文档库 最新最全的文档下载
当前位置:文档库 › 磁共振成像的临床应用

磁共振成像的临床应用

磁共振成像的临床应用
磁共振成像的临床应用

磁共振成像的临床应用

(作者:___________单位: ___________邮编: ___________)

【摘要】上世纪七十年代CT的问世是医学影像学的一场革命,她带动了医学事业蓬勃发展,因此,发明者获得了诺贝尔医学奖。至八十年代磁共振成像(magneticresonanceimaging)的兴起,医学影像的成像原理发生了本质变化,从简单的x线能量衰减转化为物理生物学成像。大大拓宽了医学影像的发展道路,各种新的成像技术层出不穷。改变了影像学就是形态学的传统观念,引导影像学向定性、定量诊断方向发展。

【关键词】磁共振原理临床应用技术设备

磁共振成像是利用原子核在磁场内共振所产生信号经重建成像的一种成像技术。

核磁共振(nuclearmagneticresonance,NMR)是一种核物理现象。早在1946年Block与Purcell就报道了这种现象并应用于波谱学。Lauterbur1973年发表了MR成象技术,使核磁共振不仅用于物理学和化学。也应用于临床医学领域。近年来,核磁共振成像技术发展十分迅速,已日臻成熟完善。检查范围基本上覆盖了全身各系统,并在世界范围内推广应用。为了准确反映其成像基础,避免与核素成

像混淆,现改称为磁共振成象。参与MRI成像的因素较多,信息量大而且不同于现有各种影像学成像,在诊断疾病中有很大优越性和应用潜力。

1中枢神经系统

(1)脑血管性疾病由于弥散、灌注及水抑制的应用,使的MRI 诊断脑梗塞的敏感性、特异性均明显高于CT。MRI对脑溢血的价值在于其能对血肿进行准确分期。脑动脉瘤、动静脉畸形均有流空血管影显示。

(2)脑肿瘤脑肿瘤在MRI上有形态学和异常信号改变,三维成像的使用对脑肿瘤的定性、定位诊断更准确。

(3)炎症各种细菌、病毒、霉菌性脑炎、脑膜炎与肉芽肿在MRI 可显示,注射顺磁性造影剂Gd-DTPA对定性诊断更有价值。对弓形体脑炎、脑囊虫、脑包虫病可定性诊断,并能分期分型。

(4)脑退行性病变MR能清楚的显示皮质性、髓质性、弥漫性脑萎缩。MR还能诊断原发性小脑萎缩。协助诊断皮质下动脉硬化性脑病、Alzermer氏病、pick氏病、hunfing氏舞蹈病,wilson氏病、leigh氏病、fahr氏病及CO中毒、霉变干蔗中毒、甲旁减等疾病。

(5)脑白质病变MR对诊断多发性硬化、肾上腺性脑白质病等脱髓鞘和髓鞘形成不良性疾病都有重要价值。

(6)脑室与蛛网膜下腔病变MR能清楚的显示孟氏孔和中脑导水管,即能明确分辨梗阻性和交通性脑积水。MR显示蛛网膜囊肿、室管膜囊肿、脑室内肿瘤、脑室内囊肿等均很敏感。

(7)脑先天性发育畸形MR是显示发育畸形最敏感而准确的方法,如大脑、小脑发育不良,脑灰质异位症、并字体发育不良、神经管闭合障碍,Dandy-walker畸形,chiari畸形,结节性硬化,神经纤维瘤病等。

(8)脊髓与脊椎病变从矢状面、轴位与冠状面上直接显示脊髓与脊椎是MR的突出贡献。脊椎骨折、椎间盘突出、脊髓受累在MRI 上一目了然。MR能对颈椎病分期、分型。MRI椎动脉造影是唯一无创伤性血管造影。MR直接显示脊髓空洞,脊髓动静脉畸形髓内出血,硬膜下或硬膜外血肿,蛛网膜囊肿。MR还能明确肿瘤位于髓内或髓外。增强MR更能勾画出肿瘤侵犯的具体范围。

2体部

MRI对软组织的分辨率明显优于CT,能直接显示血管结构。

避免了传统X线辐射,可灵活的多方位,多层面成像,层出不穷的新技术,新造影剂的使用。都是它在体部脏器与骨骼、关节肌肉系统得以推广应用的基本优势。

(1)五官与颈部病变由于MRI的软组织分辨力高,可进行矢、冠、轴多方位扫描,又无骨骼伪影的干忧,内耳水成像,颈部血管成像等新技术的应用,在检查眼部、鼻窦、内耳、鼻咽、喉与颈部病变方面比CT有明显优势。如在眼部检查中,MRI能清楚显示视神经全貌,抑脂技术更能明确眼部组织结构。对视网膜脱离、黑色素瘤有特征性的信号改变。

(2)肺与纵隔病变,由于MR可行冠矢状面扫描,因而具备

了常规X线的优点,由于MR可行轴位扫描,因而具备了CT扫描的优点。MR善于显示肺与纵隔内的肿瘤与淋巴结肿大。还可以直接分辨纵隔内的大血管与淋巴结。肺内炎症、结核、纤维化、肺大泡、胸腔积液、支气管扩张等病变,在MR上均可显示。由于MR的流空效应的多平面的成像能力,故最适于诊断肺隔离症。无需使用造影剂,就能极好地显示隔离肺的供血动脉和引流静脉,还可以观察隔离肺的内部构变化及其与周围肺的关系,经验表明,MRI可以代替创伤性血管造影来显示隔离肺的供血动脉,为手术提供准确的解剖信息。

(3)心脏与大血管病变需加心电门控.由于快速流空效应,心腔与大血管均呈无信号黑影,其内的肿瘤呈软组织信号,血栓呈正铁血红蛋白独特的高信号。MR直接显示主动脉瘤、主动脉夹层动脉瘤等大血管病变,以及肺源性心肌病、充血性心肌病、缩窄性心肌病,心包积液及室壁瘤。急性与慢性心肌梗塞区呈长T1与长T2异常信号。MR能显示风心病瓣膜改变,并能显示前负荷增加所致的继发性改变。对各种先天性心脏病变如心间隔缺损、法乐氏四联症、马凡氏综合症等病理改变则须选择的层面才能显示。

(4)肝胆系统病变MR对鉴别海绵状血管瘤与肝癌(包括转移癌)有特别重要的价值,CT增强动态扫描难以确诊的海绵状血管瘤在MR 重度T2加权像上可以与肝癌明确地加以鉴别。特异性的磁共振超顺磁性造影剂(SPIO)使用,开辟了肝癌诊断的新途径。(GD-DTPA)的快速扫描改变了MRI只能靠信号改变,不能反映血流动力学变化的弱点。总之,MRI对肝脏内灶性病变有较高的诊断价值。MR诊断急慢性

胆囊炎可以借用CT的诊断标准。不用造影剂MR可以鉴定胆囊浓缩胆法的能力,有助于鉴别急慢性胆囊炎。

MR显示梗阻性黄疸的作用优于CT。对肝胆管扩张,MR可以直接区分呈流空低信号的肝内静脉与呈长T1、长T2的瘀滞的胆管。无创伤性MRCP已基本取代了ERCP的诊断价值,并使PTC检查成为历史。据文献报道MRCP的定位准确率在91.0%~100%,定性诊断准确率在64.0~98.0%。

虽然MRCP不能取代ERCP的治疗作用,但作为无创伤、无痛苦,并可获得相关的肝脏和胰腺的MR断面图像,能直接观察胆总管腔内外病变情况的新兴检查手段,MRCP有着无比的优越性。

(5)胰脏病变MR可以沿袭CT的标准显示胰腺癌、胰岛细胞瘤、急性胰腺炎、慢性胰腺炎与假囊肿形成,但尚不比CT的影像清晰。

(6)肾脏与泌尿系统器官位置相对较固定,受呼吸影响小,因此MRI能清楚的显示肾、输尿管、膀胱等组织结构。对泌尿系统所有疾病,炎症,结石,肿瘤,畸形,梗阻,血管性病变等均可获得清晰图像,使肾皮质髓质对比清晰,有效监测肾脏移植后排斥反应。磁共振血管成像可对肾血管性疾病作出明确诊断。方法简单,无创,磁共振尿路水成像对尿路梗阻可作出明确诊断。

(7)盆腔病变MR显示男性、女性盆腔器官均略优于CT,因盆腔脏器不受呼吸运动伪影的干扰,MR又能直接区分流空的血管与肿大的淋巴结,因而对盆腔肿瘤、炎症的诊断、分期均有极大帮助。

(8)骨、关节病变MR对组织分辨力高的优势在骨骼肌肉系统表

现的最为明显。因为肌肉、韧带、肌腱、软骨及液体的密度差别不大,在其它影像检查中难以区分,而它们的T1,T2驰豫时间不同,所以这些组织在MRI上显示清晰。任意方向成像更能显示肌腱、韧带的全貌。在传统放射学中,骨科疾病是的诊断难点,肌肉、关节软骨内疾病的诊断几乎是空白,因此MRI现普遍应用于骨、关节疾病的诊断。在绝大多数骨、关节疾病的诊断中MRI都有无可替代的作用。

化学交换饱和转移类对比剂在磁共振成像中的研究进展

万方数据

万方数据

万方数据

化学交换饱和转移类对比剂在磁共振成像中的研究进展 作者:吴春苗, 靳激扬, WU Chunmiao, JIN Jiyang 作者单位:东南大学附属中大医院放射科,南京,210009 刊名: 国际医学放射学杂志 英文刊名:INTERNATIONAL JOURNAL OF MEDICAL RADIOLOGY 年,卷(期):2009,32(5) 被引用次数:3次 参考文献(23条) 1.Ward KM;Aletrus AH;Balaban PS A new class "of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST) 2000 2.Zhang S;Wu K;Biewer MC1H and 17O NMR detection of a lanthanide-bound water molecule at ambient temperatures in pure water as solvent 2001 3.Aime S;Barge A;Castelli DD Paramagnetic lanthanide (Ⅲ) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications 2002 4.Goffeney N;Butte JW;Duyn J Sensitive NMR detection of cationic-polymer-based gene delivery systems using saturation transfer via proton exchange 2001 5.Terreno E;Castelli DD;Cravotto G Ln (Ⅲ)-DOTAMGly complexes:a versatile series to assess the determinants of the efficacy of paramagnetic chemical exchange saturation transfer agents for magnetic resonance imaging applications 2004 6.Terreno E;Cabella C;Carrera C From spherical to osmotically shrunken paramagnetic liposomes:an improved generation of LIPOCEST MRI agents with highly shifted water protons 2007 7.Zhou J;Lal B;Wilson DA Amide proton transfer (APT) contrast for imaging of brain tumors 2003 8.Zhou J;Wilson DA;Sun PZ Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX,CEST,and APT experiments 2004 9.Aime S;Delli Castelli D;Terreno E Supramolecular adducts between poly-L-arginine and[TmIIIdotp]:a route to sensitivityenhanced m magnetic resonance imaging-chemical exchange saturation transfer agents 2003 10.Aime S;Delli Castelli D;Terreno E Highly sensitive MRI chemical exchange saturation transfer agents using liposomes 2005 11.Aime S;Delli Castelli D;Lawson D Gd-loaded liposomes as T1,susceptibility,and CEST agents,all in one 2007 12.Aime S;Carrera C;Deili Castelli D Tunable imaging of cells labeled with MRI-PARACEST agents 2005 13.Gilad AA;van Laarhoven HW;McMabon Mr Feasibility of concurrent dual contrast enhancement using CEST contrast agents and superparamagnetic iron oxide particles 2009 14.Zhou J;Blakeley JO;Hua J Practical data acquisition method for human brain tumor amide proton transfer(APT) imaging 2008 15.Liu G;Ali MM;Yoo B PARACEST MRI with improved temporal resolution 2009 16.Gilad AA;McMahon MT;Walczak P Artificial reporter gene providing MRI contrast based on proton exchange 2007

核磁共振成像实验报告

中国石油大学 近代物理实验 实验报告 成 绩: 班级: 姓名 同组者: 教师: 核磁共振实验 【实验目的】 1、理解核磁共振的基本原理; 2、理解磁体的中心频率和拉莫尔频率的关系,并掌握拉莫尔频率的测量方法; 3、掌握梯度回波序列成像原理及其成像过程; 4、掌握弛豫时间的计算方法,并反演 T1和T2谱。 【实验原理】 一.核磁共振现象 原子核具有磁矩,氢原子核在绕着自身轴旋转的同时,又沿主磁场方向B 0作圆周运动,将质子磁矩的这种运动称之为进动,如图1所示。 图1 质子磁矩的进动 在主磁场中,宏观磁矩像单个质子磁矩那样作旋进运动,磁矩进动的频率符合拉莫尔(Larmor )方程:. 0/2f B γπ= 二、施加射频脉冲后(氢)质子状态 当生物组织被置于一个大的静磁场中后,其生物组织内的氢质子顺主磁场方向的处于低能态而逆主磁场方向者为高能态。在低能态与高能态之间根据静磁场场强大小与当时的温度,势必要达到动态平衡,称为“热平衡”状态。这种热平衡状态中的氢质子,被施以频率与质子群的旋进频率一致的射频脉冲时,将破坏原来的热平衡状态。施加的射频脉冲越强,

持续时间越长,在射频脉冲停止时,M离开其平衡状态B0越远。 如用以B0为Z轴方向的直角座标系表示M,则宏观磁化矢量M平行于XY平面,而纵向磁化矢量Mz=0,横向磁化矢量Mxy最大,如图2所示。这时质子群几乎以同样的相位旋进。施加180°脉冲后,M与B0平行,但方向相反,横向磁化矢量Mxy为零,如图3所示。 图2 90°脉冲后横向磁化矢量达到最大 图3 180°脉冲后的横向磁化分量为0 三、射频脉冲停止后(氢)质子状态 脉冲停止后,宏观磁化矢量又自发地回复到平衡状态,这个过程称之为“核磁弛豫”。当90°脉冲停止后,M仍围绕B0轴旋转,M末端螺旋上升逐渐靠向B0,如图4所示。 图4 90度脉冲停止后宏观磁化矢量的变化 1. 纵向弛豫时间(T1) 90°脉冲停止后,纵向磁化矢量要逐渐恢复到平衡状态,测量时间距射频脉冲终止的时

磁共振成像系统原理和功能结构

磁共振基本原理 第一章 主要讲述电荷、电流、电磁、磁感应方面的基本概念。这里将介绍余下章节中将提到的大量的词汇。你可以快速复习这些概念,但是要注意关键定义和一些重要的概念,因为这些概念有可能在考试中出现。同时也包括一些对向量和复数关系的解释。如果你有工程师的背景就请略过这些章节,否则请多花些时间研究2D、3D向量,振幅和相位、矢量和复数方面的知识。矢量在MRI中有极其重要的作用,因此现在多花些时间学习是值得的。 静电学研究的是静止的电荷,在MRI中几乎没有太大意义。我们以此作为开场白主要是因为电学和磁学之间有密切的关系。静电学与静磁场非常相似。最小的电荷存在于质子(正)和电子(负)中,集中在很小的一团或以量子形式存在。虽然质子比电子重1840倍,但是他们有同样幅度的电荷。电荷的单位是库仑,是6.24*1018个电子的总和,这是一个非常大的数量。一道闪电包含10到50个库仑。一个电子或质子的电荷为±1.6*10-19库仑。 与一个粒子所拥有的分离的电荷不同,电场是连续的。关键的概念是相同的电荷相互排斥,不同的电荷相互吸引。同时,你应该知道电场强度与电荷呈线形变化,和电荷的距离的平方成反比。换句话说,如果总的电荷数增加,电场的强度也会增加,与电荷的距离越远,电场强度越弱。 将相同的电荷拉近,或将不同的电荷分开都需要能量。当出现这种情况时,粒子就有做功的势能。就象拉开或压缩一个弹簧一样。这种做功的势能叫电动力(emf)。当一个电荷被移动,并做功时,势能可以转化成动能。每单位电荷的势能称电势能,它是电荷相对于电场的位置的函数(1/d2)。 电荷位于周边,它尽量要处于一个舒服的位置,但这也不是一件容易做到的事。它不断地运动、做功。运动的电荷越多,每个电荷做功越多,总功越大。运动的电荷叫做电流。电流的测量单位为安培(A)。第一个电流图描绘的是电池产生直流电(DC)。电厂里的发电机产生的是变化的电压,也称为交流电(AC)。 在通常情况下,电子在电流中的运动并不是没有阻力的。它们遇到各种类型的阻力。电路中阻碍电流流动的特点叫做阻抗。共有三种类型的阻抗,即电阻、电感、电容。如果电流的做功产生热量,阻抗就叫电阻;如果能量能产生磁场,阻抗即电感;如果能形成电场即电容。这三种阻抗在MRI中均有不同的作用,后面的章节将详细讨论。电流在电路中流动会做功,在单位时间内电流的总做功量称为功率。 磁学是物质的基本特性,就象电荷与质量一样。物质的磁性特点很大一部分是由电子的结构和运动决定的。非磁性的物质有非常小的排列方向紊乱的、结构紊乱的磁区,它们相互抵消。永磁体有大量的几乎排列方向一致磁区。排列越一致,磁场越强。 *备注:现在被称为土耳其的国家曾经认为天然磁体有磁性是很神秘的。几千年前,土耳其被称为Magnesia,这就是磁性这一词的由来。 当一种物质放在磁场中变的有磁性的程度被称为磁敏感性。真空的磁敏感性定义为0。如内

磁共振成像造影剂的合成与应用

磁共振成像造影剂的合成与应用 自从1973年Lauterbur首次实现磁共振成像(MRI)以来,这一技术在生物、医学等领域得到迅速发展和广泛应用。 MRI技术的基本原理与脉冲傅利叶变换核磁共振技术相似,不同的是它增设了一个线性剃度磁场,对样品磁核进行“空间编码”,使处于不同空间位置的同种磁核有不同的共振频率,在利用投影重建或傅利叶变换方法就能得到磁核的空间分布图像。这种技术弥补了计算机X射线断层照相术(CT扫描术)的不足,对检测组织坏死、局部缺血和各种恶性病变特别有效,并能对其进行早期诊断;对人体各循环系统的代谢过程进行监测,其成像对比度优于CT扫描术。 随着MRI在临床的广泛运用,人们对进一步提高磁共振影像对比度提出了更高的要求。其中运用的最多的就是运用造影剂改变组织的磁共振特征性参数,即缩短驰豫时间。在各类磁共振造影剂中,研究的最多的是多胺多羧酸类钆配合物,如经典的二亚乙基三胺五乙酸(DTPA)和1,4,7,10,四氮杂环十二烷, N,N’,N’’,N’’’四乙酸(DOTA)钆配合物。 HOOCCOOH NNCOOHHOOC NNNNNHOOCCOOHCOOHHOOCCOOH DTPA DOTA 将DTPA和DOTA为基本骨架进行修饰,可以提高一些方面的性能。如在骨架上引入各类基团,可以增强配合物的稳定性、改变其疏水性能、提高组织或器官选择性。将配合物修饰为电中性,使之渗透压与血浆相近,可以降低毒副作用。将小分子钆配合物结合到大分子上,可以改变它们的生物物理学和药理学的性质,引起很多科学家的重视。

高分子的造影剂在血管中有较长的保留时间,而且比较起小分子造影剂来说能够提高磁共振的驰豫效果。常见的含钆配合物的高分子磁共振造影剂有以下几类: 1. 配合物在聚合物侧链的造影剂: 高分子链采用经典的化学方法,将伯胺用酰化、烷基化、还原胺化等方法进行功能化,可以 在侧链上引入配合物,目前主要是用常见的试剂,如DTPA或者二亚乙基三胺五乙酸酐(DTPAA)来功能化高分子。将这些配体的羧基基团与大分子侧链上的活性的伯胺反应,通过形成酰胺键的形式将配合物结合到大分子的侧链,连接的配体与DTPA自身比较有些改变:一个乙酸变成了酰胺,但是还是八配位的.由于取代一个酰胺,将影响配合物的驰豫性能。 OOOOOO ligand++--NHNHNHNHHCOHCO33 )(CH)(CH))(CH(CH(CH)2323)2323(CH2323 NHNHRNH2NHR2NH2NHR Weissleder等用聚赖氨酸(PLL)骨架侧链上的胺基与DTPA等配体反应得到大分子钆配合物.由于分子链上连接了大量的钆配合物,并显示出了很高的驰豫效率[1,2]. 2. 主链含配合物的线性聚合物造影剂 Kellar等通过α,ω二胺基的不同分子量的聚PEG与配体反应制备了一系列线性聚合物[3]。这些物质与前面讨论的连接在聚合物侧链的复合物不同,它们的 配合物直接连接在聚合物的主链中,他们还制备了一系列不同分子量,通过酰胺 OO

核磁共振成像实验报告

核磁共振成像实验 【目的要求】 1.学习和了解核磁共振原理和核磁共振成像原理; 2.掌握MRIjx 核磁共振成像仪的结构、原理、调试和操作过程; 【仪器用具】 MRIjx 核磁共振成像仪、计算机、样品(油) 【原 理】 磁共振成像(MRI )是利用射频电磁波(脉冲序列)对置于静磁场B 0中的含有自旋不为零的原子核(1H )的物质进行激发,发生核磁共振,用感应线圈检测技术获得物质的组织驰豫信息和氢质子密度信息(采集共振信号),用梯度磁场进行空间定位、通过图像重建,形成磁共振图像的方法和技术。 具体的讲,核磁共振是利用核磁共振现象获取分子结构、样品内部结构信息的技术。当具有自旋的原子核的磁矩处于静止外磁场中时会产生进动和能级分裂。在交变磁场作用下,自旋的原子核会吸收特定频率的无线电射频电磁波,从较低的能级跃迁到较高能级。在停止射频脉冲后,原子核按特定频率发出射电信号,并将吸收的能量释放出来,被物体外的接受器收录,经电子计算机处理获得图像,这就是做核磁共振成像过程。 MRI 的特点: ● 具有较高的物质组织对比度和组织分辨力,对软组织分辨率极佳,能清晰地显示软组织、软骨结构,解剖结构和医学上的病变形态,显示清楚、逼真。 ● 多方位成像,能对被检查部位进行横断面、冠状面、矢状面以及任何斜面成像。 ● 多参数成像,获取T 1加权成像(T 1W1):T 2加权成像(T 2W2)、质子密度加权成像(PDW1),在影像上取得物质的组织之间、组织与变化之间T 1、T 2和PD 的信号对比,在医学上对显示解剖结构和病变敏感。 ● 能进行形态学、功能、组织化学和生物化学方面的研究。 ● 以射频脉冲作为成像的能量源,不使用电离辐射,对人体安全、无创。 一、核磁共振原理 产生核磁共振信号必须满足三个基本条件:(1)能够产生共振跃迁的原子核;(2)恒定的静磁场(外磁场、主磁场)B 0;(3)产生一定频率电磁波的交变磁场,射频磁场(RF );即:“核”:共振跃迁的原子核;“磁”:主磁场B 0和射频磁场RF ;“共振”:当射频磁场的频率与原子核进动的频率一致时原子核吸收能量,发生能级间的共振跃迁。 1. 原子核的自旋和磁矩 原子核由质子和中子组成,原子核有自旋运动,可以粗略的理解为原子核绕自身的轴向高速旋转的运动,对应有确定的自旋角动量,反映了原子核的内禀特性。自旋的大小与原子核中的核子数及其分布有关,质子数和中子数均为偶数的原子核,自旋量子数I=0,质量数为奇数的原子核,自旋量子数为半整数,质量数为偶数,质子数为奇数的原子核,自旋量子数为整数。原子核自旋角动量的具体数值由原子核的自旋量子数I 决定, )(1+=I I l I 。 原子核具有电荷分布,自旋时形成循环电流,产生磁场,形成磁矩,磁矩的方向与自旋角动量方向一致,大小I P γγμ==,P 是角动量,γ是磁旋比,等于

磁共振成像系统

(一)分类磁共振按照不同的分类方法有不同的分类。按照场强大小分为高场、中场、低场磁共振;高场一般为场强高于1. OT的磁共振;巾场为场强高于0. ST而低于1.OT的磁共振;低场一般为低于0. ST的磁共振。按照磁体类型一般分为:永磁型磁共振、常寻型磁共振和超导型磁共振。永磁型磁共振维护费用小;逸散磁场小,对周围环境影响小;造价低;安装费用也较少; 一般只能产生垂直磁场;场强范围一般在0. 15~0. 35T;磁场随温度漂移严重,磁体需要很好的恒温;磁场不能关断,对安装检修带来困难;磁体沉重;且随着场强增大,磁体厚度增大,更加沉重。常导型磁共振生产制造较简单,造价低;可产生水平或垂直磁场;重量轻;检修方便,磁场均匀度也很高;场强一般在0. 1~0. 4T;运行耗费较大,通电线圈耗电达60kW以上;还需配用专门的供电设备和水冷系统。超导型磁共振场强范围0. 3~9T;磁场均匀性高;稳定性好;图像质量好;运行耗费很高,制冷剂主要是液氦的费用很高;运输、安装、维护费用也很高。目前主要市场上的磁共振以高场和低场为主,高场一般为超导型,低场一般为永磁型;且低场永磁型磁共振往往做成开放式,有C形式或立柱式;高场超导磁共振往往做成圆形孔腔式或站立式的磁共振。常导磁共振一般也做成圆形孔腔式。还有些公司推出了某些部位如头颅、四肢或关节专用检查的磁共振设备,其形态变化较灵活。一般来讲,低场永磁型以出诊断图像为主要目的,图像质量已经能够满足诊断要求;高场超寻型主要以功能磁共振为主,图像质量是其基础。 (二)MRI系统结构 磁共振系统的典型结构如图6-10所示,主要包括磁体子系统、梯度场子系统、射频子系统、数据采集和图像重建子系统、主计算机和图像显示子系统、射频屏蔽与磁屏蔽、MRI软件等,分述如下。

磁共振成像技术模拟题13

磁共振成像技术模拟题13 单选题 1. 部分容积效应是由于 A.病变太大 B.矩阵太小 C.信噪比太低 D.扫描层厚太薄 E.扫描层厚太厚 答案:E [解答] 层厚增加,采样体积增大,容易造成组织结构重叠而产生部分容积效应。 2. 关于矩阵的描述,不正确的是 A.矩阵增大,像素变小 B.增加矩阵可提高信噪比 C.常用的矩阵为256×256 D.增加矩阵会增加扫描时间 E.矩阵分为采集矩阵和显示矩阵两种 答案:B 3. 关于流动补偿技术的叙述,不正确的是 A.降低信号强度 B.T1加权时不用 C.常用于FSE T2加权序列 D.用于MRA扫描(大血管存在的部位) E.可消除或减轻其慢流动时产生的伪影,增加信号强度

答案:A [解答] 流动补偿技术用特定梯度场补偿血流、脑脊液中流动的质子,可消除或减轻其慢流时产生的伪影,增加信号强度。 4. 关于回波链长的描述,不正确的是 A.在每个TR周期内出现的回波次数 B.常用于FSE序列和快速反转恢复序列 C.回波链长,即ETL D.回波链与扫描的层数成正比 E.回波链与成像时间成反比 答案:D [解答] 回波链越长,扫描时间越短,允许扫描的层数也减少。 5. 下列哪一种金属物不影响MRI扫描 A.心脏起搏器 B.体内存留弹片 C.大血管手术夹 D.固定骨折用铜板 E.固定椎体的镍钛合金板 答案:E [解答] 体内具有非铁磁性置入物的患者是可以接受MRI检查的。 6. 关于细胞毒素水肿的叙述,不正确的是 A.白质、灰质同时受累 B.T2WI之边缘信号较高 C.钠与水进入细胞内,造成细胞肿胀 D.细胞外间隙减少,常见于慢性脑梗死的周围

磁共振成像技术实验

目录 第一章NM20台式磁共振成像仪硬件概述....................... 错误!未定义书签。 第一节系统硬件框图 ......................................... 错误!未定义书签。 第二节部件接插口.............................................. 错误!未定义书签。 第三节部件连线 ................................................ 错误!未定义书签。 第四节系统开关机 0 第二章NMI20台式磁共振成像仪软件概述 ...................... 错误!未定义书签。 第一节软件界面............................................... 错误!未定义书签。 第二节软件菜单栏介绍....................................... 错误!未定义书签。 第三节软件工具栏介绍 ........................................ 错误!未定义书签。 第四节功能选项卡 ............................................ 错误!未定义书签。第三章部分可开设的实验项目 (2) 实验一机械匀场和电子匀场实验 (2) 实验二测量磁共振中心频率(拉莫尔频率) (9) 实验三旋转坐标系下的FID信号 (16) 实验四自动增益实验 (24) 实验五硬脉冲回波 (29) 实验六软脉冲FID实验 (38) 实验七软脉冲回波 (43) 实验八硬脉冲CPMG序列测量T2 (49) 实验九乙醇的化学位移测量 (54) 实验十自旋回波序列质子密度像 (59) 实验十一自旋回波权重像 (66) 实验十二一维梯度编码成像 (70)

5T磁共振成像系统技术参数.doc

1.5T 磁共振成像系统技术参数 * 总体要求:投标时提供进口品牌产品、技术白皮书(DATA SHEET) ,投标方应提供设备技术要求中的全套配置。 序号项目要求 一磁体 1.1 磁场强度 1.5T 1.2 磁体类型超导磁体 1.3 磁体屏蔽方式主动屏蔽 1.4 抗外界电磁干扰屏蔽具备 1.5 匀场方式主动匀场 + 被动匀场 1.6 磁场稳定度<0.1ppm/hour 1.7 主动匀场技术具备 1.8 匀场线圈组数≥18 组 1.9 10cm DSV ( 20 点 24 平面 VRMS 测量法)≤ 0.014ppm 1.10 20cm DSV ( 20 点 24 平面 VRMS 测量法)≤ 0.044ppm 1.11 30cm DSV ( 20 点 24 平面 VRMS 测量法)≤ 0.1ppm 1.12 40cm DSV ( 20 点 24 平面 VRMS 测量法)≤ 0.22ppm 1.13 磁体长度(不含外壳)≤160cm * 1.14 磁体长度(包含外壳)≤170cm 1.15 病人检查孔道孔径≥ 60cm * 1.16 液氦消耗率(以datasheet 公布的数据为准)≤0.01 升 /年 1.17 理论液氦填充周期(以datasheet 公布的数据为 ≥5 年准) 1.18 五高斯磁力线X,Y 轴≤ 2.5m 1.19 五高斯磁力线Z 轴≤ 4.0m 1.20 磁体重量 (连液氦 ) ≥3.2 吨 1.21 冷头保用时间≥2 年 二梯度系统 2.1 梯度系统具备源屏蔽2.2 梯度场强( X,Y,Z 轴,非有效值)≥ 33mT/m 2.3 梯度切换率( X,Y,Z 轴,非有效值)≥ 120mT/m/s 2.4 梯度爬升时间≤ 0.275ms 2.5 最高梯度性能时X 轴扫描野≥ 50cm 2.6 最高梯度性能时Y 轴扫描野≥ 50cm

学习心得:关于磁共振成像技术学习的点滴体会

关于磁共振成像技术学习的点滴体会 每一次到医院拜访或会议上讲完课总有老师问该如何学习磁共振成像技术?到底应该看哪本书?这些的确是很多磁共振使用者一个共同的困惑。 坦率的说我和大家有着相同的困惑和痛苦。我是纯学临床医学的,当时大学课程里所学习的唯一一门影像课程就是放射诊断学。其中连CT的内容都没有,就更别提磁共振了。毕业后从事放射诊断工作,渐渐的接触到CT和磁共振诊断内容。 相比于其他影像学设备而言磁共振成像技术原理复杂,也更具多学科交叉的属性。由于我们大多数影像科医生在大学阶段渐渐淡化了数学和物理学等的学习,所以这给我们学习磁共振成像技术带来了很大挑战。那么,以我个人的经验看我们到底应不应该学习磁共振成像技术?我们又该怎样学习磁共振成像技术且能学以致用呢?在此,谈一点个人体会。需要提前声明这些绝不是什么经验,仅仅想以此抛砖引玉而已。 Q1 作为读片医生或者磁共振操作者,到底有没有必要学习磁共振技术? 显而易见,答案是肯定的。 磁共振成像技术非常复杂,学习起来耗时耗力,很容易让人望而却步、从而采取消极抵抗策略。但是我要告诉所有有这些想法的老师如果这样做牺牲的一定是自己。大家知道随着磁共振成像设备性能的不断进步和完善,新的技术也层出

不穷,然而非常遗憾的是,真正能把这些新技术用起来的医院少之又少。究其原因就是因为使用者因为不了解这些新技术就主观上产生了畏难和恐惧心理。 事实上,要能真正快速理解、掌握新技术,就必须要有扎实的基础知识。我要告诉大家一点:所有的新技术都是在常规序列基础之上衍生出来的,如果我们有夯实的基础,那么面对每一个新技术你只需了解它的革新和变化点即可,而且通过与相关传统技术对比你也更容易感觉和认识到这些新技术的临床优势可能有哪些。这些对于你的临床和科研切入都至关重要。 我常常见到一些从事某项课题研究的医生或研究生,当深入谈及其课题所采用的相关技术时却没有完整或清醒的认识,每一天都懵懵懂懂的在盲目的扫描着。我不理解这样的研究工作乐趣何在? 另一方面,磁共振本身作为一门多序列多参数对比的成像技术,充分利用好其优势不仅可以大大提高病变的检出率也能为诊断和鉴别诊断提供更特异性的信息。 举个例子: 对于一个怀疑脊髓内病变的患者,如果你在颈椎轴位扫描时还只是墨守成规的扫描了FSE T2加权像,你就很难发现早期脊髓内改变。如果此时你深入了解到梯度回波准T2加权像更有利于显示脊髓内灰质结构,再进一步你还知道在GE 磁共振平台的MERGE序列较常规梯度回波序列更敏感,那你就会根据临床需求而加扫MERGE这个序列了。当然这其中的原因很简单就是因为这些脊髓内病变的含水量没有那么丰富,在FSE序列T2加权像一般TE时间很长导致这些髓内病变的高信号衰减掉了,而在梯度回波我们可以在相对短的时间内获取准T2加

第7章磁共振成像对比剂

第7章磁共振成像对比剂 1高浓度顺磁造影剂对质子弛豫时间的影响为 缩短,T2改变不大 缩短,T2延长 延长,T2缩短 缩短,T2缩短 延长,T2延长 2超顺磁性颗粒造影剂对质子弛豫时间的影响为 缩短,T2缩短 缩短,T2延长 不变,T2缩短 不变,T2延长 延长,T2缩短 3铁磁性颗粒造影剂对质子弛豫时间的影响为 缩短,T2缩短 缩短,T2延长 不变,T2缩短 不变,T2延长 延长,T2缩短 4顺磁性物质缩短T1和T2弛豫时间与哪种因素有关 A.顺磁性物质的浓度 B.顺磁性物质的磁矩 C.顺磁性物质局部磁场的扑动率 D.顺磁性物质结合的水分子数 E.以上均是 5、使用MRI对比剂的目的主要是 A、增加病灶的信号强度 B、降低病灶的信号强度 C、提高图像的信噪比和对比噪声比,有利于病灶的检出 D、减少图像伪影 E、用于CT增强未能检出的病灶 6、目前临床最常用MRI对比剂是 A、Mn-DPDP B、Gd-DTPA C、Gd-EOB-DTPA D、SPIO E、USPIO 的不良反应可包括: A.头晕 B.头痛 C.恶心 D.心前区不适 E.以上均是 8.对比增强MRA对流动失相位不敏感的主要原因是: A、注射了造影剂、 B、扫描速度更快、 C、选择了很短的TR和TE、 D、应用了表面线圈、

E、应用了高切换率的梯度场、 D、主要是由于静止组织信号明显衰减,血流呈现相对高信号。 E、注射造影剂有助于保持梯度回波序列的血流高信号。 9.GD—DTPA的临床应用常规剂量为: A、kg体重 B、1mmol/kg体重 C、2mmol/kg体重 D、3mmol/kg体重 E、4mmol/kg体重 10、Gd-DTPA增强可用于: A、鉴别水肿与病变组织 B、碘过敏不能行CT增强者 C、在一定过程上区分肿瘤性病变与非肿瘤性病变 D、发现脑膜病变 E、以上均对 11.属网状内皮细胞性MR特异对比剂的是 A.钆喷替酸葡甲胺与大分子蛋白质结合物B.锰螯合物,如Mn-DPDP C.钆螯合物,如Gd-EOB-DTPA D.极小的超顺磁氧化铁颗粒 E.超顺磁氧化铁颗粒,如AMI-25等 12.下列有关MR对比剂的叙述哪项正确 A.利用对比剂的衰减作用来达到增强效果B.利用对比剂本身的信号达到增强效果C.直接改变组织信号强度来增加信号强度 D.通过影响质子的弛豫时间,间接地改变组织信号强度 E.通过改变梯度场的强度来进行增强 13MR对比剂的增强机理为 A.改变局部组织的磁环境直接成像 B.改变局部组织的磁环境间接成像 C.增加了氢质子的个数 D.减少了氢质子的浓度 E.增加了水的比重 14低浓度顺磁造影剂对质子弛豫时间的影响为( A) 缩短,T2改变不大 缩短,T2延长延长,T2缩短 缩短,T2缩短延长,T2延长 15.下列颅内肿瘤注射造影剂后增强不明显的是 A.脑膜瘤 B.垂体瘤 C.听神经瘤 D.脑转移瘤 E.脑良性胶质瘤 16.关于细胞外对比剂的描述,错误的是 A.应用最早、最广泛 B.钆制剂属此类对比剂

第六章 磁共振成像对比剂

第六章磁共振成像对比剂 磁共振成像的优势之一是具有良好的组织对比,使MR 发现病变的敏感性显著提高。但是,正常组织与病变组织的弛豫时间有较大的重叠,仅有MR平扫,定性诊断困难,而且有时难以发现小病灶。磁共振成像对比剂能改变组织的弛豫时间,改变组织的信号强度,从而提高组织对比。 1.磁共振对比剂的分类 根据MRI对比剂在体内的分布,磁敏感性、对组织的特异性等将磁共振成像对比剂分为细胞内外对比剂、磁敏感性对比剂和组织特异性对比剂三大类。也可根据化学结构分类。 1.1细胞内、外对比剂 ·细胞外对比剂细胞外对比剂是应用最早、目前应用最广泛的钆制剂属此类对比剂。它在体内非特异性分布,可在血管内或细胞外间隙自由通过。 ·细胞内对比剂以体内某一组织或器官的一些细胞作为目标靶来分布。如网织内皮系统对比剂和肝细胞对比剂。此类对比剂注入静脉后,立即从血中廓清并与相关组织结合。可使摄取的组织与摄取对比剂的组织之间产生对比。 1.2磁敏感性对比剂 物质在磁场中产生磁性的过程称为磁化。不同物质在单位磁场中产生磁化的能力称为磁敏感性(也称磁化率),用磁化强度表示。根据物质磁敏感性的不同,MRI对比剂可分为顺磁性、超顺磁性和铁磁性三类。 1.2.1顺磁性对比剂 顺磁性对比剂中顺磁性金属原子的核外电子不成对,故磁化率较高,在磁场中具有磁性,而在磁场外则磁性消失。如镧系元素钆、锰、铁等均为顺磁性金属元素,其化合物溶于水时,呈顺磁性。 顺磁性对比剂浓度低时,主要使T1缩短,浓度高时,主要使T2缩短,超过T1效应,使MR信号降低。常用T1效应作为T1加权像中的阳性对比剂。 1.2.2超顺磁性对比剂 超顺磁性对比剂是指由磁化强度介于顺磁性和铁磁性之间的各种磁性微粒或晶体组成的对比剂。其磁化速度比顺磁性物质快,在外加磁场不存在时,其磁性消失,如超顺磁性氧化铁(superparamagnetic iron oxide,SPIO)。 1.2.3铁磁性对比剂

2020年医用设备使用人员(MRI技师)业务能力考评 章节题库(MRI技师-磁共振成像对比剂)【圣才

2020年医用设备使用人员(MRI技师)业务能力考评章节题库 第三篇MRI技师 第7章磁共振成像对比剂 试卷大题名称:单项选择题 试卷大题说明:以下每一道考题下面有A、B、C、D、E五个备选答案。请从中选择一个最佳答案。 1.应用Gd-DTPA增强扫描常用的技术是()。 A.T2WI B.T1WI C.PDWI D.DWI E.SWI 【答案】B 【解析】Gd-DTPA行增强扫描时,利用T1效应特性,选用T1加权脉冲序列。 2.MR对比剂的增强机制为()。 A.改变局部组织的磁环境直接成像 B.改变局部组织的磁环境间接成像 C.增加了氢质子的个数

D.减少了氢质子的浓度 E.增加了水的比重 【答案】B 3.关于磁共振对比剂的毒理学,错误的是()。 A.自由Gd离子化学毒性强 B.Gd-DTPA进入血液后很快能与血清蛋白结合形成胶体 C.Gd-DTPA不经肝脏代谢 D.Gd-DTPA对肾功能不全者慎用 E.Gd-DTPA发生严重不良反应的概率低 【答案】B 【解析】Gd离子(而非Gd-DTPA)进入血液后很快能与血清蛋白结合形成胶体。 4.在磁共振成像中,为区分水肿和肿瘤的范围常采用()。 A.T1加权成像 B.T2加权成像 C.质子密度加权成像 D.Gd-DTPA增强后的T1加权成像 E.增强后的T2加权成像 【答案】D 5.高浓度顺磁对比剂对质子弛豫时间的影响为()。

A.T1缩短,T2改变不大 B.T1缩短,T2延长 C.T1延长,T2缩短 D.主要使T2缩短 E.T1延长,T2延长 【答案】D 【解析】顺磁性对比剂浓度低时,主要使T1缩短。浓度高时,主要使T2缩短,超过T1效应,使MR信号降低。常用T1效应作为T1加权像中的阳性对比剂。 6.Gd-DTPA作用原理为()。 A.能显著缩短周围组织的弛豫时间 B.能显著延长周围组织的弛豫时间 C.可穿过血脑屏障 D.可进入有毛细血管屏障的组织 E.分布具有专一性 【答案】A 【解析】Gd-DTPA的主要成分钆为顺磁性很强的金属离子钆,能显著缩短周围组织的弛豫时间。有助于对小病灶及弱强化的病灶的检出。 7.顺磁性对比剂浓度低时,对质子弛豫时间的影响为()。 A.T1、T2均延长

MRI也就是核磁共振成像

MRI也就是核磁共振成像,英文全称是:nuclear magnetic resonance imaging,之所以后来不称为核磁共振而改称磁共振,是因为日本科学家提出其国家备受核武器伤害,为表示尊重,就把核字去掉了。 核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。 MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。 MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。 MR也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。 磁共振成像是断层成像的一种,它利用磁共振现象从人体中获得电磁信号,并重建出人体信息。1946年斯坦福大学的Flelix Bloch和哈佛大学的Edward Purcell各自独立的发现了核磁共振现象。磁共振成像技术正是基于这一物理现象。1972年Paul Lauterbur 发展了一套对核磁共振信号进行空间编码的方法,这种方法可以重建出人体图像。 磁共振成像技术与其它断层成像技术(如CT)有一些共同点,比如它们都可以显示某种物理量(如密度)在空间中的分布;同时也有它自身的特色,磁共振成像可以得到任何方向的断层图像,三维体图像,甚至可以得到空间-波谱分布的四维图像。

磁共振成像的基本原理和概念

磁共振成像的基本原理和概念 第一节磁共振成像仪的基本硬件 医用MRI仪通常由主磁体、梯度线圈、脉冲线圈、计算机系统及其他辅助设备等五部分构成。 一、主磁体 主磁体是MRI仪最基本的构件,是产生磁场的装置。根据磁场产生的方式可将主磁体分为永磁型和电磁型。永磁型主磁体实际上就是大块磁铁,磁场持续存在,目前绝大多数低场强开放式MRI仪采用永磁型主磁体。电磁型主磁体是利用导线绕成的线圈,通电后即产生磁场,根据导线材料不同又可将电磁型主磁体分为常导磁体和超导磁体。常导磁体的线圈导线采用普通导电性材料,需要持续通电,目前已经逐渐淘汰;超导磁体的线圈导线采用超导材料制成,置于液氦的超低温环境中,导线内的电阻抗几乎消失,一旦通电后在无需继续供电情况下导线内的电流一直存在,并产生稳定的磁场,目前中高场强的MRI仪均采用超导磁体。主磁体最重要的技术指标包括场强、磁场均匀度及主磁体的长度。 主磁场的场强可采用高斯(Gauss,G)或特斯拉(Tesla,T)来表示,特斯拉是目前磁场强度的法定单位。距离5安培电流通过的直导线1cm处检测到的磁场强度被定义为1高斯。特斯拉与高斯的换算关系为:1 T = 10000 G。在过去的20年中,临床应用型MRI仪主磁体的场强已由0.2 T以下提高到1.5 T以上,1999年以来,3.0 T的超高场强MRI仪通过FDA 认证进入临床应用阶段。目前一般把0.5 T以下的MRI仪称为低场机,0.5 T到1.0 T之间的称为中场机,1.0 T到2.0之间的称为高场机(1.5 T为代表),大于2.0 T的称为超高场机(3.0 T为代表)。 高场强MRI仪的主要优势表现为:(1)主磁场场强高提高质子的磁化率,增加图像的信噪比;(2)在保证信噪比的前提下,可缩短MRI信号采集时间;(3)增加化学位移使磁共振频谱(magnetic resonance spectroscopy,MRS)对代谢产物的分辨力得到提高;(4)增加化学位移使脂肪饱和技术更加容易实现;(5)磁敏感效应增强,从而增加血氧饱和度依赖(BOLD)效应,使脑功能成像的信号变化更为明显。 当然MRI仪场强增高也带来以下问题:(1)设备生产成本增加,价格提高。(2)噪音增加,虽然采用静音技术降低噪音,但是进一步增加了成本。(3)因为射频特殊吸收率(specific absorption ratio,SAR)与主磁场场强的平方成正比,高场强下射频脉冲的能量在人体内累积明显增大,SAR值问题在3.0 T的超高场强机上表现得尤为突出。(4)各种伪影增加,运动伪影、化学位移伪影及磁化率伪影等在3.0 T超高场机上更为明显。由于上述问题的存在,3.0 T的MRI仪在临床应用还有一定限制,尽管其在中枢神经系统具有优势,但是在体部应用还不太成熟,因此,目前以1.5 T的高场机最为成熟和实用。 MRI对主磁场均匀度的要求很高,原因在于:(1)高均匀度的场强有助于提高图像信噪比,(2)场强均匀是保证MR信号空间定位准确性的前提,(3)场强均匀可减少伪影(特别是磁化率伪影),(4)高度均匀度磁场有利于进行大视野扫描,尤其肩关节等偏中心部位的MRI检查,(5)只有高度均匀度磁场才能充分利用脂肪饱和技术进行脂肪抑制扫描,(6)高度均匀度磁场才能有效区分MRS的不同代谢产物。现代MRI仪的主动及被动匀场技术进步很快,使磁场均匀度有了很大提高。 为保证主磁场均匀度,以往MRI仪多采用2m以上的长磁体,近几年伴随磁体技术的进步,各厂家都推出磁体长度为1.4m~1.7m的高场强(1.5T)短磁体,使病人更为舒适,尤其适用于幽闭恐惧症的患者。 随介入MR的发展,开放式MRI仪也取得很大进步,其场强已从原来的0.2T左右上升到0.5T以上,目前开放式MRI仪的最高场强已达1.0T。图像质量明显提高,扫描速度更快,已经几乎可以做到实时成像,使MR“透视”成为现实。开放式MR扫描仪与DSA的一体

磁共振成像对比剂研究进展

第26卷第4期(第80页)湖北民族学院学报?医学版 2009年Journal0fHubeiUniversityforNationalities?MedicalEditionV01.26No.4P.80 2009 磁共振成像对比剂研究进展 易琼1,余田2,李龙1 1.武警广东省总队医院放射科(广东广州510507) 2.南方医科大学附属南方医院影像中心(广东广州510507) 【关键词】磁共振;对比剂;钆 【中图分类号】R445.2【文献标识码】A【文章编号】1008—8164{2009)04-0080—04 磁共振成像(MRI)具有较高软组织分辨率以及多序列、多参数、多方位成像的优势,但很多病变与正常组织的Tl、,12弛豫时间差别不大,尤其是当病变较小时,平扫常不易显示。另外,有些病变虽有明显的信号异常,但定性与鉴别诊断仍较困难。此时,应用合适的对比剂有助于增加MRI的敏感度和特异度。近年来,随着许多新型MRI对比剂的陆续开发,MRI对比剂的应用越来越广泛;只有掌握了这些对比剂的用量、给药方式、扫描序列及扫描时间,才能最大限度地发挥其诊断价值;同时还应了解其禁忌证、不良反应的表现及处理,尽量避免医疗事故的发生…。本文就各种MRI对比剂的成分、作用机理及靶器官做一综述。 1非特异性细胞外组织间隙MRI对比剂 1.1小分子钆类化合物非特异性细胞外间隙MRI对比剂指小分子的钆类化合物,如:离子型的马根维显(Magnevist、GadopentetaeDimeglumine、Gd—DTPA,Schering生产)和MeglumineGadoterate(Gd—DOTA,Guerbet生产),非离子型的欧乃影(Gadodia?mide,Gd—DTPA—BMA,Nycomed生产)、Gadoteridol(钆特醇,Gd—Hp—D03A,Braeeo生产)及Gadobu—trol(钆布醇,Gd—D03A—butrol,Schering生产)。此类对比剂分子量小(Gd—DTPA约500dahous),具有亲水性;不能进入细胞内,无特殊的靶器官。静注后,迅速分布到全身血管系统,随即弥散到血管外细胞间隙,并很快达到平衡期,97%以上经肾脏排出。一般认为非离子型与离子型钆对比剂相比,渗透性及粘滞度更低,安全性更高睢。5】。儿童、老年人、过敏体质或大剂量使用者,最好用非离子型的。 钆类对比剂是利用Gd3+的强顺磁性,通过改变氢核周围的磁场起作用哺J。低浓度(0.1—0.2mmol/kg)时,主要通过缩短氢离子的T。时间而使T。w。上信号升高,故增强后一般只作T。w。扫描;但高浓度时,对T:w。也有影响。临床使用剂量为0.1mmol/kg,副作用发生率仅l%一3%。增强MRA一般使用两倍或三倍剂量;垂体微腺瘤,一般应用半剂量。通过快速采集序列,如FLASH、Turbo—FLASH等,可以动态观察病灶强化方式的演变过程,以此判断血供情况,并做出定性诊断。 最常使用的Gd—DTPA对各系统的病变,如肿瘤、感染、梗塞、脱髓鞘病变、术后、放射治疗后以及血管性病变等均有诊断与鉴别诊断价值。 1.2小分子镝类化合物此外,非特异性细胞外间隙对比剂还包括小分子镝类化合物,如:Dy—DTPA和D)r—DTPA—BMA。目前主要用于心脏检查【7J。Dy—DTPA可以反映心肌细胞膜的完整性,因此具有鉴别心肌活力的潜在价值。在冠状动脉阻塞最初阶段,注入Dy—DTPA能使正常灌注的心肌信号减低,从而区分正常和缺血心肌。另外,By—DTPA还可作为心肌灌注对比剂。 2血池性MRI对比剂 (1)超小型超顺磁性氧化铁颗粒(ultrasmaU.SPIOs,USPIOs)、BMSl80549(AMI一227,AMI一7227,Ferumoxtran)和FeO—BPA等USPIOs制剂。因颗粒较小(小于40砌),包裹层较厚,减弱了血浆蛋白的调理作用,影响了吞噬细胞的摄人,在血循环中的半衰期长达200min,主要用作血池性对比剂。此外,由于USPIO在血管中滞留时问较长使其可以透过毛细血管壁,更广泛地分布于组织中,并可通过淋巴管,输送到淋巴结,在淋巴结及骨髓的蓄积多于肝、脾。因此USPIOs也是靶单核吞噬细胞系统的对比剂。USPIO同时具有T,和T:加权的强化效果,R2:RI约等于2;它的血管期持续较长,此期血管和 万方数据

相关文档