文档库 最新最全的文档下载
当前位置:文档库 › 变化率与导数练习题

变化率与导数练习题

变化率与导数练习题
变化率与导数练习题

变化率与导数练习题 Prepared on 24 November 2020

1.设函数y =f (x )=x 2-1,当自变量x 由1变为时,函数的平均变化率为( )

A .

B .

C .2

D .0

解析:Δy Δx =f -f 1-1

=错误!=. 答案:A

2.一直线运动的物体,从时间t 到t +Δt 时,物体的位移为Δs ,那么Δt 趋于0时,Δs Δt

( )

A .从时间t 到t +Δt 时物体的平均速度

B .在t 时刻物体的瞬时速度

C .当时间为Δt 时物体的速度

D .在时间t +Δt 时物体的瞬时速度

解析:Δs Δt

中Δt 趋于0时得到的数值是物体在t 时刻的瞬时速度. 答案:B

3.一辆汽车在起步的前10秒内,按s =3t 2+1做直线运动,则在2≤t ≤3这段时间内的平均速度是( )

A .4

B .13

C .15

D .28

解析:Δs =(3×32+1)-(3×22+1)=15.

∴Δs Δt =153-2

=15. 答案:C

4.如果某物体做运动方程为s =2(1-t 2)的直线运动(s 的单位为m ,t 的单位为s),那么其在 s 末的瞬时速度为( )

A .-4.8 m/s

B .-0.88 m/s

C .0.88 m/s

D .4.8 m/s

解析:Δs Δt =2[1-+Δt 2]-21-Δt =--2Δt .当Δt 趋于0时,Δs Δt

趋于-. 答案:A

5.函数y =1x 在区间[1,3]上的平均变化率为________.

解析:Δy Δx =13-13-1=-13. 答案:-13 6.已知函数f (x )=x 2-2x +3,且y =f (x )在[2,a ]上的平均变化率为94

,则a =________. 解析:在区间[2,a ]上的平均变化率Δy Δx =a 2-2a +3-3a -2

=a ,由已知可得a =94. 答案:94

7.已知函数f (x )=sin x ,x ∈???

?0,π2. (1)分别求y =f (x )在????0,π6及???

?π6,π2上的平均变化率. (2)比较两个平均变化率的大小,说明其几何意义.

解:(1)当x ∈???

?0,π6时, k 1=f ????π6-f 0π6-0=12-0π6

-0=3π. 当x ∈????π6,π2时,

k 2=f ????π2-f ????π6π2-π6=1-12π3

=32π. (2)由(1)可知:k 2

?0,π2上的图像如图所示. 可以发现,y =sin x 在???

?0,π2上随着x 的增大,函数值变化得越来越慢. 8.若一物体运动方程如下(位移s 的单位:m ,时间t 的单位:s):

s =?????

3t 2+2, t ≥3,29+3t -32, 0≤t <3.求: (1)物体在t ∈[3,5]内的平均速度;

(2)物体的初速度v 0;

(3)物体在t =1时的瞬时速度.

解:(1)∵物体在t ∈[3,5]内的时间变化量为

Δt =5-3=2,

物体在t ∈[3,5]内的位移变化量为

Δs =3×52+2-(3×32+2)=3×(52-32)=48,

∴物体在t ∈[3,5]内的平均速度为Δs Δt =482

=24(m/s). (2)求物体的初速度v 0,即求物体在t =0时的瞬时速度. ∵物体在t =0附近的平均变化率为

Δs Δt =29+3×0+Δt -32-29-3×0-32Δt

=3Δt -18, 当Δt 趋于0时,Δs Δt

趋于-18, ∴物体在t =0时的瞬时速度(初速度)为-18 m/s.

(3)物体在t =1时的瞬时速度即为函数在t =1处的瞬时变化率. ∵物体在t =1附近的平均变化率为

Δs Δt =29+3[1+Δt -3]2-29-3×1-32Δt

=3Δt -12, 当Δt 趋于0时,Δs Δt

趋于-12, ∴物体在t =1处的瞬时变化率为-12 m/s.

导数及导数应用专题练习题

高二文科数学《变化率与导数及导数应用》专练(十) 一、选择题 1. 设函数f (x )存在导数且满足,则曲线y=f (x )在点 (2,f (2))处的切线斜率为( ) A .﹣1 B .﹣2 C .1 D .2 2. 函数()1x f x e =-的图像与x 轴相交于点P ,则曲线在点P 处的切线的方程为( ) A .1y e x =-?+ B .1y x =-+ C . y x =- D .y e x =-? 3. 曲线)0(1 )(3>-=x x x x f 上一动点))(,(00x f x P 处的切线斜率的最小值为( ) A .3 B .3 C. 32 D .6 4. 设P 为曲线2 :23C y x x =++上的点,且曲线C 在点P 处的切线的倾斜角的取值范 围为0,4π?? ???? ,则点P 的横坐标的取值范围为( ) A . []0,1 B .[]1,0- C .11,2??--???? D .1,12?? ???? 5. 已知2 3 ()1(1)(1)(1)(1)n f x x x x x =+++++++++L ,则(0)f '=( ). A . n B .1n - C . (1)2 n n - D . 1 (1)2 n n + 6. 曲线y=2lnx 上的点到直线2x ﹣y+3=0的最短距离为( ) A . B .2 C .3 D .2

7. 过点(0,8)作曲线32()69f x x x x =-+的切线,则这样的切线条数为( ) A .0 B .1 C .2 D .3 8. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )= +6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2 B .3 C .4 D .5 9. 已知函数()x f x e mx =-的图像为曲线C ,若曲线C 不存在与直线1 2 y x =垂直的切线,则实数m 的取值范围是( ) A. 12m ≤- B. 1 2 m >- C. 2m ≤ D. 2m > 10. 函数y=f (x )的图象如图所示,则导函数 y=f'(x )的图象可能是( ) A . B . C . D . 11..设()f x 是定义在R 上的奇函数,且(2)0f =,当0x >时,有2 '()() 0xf x f x x -<恒成立,则不等式()0xf x >的解集为( ) A .(-2,0)∪(2,+∞) B . (-∞,-2)∪(0,2) C. (-∞,-2)∪(2,+∞) D. (-2,0)∪(0,2) 12.设f (x )=cosx ﹣sinx ,把f (x )的图象按向量=(m ,0)(m >0)平移后,图象恰好为函数y=﹣f′(x )的图象,则m 的值可以为( )

导数练习题 含答案

导数练习题 班 级 姓名 一、选择题 1.当自变量从x 0变到x 1时函数值的增量与相应自变量的增量之比是函数( ) A .在区间[x 0,x 1]上的平均变化率 B .在x 0处的变化率 C .在x 1处的变化量 D .在区间[x 0,x 1]上的导数 2.已知函数y =f (x )=x 2 +1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44 3.函数f (x )=2x 2-1在区间(1,1+Δx )上的平均变化率Δy Δx 等于( ) A .4 B .4+2Δx C .4+2(Δx )2 D .4x 4.如果质点M 按照规律s =3t 2 运动,则在t =3时的瞬时速度为( ) A . 6 B .18 C .54 D .81 5.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是( ) A .3 B .-3 C . 2 D .-2 6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴相交但不垂直 7.曲线y =-1 x 在点(1,-1)处的切线方程 为( ) A .y =x -2 B .y =x C .y =x + 2 D .y =-x -2 8.已知曲线y =2x 2上一点A (2,8),则A 处的切线斜率为( ) A .4 B .16 C .8 D .2 9.下列点中,在曲线y =x 2上,且在该点 处的切线倾斜角为π 4的是( ) A .(0,0) B .(2,4) C .(14,1 16) D .(12,1 4) 10.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b = 1 B .a =-1,b =1 C .a =1,b =- 1 D .a =-1,b =-1 11.已知f (x )=x 2,则f ′(3)=( ) A .0 B .2x C . 6 D .9 12.已知函数f (x )=1 x ,则f ′(-3)=( ) A . 4 B.1 9 C .-14 D .-1 9 13.函数y =x 2 x +3 的导数是( )

人教版高中数学全套教案导学案111变化率问题

1. 1.1变化率问题课前预习学案。知道平均变化率的定义。,课本中的问题1,2 预习目标:“变化率问题”预习内容:气球膨胀率问题1 气球,,随着气球内空气容量的增加我们都吹过气球回忆一下吹气球的过程,可以发现 ,如何描 述这种现象呢?的半径增加越来越慢.从数学角度43?r?r)V(dmVL r)气球的体积:(单位:之间的函数关系是)与半径(单位33V?)r(V V r,如果将半径那么表示为体积的函数3?4在吹气球问题中,当空气容量V从0增加到1L时,气球的平均膨胀率为__________ 当空气容量V从1L增加到2L时,气球的平均膨胀率为__________________ 当空气容量从V增加到V时,气球的平均膨胀率为_____________21问题2 高台跳水 h 与起跳后)单位:m在高台跳水运动中,,运动员相对于水面的高度h(2如何用运动+10. +6.5-4.9tt 的时间t(单位:s)存在函数关系h(t)= v? 粗略地描述其运动状态员在某些时间段内的平均速度v5t.?00?=_________________ 这段 时间里,在v2?t?1=_________________ 这段时间里,在ot 问题3 平均变化率????xffxx到从已知函数,则变化率可用式子_____________,此式称之为函数1x?xx看做是相表示=___________,可把,即习惯上用 ___________.x??x?x122x?xx__________________,代替对于类似有的一个“增量”,可用,?x)?f(x?211_______________________ 于是,平均变化率可以表示为提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 课内探究学案 1.学习目标理解平均变化率的概念; 2.了解平均变化率的几何意义; .

变化率与导数教案

变化率与导数教案 Prepared on 24 November 2020

第三章 变化率和导数 3.1.1瞬时变化率—导数 教学目标: (1)理解并掌握曲线在某一点处的切线的概念 (2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度 (3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想 教学过程:时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的内容以及上一节课学的是我们学习导数的一些实际背景 一、复习引入 1、什么叫做平均变化率; 2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[x A ,x B ]上的平均变化率 3、如何精确地刻画曲线上某一点处的变化趋势呢 下面我们来看一个动画。从这个动画可以看出,随着点P 沿曲线向点Q 运动,随着点P 无限逼近点Q 时,则割线的斜率就会无限逼近曲线在点Q 处的切线的斜率。 所以我们可以用Q 点处的切线的斜率来刻画曲线在点Q 处的变化趋势 二、新课讲解 1、曲线上一点处的切线斜率 不妨设P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线PQ 的斜率为0 101) ()(x x x f x f k PQ --=, 设x 1-x 0=△x ,则x 1 =△x +x 0,

∴x x f x x f k PQ ?-?+= ) ()(00 当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+= ) ()(00无限趋近点Q 处切线斜率。 2、曲线上任一点(x 0,f(x 0))切线斜率的求法: x x f x x f k ?-?+= ) ()(00,当△x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的 斜率。 3、瞬时速度与瞬时加速度 (1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度 (2) 位移的平均变化率: t t s t t s ?-?+) ()(00 (3)瞬时速度:当无限趋近于0 时,t t s t t s ?-?+) ()(00无限趋近于一个常数,这个常 数称为t=t 0时的瞬时速度 求瞬时速度的步骤: 1.先求时间改变量t ?和位置改变量)()(00t s t t s s -?+=? 2.再求平均速度t s v ??= 3.后求瞬时速度:当t ?无限趋近于0,t s ??无限趋近于常数v 为瞬时速度 (4)速度的平均变化率: t t v t t v ?-?+) ()(00 (5)瞬时加速度:当t ?无限趋近于0 时,t t v t t v ?-?+) ()(00无限趋近于一个常数,这 个常数称为t=t 0时的瞬时加速度 注:瞬时加速度是速度对于时间的瞬时变化率

导数测试题(含答案)

导数单元测试题 班级姓名 一、选择题 1.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( ) A.0.40 B.0.41 C.0.43 D.0.44 2.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率Δy Δx 等于( ) A.4 B.4+2Δx C.4+2(Δx)2 D.4x 3.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( ) A.不存在B.与x轴平行或重合 C.与x轴垂直D.与x轴相交但不垂直 4.曲线y=-1 x 在点(1,-1)处的切线方程为( ) A.y=x-2 B.y=x C.y=x+2 D.y=-x-2 5.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π 4 的是( ) A.(0,0) B.(2,4) C.(1 4 , 1 16 ) D.( 1 2 , 1 4 ) 6.已知函数f(x)=1 x ,则f′(-3)=( ) A.4 B.1 9 C.- 1 4 D.- 1 9 7.函数f(x)=(x-3)e x的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) 8.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 9.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( ) A.1个B.2个 C.3个D.4个 10.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分 别是( ) A.f(2),f(3) B.f(3),f(5) C.f(2),f(5) D.f(5),f(3) 11.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( ) A.-10 B.-71 C.-15 D.-22 12.一点沿直线运动,如果由始点起经过t秒运动的距离为s= 1 4 t4- 5 3 t3+2t2,那么速度为零的时刻是( ) A.1秒末 B.0秒 C.4秒末 D.0,1,4秒末 二、填空题 13.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________. 14.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则 b a =________. 15.函数y=x e x的最小值为________. 16.有一长为16 m的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m2. 三、解答题 17.求下列函数的导数:(1)y=3x2+x cos x; (2)y= x 1+x ; (3)y=lg x-e x. 18.已知抛物线y=x2+4与直线y=x+10,求: (1)它们的交点; (2)抛物线在交点处的切线方程. 19.已知函数f(x)= 1 3 x3-4x+4.(1)求函数的极值; (2)求函数在区间[-3,4]上的最大值和最小值.

人教新课标版数学高二-2-2导学案 变化率问题 导数的概念

1.1.1 变化率问题 1.1.2 导数的概念 (结合配套课件、作业使用,效果更佳) 周;使用时间16 年 月 日 ;使用班级 ;姓名 【学习目标】 1.了解导数概念的实际背景. 2.会求函数在某一点附近的平均变化率. ` 3.会利用导数的定义求函数在某点处的导数. 重点:会利用导数的定义求函数在某点处的导数 难点:会求函数在某一点附近的平均变化率 【检查预习】预习课本,完成导学案“自主学习”部分,准备上课回答. 【自主学习】 知识点一 函数的平均变化率 假设如图是一座山的剖面示意图,并建立如图所示平面直角坐标系.A 是出发点,H 是山顶.爬山路线用函数y =f (x )表示. 自变量x 表示某旅游者的水平位置,函数值y =f (x )表示此时旅游者所在的高度.设点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2). 思考1 若旅游者从点A 爬到点B ,自变量x 和函数值y 的改变量分别是多少? 思考2 怎样用数量刻画弯曲山路的陡峭程度? 思考3 观察函数y =f (x )的图象,平均变化率Δy Δx =f (x 2)-f (x 1) x 2-x 1表示什么? (1)定义式:Δy Δx =f (x 2)-f (x 1) x 2-x 1 . (2)实质: 的增量与 增量之比. (3)作用:刻画函数值在区间[x 1,x 2]上变化的快慢. (4)几何意义:已知P 1(x 1,f (x 1)),P 2(x 2,f (x 2))是函数y =f (x )的图象上两点,则平均变化率Δy Δx =f (x 2)-f (x 1) x 2-x 1表示割线P 1P 2的 知识点二 瞬时速度 思考1 物体的路程s 与时间t 的关系是s (t )=5t 2.试求物体在[1,1+Δt ]这段时间内的平均速度.

2018届北师大版 变化率与导数 单元测试

题组层级快练(十五) 1.y =ln(-x)的导函数为( ) A .y ′=-1 x B .y ′=1 x C .y ′=ln(x) D .y ′=-ln(-x) 答案 B 2.(2017·广东五校协作体联考)曲线y =x +1 x -1 在点(3,2)处的切线的斜率是( ) A .2 B .-2 C.12 D .-12 答案 D 解析 y ′= (x +1)′(x -1)-(x +1)(x -1)′(x -1)2 =-2 (x -1)2 ,故曲线在(3,2)处的切线的斜率k =y ′|x =3=- 2(3-1) 2=-1 2,故选D. 3.曲线f(x)=2e x sinx 在点(0,f(0))处的切线方程为( ) A .y =0 B .y =2x C .y =x D .y =-2x 答案 B 解析 ∵f(x)=2e x sinx ,∴f(0)=0,f ′(x)=2e x (sinx +cosx),∴f ′(0)=2,∴所求切线方程为y =2x. 4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-3 2t 2+2t ,那么速度为零的 时刻是( ) A .0秒 B .1秒末 C .2秒末 D .1秒末和2秒末 答案 D 解析 ∵s =13t 3-3 2t 2+2t ,∴v =s ′(t)=t 2-3t +2. 令v =0,得t 2-3t +2=0,t 1=1或t 2=2. 5.设正弦函数y =sinx 在x =0和x =π 2附近的平均变化率为k 1,k 2,则k 1,k 2的大小关系 为( ) A .k 1>k 2 B .k 1

高中数学第三章.1变化率问题3.1.2导数的概念学案含解析新人教A版选修7.doc

3.1.1 & 3.1.2 变化率问题 导数的概念 [提出问题] 假设下图是一座山的剖面示意图,并建立如图所示的平面直角坐标系.A 是出发点,H 是山顶.爬山路线用函数y =f (x )表示. 自变量x 表示某旅游者的水平位置,函数值y =f (x )表示此时旅游者所在的高度.设点 A 的坐标为(x 1,y 1),点 B 的坐标为(x 2,y 2). 问题1:若旅游者从点A 爬到点B ,且这段山路是平直的,自变量x 和函数值y 的改变量Δx ,Δy 分别是多少? 提示:自变量x 的改变量为Δx =x 2-x 1,函数值的改变量为Δy =y 2-y 1. 问题2:Δy 的大小能否判断山路的陡峭程度? 提示:不能. 问题3:怎样用数量刻画弯曲山路的陡峭程度呢? 提示:对山坡AB 来说,Δy Δx =y 2-y 1 x 2-x 1可近似地刻画. 问题4:能用Δy Δx 刻画山路陡峭程度的原因是什么? 提示:因Δy Δx 表示A ,B 两点所在直线的斜率k ,显然,“线段”所在直线的斜率越大, 山路越陡.这就是说,竖直位移与水平位移之比Δy Δx 越大,山路越陡;反之,山路越缓. 问题5:从点A 到点B 和从点A 到点C ,两者的Δy Δx 相同吗? 提示:不相同.

[导入新知] 函数的平均变化率 对于函数y =f (x ),给定自变量的两个值x 1,x 2,当自变量x 从x 1变为x 2时,函数值从 f (x 1)变为f (x 2),我们把式子f x 2-f x 1 x 2-x 1 称为函数y =f (x )从x 1到x 2的平均变化率. 习惯上用Δx 表示x 2-x 1,即Δx =x 2-x 1,可把Δx 看作是相对于x 1 的一个“增量”,可用x 1+Δx 代替x 2.类似地,Δy =f (x 2)-f (x 1).于是,平均变化率可表示为 Δy Δx . [化解疑难] 1.正确理解增量Δx 与Δy Δx 是自变量x 在x 0处的改变量,不是Δ与x 的乘积,Δx 的值可正,可负,但不能为0.Δy 是函数值的改变量,可正,可负,也可以是0.函数的平均变化率为0,并不一定说明函数f (x )没有变化. 2.平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”.利用平均变化率的大小可以刻画变量平均变化的趋势和快慢程度. [提出问题] 一质点的运动方程为s =8-3t 2 ,其中s 表示位移,t 表示时间. 问题1:试求质点在[1,1+Δt ]这段时间内的平均速度. 提示:Δs Δt = 8-+Δt 2 -8+3×1 2 Δt =-6-3Δt . 问题2:当Δt 趋近于0时,“问题1”中的平均速度趋近于什么?如何理解这一速度? 提示:当Δt 趋近于0时,Δs Δt 趋近于-6.这时的平均速度即为t =1时的瞬时速度. [导入新知] 1.瞬时速度的概念 物体在某一时刻的速度称为瞬时速度: 设物体运动的路程与时间的关系是s =s (t ),当Δt 趋近于0时,函数s (t )在t 0到t 0 +Δt 之间的平均变化率s t 0+Δt -s t 0 Δt 趋近于一个常数,把这个常数称为瞬时速 度. 2.导数的定义

《变化率问题与导数的概念》导学案

第1课时变化率问题与导数的概念 a 1.通过物理中的变化率问题和瞬时速度引入导数的概念. 2.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤. 3.通过构建导数概念,使学生体会极限思想,为将来学习极限概念积累学习经验. 4.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程. 借助多媒体播放2012年伦敦奥运会中国跳水运动员陈若琳夺得女子单人10米跳台冠军的视频.上节课我们已经学习了平均变化率的问题,我们知道运动员的平均速度不一定能够反映她在某一时刻的运动状态,而运动员在不同时刻的运动状态是不同的,我们需要借助于瞬时速度这样的量来刻画,那么我们如何才能求出运动员在某一时刻的瞬时速度呢? 问题1:根据以上情境,设陈若琳相对于水面的高度h (单位:m)与起跳后的时间t (单位:s) 存在函数关系h(t)=-4.9t2+6.5t+10,如果用她在某段时间内的平均速度描述其运动状态, 那么: (1)在0≤t≤0.5这段时间里,运动员的平均速度= . (2)在1≤t≤2这段时间里, 运动员的平均速度= . 问题2:函数y=f(x)从x1到x2的平均变化率公式是.如果用x1与增量Δx

表示,平均变化率的公式是. 问题3:函数f(x)在x=x0处的瞬时变化率的定义:一般地,函数y=f(x)在x=x0处的瞬时变化率是=,我们称它为函数y=f(x)在x=x 0处的导数,记作f'(x0)或y',即f'(x0)== . 问题4:在导数的定义中,对Δx→0的理解是:Δx>0,Δx<0,但. 1.已知函数y=f(x)=x2+1,当x=2,Δx=0.1时,Δy的值为(). A.0.40 B.0.41 C.0.43 D.0.44 2.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则(). A.f'(x)=a B.f'(x)=b C.f'(x0)=a D.f'(x0)=b 3.一质点按规律s(t)=2t2运动,则在t=2时的瞬时速度为. 4.求y=2x2+4x在点x=3处的导数.

变化率与导数测试题

变化率与导数测试题Last revision on 21 December 2020

变化率与导数测试题 一、选择题: 1、函数y =x 2co sx 的导数为( ) A 、y ′=2xcosx -x 2sinx B 、y ′=2xcosx+x 2sinx C 、 y ′=x 2cosx -2xsinx D 、y ′=xcosx -x 2sinx 2设曲线1 1 x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2 B .12 C .1 2 - D .2- 3、已知函数2()21f x x =-的图象上一点(11),及邻近一点(11)x y +?+?,,则y x ??等于( ) A.4 B.42x +? C.4x +? D.24()x x ?+? 4、曲线3 () 2f x x x 在0p 处的切线平行于直线41y x ,则0p 点的坐标为( ) A.( 1 , 0 ) B.( 2 , 8 ) C.( 1 , 0 )或(-1, -4) D.( 2 , 8 )和或(-1, -4) 5、已知32()(6)1f x x ax a x =++++,f '(x)=0有不等实根,则a 的取值范围为( ) A .12a -<< B .36a -<< C .1a <-或2a > D .3a <-或6a > 6、在函数x x y 83-=的图象上,其切线的倾斜角小于4 π 的点中,坐标为整数的点的个数是( ) A .3 B .2 C .1 D . 0 7、已知,12132431()cos ,()(),()(),()() ()(),n n f x x f x f x f x f x f x f x f x f x -''''=====则 2008()f x = ( ) A. sin x B. sin x - C. cos x D. cos x - 8、32()32f x ax x =++,若(1)4f '-=,则a 的值等于( ) A .319 B .316 C .313 D .310 9、某汽车的路程函数是3221 2(10m/s )2 s t gt g =-=,则当2t s =时,汽车的加速度是( )

变化率与导数、导数的计算

第十一节变化率与导数、导数的计算 [备考方向要明了] 考什么怎么考 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数y=c(c为常 数),y=x,y=x2,y=x3, y= 1 x的导数. 4.能利用基本初等函数的导数公式和 导数的四则运算法则求简单函数的导 数. 1.对于导数的几何意义,高考要求较高,主要以选择 题或填空题的形式考查曲线在某点处的切线问题, 如2012年广东T12,辽宁T12等. 2.导数的基本运算多涉及三次函数、指数函数与对数 函数、三角函数等,主要考查对基本初等函数的导 数及求导法则的正确利用. [归纳·知识整合] 1.导数的概念 (1)函数y=f(x)在x=x0处的导数: 称函数y=f(x)在x=x0处的瞬时变化率 lim Δx→0 f(x0+Δx)-f(x0) Δx=lim Δx→0 Δy Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即 f′(x0)=lim Δx→0 Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx. (2)导数的几何意义: 函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0). (3)函数f(x)的导函数:

称函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. [探究] 1.f ′(x )与f ′(x 0)有何区别与联系? 提示:f ′(x )是一个函数,f ′(x 0)是常数,f ′(x 0)是函数f ′(x )在x 0处的函数值. 2.曲线y =f (x )在点P 0(x 0,y 0)处的切线与过点P 0(x 0,y 0)的切线,两种说法有区别吗? 提示:(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 3.过圆上一点P 的切线与圆只有公共点P ,过函数y =f (x )图象上一点P 的切线与图象也只有公共点P 吗? 提示:不一定,它们可能有2个或3个或无数多个公共点. 2.几种常见函数的导数 3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

高二数学选修1、3-1-1变化率问题与导数的概念

3.1.1变化率问题与导数的概念 一、选择题 1.在函数变化率的定义中,自变量的增量Δx满足() A.Δx<0B.Δx>0 C.Δx=0 D.Δx≠0 [答案] D [解析]自变量的增量Δx可正、可负,但不可为0. 2.函数在某一点的导数是() A.在该点的函数的增量与自变量的增量的比 B.一个函数 C.一个常数,不是变数 D.函数在这一点到它附近一点之间的平均变化率 [答案] C [解析]由导数定义可知,函数在某一点的导数,就是平均变化率的极限值. 3.在x=1附近,取Δx=0.3,在四个函数①y=x②y=x2③y=x3④y=1 x 中,平均变化率 最大的是() A.④B.③ C.②D.① [答案] B [解析]①的平均变化率为1,②的平均变化率为2.3,③的平均变化率为3.99,④的平均变化率为-0.77. 4.质点M的运动规律为s=4t+4t2,则质点M在t=t0时的速度为() A.4+4t0B.0 C.8t0+4 D.4t0+4t20 [答案] C [解析]Δs=s(t0+Δt)-s(t0)=4Δt2+4Δt+8t0Δt, Δs Δt =4Δt+4+8t0, lim Δt→0Δs Δt =lim Δt→0 (4Δt+4+8t0)=4+8t0. 5.函数y=x+1 x 在x=1处的导数是() A.2 B.5 2 C.1 D.0

[答案] D [解析] Δy =(Δx +1)+1Δx +1-1-1=Δx +-Δx Δx +1 , Δy Δx =1-1Δx +1 , lim Δx →0 Δy Δx =lim Δx →0 ??? ?1-1Δx +1=1-1=0, ∴函数y =x +1x 在x =1处的导数为0. 6.函数y =f (x ),当自变量x 由x 0改变到x 0+Δx 时,Δy =( ) A .f (x 0+Δx ) B .f (x 0)+Δx C .f (x 0)·Δx D .f (x 0+Δx )-f (x 0) [答案] D [解析] Δy 看作相对于f (x 0)的“增量”,可用f (x 0+Δx )-f (x 0)代替. 7.一个物体的运动方程是s =3+t 2,则物体在t =2时的瞬时速度为( ) A .3 B .4 C .5 D .7 [答案] B [解析] lim Δt →0 3+(2+Δt )2-3-22 Δt =lim Δt →0 Δt 2+4Δt Δt =lim Δt →0 (Δt +4)=4. 8.f (x )在x =x 0处可导,则lim Δx →0 f (x 0+Δx )-f (x 0)Δx ( ) A .与x 0,Δx 有关 B .仅与x 0有关,而与Δx 无关 C .仅与Δx 有关,而与x 0无关 D .与x 0,Δx 均无关 [答案] B [解析] 式子lim Δx →0 f (x 0+Δx )-f (x 0)Δx 表示的意义是求f ′(x 0),即求f (x )在x 0处的导数,它仅与x 0有关,与Δx 无关. 9.设函数f (x )在点x 0附近有定义,且有f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则( ) A .f ′(x )=a B .f ′(x )=b C .f ′(x 0)=a D .f ′(x 0)=b [答案] C

课时跟踪检测(十七) 变化率与导数、导数的运算

课时跟踪检测(十七) 变化率与导数、导数的运算 一抓基础,多练小题做到眼疾手快 1.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)和(-1,3) D .(1,-3) 解析:选C f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C. 2.曲线f (x )=2x -e x 与y 轴的交点为P ,则曲线在点P 处的切线方程为( ) A .x -y +1=0 B .x +y +1=0 C .x -y -1=0 D .x +y -1=0 解析:选C 曲线f (x )=2x -e x 与y 轴的交点为(0,-1). 且f ′(x )=2-e x ,∴f ′(0)=1. 所以所求切线方程为y +1=x , 即x -y -1=0. 3.(2018·温州模拟)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(2 017)=( ) A .1 B .2 C .12 017 D .2 0182 017 解析:选D 令e x =t ,则x =ln t ,所以f (t )=ln t +t ,故f (x )=ln x +x .求导得f ′(x )=1x +1,故f ′(2 017)=12 017+1=2 0182 017 .故选D. 4.若曲线f (x )=x sin x +1在x =π2 处的切线与直线ax +2y +1=0 相互垂直,则实数a =________. 解析:因为f ′(x )=sin x +x cos x ,所以f ′????π2=sin π2+π2cos π2 =1.又直线ax +2y +1=0的斜率为-a 2 ,所以1×????-a 2=-1,解得a =2. 答案:2 5.(2018·杭州模拟)已知函数f (x )=x 33-b 2 x 2+ax +1(a >0,b >0),则函数g (x )=a ln x +f ′(x )a 在点(b ,g (b ))处切线的斜率的最小值是________. 解析:因为a >0,b >0,f ′(x )=x 2-bx +a ,所以g ′(x )=a x +2x -b a ,则g ′(b )=a b +2b -b a =a b +b a ≥2,当且仅当a =b =1时取等号,所以斜率的最小值为2.

变化率问题和导数的概念

第一章导数及其应用 1.1变化率与导数 1.1.1变化率问题 1.1.2导数的概念 双基达标(限时20分钟) 1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy), 则Δy Δx等于 (). A.4 B.4x C.4+2Δx D.4+2(Δx)2 解析Δy Δx= f(1+Δx)-f(1) Δx= 2(1+Δx)2-2 Δx=4+2Δx. 答案 C 2.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是 ().A.4 B.4.1 C.0.41 D.3 解析v=(3+2.12)-(3+22) 0.1=4.1. 答案 B 3.如果某物体的运动方程为s=2(1-t2)(s的单位为m,t的单位为s),那么其在 1.2 s末的瞬时速度为 ().A.-4.8 m/s B.-0.88 m/s C.0.88 m/s D.4.8 m/s 解析物体运动在1.2 s末的瞬时速度即为s在1.2处的导数,利用导数的定义即可求得. 答案 A

4.已知函数y =2+1 x ,当x 由1变到2时,函数的增量Δy =________. 解析 Δy =? ? ???2+12-(2+1)=-12. 答案 -1 2 5.已知函数y =2 x ,当x 由2变到1.5时,函数的增量Δy =________. 解析 Δy =f (1.5)-f (2)=21.5-22=43-1=1 3. 答案 1 3 6.利用导数的定义,求函数y =1 x 2+2在点x =1处的导数. 解 ∵Δy =??????1(x +Δx )2+2-? ???? 1x 2+2=-2x Δx -(Δx )2(x +Δx )2·x 2, ∴Δy Δx =-2x -Δx (x +Δx )2·x 2 , ∴y ′=lim Δx →0 Δy Δx =lim Δx →0 -2x -Δx (x +Δx )2·x 2=-2 x 3, ∴y ′|x =1=-2. 综合提高 (限时25分钟) 7.已知函数y =f (x )=x 2+1,则在x =2,Δx =0.1时,Δy 的值为 ( ). A .0.40 B .0.41 C .0.43 D .0.44 解析 Δy =(2+0.1)2-22=0.41. 答案 B 8.设函数f (x )可导,则 lim Δx →0 f (1+Δx )-f (1) 3Δx 等于 ( ). A .f ′(1) B .3f ′(1) C.1 3f ′(1) D .f ′(3)

人教版数学高二学案变化率问题导数的概念

1.1.1 变化率问题 1.1.2 导数的概念 1.理解函数平均变化率、瞬时变化率的概念. 2.掌握函数平均变化率的求法. 3.掌握导数的概念,会用导数的定义求简单函数在某点处的导数. 知识点一 函数的平均变化率 1.平均变化率的概念 设函数y =f (x ),x 1,x 2是其定义域内不同的两个点,那么函数的变化率可用式子 f (x 2)-f (x 1) x 2-x 1 表 示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,习惯上用Δx 表示x 2-x 1,即Δx =x 2-x 1,可把Δx 看作是相对于x 1的一个“增量”,可用x 1+Δx 代替x 2;类似地,Δy =f (x 2)-f (x 1).于是,平均变化率可以表示为Δy Δx . 2.求平均变化率 求函数y =f (x )在上平均变化率的步骤如下: (1)求自变量的增量Δx =x 2-x 1; (2)求函数值的增量Δy =f (x 2)-f (x 1); (3)求平均变化率Δy Δx =f (x 2)-f (x 1) x 2-x 1 =f (x 1+Δx )-f (x 1) Δx . 思考 (1)如何正确理解Δx ,Δy? (2)平均变化率的几何意义是什么? 答案 (1)Δx 是一个整体符号,而不是Δ与x 相乘,其值可取正值、负值,但Δx ≠0;Δy 也是一个整体符号,若Δx =x 1-x 2,则Δy =f (x 1)-f (x 2),而不是Δy =f (x 2)-f (x 1),Δy 可为正数、负数,亦可取零. (2)如图所示:

y =f (x )在区间上的平均变化率是曲线y =f (x )在区间上陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”,????Δy Δx 越大,曲线y =f (x )在区间上越“陡峭”,反之亦然. 平均变化率的几何意义是函数曲线上过两点的割线的斜率,若函数y =f (x )图象上有两点A (x 1,f (x 1)),B (x 2,f (x 2)),则f (x 2)-f (x 1)x 2-x 1=k AB . 知识点二 瞬时速度与瞬时变化率 把物体在某一时刻的速度称为瞬时速度.做直线运动的物体,它的运动规律可以用函数s =s (t )描述,设Δt 为时间改变量,在t 0+Δt 这段时间内,物体的位移(即位置)改变量是Δs =s (t 0+Δt )-s (t 0),那么位移改变量Δs 与时间改变量Δt 的比就是这段时间内物体的平均速度v ,即v =Δs Δt =s (t 0+Δt )-s (t 0)Δt . 物理学里,我们学习过非匀速直线运动的物体在某一时刻t 0的速度,即t 0时刻的瞬时速度,用v 表示,物体在t 0时刻的瞬时速度v 就是运动物体在t 0到t 0+Δt 这段时间内的平均变化率s (t 0+Δt )-s (t 0)Δt 在Δt →0时的极限,即v =lim Δt →0Δs Δt =lim Δt →0s (t 0+Δt )-s (t 0)Δt .瞬时速度就是位移函数对时间的瞬时变化率. 思考 (1)瞬时变化率的实质是什么? (2)平均速度与瞬时速度的区别与联系是什么? 答案 (1)其实质是当平均变化率中自变量的改变量趋于0时的值,它刻画函数值在某处变化的快慢. (2)①区别:平均变化率刻画函数值在区间上变化的快慢,瞬时变化率刻画函数值在x 0点处变化的快慢;②联系:当Δx 趋于0时,平均变化率Δy Δx 趋于一个常数,这个常数即为函数在 x 0处的瞬时变化率,它是一个固定值. 知识点三 导数的概念 函数y =f (x )在x =x 0处的导数 一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0 Δy Δx =lim Δx →0f (x 0+Δx )-f (x 0)Δx ,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|0x x =,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0f (x 0+Δx )-f (x 0)Δx . 思考 (1)函数f (x )在x 0处的导数满足什么条件时存在? (2)求解函数f (x )在x 0处导数的步骤是什么? 答案 (1)函数f (x )在x 0处可导,是指Δx →0时,Δy Δx 有极限,如果Δy Δx 不存在极限,就说函数 在点x 0处无导数.

变化率与导数同步练习(有答案)

变化率与导数同步练习(有答案) 人教新课标版(A)选修1-1 3.1 变化率与导数同步练习题 【基础演练】题型一:变化率问题与导数概念一般地,我们称为平均变化率,如果时,存在,称此极限值为函数在处的导数,记作,请根据以上知识解决以下1~5题。 1. 一质点运动的方程为,则在一段时间内相应的平均速度为 A. B. C. D. 2. 将半径为R的球加热,若球的半径增加△R,则球的体积增加△y约等于 A. B. C. D. 3. 已知函数的图象上一点(1,2)及邻近一点,则等于 A. 2 B. 2x C. 2+△x D. 2+△ 4. 自变量变到时,函数值的增量与相应自变量的增量之比是函数 A. 在区间上的平均变化率 B. 在处的 变化率 C. 在处的变化量 D. 在区间上的导数 5.若函数在处的导数为A,求。 题型二:导数的物理意义在物体的运动规律中,如果,那么物体的瞬时速度;如果,那么物体的加速度,请根据以上知识解决以下6~7题。 6. 若一物体运动方程如下:求物体在或时的速度。 7. 质点M按规律做直线运动,则质点的加速度a=___________。 题型三:导数的几何意义导数的几何意义:函数在处的导数,即曲线在点P()处切线的斜率为,相应的切线方程是,请根据以上知识解决以下8~9题。 8. 下面说法正确的是 A. 若不存在,则曲线在点(,)处没有切线 B. 若曲线在点()处有切线,则必存在 C. 若不存在,则曲线在点()处的切线斜率不存在 D. 若曲线在点()处没有切线,则可能存在 9. 已知曲线C:。(1)求曲线C上横坐标为1的点处的切线方程(2)第(1)小题中的切线与曲线C是否还有其他的公共点? 【互运探究】[学科内综合] 10. 设,在处可导是在(a,b)内可导的 A. 充分非必要条件 B. 必要而非充分条件 C. 充要条件D. 既非充分又非必要条件 11. 如图3-1-1表示物体运动的路程随 时间变化的函数的图象,试根据图象,描述、比较曲线在、、附近的变化情况,并求出时的切线的方程。 [学科间综合] 12. 两工厂经过治理,污水的排放量(W)与时间(t)的关系如图所示,试指出哪一个厂治污效果较好?

变化率与导数、导数的计算 知识点与题型归纳

1 ●高考明方向 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数 y =c (c 为常数),y =x ,y =x 2,y =x 3,y =1 x 的导数. 4.能利用基本初等函数的导数公式和导数的四则运算法则 求简单函数的导数. ★备考知考情 由近几年高考试题统计分析可知,单独考查导数运算的题目很少出现,主要是以导数运算为工具,考查导数的几何意义为主,最常见的问题就是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系,以平行或垂直直线斜率间的关系为载体求参数的值,以及与曲线的切线相关的计算题.考查题型以选择题、填空题为主,多为容易题和中等难度题,如2014广东理科10、文科11. 2014广东理科10 曲线52-=+x y e 在点()0,3处的切线方程为 ; 2014广东文科11 曲线53=-+x y e 在点()0,2-处的切线方程为 ;

一、知识梳理《名师一号》P39 知识点一导数的概念 (1)函数y=f(x)在x=x0处的导数 称函数y=f(x)在x=x0处的瞬时变化 率lim Δx→0Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx 为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x . (2)称函数f′(x)=lim Δx→0f(x+Δx)-f(x) Δx为f(x)的导函数. 注意:《名师一号》P40 问题探究问题1 f′(x)与f′(x0)有什么区别? f′(x)是一个函数,f′(x0)是常数, f′(x0)是函数f′(x)在点x0处的函数值. 例.《名师一号》P39 对点自测1 1.判一判 (1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.() (2)f′(x0)与[f(x0)]′表示的意义相同.() (3)f′(x0)是导函数f′(x)在x=x0处的函数值.() 答案(1)×(2)×(3)√ 2

相关文档
相关文档 最新文档