直线平行。 五,等角定理: 定里8.如果一个角的两边和另一个角的两边分别平行且同向,那么这两个角相等。 六,异面直线定义: 不同在任何一个平面内的两条直线叫异面直线。(异面直线间的夹角只能是:锐角或直角) 七,直线和平面平行的判定定理: 定理9. 平面外一条直线与平面内一条直线平行,那么这条直线与这个平

面平行。

符合表示: β ββ////a b a b a ???????? 推理1. 如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 符号表示: b a b a a a ////??? ?????=??βαβαα 八,平面与平面平行判定定理: 定理1. 如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行。 符号表示: β αββαα//////??????????=??b a M b a b a 推论1:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。 九,平面与平面平行的性质: 定理1. 如果两个平面平行同时与第三个平面相交,那它们的交线平行。

人教版数学必修二2.1.3 空间中直线与平面之间的位置关系 教案

2.1.3空间中直线与平面之间的位置关系教案 教学目标: 1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系。 2. 学会用图形语言、符号语言表示三种位置关系. 教学重点:直线与平面的三种位置关系及其作用. 教学难点:直线与平面的三种位置关系及其作用 问题提出 1. 空间点与直线,点与平面分别有哪几种位置关系? 2. 空间两直线有哪几种位置关系? 探究:直线与平面之间的位置关系 思考1:一支笔所在的直线与一个作业本所在的平面,可能有哪几种位置关系? 思考2:如图,线段A ′B 所在直线与长方体ABCD-A ′B ′C ′D ′的六个面所在的平面各是什么位置关系? 思考3:通过上面的观察和分析,直线与平面有三种位置关系有哪些?靠什么来划分呢? 思考4:用图如何表示直线与平面的三种位置?如何用符号语言描述这三种位置关系? 思考5:过平面外一点可作多少条直线与这个平面平行?若直线l 平行于平面α,则直线l 与平面α内的直线的位置关系如何? B A D C A' B' D' C'

理论迁移 例1 给出下列四个命题: (1)若直线l 上有无数个点不在平面α内,则l ∥α. (2)若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行. (3)若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点. (4)若直线l 在平面α内,且l 与平面β平行,则平面α与平面β平行. 其中正确命题的个数共有 __个. 随堂练习:判断正误 1、若直线l 上有无数个点不在平面α内,则l ∥α( ) 2、若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行( ) 3、如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行( ) 4、如果平面外的两条平行直线中的一条直线与平面平行,那么另一条直线也与这个平面平行( ) 5、若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点( ) 巩固练习 1.选择题 (1)以下命题(其中a ,b 表示直线,α表示平面) ①若a ∥b ,b ?α,则a ∥α ②若a ∥α,b ∥α,则a ∥b ③若a ∥b ,b ∥α,则a ∥α ④若a ∥α,b ?α,则a ∥b 其中正确命题的个数是 ( ) (A )0个 (B )1个 (C )2个 (D )3个 (2)已知a ∥α,b ∥α,则直线a ,b 的位置关系 ①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交. 其中可能成立的有 ( ) (A )2个 (B )3个 (C )4个 (D )5个 (3)如果平面α外有两点A 、B ,它们到平面α的距离都是a ,则直线AB 和平面α的位置关系 一定是( ) (A )平行 (B )相交 (C )平行或相交 (D )AB ?α (4)已知m ,n 为异面直线,m ∥平面α,n ∥平面β,α∩β=l ,则l ( ) (A )与m ,n 都相交 (B )与m ,n 中至少一条相交 (C )与m ,n 都不相交 (D )与m ,n 中一条相交 (5)已知直线a 在平面α外,则 ( ) (A )a ∥α (B )直线a 与平面α至少有一个公共点 (C )a A α ?= (D )直线a 与平面α至多有一个公共点 课本49页练习 课堂小结 课外作业 一、选择题: 1.下列命题中正确的是( ) A .平行于同一个平面的两条直线平行

平面、空间直线及其方程

一、向量的向量积:b a ? 二、平面及其方程 一、平面的点法式方程 1.平面的法线向量定义:垂直于一平面的非零向量叫做平面的法线向量。 平面内的任一向量均与该平面的法线向量垂直。 2.平面的点法式方程 已知平面上的一点) , , ( z y x M和它的一个法线向量} , , {C B A = n,对平面上的任一点) , , (z y x M,有向量⊥ M M n,即 M M ?= n 代入坐标式,有: ) ( ) ( ) ( = - + - + -z z C y y B x x A此即平面的点法式方程。 【求平面方程的方法】 233231131221 {,,}. a b a b a b a b a b a b a b ?=--- ; (1)在平面上找出一个点. (2)找出一个与平面垂直的非零向量(法向)

二、 平面的一般方程 任一平面都可以用三元一次方程来表示。 平面的一般方程为: 0=+++D Cz By Ax 几个平面图形特点: 1)D =0:通过原点的平面。 2)A =0:法线向量垂直于x 轴,表示一个平行于x 轴的平面。 同理:B =0或C =0:分别表示一个平行于y 轴或z 轴的平面。 3)A =B =0:方程为0=+D C Z ,法线向量},0,0{C ,方程表示一个平行于xoy 面的平面。 同理:0=+D A X 和0=+D B Y 分别表示平行于yoz 面和xoz 面的平面。 4)反之:任何的三元一次方程,例如:011765=+-+z y x 都表示一个平面,该平面的法向量为}7,6,5{-=n

例2:设平面过原点及点)2,3 ,6(-,且与平面8 2 4= + -z y x垂直,求此平面方程。 解:设平面为0 = + + +D Cz By Ax,由平面过原点知0 = D 由平面过点)2,3 ,6(-知0 2 3 6= + -C B A, {4,1,2} ⊥- n0 2 4= + - ∴C B A C B A 3 2 - = = ? 所求平面方程为0 3 2 2= - +z y x 三、空间直线及其方程 一、空间直线的一般方程 空间直线可以看成是两个平面的交线。故其一般方程为: ? ? ? = + + + = + + + 2 2 2 2 1 1 1 1 D z C y B x A D z C y B x A 二、空间直线的对称式方程与参数方程 平行于一条已知直线的非零向量叫做这条直线的方向向量。 已知直线上的一点) , , ( z y x M和它的一方向向量} , , {p n m = s,设直线上任一点为) , , (z y x M,那么 M 与s平行,由平行的坐标表示式有: p z z n y y m x x - = - = - 此即空间直线的对称式方程(或称为点向式方程)。 . 的直线 为方向向量 ) 3 , 0,2 ( 且以 ) 3,2,1( 表示过点 3 - 3 2 2 1 例如- - = - = - s z y x

空间中直线与直线之间的位置关系(附规范标准答案)

空间中直线与直线之间的位置关系 [学习目标] 1.会判断空间两直线的位置关系.2.理解两异面直线的定义,会求两异面直线所成的角.3.能用公理4解决一些简单的相关问题. 知识点一空间中两条直线的位置关系 1.异面直线 (1)定义:不同在任何一个平面内的两条直线叫做异面直线. 要点分析:①异面直线的定义表明:异面直线不具备确定平面的条件.异面直线既不相交,也不平行. ②不能误认为分别在不同平面内的两条直线为异面直线.如图中,虽然 有a?α,b?β,即a,b分别在两个不同的平面内,但是因为a∩b=O, 所以a与b不是异面直线. (2)画法:画异面直线时,为了充分显示出它们既不平行也不相交,即不共面的特点,常常需要画一个或两个辅助平面作为衬托,以加强直观性、立体感.如图所示,a与b为异面直线. (3)判断方法 方法内容 定义法依据定义判断两直线不可能在同一平面内 定理法 过平面外一点与平面内一点的直线和平面内不经过该点的直线为异面直线(此结 论可作为定理使用) 反证法 假设这两条直线不是异面直线,那么它们是共面直线(即假设两条直线相交或平 行),结合原题中的条件,经正确地推理,得出矛盾,从而判定假设“两条直线不 是异面直线”是错误的,进而得出结论:这两条直线是异面直线 2.空间中两条直线位置关系的分类 (1)按两条直线是否共面分类 ? ? ?共面直线 ?? ? ??相交直线:同一平面内,有且只有一个公共点 平行直线:同一平面内,没有公共点 异面直线:不同在任何一个平面内,没有公共点

(2)按两条直线是否有公共点分类 ??? 有且仅有一个公共点——相交直线 无公共点? ?? ?? 平行直线异面直线 思考 (1)分别在两个平面内的两条直线一定是异面直线吗? (2)两条垂直的直线必相交吗? 答 (1)不一定.可能相交、平行或异面. (2)不一定.可能相交垂直,也可能异面垂直. 知识点二 公理4(平行公理) 知识点三 空间等角定理 1.定理 判断或证明两个角相等或互补 2.推广 如果两条相交直线与另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. 思考 如果两条直线和第三条直线成等角,那么这两条直线平行吗? 答 不一定.这两条直线可能相交、平行或异面 知识点四 异面直线所成的角 1.概念:已知两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a ,b ′∥b ,我们把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).

空间中直线与平面的位置关系 说课稿 教案 教学设计

1 空间中直线与平面、平面与平面之间的位置关系 一、教学目标: 1、知识与技能 (1)了解空间中直线与平面的位置关系; (2)了解空间中平面与平面的位置关系; (3)培养学生的空间想象能力。 2、过程与方法 (1)学生通过观察与类比加深了对这些位置关系的理解、掌握; (2)让学生利用已有的知识与经验归纳整理本节所学知识。 二、教学重点、难点 重点:空间直线与平面、平面与平面之间的位置关系。 难点:用图形表达直线与平面、平面与平面的位置关系。 三、学法与教学用具 1、学法:学生借助实物,通过观察、类比、思考等,较好地完成本节课的教学目标。 2、教学用具:投影仪、投影片、长方体模型 四、教学思想 (一)创设情景、导入课题 教师以生活中的实例以及课本P49的思考题为载体,提出了:空间中直线与平面有多少种位置关系?(板书课题) (二)研探新知 1、引导学生观察、思考身边的实物,从而直观、准确地归纳出直线与平面有三种位置关系: (1)直线在平面内 —— 有无数个公共点 (2)直线与平面相交 —— 有且只有一个公共点 (3)直线在平面平行 —— 没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示 a α a ∩α=A a ∥α 例4(投影) 师生共同完成例4 例4的给出加深了学生对这几种位置关系的理解。 2、引导学生对生活实例以及对长方体模型的观察、思考,准确归纳出两个平面之间有两种位置关系: (1)两个平面平行 —— 没有公共点 (2)两个平面相交 —— 有且只有一条公共直线 用类比的方法,学生很快地理解与掌握了新内容,这两种位置关系用图形表示为 α β α β L

空间直线与平面,平面与平面的位置关系

精锐教育学科教师辅导讲义讲义编号_

D所成的角, 2 = 3

D C P A B 解析:∵AP ⊥BP ,PA ⊥PC ,∴AP ⊥PBC 连PD ,则PD 就是AD 在平面PBC 上的射影 ∴∠PDA 就是AD 与平面PBC 所成角 又∵∠ABP =∠ACP =60o,PB =PC =2BC ,D 是BC 中点, ∴PD= BC 27, PA=6BC ∴AD=BC 2 31 ∴31 217 cos ==∠AD PD PDA ∴AD 与平面PBC 所成角的余弦值为31 217 巩固练习: 1 选择题 (1)一条直线和平面所成角为θ,那么θ的取值范围是( ) (A )(0o,90o) (B )[0o,90o] (C )[0o,180o] (D )[0o,180o) (2)两条平行直线在平面内的射影可能是①两条平行线;②两条相交直线;③一条直线;④两个点. 上述四个结论 中,可能成立的个数是 ( ) (A )1个 (B )2个 (C )3个 (D )4个 (3)从平面外一点P 引与平面相交的直线,使P 点与交点的距离等于1,则满足条件的直线条数不可能是( ) (A )0条或1条 (B )0条或无数条 (C )1条或2条 (D )0条或1条或无数条 答案:(1)B (2)C (3)D 2.填空题 (1)设斜线与平面α所成角为θ,斜线长为l ,则它在平面内的射影长是 .

∵AO OE ⊥ ∴2tan 2AO AEO OE ∠= = ∴2 arctan 2 AEO ∠= 即二面角A BC D --的大小为2 arctan 2 (3)取AC 的中点E ,连接,EF OF ,则//,//EF AB OE CD ∴OE 与EF 所成的锐角或直角即为异面直线AB 和CD 所成角 易求得45OEF ∠= 即异面直线AB 和CD 所成角为45 例5、设P 是△ABC 所在平面M 外一点,当P 分别满足下列条件时,判断点P 在M 内的射影的位置. (1)P 到三角形各边的距离相等. (2)P 到三角形各顶点的距离相等. (3)PA 、PB 、PC 两两垂直. 解析:设P 在平面M 内的射影是O . (1)O 是△ABC 的内心; (2)O 是△ABC 的外心; (3)O 是△ABC 的垂心.

《空间中直线与平面、平面与平面之间的位置关系》教学设计(优质课)

空间中直线与平面、平面与平面之间的位置关系 (一)教学目标 1.知识与技能 (1)了解空间中直线与平面的位置关系; (2)了解空间中平面与平面的位置关系; (3)培养学生的空间想象能力. 2.过程与方法 (1)学生通过观察与类比加深了对这些位置关系的理解、掌握; (2)让学生利用已有的知识与经验归纳整理本节所学知识. (二)教学重点、难点 重点:空间直线与平面、平面与平面之间的位置关系. 难点:用图形表达直线与平面、平面与平面的位置关系. (三)教学方法 借助实物,让学生观察事物、思考等,讲练结合,较好地完成本节课的教学目标. 有几种位置关系?:有三种位置关系: )直线与平面平行

图形语言是: 直线a与面α相交的 直线a与面α ∥α. 图形语言是:

′C′D′的六 平面与平面平行的符号语 .图形语言是:

(1)AB没有被平面

备用例题 例1 直线与平面平行的充要条件是这条直线与平面内的() A.一条直线不相交 B.两条直线不相交 C.任意一条直线都不相交 D.无数条直线都不相交 【解析】直线与平面平行,那么直线与平面内的任意直线都不相交,反之亦然;故应选C. 例2 “平面内有无穷条直线都和直线l平行”是“α // l”的(). A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.即不充分也不必要条件 【解析】如果直线在平面内,直线可能与平面内的无穷条直线都平行,但直线不与平面 平行,应选B. 例3 求证:如果过一个平面内一点的直线平行于与该平面平行的一条直线,则这条直线在这个平面内. 已知:l∥α,点P∈α,P∈m,m∥l 求证:mα ?. 证明:设l与P确定的平面为β,且αβ= m′,则l∥m′. 又知l∥m,m m P '=,

高中数学必修二2.1-空间点、直线、平面之间的位置关系课堂练习及详细答案

2.1空间点、直线、平面之间的位置关系 2.1.1 平面 ● 知识梳理 1 2 三个公理: (1 符号表示为 A ∈l B ∈l => l α? A ∈α B ∈α 【公理1作用】判断直线是否在平面内. (2 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 【公理2作】确定一个平面的依据。 (3符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L L A · α C · B · A · α

1.已知m,n分别是两条不重合的直线,a,b分别垂直于两不重合平面α,β,有以下四个命题:①若m⊥α,n∥b,且α⊥β,则m∥n;②若m∥a,n∥b,且α⊥β,则m⊥n; ③若m∥α,n∥b,且α∥β,则m⊥n;④若m⊥α,n⊥b,且α⊥β,则m∥n. 其中真命题的序号是() A.①②B.③④C.①④D.②③ 2.在下列命题中,不是公理的是() A.平行于同一个平面的两个平面平行 B.过不在同一直线上的三个点,有且只有一个平面 C.如果一条直线上的两点在同一个平面内,那么这条直线上所有点都在此平面内 D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 3.l1,l2,l3是空间三条不同的直线,则下列命题正确的是() A.l1⊥l2,l2⊥l3?l1∥l3 B.l1⊥l2,l2∥l3?l1⊥l3 C.l1∥l2∥l3?l1,l2,l3共面 D.l1,l2,l3共点?l1,l2,l3共面 4.下面四个说法中,正确的个数为() (1)如果两个平面有三个公共点,那么这两个平面重合 (2)两条直线可以确定一个平面 (3)若M∈α,M∈β,α∩β=l,则M∈l (4)空间中,相交于同一点的三直线在同一平面内. A.1 B.2 C.3 D.4 5.已知空间三条直线l、m、n.若l与m异面,且l与n异面,则() A.m与n异面 B.m与n相交 C.m与n平行 D.m与n异面、相交、平行均有可能 6.若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列命题中的真命题是()A.若m、n都平行于平面α,则m、n一定不是相交直线 B.若m、n都垂直于平面α,则m、n一定是平行直线 C.已知α、β互相垂直,m、n互相垂直,若m⊥α,n⊥β

高中数学平面解析几何知识点梳理

平面解析几何 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针 方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:1 21121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y --=,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=. 线段21P P 的中点是),(00y x M ,则??? ????+=+=2221 0210y y y x x x .

平面、空间直线及其方程

一、向量的向量积:b a ? 二、平面及其方程 一、平面的点法式方程 1.平面的法线向量定义:垂直于一平面的非零向量叫做平面的法线向量。 平面内的任一向量均与该平面的法线向量垂直。 2.平面的点法式方程 已知平面上的一点),,(0000z y x M 和它的一个法线向量},,{C B A =n ,对平面上的任一点),,(z y x M ,有向量⊥M 0n ,即 00M M ?=n 代入坐标式,有: 此即平面的点法式方程。 【求平面方程的方法】 233231131221{, , }. a b a b a b a b a b a b a b ?=---;(1)在平面上找出一个点. (2)找出一个与平面垂直的非零向量(法向)

二、 平面的一般方程 任一平面都可以用三元一次方程来表示。 平面的一般方程为: 几个平面图形特点: 1)D =0:通过原点的平面。 2)A =0:法线向量垂直于x 轴,表示一个平行于x 轴的平面。 同理:B =0或C =0:分别表示一个平行于y 轴或z 轴的平面。 3)A =B =0:方程为0=+D C Z ,法线向量},0,0{C ,方程表示一个平行于xoy 面的平面。 同理:0=+D A X 和0=+D B Y 分别表示平行于yoz 面和xoz 面的平面。 4)反之:任何的三元一次方程,例如:011765=+-+z y x 都表示一个平面,该平面的法向量为}7,6,5{-=n 例2:设平面过原点及点)2,3,6(-,且与平面824=+-z y x 垂直,求此平面方程。 解:设平面为0=+++D Cz By Ax ,由平面过原点知 0=D 由平面过点)2,3,6(-知 0236=+-C B A , {4,1,2}⊥-n 024=+-∴C B A C B A 3 2-==? 所求平面方程为0322=-+z y x

江苏省苏州市蓝缨学校高二数学 空间两条直线的位置关系(1) 教案

教学目标 : 教学重点、难点: 重点:平行公理及等角定理。 难点:平行公理及等角定理的应用。 教学过程: 一.问题情境 数学实验:学生用自己手中的笔作为两条直线摆一摆,并观察,空间两直线的位置关系有哪些?教室内的哪些直线实例?有什么位置关系? 二、学生活动 归纳小结: 。 位置关系 共面情况 公共点个数 三、建构数学 1、问题:在平面几何中,同一平面内的三条直线a ,b ,c ,如果a ∥b 且b ∥c ,那么a ∥c ,这个性质在空间是否成立呢? 观察下面的长方体和圆柱: 归纳小结: 公理4: 。 用符号表示: 思考:经过直线外一点,有几条直线和这条直线平行? 四、数学运用 例1、如图,在长方体ABCD-A 1B 1C 1D 1中,已知E 、F 分别是AB 、BC 的中点。 求证:EF ∥A 1C 1 2、问题:在平面中,如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。这一结论在空间成立吗? 引导学生观察上图中的∠BEF 和∠B 1A 1C 1的关系归纳: 定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 (1)要求画出图形并写出已知、求证。 A B D A 1 B 1 D 1 1 A A 1 O 1 B 1 B O A B C D A 1 B 1 D 1 C 1 F

思考:如果∠BAC和∠B1A1C1的边AB∥A1B1,AC∥A1C1,且AB,A1B1方向相同,而边AD,A1D1方向相反,那么∠BAC和∠B1A1C1之间有何关系?为什么? 例2、已知E,E1分别为正方体ABCD-A1B1C1D1的棱AD,A1D1的中点。 求证:∠C1E1B1=∠CEB 练习:教材26页1、2 [拓展提高] 在空间四边形ABCD中,M、N、P、Q分别是四边形边上的点,且满足AM CN AQ CP k MB NB QD PD ====, 求证:M、N、P、Q四点共面且MNPQ为平行四边形。 五、回顾小结 六、课外作业:教材第26页第3题,第28页第7题

空间中直线与平面、平面与平面之间的关系

科目:数学 课题§2.1.3空间中直线与平面、平面与平面 之间的关系 课型新课 教学目标(1)了解空间中直线与平面的位置关系;(2)了解空间中平面与平面的位置关系;(3)培养学生的空间想象能力. 教学过程教学内容备 注 一、自主学习 1.空间点与直线,点与平面分别有哪几种位置关系?空间两直线有哪几种位置关系? 2.就空间点、线、面位置关系而言,还有哪几种类型有待分析?

二、质疑提问思考1:一支笔所在的直线与一个作业本所在的平面,可能有哪几种位置关系? 思考2:对于一条直线和一个平面,就其公共点个数来分类有哪几种可能? 思考3:如图,线段A′B所在直线与长方体ABCD-A′B′C′D′的六个面所在的平面有几种位置关系? 思考4:通过上面的观察和分析,直线与平面有三种位置关系,即直线在平面内,直线与平面相交,直线与平面平行.这些位置关系的基本特征是什么? (1)直线在平面内---有无数个公共点; (2)直线与平面相交---有且只有一个共点; (3)直线与平面平行---没有公共点. 思考5:下图表示直线与平面的三种位置,如何用符号

语言描述这三种位置关系? 思考6:直线与平面相交或平行的情况统称为直线在平面外. 用符号语言怎样表述? 思考7:过平面外一点可作多少条直线与这个平面平行?若直线l平行于平面α,则直线l与平面α内的直线的位置关系如何? 思考1:拿出两本书,看作两个平面,上下、左右移动和翻转,它们之间的位置关系有几种变化? 思考2:如图,围成长方体ABCD-A′B′C′D′的六个面,两两之间的位置关系有几种?

思考3:由上面的观察和分析可知,两个平面的位置关系只有两种,即两个平面平行,两个平面相交.这两种位置关系的基本特征是什么? (1)两个平面平行---没有公共点; (2)两个平面相交---有一条公共直线. 思考4:下图表示两平面之间的两种位置,如何用符号语言描述这两种位置关系?

空间直线和平面复习总结

空间直线和平面(一)知识结构 (二)平行与垂直关系的论证 1、线线、线面、面面平行关系的转化: 线线∥ 线面∥面面∥ 公理4 (a//b,b//c a//c) 线面平行判定 αβ αγβγ // , // I I == ? ? ? ? a b a b 面面平行判定1 a b a b a // , // ?? ? ? ? ? αα α 面面平行性质 a b a b A a b ?? = ? ? ? ? ? ? αα ββ αβ , //,// // I 线面平行性质 a a b a b // // α β αβ ? = ? ? ? ? ? ? I 面面平行性质1 αβ α β // // a a ? ? ? ? ? 面面平行性质 αγ βγ αβ // // // ? ? ? ? A b α a β a b α 2. 线线、线面、面面垂直关系的转化:

线线⊥线面⊥面面⊥三垂线定理、逆定理 PA AO PO a a OA a PO a PO a AO ⊥ ? ⊥?⊥ ⊥?⊥ α α α ,为 在内射影 则 线面垂直判定1面面垂直判定 a b a b O l a l b l , , ? = ⊥⊥ ?⊥ ? ? ? ? ? α α I a a ⊥ ? ?⊥ ? ? ? α β αβ 线面垂直定义 l a l a ⊥ ? ?⊥ ? ? ? α α 面面垂直性质,推论2 αβ αβ β α ⊥ = ?⊥ ?⊥ ? ? ? ? ? I b a a b a , αγ βγ αβ γ ⊥ ⊥ = ?⊥ ? ? ? ? ? I a a 面面垂直定义 αβαβ αβ I=-- ?⊥ ? ? ? l l ,且二面角 成直二面角 3. 平行与垂直关系的转化: 线线∥线面⊥面面∥ 线面垂直判定2面面平行判定2 面面平行性质3 a b a b // ⊥ ?⊥ ? ? ? α α a b a b ⊥ ⊥ ? ? ? ? α α // a a ⊥ ⊥ ? ? ? ? α β αβ // αβ α β // a a ⊥ ⊥ ? ? ? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: (三)空间中的角与距离 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90°

空间中直线与平面、平面与平面之间的位置关系教案

第 1 页 共 2 页 1 空间中直线与平面、平面与平面之间的位置关系 一、教学目标: 1、知识与技能 (1)了解空间中直线与平面的位置关系; (2)了解空间中平面与平面的位置关系; (3)培养学生的空间想象能力。 2、过程与方法 (1)学生通过观察与类比加深了对这些位置关系的理解、掌握; (2)让学生利用已有的知识与经验归纳整理本节所学知识。 二、教学重点、难点 重点:空间直线与平面、平面与平面之间的位置关系。 难点:用图形表达直线与平面、平面与平面的位置关系。 三、学法与教学用具 1、学法:学生借助实物,通过观察、类比、思考等,较好地完成本节课的教学目标。 2、教学用具:投影仪、投影片、长方体模型 四、教学思想 (一)创设情景、导入课题 教师以生活中的实例以及课本P 48的思考题为载体,提出了:空间中直线与平面有多少种位置关系?(板书课题) (二)研探新知 1、引导学生观察、思考身边的实物,从而直观、准确地归纳出直线与平面有三种位置关系: (1)直线在平面内 —— 有无数个公共点 (2)直线与平面相交 —— 有且只有一个公共点 (3)直线在平面平行 —— 没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示 a α a ∩α=A a ∥α 例4(投影) 师生共同完成例4 例4的给出加深了学生对这几种位置关系的理解。 2、引导学生对生活实例以及对长方体模型的观察、思考,准确归纳出两个平面之间有两种位置关系: (1)两个平面平行 —— 没有公共点 (2)两个平面相交 —— 有且只有一条公共直线 用类比的方法,学生很快地理解与掌握新内容,这两种位置关系用图形表示为 α β α β L

高中数学立体几何专:空间距离的各种计算(含答案)doc

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF =a 23,BE =a 2 1, 所以EF 2=BF 2-BE 2=a 2 1 2,即EF =a 22. 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为a 2 2. 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23,∴CF =FD =21,∠EFC =90°,EF =2221232 2=??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离. 题型二:两条异面直线间的距离 【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO =3 2 BE =332332=?. 又AB =1,且∠AOB =90°,∴AO =363312 22=?? ? ? ?? -=-BO AB .∴A 到平面BCD 的距离是36. 例1题图 例2题图 例3题图

相关文档
相关文档 最新文档