文档库 最新最全的文档下载
当前位置:文档库 › 基于结构的无窗口图像滤波器及其应用

基于结构的无窗口图像滤波器及其应用

基于结构的无窗口图像滤波器及其应用
基于结构的无窗口图像滤波器及其应用

数字图像处理之频率滤波

实验四、频域滤波 一、实验目的 1.了解频域滤波的方法; 2.掌握频域滤波的基本步骤。 二、实验内容 1.使用二维快速傅立叶变换函数fft2( )及其反变换函数ifft2( )对图象进行变换; 2.自己编写函数生成各种频域滤波器; 3.比较各种滤波器的特点。 三、实验步骤 1.图象的傅立叶变换 a.对图象1.bmp 做傅立叶变换。 >> x=imread(‘1.bmp’); f=fft2(x); imshow(real(f)) %显示变换后的实部图像 figure f1=fftshift(f); imshow(real(f1))

变换后的实部图像 中心平移后图像 b.对图象cameraman.tif 进行傅立叶变换,分别显示变换后的实部和虚 部图象。 思考:

对图象cameraman.tif 进行傅立叶变换,并显示其幅度谱|F(U,V)|。结果类似下图。 显示结果命令imshow(uint8(y/256)) 程序如下: x=imread('cameraman.tif'); f=fft2(x); f1=fftshift(f); y0=abs(f); y1=abs(f1); subplot(1,3,1),imshow(x) title('sourceimage') subplot(1,3,2),imshow(uint8(y0/256)) title('F|(u,v)|') subplot(1,3,3),imshow(uint8(y1/256)) title('中心平移')

2.频域滤波的步骤 a.求图象的傅立叶变换得F=fft2(x) b.用函数F=fftshit(F) 进行移位 c.生成一个和F 一样大小的滤波矩阵H . d.用F和H相乘得到G , G=F.*H e.求G的反傅立叶变换得到g 就是我们经过处理的图象。 这其中的关键就是如何得到H 。 3.理想低通滤波器 a.函数dftuv( )在文件夹中,它用生成二维变量空间 如:[U V]=dftuv(11,11) b.生成理想低通滤波器 >>[U V]=dftuv(51,51); D=sqrt(U.^2+V.^2); H=double(D<=15); Mesh(U,V,H) c.应用以上方法,对图象cameraman.tif进行低通滤波;

卡尔曼滤波器及其简matlab仿真

卡尔曼滤波器及其简matlab仿真

卡尔曼滤波器及其简matlab仿真 一、卡尔曼滤波的起源 谈到信号的分析与处理,就离不开滤波两个字。通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内,为了消除噪声,可以进行频域滤波。但在许多应用场合,需要直接进行时域滤波,从带噪声的信号中提取有用信号。虽然这样的过程其实也算是对信号的滤波,但其所依据的理论,即针对随机信号的估计理论,是自成体系的。人们对于随机信号干扰下的有用信号不能“确知”,只能“估计”。为了“估计”,要事先确定某种准则以评定估计的好坏程度。 1960年卡尔曼发表了用递归方法解决离散数据线性滤波问题的论文A New Approach to Linear Filtering and Prediction Problems (线性滤波与预测问题的新方法),在这篇文章里一种克服了维纳滤波缺点的新方法被提出来,这就是我们今天称之为卡尔曼滤波的方法。卡尔曼滤波应用广泛且功能强大,它可以估计信号的过去和当前状态甚至能估计将来的状态即使并不知道模型的确切性质。 其基本思想是以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值。算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。它的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 卡尔曼滤波不要求保存过去的测量数据,当新的数据到来时,根据新的数据和前一时刻的储值的估计,借助于系统本身的状态转移方程,按照一套递推公式,即可算出新的估值。卡尔曼递推算法大大减少了滤波装置的存储量和计算量,并且突破了平稳随机过程的限制,使卡尔曼滤波器适用于对时变信号的实时处理。

基于FPGA的卡尔曼滤波器的设计

基于FPGA的卡尔曼滤波器的设计 时间:2010-04-12 12:52:33 来源:电子科技作者:米月琴,黄军荣西安电子科技大学摘要:针对电路设计中经常碰到数据的噪声干扰现象,提出了一种Kalman滤波的FPGA实现方法。该方法采用了TI公司的高精度模数转换器ADSl25l以及Altera公司的EPlCl2,首先用卡尔曼滤波算法 设计了一个滤波器,然后将该滤波器分解成简单的加、减、乘、除运算。通过基于FPGA平台的硬件与 软件的合理设计,成功地实现了数据噪声的滤除设计,并通过实践仿真计算,验证了所实现滤波的有效性。 关键词:卡尔曼;FPGA;最小方差估计 卡尔曼滤波是一个“Optimal Recursive Data Processing Algorithm(最优化自回归数据处 理算法)”,对于解决很大部分的问题,是最优化的,效率最高甚至是最有用的。传统的卡尔曼滤波是 在DSP上实现的。但是DSP成本相对较高,而且指令是串行执行的,不能满足有些要求较高的场合。而FPGA由于其硬件结构决定了它的并行处理方式,无论在速度还是实时性都更胜一筹。文中以基于FPGA 器件和A/D转换器的数据采集系统为硬件平台,进行了卡尔曼滤波算法设计,详述了基于FPGA的卡尔 曼滤波器的设计实现。 1 卡尔曼滤波算法 工程中,为了了解工程对象(滤波中称为系统)的各个物理量(滤波中称为状态)的确切数值,或为了 达到对工程对象进行控制的目的,必须利用测量手段对系统的各个状态进行测量。但是,量测值可能仅 是系统的部分状态或是部分状态的线性组合,且量测值中有随机误差(常称为量测噪声)。最优估计就是 针对上述问题的一种解决方法。它能将仅与部分状态有关的测量进行处理,得出从统计意义上讲误差最 小的更多状态的估值。误差最小的标准常称为估计准则,根据不同的估计准则和估计计算方法,有各种 不同的最优估计,卡尔曼滤波是一种递推线性最小方差估计的最优估计。 系统的状态方程可设定为 式(3)为系统噪声。设设备的量测噪声为Vk,系统得量测方程为

维纳维纳滤波实现模糊图像恢复

维纳滤波实现模糊图像恢复 摘要 维纳滤波器是最小均方差准则下的最佳线性滤波器,它在图像处理中有着重要的应用。本文主要通过介绍维纳滤波的结构原理,以及应用此方法通过MA TLAB 函数来完成图像的复原。 关键词:维纳函数、图像复原 一、引言 在人们的日常生活中,常常会接触很多的图像画面,而在景物成像的过程中有可能出现模糊,失真,混入噪声等现象,最终导致图像的质量下降,我们现在把它还原成本来的面目,这就叫做图像还原。引起图像的模糊的原因有很多,举例来说有运动引起的,高斯噪声引起的,斑点噪声引起的,椒盐噪声引起的等等,而图像的复原也有很多,常见的例如逆滤波复原法,维纳滤波复原法,约束最小二乘滤波复原法等等。它们算法的基本原理是,在一定的准则下,采用数学最优化的方法从退化的图像去推测图像的估计问题。因此在不同的准则下及不同的数学最优方法下便形成了各种各样的算法。而我接下来要介绍的算法是一种很典型的算法,维纳滤波复原法。它假定输入信号为有用信号与噪声信号的合成,并且它们都是广义平稳过程和它们的二阶统计特性都已知。维纳根据最小均方准则,求得了最佳线性滤波器的的参数,这种滤波器被称为维纳滤波。 二、维纳滤波器的结构 维纳滤波自身为一个FIR 或IIR 滤波器,对于一个线性系统,如果其冲击响应为()n h ,则当输入某个随机信号)(n x 时, Y(n)=∑-n )()(m n x m h 式(1) 这里的输入 )()()(n v n s n x += 式(2) 式中s(n)代表信号,v(n)代表噪声。我们希望这种线性系统的输出是尽可能地逼近s(n)的某种估计,并用s^(n)表示,即 )(?)(y n s n = 式(3) 因而该系统实际上也就是s(n)的一种估计器。这种估计器的主要功能是利用当前的观测值x(n)以及一系列过去的观测值x(n-1),x(n-2),……来完成对当前信号值的某种估计。维纳滤波属于一种最佳线性滤波或线性最优估计,是一最小均方误差作为计算准则的一种滤波。设信 号的真值与其估计值分别为s(n)和)(?n s ,而它们之间的误差 )(?)()(e n s n s n -= 式(4) 则称为估计误差。估计误差e(n)为可正可负的随机变量,用它的均方值描述误差的大小显然

卡尔曼滤波器及其简matlab仿真.

卡尔曼滤波器及其简matlab仿真 一、卡尔曼滤波的起源 谈到信号的分析与处理,就离不开滤波两个字。通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内,为了消除噪声,可以进行频域滤波。但在许多应用场合,需要直接进行时域滤波,从带噪声的信号中提取有用信号。虽然这样的过程其实也算是对信号的滤波,但其所依据的理论,即针对随机信号的估计理论,是自成体系的。人们对于随机信号干扰下的有用信号不能“确知”,只能“估计”。为了“估计”,要事先确定某种准则以评定估计的好坏程度。 1960年卡尔曼发表了用递归方法解决离散数据线性滤波问题的论文A New Approach to Linear Filtering and Prediction Problems(线性滤波与预测问题的新方法),在这篇文章里一种克服了维纳滤波缺点的新方法被提出来,这就是我们今天称之为卡尔曼滤波的方法。卡尔曼滤波应用广泛且功能强大,它可以估计信号的过去和当前状态甚至能估计将来的状态即使并不知道模型的确切性质。 其基本思想是以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值。算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。它的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 卡尔曼滤波不要求保存过去的测量数据,当新的数据到来时,根据新的数据和前一时刻的储值的估计,借助于系统本身的状态转移方程,按照一套递推公式,即可算出新的估值。卡尔曼递推算法大大减少了滤波装置的存储量和计算量,并且突破了平稳随机过程的限制,使卡尔曼滤波器适用于对时变信号的实时处理。 二、卡尔曼滤波的原理

维纳最速下降法滤波器卡尔曼滤波器设计及Matlab仿真

信息融合大作业 ——维纳最速下降法滤波器,卡尔曼滤波器设计及Matlab仿真 1.滤波问题浅谈 估计器或滤波器这一术语通常用来称呼一个系统,设计这样的系统是为了从含有噪声的数据中提取人们感兴趣的,接近规定质量的信息。由于这样一个宽目标,估计理论应用于诸如通信、雷达、声纳、导航、地震学、生物医学工程、 金融工程等众多不同的领域。例如,考虑一个数字通信系统,其基本形式由发

射机、信道和接收机连接组成。发射机的作用是把数字源(例如计算机)产生的0、1符号序列组成的消息信号变换成为适合于信道上传送的波形。而由于符号间干扰和噪声的存在,信道输出端收到的信号是含有噪声的或失真的发送信号。接收机的作用是,操作接收信号并把原消息信号的一个可靠估值传递给系统输出端的某个用户。随着通信系统复杂度的提高,对原消息信号的还原成为通信系统中最为重要的环节,而噪声是接收端需要排除的最主要的干扰,人们也设计出了针对各种不同条件应用的滤波器,其中最速下降算法是一种古老的最优化技术,而卡尔曼滤波器随着应用条件的精简成为了普适性的高效滤波器。2.维纳最速下降算法滤波器 2.1 最速下降算法的基本思想 考虑一个代价函数,它是某个未知向量的连续可微分函数。函数 将的元素映射为实数。这里,我们要寻找一个最优解。使它满足如下条件 (2.1) 这也是无约束最优化的数学表示。 特别适合于自适应滤波的一类无约束最优化算法基于局部迭代下降的算法: 从某一初始猜想出发,产生一系列权向量,使得代价函数在算法的每一次迭代都是下降的,即 其中是权向量的过去值,而是其更新值。 我们希望算法最终收敛到最优值。迭代下降的一种简单形式是最速下降法,该方法是沿最速下降方向连续调整权向量。为方便起见,我们将梯度向量表示为

数字图像处理高通滤波器精编版

数字图像处理高通滤波器 姓名:*** 学号:********** 高通滤波是常见的频域增强的方法之一。高通滤波与低通滤波相反,它是高频分量顺利通过,使低频分量受到削弱。这里考虑三种高通滤波器:理想高通滤波器、巴特沃斯高通滤波器和高斯高通滤波器。这三种滤波器涵盖了从非常尖锐(理想)到非常平坦(高斯)范围的滤渡器函数,其转移函数分别为: 1、理想高通滤波器(IHPF ) ),(),(10),(D v u D D v u D v u H >≤???= 2、巴特沃斯高通滤波器(BHPF ) n v u D D v u H 20),()12(11),(?? ????-+= 3、高斯高通滤波器(GHPF ) 2022/v ,u D 1),(D e v u H )(--= 一、数字图像高通滤波器的实验过程: 1、理想高通滤波器程序 clear all ;clc; image = imread('test.jpg'); gimage_15 = func_ihpf(image,15); gimage_30 = func_ihpf(image,30); gimage_80 = func_ihpf(image,80); figure subplot(221),imshow(image); title('Original'); subplot(222),imshow(gimage_15); title('d0=15'); subplot(223),imshow(gimage_30); title('d0=30'); subplot(224),imshow(gimage_80); title('d0=80'); %被调函数子函数G(u,v)=F(u,v)H(u,v) function gimage = func_ihpf(image,d0) image = double(image); f = fftshift(fft2(image)); [M,N]=size(f); a0 = fix(M/2);

直流电机运行状态的卡尔曼滤波估计器设计.doc

二 〇 一 五 年 六 月 题 目:直流电机运行状态的卡尔曼滤波估计器设计 学生姓名:张傲 学 院:电力学院 系 别:电力系 专 业:风能与动力工程 班 级:风能11-1 指导教师:董朝轶 教授

摘要 卡尔曼滤波是一个迭代自回归算法,对于连续运动状态用中的大部分问题它都能够给出最优的预测。它已经广泛应用了近半个世纪,例如数据的融合,机械的导航乃至军用雷达的导航等等。卡尔曼滤波一般用于动态数据的处理,是从混沌的信号中提取有用信号消除误差的参数估计法。卡尔曼滤波是依据上一个估计数值和当下的检测数据运用递推估计算出当前的估计值。通过状态方程运用递推的方法进行估计,可以建立物体运动的模型。本文采用的工程设计对运行状态下的直流电机进行参数的计算和校验。而且直流电机的调节性能非常好只需要加上电阻调压就可以了,而且启动曲线非常好,启动的转矩大适合高精度的控制。而交流电机调速需要变频,控制相对复杂一些,而对于设计无论是哪种电机都不影响结果,所以本实验采用直流电机。简单来说卡尔曼滤波就是对被观测量进行一个物理的建模,目的是用‘道理’来约束观测结果,减少噪声的影响。因此卡尔曼滤波是根据一个事物的当前状态预测它的下一个状态的过程。 此设计主要是通过对直流电机的数学模型利用MATLAB来设计卡尔曼滤波估计,进行仿真编程建模,进而对系统进行评估,并且分析估计误差。 关键词:卡尔曼滤波器;直流电机;MATLAB

Abstract Kalman filter is an iterative autoregression algorithm for continuous motion of most of the problems with it are able to give the best prediction. And it has been widely used for nearly half a century, such as the integration of data, as well as military machinery of navigation radar navigation, and so on. Kalman filter is generally used to process dynamic data, extract useful signal parameter estimation method to eliminate errors from the chaotic signal. Kalman filter is based on an estimate on the value and the current detection data is calculated using recursive estimation current estimates. By using recursive state equation method to estimate the movement of objects can be modeled. The paper describes the engineering design of the DC motor running state parameter calculation and verification. The DC motor performance and adjust very well simply by adding resistance regulator on it, and start curve is very good, start torque for precision control. The required frequency AC motor speed control is relatively complicated, and for the design of either the motor does not affect the outcome.In order to facilitate learning, so wo use the DC motor. Simply the Kalman filter is to be observables conduct a physical modeling; the purpose is to use 'sense' to restrict the observations to reduce the influence of noise. Therefore, the Kalman filter is based on the current state of things predict its next state of the process. This design is mainly through the DC motor mathematical model using MATLAB to design the Kalman filter estimation, simulation modeling program, and then to evaluate the system and analyze the estimation error. Keywords:Kalman filter; DC;MATLAB

基于matlab的图像处理滤波器设计

数字信号处理课程设计任务书 2011-2012学年第一学期第 15 周- 19 周 题目基于matlab的图像处理滤波器设计 内容及要求: 1、设计一个低通FIR滤波器和一个低通IIR滤波器; 2、分析比较上述两种滤波器的优劣; 3、分析上述两个模型的幅频特性、相频特性、相延迟、群延迟。 进度安排: 1、任务分配、查阅资料 2天 2、方案论证 3天 3、分析、设计、调试程序 5天 4、书写、整理实验报告和小结 3天 成员组成:09044106苏青文 08陈舒龙(组长) 09方雪松 指导时间:指导地点: F 618 任务下达2011年12 月 16 日任务完成2012年1月 6日考核方式 1.评阅□ 2.答辩□ 3.实际操作□ 4.其它□ 指导教师汪传忠系(部)主任王长坤 注:1、此表一组一表二份,课程设计小组组长一份;任课教师 授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一 并交院教务存档。

目录 摘要 (3) 一、课程设计目的及要求 (4) 二、课程设计内容及任务安排 (4) 三、设计原理及设计方法 (5) 3.1 FIR数字滤波器 (5) 3.2 IIR数字滤波器 (7) 四、与设计相关的知识 (8) 五、设计过程 (14) 5.1图像加噪处理及功率密度谱对比 (14) 5.2 FIR滤波器的设计 (22) (1)布莱克曼窗 (22) (2)海明窗 (26) (3)汉宁窗 (28) (4)多尔夫-切比雪夫窗 (32) (5)巴特利特窗 (35) 5.3 IIR 数字滤波器设计 (38) (1)巴特沃兹 (38) (2)切比雪夫1 (41) (3)切比雪夫2……………………………………… .43 (4)椭圆滤波 (45) 六、FIR和IIR的比较 (47) 七、个人设计总结 (49) 附录 (50)

卡尔曼滤波器介绍 --- 最容易理解

10.6 卡尔曼滤波器简介 本节讨论如何从带噪声的测量数据把有用信号提取出来的问题。通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内。如前所述,为了消除噪声,可以把 FIR滤波器或IIR滤波器设计成合适的频带滤波器,进行频域滤波。但在许多应用场合,需要进行时域滤波,从带噪声的信号中提取有用信号。虽然这样的过程其实也算是对信号的滤波,但所依据的理论,即针对随机信号的估计理论,是自成体系的。人们对随机信号干扰下的有用信号不能“确知”,只能“估计”。为了“估计”,要事先确定某种准则以评定估计的好坏程度。最小均方误差是一种常用的比较简单的经典准则。典型的线性估计器是离散时间维纳滤波器与卡尔曼滤波器。 对于平稳时间序列的最小均方误差估计的第一个明确解是维纳在1942年2月首先给出的。当时美国的一个战争研究团体发表了一个秘密文件,其中就包括维纳关于滤波问题的研究工作。这项研究是用于防空火力控制系统的。维纳滤波器是基于最小均方误差准则的估计器。为了寻求维纳滤波器的冲激响应,需要求解著名的维纳-霍夫方程。这种滤波理论所追求的是使均方误差最小的系统最佳冲激响应的明确表达式。这与卡尔曼滤波(Kalman filtering)是很不相同的。卡尔曼滤波所追求的则是使均方误差最小的递推算法。 在维纳进行滤波理论研究并导出维纳-霍夫方程的十年以前,在1931年,维纳和霍夫在数学上就已经得到了这个方程的解。 对于维纳-霍夫方程的研究,20世纪五十年代涌现了大量文章,特别是将维纳滤波推广到非平稳过程的文章甚多,但实用结果却很少。这时正处于卡尔曼滤波问世的前夜。 维纳滤波的困难问题,首先在上世纪五十年代中期确定卫星轨道的问题上遇到了。1958年斯韦尔林(Swerling)首先提出了处理这个问题的递推算法,并且立刻被承认和应用。1960年卡尔曼进行了比斯韦尔林更有意义的工作。他严格地把状态变量的概念引入到最小均方误差估计中来,建立了卡尔曼滤波理论。空间时代的到来推动了这种滤波理论的发展。 维纳滤波与卡尔曼滤波所研究的都是基于最小均方误差准则的估计问题。 维纳滤波理论的不足之处是明显的。在运用的过程中,它必须把用到的全部数据存储起来,而且每一时刻都要通过对这些数据的运算才能得到所需要的各种量的估值。按照这种滤波方法设置的专用计算机的存储量与计算量必然很大,很难进行实时处理。虽经许多科技工作者的努力,在解决非平稳过程的滤波问题时,给出能用的方法为数甚少。到五十年代中期,随着空间技术的发展,这种方法越来越不能满足实际应用的需要,面临了新的挑战。尽管如此,维纳滤波理论在滤波理论中的开拓工作是不容置疑的,维纳在方法论上的创见,仍然影响着后人。 五十年代中期,空间技术飞速发展,要求对卫星轨道进行精确的测量。为此,人们将滤波问题以微分方程表示,提出了一系列适应空间技术应用的精练算法。1960年

11720817 _维纳滤波实现的图像复原(案例)

基于维纳滤波实现的图像复原(案例) (1) 图像复原技术 图像复原也称图象恢复,是图象处理中的一大类技术。所谓图像复原,是指去除或减轻在获取数字图像过程中发生的图像质量下降(退化)这些退化包括由光学系统、运动等等造成图像的模糊,以及源自电路和光度学因素的噪声。图像复原的目标是对退化的图像进行处理,使它趋向于复原成没有退化的理想图像。 从数学上来说,图像复原的主要目的是在假设具备退化图像g 及退化模型函数H 和n 的某些知识的前提下,估计出原始图像f 的估计值f ?,f ?估计值应使准则 最优(常用最小)。如果仅仅要求某种优化准则为最小,不考虑其他任何条件约束,这种复原方法称为非约束复原。 (2)维娜滤波复原算法 采用维纳滤波是假设图像信号可近似看成为平稳随机过程的前提下,按照使原始图像和估计图像之间的均方误差达到最小的准则函数来实现图像复原的。 它一种最小均方误差滤波器。 [][]g H R sR H H g H Q sQ H H f T n f T T T T 1 11-- -+=+= (1) 设 Rf 是 f 的相关矩阵: }{T f ff E R = (2) Rf 的第 ij 元素是E{fi fj},代表 f 的第 i 和第 j 元素的相关。 }{T f nn E R = (3) 设 Rn 是n 的相关矩阵: 根据两个象素间的相关只是它们相互距离而不是位置的函数的假设,可将Rf 和Rn 都用块循环矩阵表达,并借助矩阵W 来对角化: 1-=W AW R f (4) 1-=W BW R n (5) fe(x, y)的功率谱,记为Sf (u, v) ;ne(x, y)的功率谱,记为Sn(u, v)。D 是1个对角矩阵,D(k, k) = λ(k),则有: 1-=WDW H (6)

卡尔曼滤波器

卡尔曼滤波器 来这里几个月,发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载:https://www.wendangku.net/doc/e110066881.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

基于matlab数字图像处理之高通滤波器

实践二:理想高通滤波器、Butterworth高通滤波器、高斯高通滤波器 2.1.1理想高通滤波器实践代码: I=imread(''); subplot(221),imshow(I); title('原图像'); s=fftshift(fft2(I)); subplot(223), imshow(abs(s),[]); title('图像傅里叶变换所得频谱'); subplot(224), imshow(log(abs(s)),[]); title('图像傅里叶变换取对数所得频谱'); [a,b]=size(s); a0=round(a/2); b0=round(b/2); d=10; p=;q=; fori=1:a forj=1:b distance=sqrt((i-a0)^2+(j-b0)^2); ifdistance<=dh=0; elseh=1; end; s(i,j)=(p+q*h)*s(i,j); end; end; s=uint8(real(ifft2(ifftshift(s)))); subplot(222), imshow(s);title('高通滤波所得图像'); I=imread(''); [f1,f2]=freqspace(size(I),'meshgrid'); Hd=ones(size(I)); r=sqrt(f1.^2+f2.^2); Hd(r<=0; figure surf(Hd,'Facecolor','interp','Edgecolor','none','Facelighting','phong');%画三维曲面(色)图 2.1.2理想高通滤波器实践结果截图: 2.2.1Butterworth高通滤波器实践代码: I1=imread(''); subplot(121),imshow(I1);

matlab对卡尔曼滤波的仿真实现

MATLAB 对卡尔曼滤波器的仿真实现 刘丹,朱毅,刘冰 武汉理工大学信息工程学院,武汉(430070) E-mail :liudan_ina@https://www.wendangku.net/doc/e110066881.html, 摘 要:本文以卡尔曼滤波器原理为理论基础,用MATLAB 进行卡尔曼滤波器仿真、对比卡尔曼滤波器的预测效果,对影响滤波其效果的各方面原因进行讨论和比较,按照理论模型进行仿真编程,清晰地表述了编程过程。 关键词:数字信号处理;卡尔曼滤波器;MATLAB ;仿真过程 中图分类号: TN912.3 1. 引言 随着信息时代和数字世界的到来,数字信号处理已成为当今一门极其重要的学科和技术领域。数字信号处理已在通信、语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。在数字信号处理中,数字滤波占有极其重要的地位,目前对数字滤波器的设计有多种方法,其中著名的MATLAB 软件包在多个研究领域都有着广泛的应用,它的频谱分析[1]和滤波器的分析设计功能很强,从而使数字信号处理变得十分简单、直观。本文分析了数字滤波器的设计方法,举出了基于MATLAB 软件的信号处理工具在数字滤波器设计中的应用。 2. 卡尔曼滤波基本原理 卡尔曼滤波过程实际上是获取维纳解的递推运算过程[2]。从维纳解导出的卡尔曼滤波器实际上是卡尔曼滤波过程结束后达到稳态的情况,这时Kalman Filtering 的结果与Wiener Solution 是相同的[3]。具体推导如下: )()1|1(?)|(?n Gy n n x f n n x +??= )|(?)()(n n x n x n e ?= 已知由此求c a cG a f F G n e E n ,)1(( ..min )]([)(2?=??→?==ε 由 f G f G ,0??????????=??εε ⑴ )]1|1(?)()[()1|1(?)|(????+??=n n x ac n y n G n n x a n n x 可以是时变的,非平稳的随机信号 ⑵ Q n a n P +?=)1()(2 ε均为正数。 ⑶ ) () ()(2n P C R n CP n G += ⑷ )()](1[)()(n P n CG n G C P n ??== ε )(n G 是个随时间变化的量,每次输入输出,)(n G 就调整一次,并逐渐逼近Kalman Filter 的增益G ,而)1()(?

数字图像处理高通滤波器

数字图像处理高通滤波器 姓名:*** 学号:********** 高通滤波就是常见的频域增强的方法之一。高通滤波与低通滤波相反,它就是高频分量顺利通过,使低频分量受到削弱。这里考虑三种高通滤波器:理想高通滤波器、巴特沃斯高通滤波器与高斯高通滤波器。这三种滤波器涵盖了从非常尖锐(理想)到非常平坦(高斯)范围的滤渡器函数,其转移函数分别为: 1、理想高通滤波器(IHPF) ),(),(10),(D v u D D v u D v u H >≤???= 2、巴特沃斯高通滤波器(BHPF) n v u D D v u H 20),()12(11),(?? ????-+= 3、高斯高通滤波器(GHPF) 2022/v ,u D 1),(D e v u H )(--= 一、数字图像高通滤波器的实验过程: 1、理想高通滤波器程序 clear all ;clc; image = imread('test 、jpg'); gimage_15 = func_ihpf(image,15); gimage_30 = func_ihpf(image,30); gimage_80 = func_ihpf(image,80); figure subplot(221),imshow(image); title('Original'); subplot(222),imshow(gimage_15); title('d0=15'); subplot(223),imshow(gimage_30); title('d0=30'); subplot(224),imshow(gimage_80); title('d0=80'); %被调函数子函数G(u,v)=F(u,v)H(u,v) function gimage = func_ihpf(image,d0) image = double(image); f = fftshift(fft2(image)); [M,N]=size(f); a0 = fix(M/2); b0 = fix(N/2); for i=1:M for j=1:N

卡尔曼滤波的基本原理及应用

卡尔曼滤波的基本原理及应用卡尔曼滤波在信号处理与系统控制领域应用广泛,目前,正越来越广泛地应用于计算机应用的各个领域。为了更好地理解卡尔曼滤波的原理与进行滤波算法的设计工作,主要从两方面对卡尔曼滤波进行阐述:基本卡尔曼滤波系统模型、滤波模型的建立以及非线性卡尔曼滤波的线性化。最后,对卡尔曼滤波的应用做了简单介绍。 卡尔曼滤波属于一种软件滤波方法,其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 最初的卡尔曼滤波算法被称为基本卡尔曼滤波算法,适用于解决随机线性离散系统的状态或参数估计问题。卡尔曼滤波器包括两个主要过程:预估与校正。预估过程主要是利用时间更新方程建立对当前状态的先验估计,及时向前推算当前状态变量和误差协方差估计的值,以便为下一个时间状态构造先验估计值;校正过程负责反馈,利用测量更新方程在预估过程的先验估计值及当前测量变量的基础上建立起对当前状态的改进的后验估计。这样的一个过程,我们称之为预估-校正过程,对应的这种估计算法称为预估-校正算法。以下给出离散卡尔曼滤波的时间更新方程和状态更新方程。 时间更新方程: 状态更新方程: 在上面式中,各量说明如下: A:作用在X k-1上的n×n 状态变换矩阵 B:作用在控制向量U k-1上的n×1 输入控制矩阵 H:m×n 观测模型矩阵,它把真实状态空间映射成观测空间 P k-:为n×n 先验估计误差协方差矩阵 P k:为n×n 后验估计误差协方差矩阵 Q:n×n 过程噪声协方差矩阵 R:m×m 过程噪声协方差矩阵 I:n×n 阶单位矩阵K k:n×m 阶矩阵,称为卡尔曼增益或混合因数 随着卡尔曼滤波理论的发展,一些实用卡尔曼滤波技术被提出来,如自适应滤波,次优滤波以及滤波发散抑制技术等逐渐得到广泛应用。其它的滤波理论也迅速发展,如线性离散系统的分解滤波(信息平方根滤波,序列平方根滤波,UD 分解滤波),鲁棒滤波(H∞波)。 非线性样条自适应滤波:这是一类新的非线性自适应滤波器,它由一个线性组合器后跟挠性无记忆功能的。涉及的自适应处理的非线性函数是基于可在学习

用逆滤波和维纳滤波进行图像复原

用逆滤波和维纳滤波进行图像复原 在图像的获取、传输以及记录保存过程中,由于各种因素,如成像设备与目 标 物体的相对运动,大气的湍流效应,光学系统的相差,成像系统的非线性畸变, 环境的随机噪声等原因都会使图像产生一定程度的退化, 图像退化的典型表现是 图像出现模糊、失真,出现附加噪声等。由于图像的退化,使得最终获取的图像 不再是原始图像,图像效果明显变差。为此,要较好地显示原始图像,必须对退 化后的图像进行处理,恢复出真实的原始图像,这一过程就称为图像复原。 图像复原技术是图像处理领域一类非常重要的处理技术, 主要目的就是消除 或减轻在图像获取及传输过程中造成的图像质量下降即退化现象, 恢复图像的本 来面目。 图像复原的过程是首先利用退化现象的某种先验知识,建立退化现象的数学模 型,然后再根据退化模型进行反向的推演运算,以恢复原来的景物图像。 一、 实验目的 1了解图像复原模型 2了解逆滤波复原和维纳滤波复原 3掌握维纳滤波复原、逆滤波的 MatIab 实现 二、 实验原理 1、逆滤波复原 如果退化图像为g x, y ,原始图像为f x,y ,在不考虑噪声的情况下,其 退化 模型可用下式表示 g χ,y rgE f χ- ,y- - d d (12-25) 由傅立叶变换的卷积定理可知有下式成立 G u,v =H u,v F u,v (12-26) 式中,G u,v 、H u,v 、F u,v 分别是退化图像 g x,y 、点扩散函数 h x y 、原始图像f X, y 的傅立叶变换。所以 (12-27) 由此可见,如果已知退化图像的傅立叶变换和系统冲激响应函数 (“滤被” f x,y =F 4 F u,v =F G u,v H u,v

什么是卡尔曼滤波器——基础理解

1.什么是卡尔曼滤波器 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。卡尔曼是一个人的名字。 卡尔曼全名Rudolf Emil Kalman,1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文 《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。 简单来说,卡尔曼滤波器是一个 “optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。(所谓高斯白噪声中的高斯是指概率分布是正态函数,而白噪声是指它的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。这是考查一个信号的两个不同方面的问题。 高斯白噪声:如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。) 好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。 假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平

图像复原——逆滤波复原与维纳滤波复原方法及比较

鲁东大学信息与电气工程学院学年第-----1----学期 《》课程论文 课程号: 任课教师成绩 逆滤波复原与维纳滤波复原方法及比较 摘要 图像复原,即利用退化过程的先验知识,去恢复已被退化图像的本来面目。对遥感图像资料进行大气影响的校正、几何校正以及对由于设备原因造成的扫描线漏失、错位等的改正,将降质图像重建成接近于或完全无退化的原始理想图像的过程。图像在形成,记录,处理和传输的过程中,因为成像系统,记录设备,传输介质和处理方法的不完备导致图像质量的下降,也就是常说的图像退化。图像复原是对发生退化的图像进行补偿,某种意义上对图像进行改进,改善输入图像的质量。我的这篇论文主要介绍逆滤波图像复原,维纳滤波图像复原等方法,以及对他们之间进行比较。 关键词:图像复原、逆滤波复原、维纳滤波复原 一.图像复原的意义 复原是图像处理的一个重要内容,它的主要目的是改善给定的图像质量并尽可能恢复原图像。图像在形成、传输和记录过程中,受各种因素的影响,图像的质量都会有所下降,典型表现有图像模糊、失真、有噪声等。这一质量下降的过程称为图像的退化。图像复原的目的就是尽可能恢复退化图像本来面目。 二.维纳滤波的介绍 图像复原是图像处理中的一个重要问题。对于改善图像质量具有重要的意义。已在实际应用中被证明是有效的重要的图像复原技术有很多,而维纳滤波法提供了一种在有噪声情况下导出反卷积传递函数的最优方法,它是频率域最常用的一种恢复方法。目前的B超声图像所展示的器官和组织的范围很小,而且图像的分辨率较低,同时伪像也较多,这样在根据B超图像进行病情诊断时,常常出现由于B超图像模糊不清而错误诊断病情的情况,造成严重的后果。因此,利用图像处理技术,对所获得的

相关文档
相关文档 最新文档