文档库 最新最全的文档下载
当前位置:文档库 › 煤热解:投资因何而热

煤热解:投资因何而热

煤热解:投资因何而热
煤热解:投资因何而热

煤热解:投资因何而热?

近两年来,一个长期沉寂的传统煤化工技术——煤热解又重新热了起来。陆续上马的煤热解项目不单单集中在煤炭资源丰富的内蒙古、新疆和陕西等地,而且在山东、河南、甘肃等地也是热度高涨。有企业提出直接上马年产500万吨以上项目,而且这种同时产油产气产半焦的煤炭分质利用模式也被地方政府推崇,列为当地经济转型项目,督促企业上马。

2013年3月29日,新疆庆华集团煤炭分质综合利用项目正式破土动工,拟建一期工程规模为年处理400万吨干煤(折原煤约500万吨),主要包括400万吨/年煤炭中低温热解和50万吨/年煤焦油加氢项目。

2014年5月24日,新疆京能建设投资有限公司800万吨/年煤炭分质综合利用项目召开可研评估会,主要产品为35万吨/年石脑油、95万吨/年轻质燃料油、3.16万吨/年LPG。

2014年5月26日上午,酒钢集团公司、广汇能源公司的1000万吨/年煤炭分质利用项目开工奠基仪式在嘉北工业园举行。该项目先行启动一期150万吨煤炭干馏提质及50万吨焦油加氢装置。一期工程建成后,可年产提质煤65万吨、1号加氢油12万吨、2号加氢油32万吨、加氢尾油1.5万吨、液化气0.5万吨。该项目列入了甘肃省2014年省列重大项目,今年将重点推进。

2014年7月4~6日,国家能源局能源节约和科技装备司委托中国国际工程咨询公司组织有关专家一次性论证通过了新疆准东6个大型煤炭分级分质综合利用示范项目,以全面提升准东经济技术开发区煤化工精细化发展水平。

…………

为什么传统的煤热解项目近两年投资热情如此高涨?我国煤热解项目整体运

行情况如何?当前还面临哪些问题亟待解决?对此,中国化工报记者进行了深入调研。

传统技术梅开二度

煤热解,也称煤的干馏或热分解,是指煤在隔绝空气的条件下进行加热,把煤里面的焦油和煤气蒸发出来,得到焦油、煤气、半焦的过程。据中国化工报记者了解,煤热解与煤液化、煤气化主要有以下几点区别:

首先是工艺不同。煤液化是将煤在高温下加氢裂解;煤气化是煤在高温条件下,以氧气、水蒸气或氢气作气化剂的一种反应;煤热解是一种加热蒸发的过程。

其次是得到的产品不同。煤液化得到的是柴油、汽油;煤气化得到的是气体;煤热解能得到3种产品:焦油、煤气、半焦。

此外,与煤气化比,煤热解产出的煤气量少;与煤液化相比,煤热解得到的燃料油比重大、密度高、十六烷值低,质量不如煤液化的好。

该技术最早产生于19世纪,起源于德国,发明之初主要用于制取煤焦油,也用于生产炼铁用焦炭和燃料气。由于该技术的能源转化率很高,一直被国内外认为是与煤气化、煤液化并列的第三种煤炭转化技术。

虽然煤热解技术在19世纪就已出现,但受技术所限,生产的产品比较简单,当时主要用于制取灯油和蜡。19世纪末,因电灯的发明,煤热解趋于衰落。第二次世界大战前夕及大战期间,纳粹德国出于战争目的,建立了大型煤热解厂,以褐煤为原料生产煤焦油,再高压加氢制取汽油和柴油。战后,由于大量廉价石油的开采,煤热解再次陷于停滞状态。

在国内,上世纪50年代,我国很多城市用的煤气还是通过煤热解产生。后

来,随着石化产业的发展,煤热解技术渐渐萎缩,其经济价值也没有得到最大限度地发挥。所以该技术虽在我国有一定的发展,但一直处于受冷落的状态。近年来,随着煤化工产业的兴起,这种已经有上百年发展历史的传统煤化工技术也老树开新花,带起了一股研发与上马热潮。

业内专家表示,热解属于传统的煤化工技术,是很多年前就有的技术。只是由于过去的利用技术不高,其经济价值没有得到发挥。现在,随着相关技术的提高,煤热解有望向大型化、一体化、多联产的方向发展。

针对各地陆续上马煤热解项目热度不减的形势,记者在近期调研中,却听到专家这样的评价:

“目前,年产30万吨以上的装置没有一套能连续开起来的。”说这话的是考察过国内多家煤热解装置的延长石油集团西湾煤化工项目筹建处技术顾问李佩玉。

“目前煤热解项目还没有哪一项技术能够实现安全、稳定、长周期经济运行。”石油化工规划院能源化工处高级工程师刘思明也表达了如此观点。

既然煤热解项目运行并不尽人意,为什么近年来煤热解项目投资热情如此高涨?

中国化工报记者综合了业内专家对煤热解市场的主流评价:企业对目前运行的年产几万甚至几十万吨煤热解装置运行状况缺乏真实、客观、全面的了解,缺乏对各类技术客观的评价分析,以及对煤热解的特殊性和难度的充分估计,这是造成煤热解项目盲目热情高涨的原因。

三大问题难以攻克

业内专家表示,目前煤热解产业还存在不少问题,有待进一步解决。

一是技术还不成熟。

刘思明告诉中国化工报记者,煤热解还处于观望期,要说哪种技术好,都还缺乏工业化装置连续化稳定运行的支撑。

全国煤化工设计技术中心主任、中国工程设计大师李大尚表示,当前煤热解技术还不成熟,工业技术还不过关,焦油里面灰含量高,分离困难。而且焦油在煤气里面,整个系统容易堵塞,分离也很困难。

李佩玉则明确表示,煤热解、电、气、油一体化联合生产还存在一定的技术难题,热解过程中的气液产品收率和品质控制没有实现突破;焦油中灰含量达20%,分离困难,不能市场应用,装置根本无法长时间连续运行;半焦的加工主要为湿法熄焦,热能损失大;湿法熄焦工艺实际运行中吨煤水耗高达0.6吨,会产生大量难以处理的煤泥水,环境污染严重;褐煤中携带的水分和热解产生的水分,除一小部分用于冷激半焦(熄焦)后转入半焦,大部分随烟气排入大气中。另外,热解得到的半焦粉化严重,挥发分较低,燃烧性大大降低,质量难以满足国内铁合金、电石等行业的指标要求,市场需求和适用范围受限。

二是有待工程化。

刘思明认为,目前,干燥、热解的机理研究相对滞后,这会在一定程度上制约工程化。因此,目前的示范项目应当针对存在的工程化问题进行攻关,加强反应调控和油气质量控制能力;研究煤层厚度、停留时间、气化温度、产品组分间的关系,尽快实现热解的定向转化,尽可能多地生产高附加值轻质油气产品和高质量的半焦产品;优化工艺流程,实现热解过程自身的热量平衡。

三是工艺待优化。

刘思明表示,由于缺乏对煤质与工艺条件间变化规律的深入研究,导致无法在煤质变化时对工艺过程中的控制温度、氧量、粒度、介质特性等条件做出及时、准确的调整。当前应当加大对褐煤热解过程的基础研究,深入了解褐煤热解过程中的行为变化和外部条件对其的影响。

“煤热解应当从整体上考虑产品的用途,必须解决半焦的利用问题。”上海兖矿能源科技研发公司总经理孙启文表示,“1000万吨/年煤热解一年要出半焦700万吨,这么多的半焦怎么利用是个问题。不能最高端的油气提取了,最难处理的半焦放那里了。”

多联产应是最佳选择

面对当前存在的一些问题,接受采访的业内专家一致认为,煤热解可以走出新路,但前提是综合利用产物,要走规模化、多联产的路子。

据了解,利用褐煤发展煤热解、走规模化之路,在国际上也有先例。目前,国外主要的褐煤加工技术有德国的低温热解工艺、前苏联的褐煤固体热载体热解工艺、美国的温和气化技术、日本的煤炭快速热解技术和加拿大的阿特伯干馏技术等。

近几年,国内煤热解新工艺的开发,也给煤热解的规模化、多联产提供了技术上、工程化上的探索。但是,现有煤热解技术大多停留在半焦一焦油一煤气阶段,半焦、焦油作为初级产品简单出售,煤气放空或燃烧,属于短期、粗放式的生产方式,能源转化效率低。循环流化床热一电一气多联产技术实现了煤、电、气、油一体化联合生产,但尚存在一定的技术难题。同时,也缺乏对煤气、焦油等副产物的配套回收工程。目前的煤热解单炉年生产能力为2万~5万吨,甚至更小,单炉只有提高至百万吨级规模才能形成高效的产业化规模。

不过,多位业内人士也指出,国内热解多联产技术工业化还处于起步阶段,

因此应坚持先示范后推广的原则,不可一哄而上。今后应先对几万到几十万吨煤热解示范装置存在的技术难题进行攻关,保证示范装置长周期稳定运行。

此外,也有专家指出,对于煤热解的投资,应当从整个多联产角度计算。

据了解,热解产的焦油量以及加氢得到的燃料油量很少,大部分煤其实都是变成了兰炭,如果不对兰炭进行有效利用,等于做了一个不完整的工厂。比如,建设380万吨/年的煤热解项目,生成的煤气为4.56亿立方米/年,另有50万吨/年煤焦油加氢、190万吨/年粉焦作为16亿立方米/年合成气项目的原料及燃料,建设此完整工厂的总投资要80亿元以上,远高于报告宣称的数字。此外,热解后煤焦油加氢的氢气就要靠煤的气化、空分和净化得到。因此,多联产的投资只能算总账,没办法对每个产品进行分摊。

坚持先示范后推广

多位专家还强调,目前的技术都没有经历工业示范装置有置信度的验证,已经投产的装置常常发生由于安全、环保、能耗指标不能达到预期的设计要求,设备运行可靠性不高,长期出现反复整改的现象。因此,煤热解应当坚持先示范后推广。

李大尚表示,煤热解经济规模至少在几百万吨以上。当前应当解决示范装置存在的问题,使其能够长周期稳定地运行起来。

国家能源低阶煤综合利用研发中心主任夏吴认为,我国褐煤综合利用的很多现有路线看似合理,但在规模化、工程化应用上还存在着一系列难题,经济性也有待进一步提高,综合利用应稳步推进,不宜操之过急。

据中国化工报记者了解,重点发展煤热解的陕煤化集团今年面向国内外发布的科研项目,要求进行中低温热解油气与热解粉焦气固在线分离技术及关键设备

开发研究,除尘后焦油中含尘量要求≤5%wt;中低温热解半焦干熄焦技术及关键设备开发,要求半焦显热吸收率≥80%,排焦温度60~80℃或更低,进一步提高能源利用率。同时,对中低温热解产物粉焦也要求综合利用,提出粉焦替代锅炉燃料技术开发研究,要求粉焦掺烧比大于50%;粉焦替代高炉喷吹原料技术开发,要求粉焦掺喷比例大于60%。

夏吴指出,国家应引导相关科研设计单位加大对低阶煤的基础性和系统性研究,明确示范项目准入门槛,在单系列处理能力、能效、消耗和“三废”排放等方面设置严格的定额指标,禁止不成熟的技术商业推广。超越阶段使用未被商业示范成功验证的技术,不仅会造成资产的闲置,而且还会导致资源的浪费。

(来源:中国煤化工产业网)

生物质与煤共热解特性研究

生物质与煤共热解特性研究 摘要:选取一种典型生物质样品(棉秆),并将生物质样品与煤分别以1:9、3:7、5:5的质量比混合。采用热重分析法,在相同升温速率下,对各样品进行热解实验,探讨了生物质与煤热解特性的差异以及它们共热解时生物质对煤热解过程的影响。研究表明,生物质与煤的热解特性差异很大:生物质热解温度低,热解速度快,而煤相对热解速度慢,热解温度高;在生物质与煤混合热解时,总体热解特性分阶段呈现生物质和煤的热解特征;随混煤中生物质比例的增加,热解温度降低,热解速度变快。 关键词:热重分析生物质煤热解共热解 随着人们越来越关注化石能源的使用对生态环境的不利影响,生物质能源的利用份额逐年上升[1]。但是,由于生物质分布分散、能量密度低、收集运输和预处理费用高、热值低、水分大、转化利用需要外热源等缺点[2],使得单独利用生物质燃料的设备容量较小、投资费用较高、系统独立性差和效率低。为了使生物质在较短期内实现大规模有效利用,并具有商业竞争力,生物质与煤混合燃烧和转化技术在现阶段是一种低成本、大规模利用生物质能源的可选方案。 1 生物质能的转化 生物质的利用转化方式主要有直接燃烧、热化学转化和生物转化[3]。热化学转化是指高温下将生物质转化为其它形式能量的转化技术,包括气化(在气体介质氧气、空气或蒸汽参与的情况下对生物质进行部分氧化而转化成气体燃料的过程)、热解(在没有气体介质氧气、空气或蒸汽参与的情况下,单纯利用热使生物质中的有机物质等发生热分解从而脱除挥发性物质,常温下为液态或气态,并形成固态的半焦或焦炭的过程)和直接液化(在高温高压和催化剂作用下从生物质中提取液化石油等);生物转化法是指生物质在微生物的发酵作用下产生沼气、酒精等能源产品。 固体生物质的热解及其进一步转化是开发利用生物质能的有效途径之一。在生物质热化学转化过程中,热解是一个重要的环节。生物质形态各异,组成多为木质素、纤维素等难降解有机物,与矿物燃料不同,因此生物质热解过程是一个复杂的过程,影响生物质热解的运行参数有终端温度、加热速率、压力和滞留时间等[4]。生物质的组成、结构等对热解也都有影响。研究生物质与煤共同作为燃料所具有的特性可为更广泛的利用生物质能提供参考依据。 2 试验 2.1 试验仪器及性能指标 采用美国Perkin-Elmer公司生产的热重-差热联用仪(TG/DTA),其性能指标如下:

煤热解动力学研究

煤热解动力学研究 引言 热解是煤燃烧、气化和液化等热加工工业中的基本过程之一,也是成煤过程中的基本环节[1]。因此,研究煤的热解不仅为煤的热加工过程提供科学依据,也能为加深煤化学研究提供重要信息。在研究煤的热解动力学过程中,必然涉及反应速率与活化能和指前因子等动力学参数[2-4]。本文着重探索几种热解模型和热解动力学模型,并针对在还原气氛下进行煤热解这一课题,进行动力学选择和分析。 1热解模型 随着近十几年的现代仪器的发展,采用Py-FIMS、13C-NMR(碳核磁共振波谱法)、TG-FTIR(红外光谱仪)等手段对煤结构的研究,使得人们有可能有可能以煤的结构为基础研究煤的热解机理,并由此建立了比较成功的煤热解网络模型,如由用来描述气体逸出与焦油形成的降解一蒸发一交联的FG-DVC模型、FLASHCHAIN模型和化学渗透脱挥发分(CPD)模型。这些模型都是用简化的煤化学和网络统计学描述焦油前驱体的生成,但在网络几何形状、断桥和交联化学、热解产物、传质假设和统计方法上各有不同[5]。 1.1 FG-DVC热解模型 FG-DVC(Functional Group Depolymerization Vaporization Crosslinking)模型是由用来描述气体逸出的官能团模型与描述焦油形成的降解一蒸发一交联模型结合而成的。FG模型是用来描述煤、

半焦和焦油中气体的产生与释放机理;DVC模型是用来描述在桥键断裂和交联发生的影响下煤中大分子网络所发生的分解和缩聚行为,预测碎片的分子量分布情况[6]。FG-DVC模型的基本概念:(1)煤中官能团分解产生小分子类热解气体;(2)大分子网络分解产生焦油和胶质体;(3)胶质体分子量的分布由网络配位数决定;(4)大分子网络的分解是由桥键的断裂来控制,而桥键的断裂是受活泼氢限制;(5)网络的固化是由交联控制的,交联的发生伴随着二氧化碳(桥键断裂前)和甲烷(桥键断裂后)的放出。低阶煤(放出大量二氧化碳)在桥键断裂以前发生交联,高挥发分的烟煤(几乎不产生二氧化碳)在交联前就经历了明显的桥键断裂具有高流动性,故放出二氧化碳量的增加致交联的增加和流动性的降低;(6)焦油的逸出是受传质控制的(焦油分子蒸发到小分子气体或焦油蒸汽中以与其蒸汽压或轻组分体积成比例的速度被带出煤粒,高压减小了轻组分体积,所以就降低了具有较低蒸汽压大分子类产品的产量)。 Serio等[7]对FG模型作了进一步假设:1)大部分官能团独立分解生成轻质气体;2)桥键热分解生成焦油前驱体,前驱体本身也尤其代表性的官能团组成;3)焦油和轻质烃或其它组分相互竞争煤中的可供氢以稳定自由基,一旦内部供氢耗尽,焦油和轻质烃类(除CH4外)便不在生成;4)焦油和半焦的官能团以相同速率继续热解。 DVC模型最初用蒙特卡罗法来分析断键、耗氢和蒸发过程,后来也开始使用渗透理论,只是在个别概念上稍有修正。DVC模型为焦油生成提供了统计基础,该模型假定断键裂为单一的乙撑性断键,其活

生物质热解与煤热解气化比较与现状

生物质热解与煤热解气化比较与现状 关键词:生物质煤热解 研究表明[1],生物质与煤的热解特性差异很大;生物质热解温度低,热解速度快,而煤相对热解速度慢,热解温度高。 现今单一煤种的热解在各方面都已经得到广泛的研究,而生物热解方面也正在取得巨大的研究成果。煤热解的气体产物以一氧化碳、甲烷和氢气为主,其中固体产物为固体焦和焦油。生物质热解气化产物主要是不饱和烃类气体和大量的氢气,还有不饱和烃类液体例如苯等。但是相比之下,由于大量水分的存在,生物质热解气化失重率比较大,而由于硫的掺杂,煤气化热解的产物中含有大量含硫氮化合物,使之燃烧会造成严重的环境污染。 为了提高脱硫脱氮的效率和改善煤单独热解产物不饱和度较高的问题,科学各界开始对生物质同煤共热解进行了研究和探索。研究结果[2]表明,生物质可阻止强粘结性煤热解过程中颗粒之间的粘结,得到粒状焦炭;生物质热解生成较多的H2,有利于煤中硫和氮的脱除;同时随着温度的升高、煤粒度的减小和煤变质程度的降低,热解脱硫和脱氮率增大。 根据研究[2]可知,生物质热解的最大热解峰(低于400摄氏度)和煤的最大热解峰(高于400摄氏度)不重合,而且差值有的在100摄氏度以上。由此可知,生物质与煤共同热解没有明显的协同作用。为了解决不同步热解的问题,科学界提出了两步法煤与生物热解、利用煤的黑度比生物质高的特点以辐射的加热方式进行同步加热、两段管式炉分步控温进行热解等。这些方法的核心都在于利用生物质的富氢产物为煤脱硫脱氮提供天然低廉的氢来源,同时也提高了煤的轻质液相产率,气体中的不饱和烃含量降低,将富裕的生物氢转移到了缺氢的煤焦中。 鉴于生物质与聚合物及生物质与煤的共热解或两步法热解具有很大的优势,加强生物质与聚合物的共热解和生物质与煤的共热解及两步法热解的研究显得很有必要。深入研究生物质与聚合物共热解的协同作用的机理,加强研究生物质与煤共热解中脱硫、脱氮及固体焦具有较强吸附能力的机理,同时,进一步研究改进生物质与煤两步法热解的工艺,为实现生物质中富裕的氢向煤的转移提供可能。 参考文献 [1] 尚琳琳,程世庆,张海清。生物质与煤共热解特性研究 [2] 马光路。生物质与聚合物、煤供热解研究进展

煤的热解与粘结成焦07.8.30

煤的热解与粘结成焦 煤的热解是指煤在隔绝空气或在惰性气体条件下持续加热至较高温度时,所发生的一系列物理变化和化学反应的复杂过程。粘结和成焦则是煤在一定条件下的热解的结果。由于命名尚未统一,除“热解”(Pyrolysis)这一名称外,还常用“热分解”(thermal decomposition)和“干馏”(carbonization)等术语。 煤的热加工是当前煤炭加工中最重要的工艺,大规模的炼焦工业是煤炭热加工的典型例子。研究煤的热解与煤的热加工技术关系极为密切,对煤的热加工有直接的指导作用,例如,对于炼焦工业可指导正确选择原料煤,探索扩大炼焦用煤基地的途径,确定最佳工艺条件和提高产品质量。此外,还可以对新的热加工技术的开发,如高温快速热解,加氢热解和等离子热解等起指导作用。 煤的热解与煤的组成和结构关系密切,可通过热解研究阐明煤的分子结构。此外,煤的热解是一种人工炭化过程,与天然成煤过程有些相似,故对热解的深入了解有助于对煤化过程的研究。 炼焦是将煤放在干馏炉中加热,随着温度的升高(最终达到1000℃左右)。煤中有机质逐渐分解,其中,挥发性物质呈气态或蒸汽状态逸出,成为煤气和煤焦油,残留下的不挥发性产物就是焦炭。焦炭在炼铁炉中起着还原、熔化矿石,提供热能和支撑炉料,保持炉料透气性能良好的作用。因此,炼焦用煤的质量要求,是以能得到机械强度高、块度均匀、灰分和硫分低的优质冶金焦为目的。 1 粘结性烟煤受热时发生的变化 煤在隔绝空气条件下加热时,煤的有机质随温度升高发生一系列变化,形成气态(干馏煤气)、液态(焦油)和固态(半焦或焦炭)产物。 煤的热解过程大致可分为三个阶段: (1)第一阶段(室温到350~400℃ )。从室温到活泼热分解温度(Td,除无烟煤外一般为350~400℃),称为干燥脱气阶段。褐煤在200℃以上发生脱羧基反应,约300℃开始热解反应,烟煤和无烟煤的原始分子结构仅发生有限的热 作用(主要是缩合作用)。120℃前主要脱水,约200℃完成脱气(CH 4、CO 2 和 N 2 )。 (2)第二阶段(Td~550℃)。这一阶段的特征是活泼分解,以解聚和分解反应为主。生成和排出大量挥发物(煤气和焦油),约450℃排出的焦油量最大,在450~500℃气体析出量最多。烟煤约350℃开始软化,随后是熔融、粘结,到500℃时结成半焦。 烟煤(尤其是中等变质程度烟煤)在这一阶段经历了软化熔融、流动和膨胀直到再固化,出现一系列特殊现象,并形成气、液、固三相共存的胶质体。液相中有液晶(中间相)存在。胶质体的数量和质量决定了煤的粘结性和结焦性。固体产物半焦与原煤相比,芳香层片的平均尺寸和氦密度等变化不大,这表明半焦生成过程中缩聚反应并不太明显。 (3)第三阶段(550~1000℃ )。又称二次脱气阶段。在这一阶段,半焦变成焦炭,以缩聚反应为主。析出的焦油量极少,挥发分主要是煤气。煤气成分主要 是H 2,少量CH 4 和C的氧化物。焦炭的挥发分小于2%,芳香核增大,排列的有

煤的粘结性和结焦性

煤的粘结性和结焦性 煤的粘结性就是烟煤在干馏时粘结其本身或外加惰性物的能力。煤的热解结焦性就是在工业焦炉中结成焦炭的能力。煤的粘结性是评价干馏、炼焦、气化、动力用煤的重要依据。 煤粘结性是在煤的热解,即干馏时考虑的,特指烟煤。从煤的热解过程可知,褐煤、无烟煤无粘结性。 4.1.粘结指数GR.I---GRI 是煤炭分类国家标准GB5751-86中代表烟煤粘结性的主要分类指标。测定方法是:将一定质量和专用无烟煤,按规定的条件混合(1:5),快速加热成焦,所得焦块在一定规格的转鼓内进行强度检验,以焦块的耐磨性强度,表示煤样的粘结能力。 4.2.胶质层指数 胶质层指数的测定是测定煤的胶质层最大厚度(以Y表示),焦块最终体积收缩X及收缩曲线三个参数来描述煤样的粘结能力。方法是煤样在杯中逐渐加热,并观察记录过程情况。奥阿膨胀度与此类似。 4.3.葛金低温干馏试验 是用来评价煤的结焦性的的指标。最后以焦型来定粘结性和结焦性。 试验方法如下:将煤样装入干馏管中,置干馏管于葛金低温干馏炉内,以一定升温程序加热到最终温度600℃,保持一定时间,测定所得的焦油、热解水和半焦产率,同时将焦炭与一组标准焦型比较定出型号。从A到G粘结性越来越大。 A:不粘结 B:微粘结 C:粘结 D:粘结微熔融 E:熔融 F:横断面完全熔融 G:完全熔融,开始膨胀 4.4.煤的铝甑低温干馏试验 为了评定煤的炼油适合性以及干馏产物,常用铝甑低温干馏试验方法。要点是:将煤样装在铝甑中,以一定程序加热到510℃,保持一定时间,测定所得的焦油、热解水和半焦和煤气的产率。评价煤的低温干燥焦油产率时用空气干燥基指标Tarad。Tarad>12%称为高油煤,Tarad=7—12%称为富油煤,Tarad≤7%称为含油煤。

煤与生物质共热解研究进展

煤与生物质共热解的研究进展 1研究背景 目前,国内外对单独的煤或生物质热解气化研究都相对比较成熟,由于煤是由生物质经几千万年以上转换而得来的,研究表明,生物质特性和利用方式与煤炭有很大的相似性。如果能将两者热解过程有效地结合起来,实现生物质与煤的共热解,势必能扬长避短,得到更好的效果。热解是生物质与煤利用技术中具有共性的重要问题。 煤在500°C热解产物以焦炭为主;在500~650°C快速热解产物以焦油或生物油为主;在800~1100°C以可燃气为主。 影响生物质与煤热解过程及产物的因素有:①生物质或煤的物料特性;②热解终温的高低;③升温速率的快慢。生物质与煤的混合共热解,既能克服生物质能量密度低的问题,又能发挥生物质本身的特点,实现高附加值化工产品的富集。在对煤与生物质的热解研究中,目前对于催化热解机理,升温速率影响,混烧方式以及反应动力学进行了较多的研究,其中对于二者的混合共热解成为重要课题。 2生物质与煤共热解特性及动力学研究 目前,国内外对生物质与煤共热解研究主要在于二者的协同作用。对于协同作用问题,主要存在两种观点:一种认为生物质与煤共热解时存在协同作用;另一种是二者不存在协同作用 2.1 单独生物质和煤的热失重曲线比较. 图2-1[1]比较了生物质和煤的热失重曲线,可以看出,煤和生物质的DTG 曲线图中都出现了两个峰,也即脱水峰和脱挥发分峰。在50~200℃的低温阶段,煤和生物质都出现不同程度的脱水峰,这是由于煤和生物质本身都含有水分所致,物料所含水分越高,该段TG 曲线变化越明显。随着热解温度的上升,煤和生物质进入热解主要失重阶段。此段生物质的失重率急剧增大,且生物质的总热解转化率明显高于煤,这与两者的组成成分和分子结构有关。由于生物质与煤组成结构不同,其热解过程也大不相同。生物质是由纤维素、半纤维素以及木质素通过相对较弱的醚键(R-O-R)结合,其结合键能较小(380~420kJ/mol),在较低的热解温度下就断裂。因此,成分中含有较多纤维素和半纤维素的玉米秸秆(CS)在220℃左右就已开始热解,并在540℃左右就已基本热解完毕。而成分中含有较多木质素的木屑(SD)的热解起始温度稍高于CS,在230℃左右开始析出挥发分,并在590℃左右就已基本热解完毕。煤主要是C=C 键(键能为1000kJ/mol)相连的多环芳香碳氢化合物构成的大分子芳香聚合物,分子结合较强,在较低温度下很难断裂,因此煤热解温度较高。从表2-1 工业分析可知,生物质的挥发分含量要远远大于煤。以上因素都可能导致生物质更高的总热解转化率。 从DTG 曲线来看,两种生物质的挥发分开始析出温度为在225℃左右,其最大热解峰温分别为340℃左右(CS)和370℃左右(SD)左右,两种煤的挥发分开始析出温度分别为350℃左右(LC)和440℃左右(MC),其热解峰温分别约为470℃(LC)和580℃(MC)。煤的挥发分开始析出温度比生物质要高130~210℃,其主要热解阶段温度比生物质要高130~240℃。可见,生物质和煤的热解过程中主要热解阶段温度相差较大,当煤开始热分解时,生物质的大部分已经热解掉了。 因此,使两种物料在相同或相近的温度范围内共热解,生物质中富裕的氢才会尽可能有效的被煤利用而使两者共热解过程中发生协同效应。

煤热解调研报告

煤热解调研报告 梁欢 一、煤热解概述 煤的热解也称为煤的干馏或热分解,是指煤在隔绝空气的条件下进行加热,煤在不同的温度下发生一系列的物理变化和化学反应的复杂过程。煤热解的结果是生成气体(煤气)、液体(焦油)、固体(半焦或焦炭)等产品,尤其是低阶煤热解能得到高产率的焦油和煤气。 焦油经加氢可制取汽油、柴油和喷气燃料,是石油的代用品,而且是石油所不能完全替代的化工原料。煤气是使用方便的燃料,可成为天然气的代用品,另外还可用于化工合成。半焦既是优质的无烟燃料,也是优质的铁合金用焦、气化原料、吸附材料。用热解的方法生产洁净或改质的燃料,既可减少燃煤造成的环境污染,又能充分利用煤中所含的较高经济价值的化合物,具有保护环境、节能和合理利用煤资源的广泛意义。 总之,热解能提供市场所需的多种煤基产品,是洁净、高效地综合利用低阶煤资源提高煤炭产品的附加值的有效途径。各国都开发了具有各自特色的煤炭热解工艺技术。 1.热解工艺分类: 煤热解工艺按照不同的工艺特征有多种分类方法。 按气氛分为惰性气氛热解(不加催化剂),加氢热解和催化加氢热解。 按热解温度分为低温热解即温和热解(500 ~650 ℃)、中温热解(650 ~800 ℃)、高温热解(900 ~1000 ℃)和超高温热解(>1200 ℃)。 按加热速度分为慢速(3 ~5 ℃/min)、中速(5 ~100 ℃/s)、快速(500 ~105℃/s)热解和闪裂解(>106℃/ s)。 按加热方式分为外热式、内热式和内外并热式热解。 根据热载体的类型分为固体热载体、气体热载体和固-气热载体热解。 根据煤料在反应器内的密集程度分为密相床和稀相床两类。 依固体物料的运行状态分为固定床、流化床、气流床,滚动床。 依反应器内压强分为常压和加压两类。 煤热解工艺的选择取决于对产品的要求,并综合考虑煤质特点、设备制造、工艺控制技术水平以及最终的经济效益。慢速热解如煤的炼焦过程,其热解目的是获得最大产率的固体

煤热解主要装置和技术汇总

煤热解主要装置和技术 (一)鲁奇鲁尔煤气公司法(LurgiRuhrgas) 1.工艺简介 该法是由LurgiGmbH公司(联邦德国)和RuhrgasAG公司(美国)开发研究的,其工艺流程见图1-1。粒度小于5mm的煤粉与焦炭热载体混合之后,在重力移动床直立反应器中进行干馏。 产生的煤气和焦油蒸气引至气体净化和焦油回收系统,循环的焦炭部分离开直立炉用风动输送机提升加热,与废气分离后作为热载体再返回到直立炉。在常压下进行热解得到热值为26~32MJ/m3的煤气,半焦以及煤基原油,后者是焦油产品经过加氢制得。 2.开发应用状况 此工艺过程在日处理能力12t煤的装置上已经掌握,并建立了日处理250t煤的试验装置以及日处理800t煤的工业装置。

(二)大连理工大学固体热载体干馏新技术 1.工艺简介 大连理工大学郭树才等人开发的固体热载体干馏新技术主要实验装置有混合器、反应槽、流化燃烧提升管、集合槽和焦油冷凝回收系统等。原料煤粉碎干燥后加入原料槽。干馏产生的半焦为热载体,存于集合槽,煤和半焦按一定的焦煤比分别经给料器进入混合器。由于混合迅速而均匀,物料粒度小,高温的半焦将热量传给原料粒子,加热速度很快,煤即发生快速热分解。由于煤粒热解产生的挥发物引出很快,二次热解作用较轻,故新法干馏煤焦油产率较高。经混合器混匀的物料进入反应槽,在此完成干馏过程,析出干馏气态产物,即挥发产物。反应槽固态产物半焦经给料器进入燃烧器。半焦或加入的燃料与预热的空气进行燃烧,使半焦达到热载体规定的温度,在提升管中被提升到一级旋风分离器,半焦与烟气分离。热半焦自一级旋风分离器人集合槽,作为热载体循环。多余的半焦经排料槽作为干馏产物外送。烟气在二级旋风分离器除尘后外排。干馏气态产物自反应槽导出后,经过除尘器、空冷器和水冷器析出焦油和水。煤气经干燥脱去水分,在-30℃左右条件下进行冷冻,回收煤气中的汽油。净煤气经抽气机及计量后送出。 2.开发应用状况 已完成多种油页岩、南宁褐煤、平庄褐煤和神府煤的10kg/h的试验室实验,在内蒙古平庄煤矿进行了能力为150t/d的褐煤固体热载体热解的工业性实验并建成5.5万t/a的工业示范厂。 (三)COED法 1.工艺简介 该工艺由美国FMC和OCR联合开发,采用低压、多段、流化床煤干馏工艺流程见图1-2。

煤与生物质

?煤与生物质(稻秸秆)共热解反应及动力学分析 ?发布时间:2009-10-16 阅读次数:218 字体大小: 【小】【中】【大】 煤与生物质(稻秸秆)共热解反应及动力学分析摘要:本文利用综合热分析仪,对煤(褐煤、无烟煤)与稻秸秆按不同比例混合及各自单独热解反应进行了热解实验。结果表明,生物质与煤的热解过程可简化看作是在较低温度段(400℃以下)热解以生物质为主;在高温段(600℃~850℃)热解以煤为主。生物质对煤的热解过程有促进作用,随着生物质参混比例的上升,使煤的热解高峰区的温度向低温区移动。但是促进程度是随着生物质的量的增加而减小的,并且对褐煤的促进作用要比对无烟煤的作用明显。在动力学分析中,发现褐煤和生物质单独热解过程在整个热解温度范围内可用 coats-Redfern法按反应级数n=1的过程来计算出热力学参数;但是两者混合后的热解过程,由于反应机理及过程发生了变化,并不能用简单的热解动力学模型来描述;最后,对无烟煤与稻秸秆(质量比例3:2)的混合物按升温速率分别为10℃/min和20℃/min的热解过程作了对比试验,总结出升温速率对热解反应的影响。 关键词:煤与生物质稻秸秆热重分析动力学参数 中图分类号:TK6 一引言 生物质是人类利用最早、最多、最直接的能源,同时也是低碳燃料和唯一可运输及储存的可再生能源,可实现CO2的零排放。我国生物质储量丰富,因此生物质能的开放和利用有着重大意义[1]。同时我国煤炭资源丰富,在今后很长一段时间内对煤炭的依赖性还很大。生物质与煤混合燃烧发电和热解转化技术是高效洁净合理利用我国两大优势能源的有效途径之一,不但可降低CO2、NOX 、SOX 的排放量,而且可以有效解决生物质单独使用时的焦油问题。 对于煤与生物质共热解的问题,国内外的学者作了不同结论的实验研究。对于其协同性问题,存在两个对立的观点。Chatphol.M[2]、Collot.A.G[3]等人,各自在实验中得到无协同作用的结论;而Nikkhah.K[4]、McGee.B[5]等人则在共热解试验中得出有协同性的结论。阎维平[6]用生物质混合物与褐煤的共热解试验证明生物质粉末对煤的热解有一定的促进和抑制的作用,两者间有协同性存在;而李文[7]、李世光[8]等人则通过试验说明两者无明显的协同作用。虽然各国学者对煤与生物质的共热解,做了很多实验研究,但是对反应机理和有无协同性等问题并未作出结论。 由于煤的种类众多,生物质与煤共热解的特性与煤的种类也应该有关,且还没学者对共热解过程进行深入的动力学分析,因此,本实验选用稻秸秆作为生物质试样,与褐煤及无烟煤分别进行了共热解的实验研究,寻求共热解的影响因素并进行了动力学分析。 二实验部分 1 实验样品 实验所考察的稻秸秆来自常州地区的稻子,褐煤选自云南富源煤矿,无烟煤来自山西长治的潞安矿。三者粒径均在20目到60目之间,将物料干燥后制成不同比例的试样,以备热重实验使用。表1为三种物料的工业分析参数; 名称M ad A ad V ad Fc ad 稻秸杆18.16 15.97 53.52 11.85

煤的热解

煤的热解—干馏 所谓煤的热解,是指在隔绝空气的条件下,煤在不同温度下发生的一系列物理、化学变化的复杂过程。其结果是生成气体(煤气)、液体(焦油)、固体(半焦或焦炭)等产品。煤的热解也称为煤的干馏或热分解。按热解最终温度不同可分为:高温干馏900-1050℃,中温干馏700--800℃,低温干馏500-600℃。煤的干馏是热化学加工的基础。 3.1.热解过程: 从上可见,煤的焦化过程大致可分为三个阶段。 第一阶段(室温~300℃),从室温到300℃为干燥、脱吸阶段,煤在这一阶段外形没有什么变化,120℃前是脱水干燥,120-200℃是放出吸附在毛细孔中的 气体,如CH 4、CO 2 、N 2 等,是脱气过程。 第二阶段(300~550或600℃),这一阶段以解聚和分解反应为主,煤形成胶质体并固化黏结成半焦。煤在300℃左右开始软化,强烈分解,析出煤气和焦油,煤在450℃前后焦油量最大,在450~600℃气体析出量最多。煤气成分除热解水,一氧化碳和二氧化碳外,主要是CH4及不饱和气态烃。这一阶段由于产生了气,液,固三相共存的胶质体(特别是中等变质程度的烟煤),产生了熔融,流动和膨胀到再固化的过程。 第三阶段(600~1000℃),以缩聚反应为主,这是半焦变成焦炭的阶段,以缩聚反应为主。焦油量极少,在550-750℃,半焦分解析出大量气体,主要是氢气,少量CH4,成为二次解析。700℃时氢气量最大。此阶段基本不产生焦油。750--1000℃半焦进一步分解,继续析出少量气体(主要是氢气),同时残留物进一步缩聚,半焦变成焦炭。 除了烟煤,煤化程度低的褐煤、泥煤,与烟煤干馏过程一样,但不存在胶体形成阶段,仅发生激烈分解,析出大量气体和焦油,无粘性,形成的半焦为粉状,加热到高温时形成焦粉。 另外,高变质无烟煤的热解过程比较简单,是一个连续的析出少量气体的过程,既不能生成胶质体也不生成焦油。因此,无烟煤不适宜用干馏方法进行加工。

煤的粘结性与结焦性关联分析

煤的粘结性与结焦性 一、煤的粘结性与结焦性 煤的粘结性是指粒度小于 0.2mm 的煤,在隔绝空气受热后粘结自身或其他惰性物质成为焦块的能力; 煤的结焦性是指上述煤粒在隔绝空气受热后生成具有一定块度和足够强度的优质焦炭的能力。煤的粘结性和结焦性是煤的极为重要的性质,是两个既有区别,又有联系的概念,一般很难将其严格区分开来。煤的粘结性强是结焦性好的必要条件,即是说结焦性好的煤,它的粘结性肯定为好;结焦性差的煤,其粘结性必定不好; 没有粘结性的煤,不存在结焦性。从而看出,煤的粘结能力在一定程度上反映了煤的结焦性。有时,粘结性好的煤,其结焦性不一定就好,这里面存在着胶质体的质量问题。如有的气肥煤,粘结性很强,但生成的焦炭裂隙多,机械强度差。所以,其结焦性并不好。表征煤的粘结性和结焦性的指标很多:烟煤粘结指数(GR.I)和罗加指数(R.I)属于粘结性指标,胶质层厚度 y 值既能反映煤的粘结性,又能表征煤的结焦性,其他如奥亚膨胀度和葛金干馏等指标,则很难说它们表征是煤的粘结性还是结焦性等。 1.煤的胶质层指数煤的胶质层指数是原苏联尼·萨保什尼科夫(L.M.Sapozhnikov)等人在 1932 年提出的一种姆·测定煤的粘结性和结焦性的方法。主要是测定煤的胶质层最大厚度 y 值、最终体积收缩度 x 值和体积曲线类型等三个参数和描述焦炭的特性等。胶质层指数的测定简介如下: (1)方法概要。称取 100g 粒度小于 1.5mm 的煤样装入一定规格的钢制煤杯中,在煤杯上面加压力盘,在煤杯下面进行单侧加温。当温度升到一定数值后,在杯内形成一系列的等温层面。在温度升到煤的软化点以上时,煤就开始软化并形成粘稠状的流体即胶质体,由胶质体形成的各层称为胶质层。温度继续升高到胶质体开始固化时,煤就固化成半焦。由于煤杯是从底部加热的,煤杯内的煤样通常可分为上部未软化层、中部胶质体层和下部半焦层三部分。在整个测定过程中,煤杯下部开始生成胶质体时,胶质层较薄。随着温度的逐渐升高,胶质体层不断变厚。温度再继续升高,最下部的胶质层间开始固化,所以胶质层厚度又开始减少。在胶质体层厚薄变化的全过程中,用金属探针测出胶质体层的最大厚度,在温度为 730℃时测定结束。在胶质体层内部,由于煤热分解而产生气体。但因胶质体透气性不好,而使气体积聚在胶质体层内,促使胶质体产生膨胀。由于膨胀产生的内应

低温热解处理后煤的热重分析

第21卷 第4期煤 炭 转 化V o l.21 No.4 1998年10月COA L CON V ERSIO N Oct.1998 低温热解处理后煤的热重分析 郑昀辉1) 戴中蜀2) 摘 要 采用等温与非等温相结合的方法,对低温热解处理前后的兖州煤、大同煤的热解历程进行分析。发现处理后煤样的热解行为发生一定程度的改变,其动力学参数数值发生一些变化,并且在各个温度处的失重量变化明显。 关键词 热失重,煤,低温热解 中图分类号 TQ533 0 引 言 炼焦用煤经低温热解处理后,其结焦性会发生一定的变化。[1]根据结焦机理,这种变化必然会在与其有关的热解过程中反映。人们曾采用各种途径对煤的热解行为进行研究,其中很重要的一种方法是热重法。通过对煤的热重分析,可求出热解反应有关的动力学参数,进而了解其反应机理。通常对煤样的热重分析有两种途径,即等温失重和非等温失重。[2~5]等温热失重将热解温度恒定于某一温度点,通过热解失重求出反应动力学常数,以此来了解该温度下的热解反应情况;而非等温热失重则是按一定的升温程序进行连续升温的过程,在一定的假设前提下可以对整个温度范围内的热解行为有一个全面的了解,但不能准确描述某一温度时热解反应情况。 本文采用等温与非等温相结合的方法研究两种低煤化度煤的热解过程,并对经低温热处理后的煤样进行了同样的实验,以将其热解过程进行对比。 1 实验部分1.1 煤样的制备及分析 选定300℃,350℃为低温热解处理温度,分别对兖州煤和大同煤进行低温热解处理,其方法见参考文献[6].对处理前后的试样进行元素分析和工业分析,所得数据见表1. 表1 试样的工业分析与元素分析数据煤 样  工业分析/% M ad A d V da f 元素分析/%,daf C H O N S 兖州原煤 3.299.0237.3682.96 5.239.72 1.570.52兖州300℃ 1.858.8435.9983.07 5.159.70 1.560.52大同原煤 2.628.2530.4583.15 4.8310.530.960.52大同350℃ 2.198.3829.1883.74 4.5610.270.950.48 1.2 热失重实验 实验采用北京光学仪器厂产CT—2差热天平进行。将待测煤样装入坩埚中,在N2气体的保护下,按一定的加热制度进行升温。即先以20℃/m in 升温速度快速升温至300℃,在300℃的条件下恒温至失重速率曲线为0,再以15℃/min的升温速率快速升温至350℃,保持恒温至失重速率曲线水平。按类似的操作每间隔50℃作一次等温失重,直至550℃.所得煤样的热失重曲线见图1. 国家自然科学基金资助项目(29376256).  1)硕士,武钢技术中心产品所,430080武汉;2)教授,武汉冶金科技大学化工系,430081武汉 收稿日期:1998-05-17

第一节煤的热解

第五章煤的工艺性质 煤的工艺性质是指煤在一定的加工工艺条件下或某些转化过程中呈现的特性。如煤的黏结性、结焦性。 第一节煤的热解 一、热解过程 1.煤的热解定义 将煤在惰性气氛中(隔绝空气的条件下)持续加热至较高温度时发生的一系列物理变化和化学反应生成气体(煤气)、液体(煤焦油)和固体(半焦或焦炭)的复杂过程称为煤的热解(pyrolysis)、或煤的干馏、煤的炭化(carbonization)。 2.煤的热解分类 按热解终温分三类: 低温干馏(500~600℃) 中温干馏(700~800℃) 高温干馏(950~1050℃) 3.煤的热解过程大致可分为三个阶段: (1)第一阶段:室温~活泼分解温度Td(300~350℃) 即煤的干燥脱吸阶段。煤的外形基本上没有变化。在120℃以前脱去煤中的游离水;120~200℃脱去煤所吸附的气体如CO、CO2和CH4等;在200℃以后,年轻的煤如褐煤发生部分脱羧基反应,有热解水生成,并开始分解放出气态产物如CO、CO2.H2S等;近300℃时开始热分解反应,有微量焦油产生。烟煤和无烟煤在这一阶段没有显著变化。 (2)第二阶段:活泼分解温度Td~600℃ 这一阶段的特征是活泼分解。以分解和解聚反应为主,生成和排出大量挥发物(煤气和焦油)。气体主要是CH4及其同系物,还有H2.CO2.CO及不饱和烃等,为热解一次气体。焦油在450℃时析出的量最大,气体在450~600℃时析出的量最大。烟煤在这一阶段从软化开始,经熔融、流动和膨胀再到固化,出现了

一系列特殊现象,在一定温度范围内产生了气、液、固三相共存的胶质体。(3)第三阶段(600~1000℃) 又称二次脱气阶段。以缩聚反应为主,半焦分解生成焦炭,析出的焦油量极少。一般在700℃时缩聚反应最为明显和激烈,产生的气体主要是H2,仅有少量的CH4,为热解二次气体。随着热解温度的进一步升高,约在750~1000℃,半焦进一步分解,继续放出少量气体(主要是H2)。同时分解残留物进一步缩聚,芳香碳网不断增大,排列规则化,密度增加,使半焦变成具有一定强度或块度的焦炭。 01002003004005006007008009001000℃ 二、热解过程中的化学反应 1.有机化合物热解过程的一般规律 煤的热解是煤有机质大分子中的化学键的断裂与重新组合。 有机物中主要的几种化学键的键能见表5-1 (1)在相同条件下,煤中各有机物的热稳定次序是:芳香烃>环烷烃>炔烃>烯烃>开链烷烃。 (2)芳环上侧链越长越不稳定,芳环数越多其侧链越不稳定,不带侧链的分子比带侧链的分子稳定。例如,芳香族化合物的侧链原子团是甲基时,在700℃才断裂;如果是较长的烷基,则在500℃就开始断裂。 (3)缩合多环芳烃的稳定性大于联苯基化合物,缩合多环芳烃的环数越多(即缩合程度越大),热稳定性越大。 2.煤热解中的主要化学反应 (1)分解温度(<300~350℃)以下的反应

目前成熟的煤热解技术资料

化石能源中,煤相对富碳,石油和天然气相对低碳,而中国的能源特征是“富煤、少油、缺气”。煤作为中国能源的主体,分别占一次能源生产和消费总量的76% 和69%,且在未来相当长时期内仍将占据一次能源的主导地位。中国原煤产量已由2002年的13.8亿t增加到2011年的35.2亿t,增长到2.55 倍;发电量由2002年的16540亿kW?h增加到2011年的47000.7亿kW?h,增长到2.84倍[1],其中火力发电量达38253.2亿kW?h,比上年增长14.8%,且占发电总量的81.4%。2011年煤炭消费量已达35亿t,主要利用方式仍为燃烧发电,预计到2020年将达50亿t左右。据专家预测,未来的30~50年内煤炭在我国能源结构中的比例仍将超过50%,2010—2050年的总耗煤量在1000亿t标准煤以上,且发电耗煤量也在逐年增长[1][2]12。中国已探明的化石能源储量中,石油和天然气分别占 5.4%和0.6%。2003年原油进口量为0.82亿t,占消耗总量的32.5%[1];2011年原油进口量已达2.54亿t,占消耗总量的55.5%,远超40%的国际能源安全警戒线;预计到2020年中国石油对外依存度将超过60%。另外,近年来中国对天然气的需求量也大幅增长,2011年天然气产量为1030.6亿m3,而消费量为1173.8亿m3,供需缺口达143.2亿m3[1],预计2020年的缺口将达900亿m3,对外依存度将达40%[2]14。 随着中国经济的快速发展,石油、天然气供应缺口将逐年加大,势必影响中国经济的可持续发展,也将造成中国能源供给的安全隐患。因此,中国十分重视石油和天然气的供需问题,从全局考虑制定了能源发展战略,采取积极措施确保国家能源安全。目前已在增加原油和天然气储备、提升原油生产和加工水平方面取得积极成效。但由于缺口巨大,还需采用替代方式缓解油、气进口压力。经研究表明,在多种替代石油和天然气的方案中,煤炭转化的量级最大,且已有较好的技术基础,可行性较高[3]。但是,煤炭的使用量以及使用过程中污染物和CO2的排放量远大于石油和天然气,因此,煤炭的高效清洁利用成为我国化石能源利用中最需重视的问题。众所周知,煤虽然宏观上富碳,但含有富氢低碳的结构,特别是中低阶煤(褐煤和高挥发分烟煤),其挥发分甚至可达40%以上,其中包含简单芳香结构和多种含氧官能团结构。这些低碳组分可在远低于煤气化温度(900℃)下与富碳组分“分离”,直接生成低碳液/气燃料和芳烃、酚类等重要化学品,而且这些化学品的附加值显著高于燃料。因此,煤通过转化生产燃料的路线逐步转向了燃料和化学品联产的路线。由煤热解生产燃料并联产化学品的路线是与煤的组成结构直接相关的煤分级转化,其核心技术充分利用了煤组成结构的不均一性。 1煤热解技术的研究背景 中国科学院郭慕孙院士在20世纪80年代提出了“煤拔头”工艺[4]。这是一种以热解为先导的煤多联产技术。该工艺是在常压、中低温的较温和条件下,对高挥发分的年轻煤进行快速热解、快速分离、快速冷凝,将煤中的高值富氢结构产物,如酚、脂肪烃油、三苯(BTX)和多环芳香烃以液体产品的形式提取出来。剩余的半焦作为燃料进一步应用,从而实现分级转化、梯级利用的目的。中国煤炭资源中中高挥发分煤占80%以上,包括约13%的褐煤、42%的次烟煤和33% 的烟煤。富含挥发分的煤可直接转化为高价值化学品(如酚、萘)、大宗燃料油及燃气的碳氢结构,直接燃烧或气化将导致煤中挥发分被等同于煤中的固体组分,未能实现资源的梯级利用,不仅造成煤炭资源高值成分的浪费,而且导致煤制油气的煤化工路线长、效率低,同时排放大量污染物,使中国成为世界上排放SOx、NOx、灰尘最多的国家,而由煤炭利用方式排放的CO2已超过50亿t/a,使中国承受着来自国际社会的减排压力。而利用中低阶煤直接生产燃油和燃气,其能效可提高10%以上[4],煤炭节省量、CO2和其他污染物的减排量均非常显著。显然,中低阶煤分级转化联产低碳燃料和化学品的路线将成为我国煤炭利用产业的战略需求。

煤化学第9章-煤的热解与黏结成焦全解

9煤的热解与黏结成焦 (多媒体课件教案) 教学目标:了解煤的热解过程及热解化学反应,理解煤的黏结成焦机理及影响焦炭强度的主要因素,掌握煤黏结性与结焦性概念的联系与区别。 教学内容: 基本概念:煤的热解、胶质体、液晶、中间相小球体、 基本原理: (1)煤的热解过程 (2)煤热解主要化学反应 (3)胶质体的质量(数量与性质)表征 (4)煤的黏结与成焦机理 (5)影响焦炭的主要因素 引言: 煤的热解是指煤在隔绝空气条件下持续加热至较高温度时发生一系列化学变化的总称。同义词:热分解、干馏 黏结与成焦是煤在一定条件下热解的结果。以煤的热解为基础的煤热加工,尤其炼焦是煤炭综合利用中最重要的工艺。因此,研究煤的热解对煤的热加工有直接的指导作用。同时也有助于开发煤的热加工技术,研究煤的结构。 9.1煤的热解过程 黏结性烟煤的热解过程 序号一二三 阶段干燥脱气活泼分解二次脱气 温度范围℃<350~400 350(450)~550 550~1000 物相变化不变软化、胶质体、固化半焦收缩形成裂纹过程本质脱附裂解为主缩聚为主 主产物干煤胶质体半焦—焦碳 热效应吸热吸热放热 9.2煤热解化学反应 煤的热解是一个及其复杂的过程,包括有机质的裂解,裂解产物中轻质部分的挥发,重质部分缩聚。挥发产物在一出过程中的分解与化合。缩聚产物在更高温度下的再裂解与再缩聚。 总的来说,包括裂解与缩聚两大类反应,前期以裂解为主,后期以缩聚为主。其间既有平行反应,也有交叉反应。 从煤的分子结构看,热解反应的影响主要是基本结构单元周围的侧链和官能团,基本结构单元之间的桥键。对热不稳定成分与不断裂解,形成煤气、焦油等低分子化合物,以挥发的形式析出;基本结构单元的核对热稳定,互相缩聚形成固体产品(半焦或焦炭)。

煤炭热解技术概述

煤炭热解技术概述 文章来源:中化新网更新时间:2010-08-06 煤的热解也称为煤的干馏或热分解,是指煤在隔绝空气的条件下进行加热,煤在不同的温度下发生一系列的物理变化和化学反应的复杂过程。煤热解的结果是生成气体(煤气)、液体(焦油)、固体(半焦或焦炭)等产品,尤其是低阶煤热解能得到高产率的焦油和煤气。 焦油经加氢可制取汽油、柴油和喷气燃料,是石油的代用品,而且是石油所不能完全替代的化工原料。煤气是使用方便的燃料,可成为天然气的代用品,另外还可用于化工合成。半焦既是优质的无烟燃料,也是优质的铁合金用焦、气化原料、吸附材料。用热解的方法生产洁净或改质的燃料,既可减少燃煤造成的环境污染,又能充分利用煤中所含的较高经济价值的化合物,具有保护环境、节能和合理利用煤资源的广泛意义。 总之,热解能提供市场所需的多种煤基产品,是洁净、高效地综合利用低阶煤资源提高煤炭产品的附加值的有效途径。各国都开发了具有各自特色的煤炭热解工艺技术。 热解工艺分类: 煤热解工艺按照不同的工艺特征有多种分类方法。 按气氛分为惰性气氛热解(不加催化剂),加氢热解和催化加氢热解。 按热解温度分为低温热解即温和热解(500 ~650 ℃)、中温热解(650 ~800 ℃)、高温热解(900 ~1000 ℃)和超高温热解(>1200 ℃)。 按加热速度分为慢速(3 ~5 ℃/min)、中速(5 ~100 ℃/s)、快速(500 ~105℃/s)热解和闪裂解(>106℃/ s)。 按加热方式分为外热式、内热式和内外并热式热解。

根据热载体的类型分为固体热载体、气体热载体和固-气热载体热解。 根据煤料在反应器内的密集程度分为密相床和稀相床两类。 依固体物料的运行状态分为固定床、流化床、气流床,滚动床。 依反应器内压强分为常压和加压两类。 煤热解工艺的选择取决于对产品的要求,并综合考虑煤质特点、设备制造、工艺控制技术水平以及最终的经济效益。慢速热解如煤的炼焦过程,其热解目的是获得最大产率的固体产品-焦炭;而中速、快速和闪速热解包括加氢热解的主要目的是获得最大产率的挥发产品-焦油或煤气等化工原料,从而达到通过煤的热解将煤定向转化的目的。 下表列出了目标产品与一般所相应采用的热解温度、加热速度、加热方式和挥发物的导出及冷却速率等工艺条件。 煤热解过程的反应过程 可以认为,煤热解是多阶段进行的,在初始阶段首先脱掉羟基,然后是某些氢化芳香结构脱氢,甲基断裂和脂环开裂。在热解过程中发生的变化结果可能是由于裂解时至少生成两个自由基而引发的。这些自由基随即可以通过分子碎片周围的原子重排,或通过与另外的分子相互碰撞,而得到稳定。稳定后的结构,视蒸气的挥发性和温度情况,可以作为挥发产品析出,或者作为半焦的结构碎片残留下来。

沫煤热解技术说明

(此技术方案内涉公司多年核心技术和专利只供内部使用,严禁外借、复印、拍照,否则将承担相应后果) 组合式沫煤热解工艺技术 说明 项目号: TY-201467 项目负责:王东辉 陕西天一洁净型煤化工技术开发有限公司 2014年6月20日于西安

项目顾问组人员: 冉新权(陕西省决策咨询委员会委员,陕西循环经济研究会原副会长,教授)蔡颂尧(原冶金厅副厅长、陕西决策咨询委员会委员) 李挺(原陕西冶金设计院院长、陕西方圆设计工程有限公司董事长享受国务院津贴专家,小粒煤技术拥有者) 张皙(西安有色金属设计研究院总工正高级工程师) 任中兴(原环境监测中心正高级工程师) 王珍 ( 环境监测中心正高级工程师) 王春风(北京众联盛化工工程有限公司总工、外热式热解炉技术正高级工程师)王永华(北京众联盛化工工程有限公司董事长、正高级工程师) 刘嘉岐(原鞍山焦耐院煤化室主任“二合一”地面除尘站、燃烧式导烟车专利人,享受国务院津贴专家) 张中明(陕西冶金设计院配煤及焦炉专家正高级工程师) 李会锋(化工第二设计院焦化脱硫专家高级工程师) 李水锋 (陕西冶金设计院电气控制专家高级工程师) 管至善(原陕西焦化厂技术厂长煤化专家高级工程师) 王东辉(陕西天一洁净型煤化工董事长、西安元极热能技术工程有限公司董事长、陕西方圆设计工程公司总工,兰炭废水综合处理站、稀土氯化铵 废水处理综合站、兰炭干法熄焦专利人、混热式混煤热解技术专利人、 混热式蒸发技术专利人,高级工程师)

10万吨/年组合式弱粘结沫煤热解系统 工艺说明 一、概述 本工艺方案按照《焦化产业发展政策》结合本地资源优势,采用共性平台的技术《非粘结煤低温热解工艺技术》进行沫煤热解及回收化工产品剩余煤气供电厂燃料用气。实现资源综合利用。本项目以达到循环经济,提高发展质量的目的,同时以“保证生产,简化辅助”的原则进行设计,尽量减少用地、节约资金。在保证生产的前提下,综合考虑辅助、服务设施。采用先进可靠的工艺流程及设备,采取有效的环境保护措施,使生产中的排放物符合国家排放标准和规定,重视安全与工业卫生使工程有良好的经济效益、环境效益和社会效益。建设项目充分利用热解过程中的燃烧废气余热,进行入炉煤的干燥,使入炉煤水分降低,生产产量提高,含氨废水减少,达到减排降耗效果。 工艺技术实施的背景条件 根据国内沫煤的特点:采用机采,生产出来的煤,<5mm的沫煤占总煤量的65%,≥5mm的煤占总产量的35%左右,根据现有煤热解使用和实验情况,采用回转窑、小粒煤炉型、混热式混煤炉,最大配沫煤量不足25%,即:机采出来的煤全部>5mm的煤热解后,最大能处理沫煤量为总煤的12%,还有53%的沫煤(≯5mm)仍然无法处理。 如何解决沫煤(≯5mm)的热解,热解后的洁净煤贮运、使用(不改变原有工业锅炉的结构,完成面焦的替代燃烧,是洁净煤最终发展途径),是本项目技术开发核心课题。

相关文档