文档库 最新最全的文档下载
当前位置:文档库 › 第十章 计数原理(10)

第十章 计数原理(10)

第十章    计数原理(10)
第十章    计数原理(10)

第十章计数原理、概率、随机变量及其分布

第一节分类加法计数原理与分步乘法计数原理[考情展望] 1.考查分类加法计数原理和分步乘法计数原理的应用.2.多以选

择题、填空题形式考查.

两个计数原理

1.分类加法计数原理

完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2

类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.

2.分步乘法计数原理

完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种

不同的方法,那么完成这件事共有N=m×n种不同的方法.

1.在所有的两位数中,个位数字大于十位数字的两位数共有()

A.50个B.45个C.36个D.35个

【解析】根据题意,十位数上的数字分别是1,2,3,4,5,6,7,8的情况分成8

类,在每一类中满足题目要求的两位数分别有8个,7个,6个,5个,4个,3

个,2个,1个.

由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1

=36(个).

【答案】 C

2.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一

个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多

有两个对应位置上的数字相同的信息个数为()

A.10 B.11 C.12 D.15

【解析】若4个位臵的数字都不同的信息个数为1;若恰有3个位臵的数

字不同的信息个数为C34;若恰有2个位臵上的数字不同的信息个数为C24.

由分类计数原理知满足条件的信息个数为1+C34+C24=11.

【答案】 B

3.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为() A.504 B.210 C.336 D.120

【解析】分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.

故共有7×8×9=504种不同的插法.

【答案】 A

4.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()

A.6种B.12种C.24种D.30种

【解析】分步完成.首先甲、乙两人从4门课程中同选1门,有4种方法,其次甲从剩下的3门课程中任选1门,有3种方法,最后乙从剩下的2门课程中任选1门,有2种方法,于是,甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种),故选C.

【答案】 C

5.(2013·山东高考)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()

A.243 B.252 C.261 D.279

【解析】0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),

∴有重复数字的三位数有900-648=252(个).

【答案】 B

6.(2013·浙江高考)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种(用数字作答).

【解析】按C的位臵分类计算.

①当C在第一或第六位时,有A55=120(种)排法;

②当C在第二或第五位时,有A24A33=72(种)排法;

③当C在第三或第四位时,有A22A33+A23A33=48(种)排法.

所以共有2×(120+72+48)=480(种)排法.

【答案】480

考向一[172]分类加法计数原理

第十章计数原理、概率、随机变量及其分布集合P={x,1},Q=

{y,1,2},其中x,y∈{1,2,3,…9},且P?Q,把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()

A.9B.14C.15D.21

【思路点拨】由P?Q可知:x=y或x=2,故可按分类加法计数原理求解.

【尝试解答】∵P?Q,∴x=y或x=2.

①当x=2时,y=3,4,…9,共有7种选法.

②当x=y时,y=3,4,…9,共有7种选法.

∴共有满足条件的点7+7=14(个).

【答案】 B

规律方法1分类标准是运用分类计数原理的难点所在,重点在于抓住题目中的关键词或关键元素、关键位臵.首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法.

对点训练

图10-1-1

如图10-1-1所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.

【解析】把与正八边形有公共边的三角形分为两类:

第一类,有一条公共边的三角形共有8×4=32(个).

第二类,有两条公共边的三角形共有8(个).

由分类加法计数原理知,共有32+8=40(个).

【答案】40

考向二[173]分步乘法计数原理

(2012·大纲全国卷)将字母a,a,b,b,c,c排成三行两列,要求每

行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有() A.12种B.18种C.24种D.36种

【思路点拨】先排第一列三个位臵,再排第二列第一行上的元素,则其余位臵上元素就可以确定.

【尝试解答】先排第一列,由于每列的字母互不相同,因此共有A33种不同排法.

再排第二列,其中第二列第一行的字母共有A12种不同的排法,第二列第二、三行的字母只有1种排法.

因此共有A33·A12·1=12(种)不同的排列方法.

【答案】 A

规律方法2 1.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且也要确定分步的标准,分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.

2.分步必须满足两个条件:(1)步骤互相独立,互不干扰.(2)步与步确保连续,逐步完成.

对点训练已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则

(1)y=ax2+bx+c可以表示多少个不同的二次函数;

(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.

【解】(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx+c可以表示5×6×6=180个不同的二次函数.

(2)y=ax2+bx+c的开口向上时,a的取值有2种情况,b、c的取值均有6

种情况.

因此y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.考向三[174]两个计数原理的综合应用

在1,2,3,4,5这五个数字所组成的允许有重复数字的三位数中,其各个

数字之和为9的三位数共有()

A.16个B.18个C.19个D.21个

【思路点拨】先确定出三个数字(可以有相同的)之和为9的有几类,然后对每类体别用分步列式计算.

【尝试解答】三个数字和为9的有以下五类:

①1+3+5,②2+3+4,③2+2+5,④1+4+4,⑤3+3+3.

其中第①、②类的个数相同,例如用1、3、5排成一个三位数,百位有3种排法,十位有2种排法,个位有1种排法,共有3×2×1=6个.第③、④类的个数相同,例如用1、4、4排成三位数有3个,百位是1,其他两位是4;十位是1,其他两位是4;个位是1,其他两位是4.

第⑤类只有一个数333.

总之,各个数字之和为9的共有

6+6+3+3+1=19(个).

【答案】C

规律方法3用两个计数原理解决计数问题时,关键是明确需要分类还是分步.

(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.

(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,把完成每一步的方法数相乘,得到总数.

对点训练(2012·北京高考)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()

A.24B.18C.12D.6

【解析】根据所选偶数为0和2分类讨论求解.

当选0时,先从1,3,5中选2个数字有C23种方法,然后从选中的2个数字中选1个排在末位有C12种方法,剩余1个数字排在首位,共有C23C12=6(种)方法;当选2时,先从1,3,5中选2个数字有C23种方法,然后从选中的2个数字中选1个排在末位有C12种方法,其余2个数字全排列,共有C23C12A22=12(种)方法.依分类加法计数原理知共有6+12=18(个)奇数.

【答案】 B

思想方法之二十二分类讨论思想在计数原理中的妙用分类加法计数原理体现了分类讨论思想在计数原理中的应用.解决此类问题的关键是确定分类标准,做到不重复、不遗漏.

————[1个示范例]————[1个对点练]————

图10-1-2

编号为A,B,C,D,E的五个小球放在如图10-1-2所示的五个

盒子里,要求每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻的盒子中,求不同的放法有多少种?

【解】根据A球所在位臵分三类:

(1)若A球放在3号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C、D、E,则根据分步乘法计数原理得,3×2×1=6种不同的放法;

(2)若A球放在5号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C、D、E,则根据分步乘法计数原理得,3×2×1=6种不同的放法;

(3)若A球放在4号盒子内,则B球可以放在2号、3号、5号盒子中的任何一个,余下的三个盒子放球C、D、E有A33=6种不同的放法,根据分步乘法计数原理得,3×3×2×1=18种不同方法.

综上所述,由分类加法计数原理得不同的放法共有6+6+18=30种.

如图10-1-3,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有________.

图10-1-3

【解析】按区域1与3是否同色分类:

(1)区域1与3同色:先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A33种方法.

∴区域1与3涂同色,共有4A33=24种方法.

(2)区域1与3不同色:先涂区域1与3有A24种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有一种方法,第四步涂区域5有3种方法.∴这时共有A24×2×1×3=72种方法,

故由分类计数原理,不同的涂色种数为24+72=96.

【答案】96

课时限时检测(10-1)分类加法计数原理与分步乘法计数原理

(时间:60分钟满分:80分)

命题报告

1.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择

其中的一个讲座,不同选法的种数是() A.56B.65

C.5×6×5×4×3×2

2D.6×5×4×3×2

【解析】由分步乘法计数原理得5×5×5×5×5×5=56.

【答案】 A

2.三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过5次传递后,毽又被踢回给甲,则不同的传递方式共有()

A.6种B.8种C.10种D.16种

【解析】如下图,甲第一次传给乙时有5种方法,同理,甲传给丙也可以推出5种情况,综上有10种传法.

【答案】 C

3.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B、C、D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3、5、6、8、9中选择,其他号码只想在1、3、6、9中选择,则他的车牌号码可选的所有可能情况有() A.180种B.360种

C.720种D.960种

【解析】按照车主的要求,从左到右第一个号码有5种选法,第二位号码有3种选法,其余三位号码各有4种选法.

因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种).

【答案】 D

4.将一个四面体ABCD的六条棱上涂上红、黄、白三种颜色,要求共端点的棱不能涂相同颜色,则不同的涂色方案有()

A.1种B.3种C.6种D.9种

【解析】因为只有三种颜色,又要涂六条棱,所以应该将四面体的对棱涂

成相同的颜色.

故有3×2×1=6种涂色方案.

【答案】 C

5.如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为()

A.240 B.204 C.729 D.920

【解析】若a2=2,则“凸数”为120与121,共1×2=2个.

若a2=3,则“凸数”2×3=6个,若a2=4,满足条件的“凸数”有3×4=12个,…,若a2=9,满足条件的“凸数”有8×9=72个.

∴所有凸数有2+6+12+20+30+42+56+72=240(个).

【答案】 A

6.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有()

A.20种B.30种C.40种D.60种

【解析】分三类:甲在周一,共有A24种排法;

甲在周二,共有A23种排法;甲在周三,共有A22种排法;

∴A24+A23+A22=20.

【答案】 A

二、填空题(每小题5分,共15分)

7.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种(用数字作答).

【解析】第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法.

第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:先选学习委员有4种选法,再选体育委员有3种选法.

由分步乘法计数原理可得,不同的选法共有3×4×3=36种.

【答案】36

8.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有

________个(用数字作答).

【解析】法一用2,3组成四位数共有2×2×2×2=16(个),其中不出现2或不出现3的共2个,因此满足条件的四位数共有16-2=14(个).法二满足条件的四位数可分为三类:第一类含有一个2,三个3,共有4个;第二类含有三个2,一个3共有4个;第三类含有二个2,二个3共有C24=6(个),因此满足条件的四位数共有2×4+C24=14(个).

【答案】14

9.已知集合M={1,-2,3},N={-4,5,6,-7}.从两个集合中各取一个元素作点的坐标,则在直角坐标系中,第一、第二象限不同点的个数为________.【解析】以集合M的元素作横坐标,N的元素作纵坐标,集合M中任取一元素的方法有3种,要使点在第一、第二象限内,则集合N中只能取5、6两个元素中的一个,有2种取法.根据分步计数原理,有3×2=6(种)取法,即6个点.以集合N的元素作横坐标,M的元素作纵坐标,集合N中任取一元素的方法有4种,要使点在第一、第二象限内,则集合M中只能取1、3两个元素中的一个,有2种取法.根据分步计数原理,有4×2=8(种)取法,即8个点.综合上面两类,利用分类计数原理,共有6+8=14(个).

【答案】14

三、解答题(本大题共3小题,共35分)

图10-1-4

10.(10分)如图,用5种不同的颜色给图中A、B、C、D四个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,求有多少种不同的涂色方法?

【解】法一如题图分四个步骤来完成涂色这件事:

涂A有5种涂法;涂B有4种方法;涂C有3种方法;涂D有3种方法(还可以使用涂A的颜色).

根据分步计数原理共有5×4×3×3=180种涂色方法.

法二由于A、B、C两两相邻,因此三个区域的颜色互不相同,共有A35=60种涂法;又D与B、C相邻,因此D有3种涂法;由分步计数原理知共有60×3

=180种涂法.

11.(12分)“渐升数”是指每个数字比它左边的数字大的正整数(如1 458),若把四位“渐升数”按从小到大的顺序排列,求第30个“渐升数”.【解】渐升数由小到大排列,形如

的渐升数共有:6+5+4

形如

的渐升数共有5个.

形如

的渐升数共有4个.

故此时共有21+5+4=30个.

因此从小到大的渐升数的第30个必为1 359.

12.(13分)高二年级四个班中有34个自愿组成数学课外小组,其中一班有7人,二班有8 人,三班有9人,四班有10人.推荐两人为中心发言人,且这两人必须来自不同的班级,则有多少种不同的选法?

【解】分六类,每类都分两步,①从一、二班各选一人,共有7×8=56种;②从一、三班各选一人,共有7×9=63种;③从一、四班各选一人,共有7×10=70种;④从二、三班各选一人,共有8×9=72种;⑤从二、四班各选一人,共有8×10=80种;⑥从三、四班各选一人,共有9×10=90种.所以共有不同的选法为:N=56+63+70+72+80+90=431种.

第二节排列与组合

[考情展望] 1.以实际问题为背景考查排列、组合的应用,同时考查分类讨论的思想.2.以选择题或填空题的形式考查,或在解答题中和概率相结合进行考查.

一、排列与排列数

1.排列

从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.

2.排列数

从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,记作A m n.

二、组合与组合数

1.组合

从n个不同元素中取出m(m≤n)个元素组成一组,叫做从n个不同元素中取出m个元素的一个组合.

2.组合数

从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C m n.

三、排列数、组合数的公式及性质

解排列、组合应用题的常见策略

(1)特殊元素优先安排的策略;

(2)合理分类与准确分步的策略;

(3)排列、组合混合问题先选后排的策略;

(4)正难则反、等价转化的策略;

(5)相邻问题捆绑处理的策略;

(6)不相邻问题插空处理的策略;

(7)定序问题除法处理的策略;

(8)分排问题直排处理的策略.

1.从1,2,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有()

A.9个B.24个C.36个D.54个

【解析】选出符合题意的三个数字有C13C23种方法,这三个数可组成C13C23A33=54个没有重复数字的三位数.

【答案】 D

2.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有()

A.6种B.12种C.30种D.36种

【解析】从反面考虑:甲、乙所选的课程,共有C24C24种不同的选法,其中甲、乙所选的课程都相同的选法有C24种.

故甲、乙所选的课程至少有1门不同有C24C24-C24=30(种).

【答案】 C

3.A、B、C、D、E五人并排站成一排,如果B必须站在A的右边(A、B可以不相邻),那么不同的排法共有()

A.24种B.60种C.90种D.120种

【解析】可先排C、D、E三人,共A35种排法,剩余A、B两人只有一种排法,由分步计数原理满足条件的排法共A35=60(种).

【答案】 B

4.某电视台在直播2012年伦敦奥运会时,连续播放5个广告,其中3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且2个奥运宣传广告不能连续播放则不同的播放方式有________种.

【解析】3个商业广告共有A33种排法,奥运广告不连续播放,最后播放的必须是奥运广告有C13A22种排法.

故共有A33C13A22=36(种).

【答案】36

5.(2013·大纲全国卷)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有________种.(用数字作答)

【解析】由题意知,所有可能的决赛结果有C16C25C33=6×5×4

2×1 =

60(种).

【答案】60

6.(2013·北京高考)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.

【解析】先分组后用分配法求解,5张参观券分为4组,其中2个连号的有4种分法,每一种分法中的排列方法有A44种,因此共有不同的分法4A44=4×24=96(种).

【答案】96

考向一[175]排列应用题

6个学生按下列要求站成一排,求各有多少种不同的站法?

(1)甲不站排头,乙不能站排尾;

(2)甲、乙都不站排头和排尾;

(3)甲、乙、丙三人中任何两人都不相邻;

(4)甲、乙都不与丙相邻.

【思路点拨】(1)按甲站的位臵分类求解;(2)先排甲、乙的位臵,再排其他学生;(3)不相邻问题用插空法求解;(4)按丙站的位臵分类求解.【尝试解答】(1)分两类:甲站排尾,有A55种;甲站中间四个位臵中的一个,且乙不站排尾,有A14A14A44种.由分类计数原理,共有A55+A14A14A44=504(种).

(2)分两步:首先将甲、乙站在中间四个位臵中的两个,有A24种;再站其余4人,有A44种.

由分步计数原理,共有A24·A44=288(种).

(3)分两步:先站其余3人,有A33种;再将甲、乙、丙3人插入前后四个空当,有A34种.

由分步计数原理,共有A33·A34=144(种).

(4)分三类:丙站首位,有A24A33种;丙站末位,有A24A33种;丙站中间四个位臵中的一个,有A14A23A33种.

由分类计数原理,共有2A24A33+A14A23A33=288(种).

规律方法1 1.对于有限制条件的排列问题,分析问题时有位臵分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位臵,对于分类过多的问题可以采用间接法.2.对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.

对点训练用0,1,2,3,4,5六个数字排成没有重复数字的6位数,分别有多少个?(1)0不在个位;(2)1与2相邻;(3)1与2不相邻;(4)0与1之间恰有两个数;

(5)1不在个位;(6)偶数数字从左向右从小到大排列.

【解】(1)A25A44=480;

(2)A22A14A44=192;

(3)A15A55-A22A14A44=408;

(4)A24A12A22+A24A33=120;

(5)A66-2A55+A44=504;

(6)A36-A35=60.

考向二[176]组合应用题

男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出

比赛,在下列情形中各有多少种选派方法?

(1)至少有1名女运动员;

(2)既要有队长,又要有女运动员.

【思路点拨】第(1)问可以用直接法或间接法求解.第(2)问根据有无女队长分类求解.

【尝试解答】(1)法一至少有1名女运动员包括以下几种情况:

1女4男,2女3男,3女2男,4女1男.

由分类加法计数原理可得总选法数为

C14C46+C24C36+C34C26+C44C16=246(种).

法二“至少有1名女运动员”的反面为“全是男运动员”可用间接法求解.

从10人中任选5人有C510种选法,其中全是男运动员的选法有C56种.

所以“至少有1名女运动员”的选法为C510-C56=246(种).

(2)当有女队长时,其他人选法任意,共有C49种选法.

不选女队长时,必选男队长,共有C48种选法.其中不含女运动员的选法有C45种,所以不选女队长时共有C48-C45种选法,所以既有队长又有女运动员的选法共有C49+C48-C45=191(种).

规律方法2 1.本题中第(1)小题,含“至少”条件,正面求解情况较多时,可考虑用间接法.第(2)小题恰当分类是关键.

2.组合问题常有以下两类题型变化

(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.

(2)“至少”或“最多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解.

对点训练2013年中俄联合军演在中国青岛海域举行,在某一项演练中,中方参加演习的有5艘军舰,4架飞机;俄方有3艘军舰,6架飞机,若从中、俄两方中各选出2个单位(1架飞机或一艘军舰都作为一个单位,所有的军舰两两不同,所有的飞机两两不同),且选出的四个单位中恰有一架飞机的不同选法共有()

A.51种B.224种C.240种D.336种

【解析】由题意,可分类求解:

一类是一架飞机来自于中方C14C15C23=60

一类是一架飞机来自于外方C16C13C25=180,

∴C14C15C23+C16C13C25=60+180=240,

【答案】 C

考向三[177]排列组合的综合应用

(1)某工厂将甲、乙等五名新招聘员工分配到三个不同的车间,每个

车间至少分配一名员工,且甲、乙两名员工必须分到同一个车间,则不同分法的种数为________.

(2)现需编制一个八位的序号,规定如下:序号由4个数字和2个x、1个y、1个z组成;2个x不能连续出现,且y在z的前面;数字在0、1、2、 (9)

间任选,可重复,且四个数字之积为8,则符合条件的不同的序号种数有() A.12 600B.6 300C.5 040D.2 520

【思路点拨】(1)分两种情形求解:①甲、乙分到的车间不再分人;②甲、乙分到的车间再分一人.

(2)首先积为8的只能是三个1和一个8或者是三个2和一个1或者一个4,一个2和两个1,先把这四个数字排好,然后加上从8个位臵选2个位臵安排yz,最后插入两个x,利用乘法原理即可得出答案.

【尝试解答】(1)若甲、乙分到的车间不再分人,则分法有C13×A22×C13=18种;若甲、乙分到的车间再分一人,则分法有3×A22×C13=18种.所以满足题意的分法共有18+18=36(种).

(2)首先积为8的只能是三个1和一个8或者是3个2和一个1或者一个4和一个2和两个1,先把这四个数字排好,有C14+C14+A24=20(种),然后排yz,四个数加上yz共六个位臵,yz占两个,排法有C26种,

最后在这六个数(或字母)形成的共7个空中插入x,有C27种,

则符合条件的不同的序号种数有20×C26×C27=6 300.

【答案】(1)36(2)B

规律方法3 1.解排列组合问题要遵循两个原则:一是按元素(或位臵)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位臵)为主体,即先满足特殊元素(或位臵),再考虑其他元素(或位臵).

2.不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:(1)不均匀分组.(2)均匀分组.(3)部分均匀分组,注意各种分组类型中,不同分组方法的求法.

对点训练(1)已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各

取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为() A.33B.34C.35D.36

(2)从甲、乙等5名志愿者中选出4名,分别从事A,B,C,D四项不同的工作,每人承担一项,若甲、乙二人均不能从事A工作,则不同的工作分配方案共有()

A.60种B.72种C.84种D.96种

【解析】(1)①若从集合B中取元素2时,再从C中任取一个元素,则确定的不同点的个数为C13A33.

②当从集合B中取元素1,且从C中取元素1,则确定的不同点有A13×1=A13.

③当从B中取元素1,且从C中取出元素3或4,则确定的不同点有C12A33个.

∴由分类计数原理,共确定不同的点有C13A33+A13+C12A33=33个.

(2)根据题意,分两种情况讨论:

①甲、乙中只有1人被选中,需要从甲、乙中选出1人,担任后三项工作中的1种,由其他三人担任剩余的三项工作,有C12·C13·A33=36种选派方案.

②甲、乙两人都被选中,则在后三项工作中选出2项,由甲、乙担任,从其他三人中选出2人,担任剩余的两项工作,有C23·A22·C23·A22=36种选派方案,综上可得,共有36+36=72种不同的选派方案.

【答案】(1)A(2)B

思想方法之二十三解排列组合问题的妙招——“排除法”

解决排列组合应用问题时,一是要明确问题中是排列还是组合或排列组合混合问题;二是要讲究一些基本策略和方法技巧.

对于“至少”“至多”型排列组合问题,若分类求解时,情况较多,则可从所有方法中减去不满足条件的方法,即正难则反问题用排除法解决.

————[1个示范例]————[1个对点练]————

某学校星期一每班都排9节课,上午5节、下午4节,若该校李

老师在星期一这天要上3个班的课,每班1节,且不能连上3节课(第5和第6

节不算连上),那么李老师星期一这天课的排法共有()

A.474种B.77种C.462种D.79种

【解析】首先求得不受限制时,从9节课中任意安排3节,有A38=504种排法,其中上午连排3节的有3A33=18种,

下午连排3节的有2A33=12种,

则这位教师一天的课表的所有排法有504-18-12=474种.

学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有()

A.36种B.30种C.24种D.6种

【解析】由于每科一节课,每节至少有一科,必须有两科在同一节,

先从4个中任选2个看作整体,然后做3个元素的全排列,共C24A33种方法,再从中排除数学、理综安排在同一节的情形,共A33种方法,

故总的方法种数为:C24A33-A33=36-6=30

【答案】 B

课时限时检测(10-2)排列与组合

(时间:60分钟满分:80分)命题报告

1.从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有()

A.36种B.30种C.42种D.60种

【解析】从8名同学中选出3名,有C38种方法,其中全是男生的有C36种,∴至少有1名女生的选法有C38-C36=36种.

【答案】 A

2.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有()

A.36个B.24个C.18个D.6个

【解析】在1,2,3,4,5这五个数字中有3个奇数,2个偶数,要求三位数各位数字之和为偶数,则两个奇数一个偶数,∴符合条件的三位数共有C23·C12·A33=36.

【答案】 A

3.(2013·四川高考)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是()

A.9 B.10 C.18 D.20

【解析】从1,3,5,7,9这五个数中每次取出两个不同数的排列个数为A25=20,但lg 1-lg 3=lg 3-lg 9,lg 3-lg 1=lg 9-lg 3,所以不同值的个数为20-2=18,故选C.

【答案】 C

4.2015年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10 000个号码.公司规定:凡卡号的后四位恰带有两个数字“6”或恰带有两个数字“8”的一律作为“金兔卡”,享受一定优惠政策.如后四位数为“2663”、“8685”为“金兔卡”,则这组号码中“金兔卡”的张数为() A.484 B.972 C.966 D.486

【解析】①当后四位数有2个6时,“金兔卡”共有C24×9×9=486张;

②当后四位数有2个8时,“金兔卡”也共有C24×9×9=486张.

但这两种情况都包含了后四位数是由2个6和2个8组成的这种情况,所以要减掉C24=6,即“金兔卡”共有486×2-6=966张.

【答案】 C

5.2012年国庆、中秋双节期间,张、王两家夫妇各带一个小孩到颐和园游玩,购得门票后排队依次入园,为安全起见,首尾一定要排两位爸爸,另外两个小孩要排在一起,则这6人的入馆顺序的排法种数是()

A.12 B.24 C.36 D.48

【解析】第一步,将两个爸爸放在首尾,有A22=2种方法;第二步,将两

人教版高中数学选修2-3第一章计数原理单元测试(一)及参考答案

2018-2019学年选修2-3第一章训练卷 计数原理(一) 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( ) A.8种 B.12种 C.16种 D.20种 2.已知() 7781C C C n n n n +-=∈* N ,则n 等于( ) A.14 B.12 C.13 D.15 3.某铁路所有车站共发行132种普通客票,则这段铁路共有车站数是( ) A.8 B.12 C.16 D.24 4.()7 1x +的展开式中x 2的系数是( ) A.42 B.35 C.28 D.21 5.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( ) A.3×3! B.3×(3!) 3 C.(3!)4 D.9! 6.某校园有一椭圆型花坛,分成如图四块种花,现有4种不同颜色的花可供选择,要求每块地只能种一种颜色,且有公共边界的两块不能种同一种颜色,则不同的种植方法共有( ) A.48种 B.36种 C.30种 D.24种 7.若多项式x 2+x 10=a 0+a 1(x +1)++a 9(x +1)9+a 10(x +1)10,则a 9=( ) A.9 B.10 C.-9 D.-10 8.从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有( ) A.48种 B.36种 C.18种 D.12种 9.已知()1n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) A.212 B.211 C.210 D.29 10.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( ) A.12种 B.18种 C.36种 D.54种 11.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的 偶数共有( ) A.144个 B.120个 C.96个 D.72个 12.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 ( ) A.24对 B.30对 C.48对 D.60对 二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选法有________种(用数值表示) 14.()()4 1a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =________. 15.有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人,则不同的安排方式共有________种(用数字作答). 16.从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,能被3整除的数有________个. 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 此 卷 只 装 订 不 密 封 班级 姓名 准考证号 考场号 座位号

2017南开秋学期《概率论与统计原理》在线作业2

17秋学期《概率论与统计原理》在线作业 试卷总分:100 得分:100 一、单选题 (共 30 道试题,共 60 分) 1. 设A,B为两个事件,如果P(A)=0.6,P(B)=0.4,P(A│B)=0.5,则P(B│A)=() A. 0.2 B. 0.3 C. 1/3 D. 2/3 满分:2 分 正确答案:C 26. 题面见图片: A. A B. B C. C D. D 满分:2 分 正确答案:D 3. 有10道“是非题”,每道题答对的概率为0.5,则10道题中答对5道题的概率为 A. 0.80 B. 0.50 C. 0.25 D. 0.15 满分:2 分 正确答案:C 4. 题面见图片: A. A B. B C. C D. D 满分:2 分 正确答案:B

5. A. A B. B C. C D. D 满分:2 分正确答案:D 6. 题面见图片: A. A B. B C. C D. D 满分:2 分 正确答案:D 7. 题面见图片: A. A B. B C. C D. D 满分:2 分正确答案:B 8. 题面见图片: A. A B. B C. C D. D 满分:2 分

正确答案:D 9. 设随机变量X~B(n,p),已知EX=0.6,DX=0.48,则n,p的值为()。 A. n = 2,p =0.2 B. n = 6,p =0.1 C. n = 3,p =0.2 D. n = 2,p =0.3 满分:2 分 正确答案:C 10. 设一次试验成功的概率为p,进行100次独立重复试验,当p = ( ) 时,成功次数的标准差的值为最大 A. 0 B. 0.25 C. 0.5 D. 0.75 满分:2 分 正确答案:C 11. 已知P(A)=P(B)=P(C)=1/4,P(AC)=P(BC)=1/16,P(AB)=0,则事件”A,B,C都不发生“的概率为() A. 0 B. 0.375 C. 0.50 D. 0.625 满分:2 分 正确答案:B 12. 题面见图片: A. A B. B C. C D. D 满分:2 分 正确答案:D 13. 某轮胎厂广告声称它的产品可以平均行驶24000公里。现随机抽选20个轮胎作试验,

第11章计数原理随机变量及其分布11.1分类加法计数原理与分步乘法计数原理

考点11.1 分类加法计数原理与分步乘法计数原理 概念方法微思考 1.在解题过程中如何判定是用分类加法计数原理还是分步乘法计数原理? 提示 如果已知的每类办法中的每一种方法都能完成这件事,应该用分类加法计数原理;如果每类办法中的每一种方法只能完成事件的一部分,就用分步乘法计数原理. 2.两种原理解题策略有哪些? 提示 ①明白要完成的事情是什么; ②分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系; ③有无特殊条件的限制; ④检验是否有重复或遗漏. 1.(2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以1AA 为底面矩形的一边,则这样的阳马的个数是( )

A .4 B .8 C .12 D .16 【答案】D 【解析】根据正六边形的性质,则111D A ABB -,111D A AFF -满足题意, 而1C ,1E ,C ,D ,E ,和1D 一样,有248?=, 当11A ACC 为底面矩形,有4个满足题意, 当11A AEE 为底面矩形,有4个满足题意, 故有84416++= 故选D . 2.(2020?上海)已知{3A =-,2-,1-,0,1,2,3},a 、b A ∈,则||||a b <的情况有__________种. 【答案】18 【解析】当3a =-,0种, 当2a =-,2种, 当1a =-,4种; 当0a =,6种, 当1a =,4种; 当2a =,2种, 当3a =,0种, 故共有:2464218++++=. 故答案为:18. 3.(2018?新课标Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有

第一章 计数原理单元测试题

第一章 计数原理单元测试题 一、选择题(本大题共12小题,每小题5分,共60分) 1.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( ) A .10种 B .20种 C .25种 D .32种 2.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有 A .36种 B .48种 C .96种 D .192种 3. 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A.1440种 B.960种 C.720种 D.480种 4. 某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( ) A.() 2 1 4 2610C A 个 B.24 2610A A 个 C.()2 14 26 10 C 个 D.2 4 2610A 个 5. 从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有 (A)40种 (B) 60种(C) 100种 (D) 120种 6. 由数字0,1,2,3,4,5可以组成无重复数字且奇偶数字相间的六位数的个数有( ) B.60 7.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第( )个数. B.9 和CD 为平面内两条相交直线,AB 上有m 个点,CD 上有n 个点,且两直线上各有一个与交点重合,则以这m+n-1个点为顶点的三角形的个数是( ) A. 2121m n n m C C C C + B. 2 1121m n n m C C C C -+ C. 2 1211m n n m C C C C +- D. 2 1 11211---+m n n m C C C C 9.设 () 1010221010 2x a x a x a a x +???+++=-,则 ()()292121020a a a a a a +???++-+???++的值为( ) B.-1 D.

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理(第一课时) 知识与技能: ①理解分类加法计数原理与分步乘法计数原理; ②会利用两个原理分析和解决一些简单的应用问题; 过程与方法: ①通过对两个原理概念的学习培养学生的理解能力、归纳概括能力和类比分 析能力; ②通过对两个原理的应用,提高学生对数学知识的应用能力; 情感态度与价值观: ①了解学习本章的意义,激发学生的学习兴趣 ②引导学生形成“自主学习”与“合作学习”等良好的学习方式. 教学重点理解两个原理,并能运用它们来解决一些简单的问题. 教学难点弄清楚“一件事”指的是什么,分清是“分类”还是“分步”. 教学方法启发式 教具准备多媒体 教学过程 一、引入课题 引例:从甲地到乙地有3条路,从乙地到丁地有2条路;从甲地到丙地有3条路,从丙地到丁地有4条路,问:从甲地到丁地有多少种走法? 决问题. 设计意图:从贴近学生实际生活的实例出发,让学生明白本节课的教学内容,激发学生学习兴趣。 师生互动:老师提问学生回答。 二、讲授新课: 1、分类加法计数原理 问题1:(多媒体展示)十一你打算从甲地到乙地旅游,假设可以乘汽车和火车.一天中,汽车有3班,火车有2班.那么一天中乘坐这些交通工具从甲地到乙地共有多少种坐交通工具的方法?有3+2=5种方法 探究1:(多媒体展示)你能说说以上问题的特征吗?(分析要完成的“一件事”是什么.) 完成一件事有两类不同方案,在第1类方案中有3种不同的方法,在第2类方案中有2种不同的方法. 那么完成这件事共有3+2=5种方法。一件事就是从甲

地到乙地的一种乘坐交通工具的方式。 发现新知:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +???++=21种不同的方法.(也称加法原理) 设计意图:由特例到定义的设计思路让学生理解加法原理的概念,体现了一般存在于特殊之中的辩证法思想,便于让学生理解概念。 师生互动:由老师提问学生回答的方式进行。在本知识点中学生可能对“一件事”的概念的理解不是很好,在学生回答完后,老师应该进行点拨。 知识应用 例1:两个袋子里分别装有40个红球,60个白球,从中任取一个球,有多少种求法? 设计意图:通过本例及变式练习让学生进一步理解“分类”的含义。并向学生指出分类的关键是弄清“一件事”是什么。 师生互动:由老师引导学生回答例题,由学生独立解答变式,并回答“一件事”是什么。 分类加法计数原理特点: 分类加法计数原理针对的是“分类”问题,完成一件事的办法要分为若干类,各类的办法法相互独立,各类办法中的各种方法也相对独立,用任何一类办法中的任何一种方法都可以单独完成这件事. 设计意图:让学生总结加法原理的特点,加深对概念的理解。 师生互动:由学生总结,老师给以补充。 2 、分步乘法计数原理 问题2:(多媒体展示)从A 村道B 村的道路有3条,从B 村去C 村的路有2条,从C 村去D 的道路有3条,小明要从A 村经过B 村,再经过C 村,最后到D 村,一共有多少条路线可以选择? 从A 村经 B 村去C 村有 2 步, 第一步, 由A 村去B 村有 3 种方法, 第二步, 由B 村去C 村有 2 种方法, 第三步,从C 村到D村有3种方法 所以从A 村经 B 村又经过C 村到D村共有 3 ×2 ×3= 18 种不同的方法 探究2:(多媒体展示)你能说说这个问题的特征吗?(分析要完成的“一件事” 是什么.) 完成一件事需要有三个不同步骤,在第1步中有3种不同的方法,在第2步中有2种不同的方法,第三步有3种不同的方法. 那么完成这件事共有3 ×2 ×3= 18种不同的方法.一件事就是:从A村到D村的一种走法 发现新知 分步乘法计数原理:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么

人教版高数选修2-3第一章11分类加法计数原理与分步乘法计数原理复习教案(教师版)

分类加法计数原理与分步乘法计数原理__________________________________________________________________________________ __________________________________________________________________________________ 1.掌握分类计数原理,分布计数原理的概念. 2.掌握分类计数原理与分布计数原理的区别. 3.能解决分类计数原理与分步计数原理的综合题. 1.分类计数原理与分步计数原理 (1)分类计数原理:完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,…,在第n类方式中有m n种不同的方法,那么完成这件事共有N=m1+m2 +…+m n种不同的方法 注意:○1分类计数原理又称为加法原理; ○2弄清楚完成“一件事”的含义,即知道做“一件事”或完成一个“事件”在题目中具体所指的内容; ○3解决“分类”问题,用分类计数原理,即完成事件通过途径A,就不必再通过途径B,可以单独完成; ○4每个题中,标准不同,分类也不同,分类的基本要求是:每一种方法必属于某一类(不漏),任意不同类的两种方法是不同的方法(不重). (2)分步计数原理: 完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法. 注意:○1分步计数原理又称为乘法原理; ○2弄清楚完成“一件事”的含义,即知道完成一个“事件”在每个题中需要经过哪几个步骤; ○3解决“分步”问题,用分步计数原理,需要分成若干个步骤,每个步骤都完成了,才算完成一个事件,注意各步骤间的连续性; ○4每个题中,标准不同,分步也不同,分步的基本要求:一是完成一件事,必须且只需连续做完几步,既不漏步也不重步;二是每个步骤之间的方法是无关的,不能相互替代. 2.分类计数原理和分步计数原理的区别 辨别运用分类计数原理还是分步计数原理的关键是“分类”还是“分步”,也就是说“分类”时,各类办法中的每一种方法都是独立的,都能直接完成这件事,而“分步”时,各步中的方法是相关的,缺一不可,当且仅当做完个步骤时,才能完成这件事。 类型一分类计数原理 例1:王刚同学衣服上左、右各有一个口袋,左边口袋装有30张英语单词卡片,右边口袋装有20张英语单词卡片,这些英语单词卡片都互不相同,问从口袋里任取一张英语单词卡片,有多少种不同的取法? [解析]从口袋中任取一张英语单词卡片的方法分两类,第一英:从左边口袋取一张英语单词卡片,有30种不同的取法;第二类:从右边口袋取一张英语单词卡片,有20种不同的取法,上述任何一种取法都能独立完成取一张英语单词卡片的事件,应用分类计数原理,所以从口袋里任取一张英语单词卡片有30+20=50种不同取法.

《概率论与统计原理》、《概率与统计原理》期末复习资料121220

一、填空题 1、设A ,B ,C 为三个事件,则下列事件“B 发生而A 与C 至少有一个发生”,“A ,B ,C 中至少有两个发生”,“A ,B ,C 中至少有一个发生”,“A ,B ,C 中不多于一个发生”,“A ,B ,C 中恰好有一个发生”,“A ,B ,C 中恰好有两个发生”分别可表示为 、 、 、 、 、 。 参考答案: B (A+ C ,AB+AC+BC ,A +B +C ,C A +C B +B A ,AB C +AC B +A BC , BC A +C B A +C AB 考核知识点:事件的关系及运算,参见P9 2、从0,1,2,…,9这10个数中可重复取两个数组成一个数码,则“两个数之和为3”、“两个数之和为17”、“两个数相同”的概率分别为 、 、 。 参考答案:0.04,0.04,0.1 考核知识点:古典型概率,参见P11 3、箱中有60个黑球和40个白球,从中任意连接不放回取出k 个球,则第k 次取出黑球的概率为 。 参考答案:0.6 考核知识点:古典型概率,参见P13 4、假设某商店获利15万元以下的概率为0.9,获利10万元以下的概率为0.5,获利5万元以下的概率为0.3,则该商店获利5~10万元的概率为 ,获利10~15万元的概率为 。 参考答案:0.2,0.4 考核知识点:概率的性质,参见P16~P17 5、设袋中有6个球,其中4白2黑。用不放回两种方法取球,则取到的两个球都是白球的概率为 ;取到的两个球颜色相同的概率为 ;取到的两个球中至少有一个是白球的概率为 。 参考答案:0.4,7/15,14/15 考核知识点:古典型概率和概率的性质,参见P18~P19 6、设事件A ,B 互不相容,已知P (A )= 0.6,P (B )= 0.3,则P (A+B )= ;P (A +B ) = ;P (A B )= ;P (B A )= 。 参考答案:0.9,0.4,0.3,0.1 考核知识点:概率的性质,参见P19 7、甲、乙、丙三人各射一次靶子,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为0.5,0.6,0.8,则恰有一人中靶的概率为 ;至少有一人中靶的概率为 。

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理 教学目的 1了解学习本章的意义,激发学生的兴趣. 2.理解分类计数原理与分步计数原理,培养学生的归纳概括能力. 3.会利用两个原理分析和解决一些简单的应用问题. 教学重点 分类计数原理(加法原理)与分步计数原理(乘法原理) 教学难点: 分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解 教 具 多媒体、实物投影仪 教学过程 一、引入课题 今天我们来学习两个计数原理:分类加法计数原理和分类乘法计数原理。这两个原理不仅是我们解决计数问题的依据,也是我们学习排列组合和概率论的基础。 二、引出两个原理 问题1: 重庆的王先生欲回老家广州过年,从重庆到广州可以乘坐火车或者汽 车,一天中,火车有3班,汽车有2班,问从重庆到广州共有多少种不同的走法? 分析:因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从 重庆到广州,所以,共有3+2=5种不同的走法。 由问题1引出分类加法计数原理: 完成一件事情,有两类办法,在第1类办法中有m 种不同的方法,在第2类办法中有n 种不同的方法,那么完成这件事共N=m+n 种不同的方法.(也称加法原理)(板书) 追问:如果完成一件事情有 n 类不同方案,在第1类办法中有1m 种不同的方法, 在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的 方法.那么完成这件事共多少种不同的方法?.(口述) 回答:有n m m m N +???++=21种方法。 问题2:王先生在广州过完年后要去北京拜访朋友.第一天他必须乘火车去天津 办一件事,然后次日再乘汽车到北京。一天中,广州到天津的火车有3

《概率论与统计原理》复习资料

《概率论与统计原理》复习资料

《概率论与统计原理》复习资料 一、填空题 1、设A,B,C为三个事件,则下列事件“B发生而A与C至少有一个发生”,“A,B,C中至少有两个发生”,“A,B,C中至少有一个发生”,“A,B,C中不多于一个发生”,“A,B,C中恰好有一个发生”,“A,B,C中恰好有两个发生”分别可表示为、、、、、。 参考答案: B(A+C,AB+AC+BC,A +B+C,C A+C B+B A,AB C+AC B+A BC,A+C AB A+C B BC 考核知识点:事件的关系及运算 2、从0,1,2,…,9这10个数中可重复取两个数组成一个数码,则“两个数之和为3”、“两个数之和为17”、“两个数相同”的概率分别为、、。 参考答案:0.04,0.02,0.1 考核知识点:古典型概率 3、同时抛掷3枚均匀的硬币,则3枚正面都向上的概率为,恰好有2枚正面向上的概率为。 参考答案:1/8,3/8 考核知识点:古典型概率 4、箱中有60个黑球和40个白球,从中任意连接不放回取出k个球,则第k次取出黑球的概率为。 参考答案:0.6 考核知识点:古典型概率 5、假设某商店获利15万元以下的概率为0.9,获利10万元以下的概率为0.5,获利5万元以下的概率为0.3,则该商店获利5~10万元的概率为,获利10~15万元的概率为。 参考答案:0.2,0.4 考核知识点:概率的性质 6、设袋中有6个球,其中4白2黑。用不放回两种方法取球,则取

到的两个球都是白球的概率为;取到的两个球颜色相同的概率为;取到的两个球中至少有一个是白球的概率为。 参考答案:0.4,7/15,14/15 考核知识点:古典型概率和概率的性质 7、设事件A,B互不相容,已知P(A)= 0.6,P(B)= 0.3,则P (A+B)= ;P(A+B)= ;P(A B)= ;P(B A)= 。 参考答案:0.9,0.4,0.3,0.1 考核知识点:概率的性质 8、甲、乙、丙三人各射一次靶子,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为0.5,0.6,0.8,则恰有一人中靶的概率为;至少有一人中靶的概率为。 参考答案:(1)0.26;(2)0.96 考核知识点:事件的独立性 9、每次试验的成功率为p(0< p <1),则在5次重复试验中至少成功一次的概率为。 参考答案:5) - - 1( 1p 考核知识点:事件的独立性 10、设随机变量X~N(1,4),则P{0 ≤X<1.6}= ;P{X<1}= ;P{X=x0}= 。 参考答案:0.3094,0.5,0 考核知识点:正态分布,参见P61;概率密度的性质 11、设随机变量X~B(n,p),已知E X=0.6,D X=0.48,则n = ,p = 。 参考答案:3,0.2 考核知识点:随机变量的数学期望和方差 12、设随机变量X服从参数为(100,0.2)的二项分布,则 E X= ,D X= 。 参考答案:20,16 考核知识点:随机变量的数学期望和方差

分类加法计数原理和分步乘法计数原理(教案)

分类加法计数原理和分步乘法计数原理讲义 教学目标: 知识与技能:①理解分类加法计数原理与分步乘法计数原理; ②会利用两个原理分析和解决一些简单的应用问题; 过程与方法:培养学生的归纳概括能力; 情感、态度与价值观:引导学生形成“自主学习”与“合作学习”等良好的学习方式 教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理) 教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解 授课类型:新授课 课时安排:2课时 教具:多媒体、实物投影仪 第一课时 引入课题 先看下面的问题: ①从我们班上推选出两名同学担任班长,有多少种不同的选法? ②把我们的同学排成一排,共有多少种不同的排法? 要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法. 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法. 在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理. 1 分类加法计数原理 (1)提出问题 问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码? 问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 探究:你能说说以上两个问题的特征吗?

(2)发现新知 分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有 m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有 n m N += 种不同的方法. (3)知识应用 例1.在填写高考志愿表时,一名高中毕业生了解到,A,B 两所大学各有一些自己感兴趣的强项专业,具体情况如下: A 大学 B 大学 生物学 数学 化学 会计学 医学 信息技术学 物理学 法学 工程学 如果这名同学只能选一个专业,那么他共有多少种选择呢? 分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有 5+4=9(种). 变式:若还有C 大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种? 探究:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有多少种不同的方法? 如果完成一件事情有n 类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?

2021版高中数学第一章计数原理课时训练01分类加法计数原理与分步乘法计数原理新人教B版选修2

课时训练01 分类加法计数原理与分步乘 法计数原理 (限时:10分钟) 1.如果x,y∈N,且1≤x≤3,x+y<7,则满足条件的不同的有序自然数对的个数是( ) A.15 B.12 C.5 D.4 解析:利用分类加法计数原理. 当x=1时,y=0,1,2,3,4,5,有6种情况. 当x=2时,y=0,1,2,3,4,有5种情况. 当x=3时,y=0,1,2,3,有4种情况. 据分类加法计数原理可得,共有6+5+4=15种情况. 答案:A 2.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A.243 B.252 C.261 D.279 解析:0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个). 答案:B 3.某体育馆有8个门供球迷出入,某球迷从其中一门进入,另一门走出,则不同的进出方法有( ) A.16种 B.56种 C.64种 D.72种 解析:分两步进行:第一步,选一门进入有8种方法;第二步,从剩下的门中选择一门走出有7种方法,共8×7=56种方法.答案:B 4.已知集合A={0,3,4},B={1,2,7,8},集合C={x|x∈A,或x∈B},则当集合C中有且只有一个元素时,C的情况有__________种. 解析:分两类进行,第一类,当元素属于集合A时,有3种.第二类,当元素属于集合B时,有4种. ∴共3+4=7种.

答案:7 5.甲、乙、丙3个班各有三好学生3,5,2名,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,共有多少种不同的推选方法. 解析:分为三类: 第一类,甲班选一名,乙班选一名,根据分步乘法计数原理有3×5=15种选法; 第二类,甲班选一名,丙班选一名,根据分步乘法计数原理有3×2=6种选法; 第三类,乙班选一名,丙班选一名,根据分步乘法计数原理有5×2=10种选法. 综合以上三类,根据分类加法计数原理,共有15+6+10=31种不同选法. (限时:30分钟) 一、选择题 1.某乒乓球队里有男队员6人,女队员5人,从中选取男、女队员各一人组成混合双打队,不同的组队总数有( ) A.11 B.30 C.56 D.65 解析:先选1男有6种方法,再选1女有5种方法,故共有6×5=30种不同的组队方法. 答案:B 2.某小组有8名男生,4名女生,要从中选出一名当组长,不同的选法有( ) A.32种 B.9种 C.12种 D.20种 解析:由分类加法计数原理知,不同的选法有N=8+4=12种.答案:C 3.由0,1,2三个数字组成的三位数的个数为( ) A.27 B.18 C.12 D.6 解析:分三步,分别取百位、十位、个位上的数字,分别有2种、3种、3种取法,故共可得2×3×3=18个不同的三位数.答案:B 4.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有

南开18春学期《概率论与统计原理》在线作业

(单选题) 1: 要求次品率低于10%才能出厂,在检验时原假设应该是() A: p≥0.1 B: p≤0.1 C: p<0.1 D: p>0.1 正确答案: (单选题) 2: 设X和Y是相互独立的两个随机变量,X在[0,2]上服从均匀分布,Y服从参数为2的泊松分布,则E(XY)=() A: 0.5 B: 1 C: 2 D: 4 正确答案: (单选题) 3: 设随机变量X~N(0,1),则方程t2+2 X t+4=0没有实根的概率为() A: 0.6826 B: 0.9545 C: 0.9773 D: 0.9718 正确答案: (单选题) 4: 设人的体重为随机变量X,且EX=a,DX=b。则10个人的体重记为Y,则()成立。 A: EY=a B: EY=10a C: DY=b D: DY=10a 正确答案: (单选题) 5: 设随机变量X在区间[1,3] 上服从均匀分布,则P{-0.5<X<1.5} 为() A: 1 B: 0.5 C: 0.25 D: 0 正确答案: (单选题) 6: 在抽样方式与样本容量不变的情况下,要求提高置信时,就会 A: 缩小置信区间 B: 不影响置信区间 C: 可能缩小也可能增大置信区间 D: 增大置信区间 正确答案: (单选题) 7: 设随机变量X服从参数为1的指数分布,则E[X^2]=() A: 1 B: 1.5 C: 4/3 D: 2 正确答案: (单选题) 8: 某工厂生产的零件出厂时每200个装一盒,这种零件由合格和不合格两类,合格率为0.99。设每盒中不合格数为X,则X通常服从() A: 正态分布 B: 均匀分布 C: 指数分布 D: 二项分布 正确答案: (单选题) 9: 从0,1,2,…,9共10个数字中的任意两个(可重复使用)组成一个两位数的字码,则字码之和为4的概率为() A: 0.02

(完整版)分类加法计数原理与分步乘法计数原理综合测试题(有答案)

分类加法计数原理与分步乘法计数原理综合测试题(有答案) 选修2-3 1.1第一课时分类加法计数原理与分步乘法计数原理 一、选择题 1.一个袋子里放有6个球,另一个袋子里放有8个球,每个球各不相同,从两袋子里各取一个球,不同取法的种数为( ) A.182 B.14 C.48 D.91 [答案] C [解析] 由分步乘法计数原理得不同取法的种数为6×8=48,故选C. 2.从甲地到乙地一天有汽车8班,火车3班,轮船2班,某人从甲地到乙地,他共有不同的走法数为( ) A.13种 B.16种 C.24种 D.48种 [答案] A [解析] 应用分类加法计数原理,不同走法数为8+3+2=13(种).故选A. 3.集合A={a,b,c},B={d,e,f,g},从集合A到集合B的不同的映射个数是( ) A.24 B.81 C.6 D.64 [答案] D [解析] 由分步乘法计数原理得43=64,故选D. 4.5 本不同的书,全部送给6位学生,有多少种不同的送书方法( ) A.720种 B.7776种 C.360种 D.3888种 [答案] B [解析] 每本书有6种不同去向,5本书全部送完,这件事情才算完成.由乘法原理知不同送书方法有65=7776种. 5.有四位老师在同一年级的4个班级中,各教一个班的数学,在数学考试时,要求每位老师均不在本班监考,则安排监考的方法种数是( ) A.8种 B.9种 C.10种 D.11种 [答案] B [解析] 设四个班级分别是A,B,C,D,它们的老师分别是a,b,c,d,并设a监考的是B,则剩下的三个老师分别监考剩下的三个班级,共有3种不同的方法;同理当a监考C,D时,剩下的三个老师分别监考剩下的三个班级也各有3种不同的方法.这样,用分类加法计数原理求解,共有3+3+3=9(种)不同的安排方法.另外,本题还可让a先选,可从B,C,D中选一个,即有3种选法.若选的是B,则b从剩下的3个班级中任选一个,也有3种选法,剩下的两个老师都只有一种选法,这样用分步乘法计数原理求解,共有3×3×1×1=9(种)不同的安排方法. 6.某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从 “×××××××0000”到“×××××××9999”共10 000个号码,公司规定:凡卡号的后四位带有数字“4”或“7”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为( ) A.2 000 B.4

概率论与统计原理复习资料

《概率论与统计原理》复习资料 一、填空题 1、设A,B,C为三个事件,则下列事件“B发生而A与C至少有一个发生”,“A,B,C中至少有两个发生”,“A,B,C中至少有一个发生”,“A,B,C中不多于一个发生”,“A,B,C中恰好有一个发生”,“A,B,C中恰好有两个发生”分别可表示为、、、、、。 参考答案: B(A+C,AB+AC+BC,A +B+C,C B+B A+C A,AB C+AC B+A BC,A+C AB B A+C BC 考核知识点:事件的关系及运算 2、从0,1,2,…,9这10个数中可重复取两个数组成一个数码,则“两个数之和为3”、“两个数之和为17”、“两个数相同”的概率分别为、、。 参考答案:,, 考核知识点:古典型概率 3、同时抛掷3枚均匀的硬币,则3枚正面都向上的概率 为,恰好有2枚正面向上的概率为。 参考答案:1/8,3/8 考核知识点:古典型概率 4、箱中有60个黑球和40个白球,从中任意连接不放回取出k个球,则第k次取出黑球的概率为。 参考答案: 考核知识点:古典型概率 5、假设某商店获利15万元以下的概率为,获利10万元以下的概率为,获利5万元以下的概率为,则该商店获利5~10万元的概率 为,获利10~15万元的概率为。 参考答案:, 考核知识点:概率的性质 6、设袋中有6个球,其中4白2黑。用不放回两种方法取球,则取到的两个球都是白球的概率为;取到的两个球颜色相同的概率为;取到的两个球中至少有一个是白球的概率 为。

参考答案:,7/15,14/15 考核知识点:古典型概率和概率的性质 7、设事件A ,B 互不相容,已知P (A )= ,P (B )= ,则P (A+B )= ;P (A +B )= ;P (A B )= ;P (B A )= 。 参考答案:,,, 考核知识点:概率的性质 8、甲、乙、丙三人各射一次靶子,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为,,,则恰有一人中靶的概率为 ;至少有一人中靶的概率为 。 参考答案:(1);(2) 考核知识点:事件的独立性 9、每次试验的成功率为p (0< p <1),则在5次重复试验中至少成功一次的概率为 。 参考答案:5)1(1p -- 考核知识点:事件的独立性 10、设随机变量X ~N (1,4),则P{0 ≤X <}= ;P{X <1}= ;P{X =x 0}= 。 参考答案:,,0 考核知识点:正态分布,参见P61;概率密度的性质 11、设随机变量X ~B (n ,p ),已知E X =,D X =,则n = ,p = 。 参考答案:3, 考核知识点:随机变量的数学期望和方差 12、设随机变量X 服从参数为(100,)的二项分布,则E X = , D X = 。 参考答案:20,16 考核知识点:随机变量的数学期望和方差 13、设随机变量X 服从正态分布N (,),则E X 2= ,D (2X -3)= 。 参考答案:,1 考核知识点:随机变量的数学期望和方差及其性质 14、设由来自正态总体)9,(2μN 的容量为9的简单随机样本,得样本均值X =5,则未知参数μ的最大似然估计值为 ,μ的置信度为的置信区间为 。

2015高考数学(理)一轮题组训练:11-1分类加法计数原理与分步乘法计数原理

第十一篇计数原理 第1讲 分类加法计数原理与分步乘法计数原理 基础巩固题组 (建议用时:40分钟) 一、填空题 1.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有________. 解析按照车主的要求,从左到右第一个号码有5种选法,第二位号码有3种选法,其余三位号码各有4种选法.因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种). 答案960种 2.(2012·新课标全国卷改编)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有________. 解析分两步:第一步,选派一名教师到甲地,另一名到乙地,共有C12=2种选派方法; 第二步,选派两名学生到甲地,另外两名到乙地,共有C24=6种选派方法.由分步乘法计数原理,不同选派方案共有2×6=12(种). 答案12种 3.6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有________. 解析第一步先排甲,共有A14种不同的排法;第二步再排其他人,共有A55种不同的排法.因此不同的演讲次序共有A14·A55=480(种). 答案480种

4.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为________. 解析以1为首项的等比数列为1,2,4;1,3,9; 以2为首项的等比数列为2,4,8; 以4为首项的等比数列为4,6,9; 把这四个数列顺序颠倒,又得到4个数列, ∴所求的数列共有2(2+1+1)=8(个). 答案8 5.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P?Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是________. 解析当x=2时,x≠y,点的个数为1×7=7(个). 当x≠2时,由P?Q,∴x=y. ∴x可从3,4,5,6,7,8,9中取,有7种方法. 因此满足条件的点共有7+7=14(个). 答案14 6.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种(用数字作答). 解析第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法. 第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:先选学习委员有4种选法,再选体育委员有3种选法. 由分步乘法计数原理可得,不同的选法共有3×4×3=36(种). 答案36 7.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.

第一章计数原理(复习教案)(学生)

第一章 计数原理复习导学案 一. 学习目标 1.掌握分类计数原理与分步计数原理、并能用它分析和解决一些简单的应用问题. 2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. 3.理解组合的意义,掌握组合数计算公式和组合数性质,并能用它们解决一些简单的应 用问题. 4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 二. 知识网络 项式系数性质 第一课 两个原理 一.知识梳理 1. 分类计数原理(也称加法原理) :做一件事情,完成它可以有 n 类办法,在第一类办法 中有 m 1种不同的方法,在第二类办法中有 m 2 种不同的方法,??,在第 n 类办法中有 m n 种不同的方法,那么完成这件事共有 N = 种不同的方法. 2.分步计数原理(也称乘法原理) :做一件事情,完成它需要分成 n 个步骤,做第一步有 m 1种不同的方法,做第二步有 m 2种不同的方法,??,做 n 步有 m n 种不同的方法,那么完 成这件事共有 N = 种不同 的方法. 3.解题方法:枚举法、插空法、隔板法. 二.基础自测 1. 有一项活动需在 3名老师, 8 名男同学和 5名女同学中选人参加, (1)若只需一人参加, 有多少种不 同的选法? ( 2 )若需一名老师,一名学生参加,有多少种不同的选法? 3)若只需老师,男同学,女同学各一人参加,有多少种不同的选法? 2. ( 09重庆卷)将 4名大学生分配到 3 个乡镇去当村官,每个乡镇至少一名,则不同的分 配方案有 种(用数 字作答) . 3. 如图所示,用五种不同的颜色分别给 A 、B 、 C 、D 四个区域涂色,相邻区域必须涂不同 排列组合 二项式定理 二项式定 通项公式 应用 应用 两个计数原理

选修2-3第一章计数原理教材分析

选修2-3第一章:“计数原理”教材分析与教学建议 一、地位与作用 计数问题是数学中的重要研究象之一,分类加法计数原理与分步乘法计数原理是解决计数问题的最基本、最重要的方法,它们为解决很多实际问题提供了思想和工具。计数原理是学习统计与概率以及相关分支的基础。计数原理的思想方法独特灵活,有利于培养和发展学生的抽象能力和逻辑思维能力。 二、本章重点、难点 1.重点:(1)分类加法计数原理、分步乘法计数原理;(2)排列与组合的意义;(3)排列数公式与组合数公式;(4)二项式定理。 2.难点:(1)如何利用原理和有关公式解决应用问题。 三、课程标准 1.分类加法计数原理、分步乘法计数原理 通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题。 2.排列与组合 通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题。 3.二项式定理 能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题。四、教学安排与课时分配 这部分的内容与《大纲》没有太大的区别,在处理方式上,相对于排列、组合来说,《标准》更强调基本的计数原理,而把排列、组合、二项式定理的证明作为计数原理的应用实例。就计数原理本身而言,《标准》强调对计数思想的理解, 两个版本相比,A版更加注重体现课标的精神,比如:从内容编排上看,非常强调基本计数原理的思想及其应用,第一节安排了有梯度的9个例题,计划用4课时,让学生通过丰富的实例来熟悉原理及其基本应用,而同样内容B版为3个例题,2课时;注重学生对新概念、新公式的探究。 避免抽象的讨论计数原理,而且强调计数原理在实际中的应用。教学用时比《大纲》少了4课时。 六、教材分析 (一)计数原理 1.分类加法计数原理 (1)原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N m n =+种不同的方法.

相关文档
相关文档 最新文档