文档库 最新最全的文档下载
当前位置:文档库 › 基于凸优化理论的多传感器目标识别技术_林云

基于凸优化理论的多传感器目标识别技术_林云

基于凸优化理论的多传感器目标识别技术_林云
基于凸优化理论的多传感器目标识别技术_林云

多目标优化实例和matlab程序教学教材

多目标优化实例和m a t l a b程序

精品文档 收集于网络,如有侵权请联系管理员删除 NSGA-II 算法实例 目前的多目标优化算法有很多, Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。 一、 数值例子 多目标优化问题 424221********* 4224212212112 12min (,)10min (,)55..55 f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤??-≤≤? 二、 Matlab 文件 1. 适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2; y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2); 2. 调用gamultiobj 函数,及参数设置: clear clc fitnessfcn=@f; %适应度函数句柄 nvars=2; %变量个数 lb=[-5,-5]; %下限 ub=[5,5]; %上限 A=[];b=[]; %线性不等式约束 Aeq=[];beq=[]; %线性等式约束 options=gaoptimset('paretoFraction',0.3,'populationsize',100,'generations' ,200,'stallGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto); % 最优个体系数paretoFraction 为0.3;种群大小populationsize 为 100,最大进化代数generations 为200, % 停止代数stallGenLimit 为200, 适应度函数偏差TolFun 设为1e- 100,函数gaplotpareto :绘制Pareto 前端 [x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)

matlab多目标优化模型教程

fgoalattain Solve multiobjective goal attainment problems Equation Finds the minimum of a problem specified by x, weight, goal, b, beq, lb, and ub are vectors, A and Aeq are matrices, and c(x), ceq(x), and F(x) are functions that return vectors. F(x), c(x), and ceq(x) can be nonlinear functions. Syntax x = fgoalattain(fun,x0,goal,weight) x = fgoalattain(fun,x0,goal,weight,A,b) x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq) x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub) x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon) x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,... options) x = fgoalattain(problem) [x,fval] = fgoalattain(...) [x,fval,attainfactor] = fgoalattain(...) [x,fval,attainfactor,exitflag] = fgoalattain(...) [x,fval,attainfactor,exitflag,output] = fgoalattain(...) [x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(...) Description fgoalattain solves the goal attainment problem, which is one formulation for minimizing a multiobjective optimization problem.

多目标优化实例和matlab程序

NSGA-II 算法实例 目前的多目标优化算法有很多, Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。 一、 数值例子 多目标优化问题 424221********* 4224212212112 12min (,)10min (,)55..55 f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤??-≤≤? 二、 Matlab 文件 1. 适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2; y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2); 2. 调用gamultiobj 函数,及参数设置: clear clc fitnessfcn=@f; %适应度函数句柄 nvars=2; %变量个数 lb=[-5,-5]; %下限 ub=[5,5]; %上限 A=[];b=[]; %线性不等式约束 Aeq=[];beq=[]; %线性等式约束 options=gaoptimset('paretoFraction',0.3,'populationsize',100,'generations', 200,'stallGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto); % 最优个体系数paretoFraction 为0.3;种群大小populationsize 为100,最大进化代数generations 为200, % 停止代数stallGenLimit 为200, 适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端 [x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)

多目标优化问题

多目标优化方法 基本概述 几个概念 优化方法 一、多目标优化基本概述 现今,多目标优化问题应用越来越广,涉及诸多领域。在日常生活与工程中,经常要求不只一项指标达到最优,往往要求多项指标同时达到最优,大量的问题都可以归结为一类在某种约束条件下使多个目标同时达到最优的多目标优化问题。例如:在机械加工时,在进给切削中,为选择合适的切削速度与进给量,提出目标:1)机械加工成本最低2)生产率低3)刀具寿命最长;同时还要满足进给量小于加工余量、刀具强度等约束条件。 多目标优化的数学模型可以表示为: X=[x1,x2,…,x n ]T----------n维向量 min F(X)=[f1(X),f2(X),…,f n(X)]T----------向量形式的目标函数s、t、g i(X)≤0,(i=1,2,…,m) h j(X)=0,(j=1,2,…,k)--------设计变量应满足的约束条件多目标优化问题就是一个比较复杂的问题,相比于单目标优化问题,在多目标优化问题中,约束要求就是各自独立的,所以无法直接比较任意两个解的优劣。 二、多目标优化中几个概念:最优解,劣解,非劣解。 最优解X*:就就是在X*所在的区间D中其函数值比其她任何点的函数

值要小即f(X*)≤f(X),则X*为优化问题的最优解。 劣解X*:在D中存在X使其函数值小于解的函数值,即f(x)≤f(X*), 即存在比解更优的点。 非劣解X*:在区间D中不存在X使f(X)全部小于解的函数值f(X*)、 如图:在[0,1]中 X*=1为最优解 在[0,2]中 X*=a为劣解 在[1,2]中 X*=b为非劣解 多目标优化 问题中绝对最优 解存在可能性一般很小,而劣解没有意义,所以通常去求其非劣解来解决问题。 三、多目标优化方法 多目标优化方法主要有两大类: 1)直接法:直接求出非劣解,然后再选择较好的解 将多目标优化问题转化为单目标优化问题。 2)间接法如:主要目标法、统一目标法、功效系数法等。 将多目标优化问题转化为一系列单目标优化问题。 如:分层系列法等。

用粒子群算法求解多目标优化问题的Pareto解

粒子群算法程序 tic D=10;%粒子群中粒子的个数 %w=0.729;%w为惯性因子 wmin=1.2; wmax=1.4; c1=1.49445;%正常数,成为加速因子 c2=1.49445;%正常数,成为加速因子 Loop_max=50;%最大迭代次数 %初始化粒子群 for i=1:D X(i)=rand(1)*(-5-7)+7; V(i)=1; f1(i)=X(i)^2; f2(i)=(X(i)-2)^2; end Loop=1;%迭代计数器 while Loop<=Loop_max%循环终止条件 %对粒子群中的每个粒子进行评价 for i=1:D k1=find(1==Xv(i,:));%找出第一辆车配送的城市编号 nb1=size(k1,2);%计算第一辆车配送城市的个数 if nb1>0%判断第一辆车配送城市个数是否大于0,如果大于0则 a1=[Xr(i,k1(:))];%找出第一辆车配送城市顺序号 b1=sort(a1);%对找出第一辆车的顺序号进行排序 G1(i)=0;%初始化第一辆车的配送量 k51=[]; am=[]; for j1=1:nb1 am=find(b1(j1)==Xr(i,:)); k51(j1)=intersect(k1,am);%计算第一辆车配送城市的顺序号 G1(i)=G1(i)+g(k51(j1)+1);%计算第一辆车的配送量 end k61=[]; k61=[0,k51,0];%定义第一辆车的配送路径 L1(i)=0;%初始化第一辆车的配送路径长度 for k11=1:nb1+1 L1(i)=L1(i)+Distance(k61(k11)+1,k61(k11+1)+1);%计算第一辆车的配送路径长度end else%如果第一辆车配送的城市个数不大于0则 G1(i)=0;%第一辆车的配送量设为0 L1(i)=0;%第一辆车的配送路径长度设为0 end

多目标优化模型

多目标优化模型 中国水资源具有显著地区域特征,我们对区域水资源多目标优化配置,以多目标和大系统优化为手段,在一定时间内可供水量和需水量确定的条件下,建立区域有限的水资源量在各流域的优化配置模型,求解模型得到水量优化配置方案. 目标函数的建立: 水资源配置主要考虑3 个目标函数,即用水效益函数、用水费用函数和区域均衡性函数。对于优质水资源而言,用水效益重点考虑工业和第三产业所产生的效益,将农业用水排除在外,旨在优先考虑经济效益好的区域用水需求。用水费用主要指输水费用,包括管道铺设和渠道建设费用,优质水资源还需要着重考虑饮用水的制水成本. 区域均衡性函数则为了避免供水一味向经济发达区域倾斜,使各区域供水与需水之差满足某种准则,以体现社会和谐精神.具体目标如下: (1) 用水收益最大;(2) 运营成本最低;(3)区域水资源供需尽量均衡. 设i g 为第i 个流域使用每立方米水资源所产生的效益参数, c ij 为第i 个用户由第j 个供水源输送每立方米水所需的费用, x ij 为由第j 个水源供给第i 个流域的水量,各区域的用水量x M x i j ij =∑=, D i 为第i 个区域的需水总量,则水资源配置的目标函数可以综合表示成如下形式: 2 111max (c )/(1/)n n n i i ij j i i i j i Z opt g x x x D ===??=--???? ∑∑∑ 式中:右边分子第一项表示水资源利用所产生的经济效益,包括环境效益,对 于优质水资源则取非农业经济效益;右边分子第二项为运营成本,主要涉及制水成本和水库至流域的输水成本;分母反映区域水资源供需之间的均衡程度,表示各区域的用水保证率尽可能最大,N 为供水区域数. 1. 2 参数及约束条件设置 中国各流域的水资源需要进行合理分配,以达到水资源的平衡,需要适当设置参数和约束条件. 首先按照2 种方式划分区域:其一以流域为单元,便于在模型中计算经济效益;其二以供水源为单元,以利于分析区域水资源的供需平衡关系. 各流域从水库获得的水量受水库供水量的限制,而水库供水量又受水源的水来源的可供水量约束. 根据中国历年的降雨量资料计算出各水库在不同频率下的可供水量,结合中国供水状况获得在若干种供水保证率下各水库的可供水量,各流域可取得的水量不得超过水源地水库的可供水量与水厂供水量中的较小者 j Q ,以此作为各变量的约束条件1)。设水库数为1R ,供水源为2 R ,供水单元数 为M ,当出现若干水库是同一水源的情形时取2M R = ,而当一个水厂以多个水库为水源地时取1M R = . 在这两种情形下,除满足约束条件1)外,尚需满足这些水库的供水量之和不大于水源地的可供水量或水库的供水量小于水源地的

多目标最优化问题全面介绍

§8.1多目标最优化问题的基本原理 一、多目标最优化问题的实例 例1 梁的设计问题 设用直径为1的圆木加工成截面积为矩形的梁,为使强度最大而成本最低, 问应如何设计梁的尺寸? 解: 设梁的截面积宽和高分别为1x 和2x 强度最大=惯性矩最大 2 216 1x x = 成本最低=截面积最小=21x x 故数学模型为: min 1 x 2 x max 2216 1x x .s t 221 2 1x x += 10x ≥,20x ≥ 例2 买糖问题 已知食品店有1A , 2 A , 3 A 三种糖果单价分别为4元∕公斤,2.8元∕公斤, 2.4元∕公斤,今要筹办一次茶话会,要求用于买买糖的钱不超于20元,糖 的总量不少于6公斤,1A , 2 A 两种糖的总和不少于3公斤,问应如何确定买糖的最佳方案? 解:设购买1A , 2 A , 3 A 三种糖公斤数为1x ,2x ,3x 1 A 2 A 3 A 重量 1x 2x 3x 单价 4元∕公斤 2.8元∕公斤 2.4元∕公斤 min 14x +22.8x +3 2.4x (用钱最省)

max 1x +2x +3x (糖的总量最多) .st 14x +22.8x +3 2.4x 20≤ (用钱总数的限制) 1x +2x +3x 6≥(用糖总量的要求) 1x +2x 3≥(糖品种的要求) 1x ,2x ,3x 0≥ 是一个线性多目标规划。 二、 多目标最优化的模型 12min ()((),(),.....())T m V F x f x f x f x -= .st ()0g x ≥ ()0h x ≥ 多目标规划最优化问题实际上是一个向量函数的优化问题,当m=1,多目标优化就是前面讲的单目标优化问题 三、解的概念 1.序的概念 12,.....()T m a a a a = 12,.....()T m b b b b = (1)b a =?a i i b = 1,2....i m = (2)a b ≤?a i i b ≤ 1,2....i m = 称a 小于等于b (3)a b < =?a i i b ≤ 且?1≤j ≤m ,使a j j b ≠,则a 小于向量b (4)a

多目标优化的求解方法

多目标优化的求解方法 多目标优化(MOP)就是数学规划的一个重要分支,就是多于一个的数值目标函数在给定区域上的最优化问题。 多目标优化问题的数学形式可以描述为如下: 多目标优化方法本质就是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。目前主要有以下方法: (1)评价函数法。常用的方法有:线性加权与法、极大极小法、理想点法。评价函数法的实质就是通过构造评价函数式把多目标转化为单目标。 (2)交互规划法。不直接使用评价函数的表达式,而就是使决策者参与到求解过程,控制优化的进行过程,使分析与决策交替进行,这种方法称为交互规划法。常用的方法有:逐步宽容法、权衡比替代法,逐次线性加权与法等。 (3)分层求解法。按目标函数的重要程度进行排序,然后按这个排序依次进行单目标的优化求解,以最终得到的解作为多目标优化的最优解。 而这些主要就是通过算法来实现的, 一直以来很多专家学者采用不同算法解决多目标优化问题, 如多目标进化算法、多目标粒子群算法与蚁群算法、模拟退火算法及人工免疫系统等。 在工程应用、生产管理以及国防建设等实际问题中很多优化问题都就是多目标优化问题, 它的应用很广泛。 1)物资调运车辆路径问题 某部门要将几个仓库里的物资调拨到其她若干个销售点去, 在制定调拨计划时一般就要考虑两个目标, 即在运输过程中所要走的公里数最少与总的运输费用最低, 这就是含有两个目标的优化问题。利用首次适配递减算法与标准蚁群算法对救灾物资运输问题求解, 求得完成运输任务的最少时间, 将所得结果进行了比较。 2)设计 如工厂在设计某种新产品的生产工艺过程时, 通常都要求产量高、质量好、成本低、消耗少及利润高等, 这就就是一个含有五个目标的最优化问题; 国防部门在设计导弹时, 要考虑导弹的射程要远、精度要最高、重量要最轻以及消耗燃料要最省等,这就就是一个含有四个目标的最优化问题。Jo等人将遗传算法与有限元模拟软件结合

多目标最优化模型

第六章 最优化数学模型 §1 最优化问题 1.1 最优化问题概念 1.2 最优化问题分类 1.3 最优化问题数学模型 §2 经典最优化方法 2.1 无约束条件极值 2.2 等式约束条件极值 2.3 不等式约束条件极值 §3 线性规划 3.1 线性规划 3.2 整数规划 §4 最优化问题数值算法 4.1 直接搜索法 4.2 梯度法 4.3 罚函数法 §5 多目标优化问题 5.1 多目标优化问题 5.2 单目标化解法 5.3 多重优化解法 5.4 目标关联函数解法 5.5 投资收益风险问题 第六章 最优化问题数学模型 §1 最优化问题 1.1 最优化问题概念 (1)最优化问题 在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。而求解最优化问题的数学方法被称为最优化方法。它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。 最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值;②求出取得极值时变量的取值。 最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。 (2)变量 变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。 设问题中涉及的变量为n x x x ,,,21 ;我们常常也用),,,(21n x x x X 表示。 (3)约束条件 在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件。 例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设

多目标最优化模型

第六章最优化数学模型 §1最优化问题 1.1最优化问题概念 1.2最优化问题分类 1.3最优化问题数学模型 §2经典最优化方法 2.1无约束条件极值 2.2等式约束条件极值 2.3不等式约束条件极值 §3线性规划 3.1线性规划 3.2整数规划 §4最优化问题数值算法 4.1直接搜索法 4.2梯度法 4.3罚函数法 §5多目标优化问题 5.1多目标优化问题 5.2单目标化解法 5.3多重优化解法 5.4目标关联函数解法 5.5投资收益风险问题 第六章最优化问题数学模 §1最优化问题 1.1最优化问题概念 (1)最优化问题在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。而求解最优化问题的数学方法被称为最优化方法。它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。 最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值; ②求出取得极值时变量的取值。 最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。 (2)变量变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。 一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。 设问题中涉及的变量为x1,x2, , x n ;我们常常也用X (x1,x2, ,x n)表示。 3)约束条件 在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设

多目标最优化数学模型

第六章最优化数学模型 §1 最优化问题 1.1 最优化问题概念 1.2 最优化问题分类 1.3 最优化问题数学模型 §2 经典最优化方法 2.1 无约束条件极值 2.2 等式约束条件极值2.3 不等式约束条件极值 §3 线性规划 3.1 线性规划 3.2 整数规划 §4 最优化问题数值算法4.1 直接搜索法 4.2 梯度法 4.3 罚函数法 §5 多目标优化问题 5.1 多目标优化问题 5.2 单目标化解法 5.3 多重优化解法 5.4 目标关联函数解法5.5 投资收益风险问题

第六章 最优化问题数学模型 §1 最优化问题 1.1 最优化问题概念 (1)最优化问题 在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。而求解最优化问题的数学方法被称为最优化方法。它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。 最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值;②求出取得极值时变量的取值。 最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。 (2)变量 变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。 设问题中涉及的变量为n x x x ,,,21 ;我们常常也用),,,(21n x x x X =表示。 (3)约束条件 在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件。 例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设计问题时,变量必须服从电路基本定律,这也是一种限制等等。在研究问题时,这些限制我们必须用数学表达式准确地描述它们。 用数学语言描述约束条件一般来说有两种: 等式约束条件 m i X g i ,,2,1,0)( == 不等式约束条件 r i X h i ,,2,1, 0)( =≥ 或 r i X h i ,,2,1, 0)( =≤ 注:在最优化问题研究中,由于解的存在性十分复杂,一般来说,我们不考虑不等式约束条件0)(>X h 或0)(

多目标优化问题

多目标优化方法 基本概述几个概念优化方法 一、多目标优化基本概述 现今,多目标优化问题应用越来越广,涉及诸多领域。在日常生活和工程中,经常要求不只一项指标达到最优,往往要求多项指标同时达到最优,大量的问题都可以归结为一类在某种约束条件下使多个目标同时达到最优的多目标优化问题。例如:在机械加工时,在进给切削中,为选择合适的切削速度和进给量,提出目标:1)机械加工 成本最低2)生产率低3)刀具寿命最长;同时还要满足进给量小于加工余量、刀具强度等约束条件。 多目标优化的数学模型可以表示为: X=[x i,x 2,…,x n ] T ---------------------------------- n 维向量 min F(X)=[f i(X),f 2(X),…,f n(X)] T- --------- 向量形式的目标 函数 s.t. g i(X) < 0,(i=1,2,…,m) h j (X)=0,(j=1,2,…,k) ------ 设计变量应满足的约 束条件 多目标优化问题是一个比较复杂的问题,相比于单目标优化问题,在 多目标优化问题中,约束要求是各自独立的,所以无法直接比较任意两个解的优劣。 二、多目标优化中几个概念:最优解,劣解,非劣解。 最优解X*:就是在乂所在的区间D中其函数值比其他任何点的函数值要小即f(X *)

如图:在[0,1] 中 X*=1为最优解 在[0,2] 中X*=a为劣解 在[1,2] 中X*=b为非劣解 多目标优化问 题中绝对最优解存 在可能性一般很 小,而劣解没有 意义,所以通常去 求其非劣解来解决 问题。 三、多目标优化方法 多目标优化方法主要有两大类: 1)直接法:直接求出非劣解,然后再选择较好的解 将多目标优化问题转化为单目标优化问题。 2)间接法女口:主要目标法、统一目标法、功效系数法等。 将多目标优化问题转化为一系列单目标优化问题。女口:分层系列法等。 1、主要目标法 求解时从多目标中选择一个目标作为主要目标,而其他目标只需满足一定要求即可,因此可将这些目标转化成约束条件,也就是用约束条件的形式保证其他目标不致太差,这样就变成单目标处理方法。 例如:多目标函数f 1(X),f 2(X),.?…,f n(X)中选择f k(X)作为主 要目标,这时问题变为求min f k(x) D={x|f min < f i(X)< f ma》,D为解所对应的其他目标函数应满足上下限。 2、统一目标法 通过某种方法将原来多目标函数构造成一个新的目标函数,从而将多目标函数转变为单目标函数求解。 ①线性加权和法 根据各目标函数的重要程度给予相应的权数,然后各目标函数与

多目标优化问题(over)

第七章多目标优化问题的求解 优化问题按照目标函数的数量,可以分为单目标优化问题和多目标优化问题,前面我们讲过的线性优化就是一个单目标优化问题,对单目标优化问题进一步突破,将目标函数扩展为向量函数后,问题就转化为多目标优化问题。本节将简要介绍多目标最优化问题的建模与求解方法。 1、多目标优化模型 多目标优化问题一般表示为 ..()min () s t J ≤= x G x 0 x F 其中121()[(),(),,()]T f f f =F x x x x ,下面将通过例子演示多目标优化问题的建模。 例1 设某商店有123,,A A A 三种糖果,单价分别为4,2.8和2.4元/kg ,现在 要举办一次茶话会,要求买糖果的钱不超过20元,但糖果的总重量不少于6kg , 1A 和2A 两种糖果的总重量不低于3kg ,应该如何确定最好的买糖方案。 分析:首先应该确定目标函数如何选择的问题,本例中,好的方案意味着少花钱多办事,这应该是对应两个目标函数,一个是花钱最少,一个是买的糖果最重,其他的可以认为是约束条件。当然,这两个目标函数有些矛盾,下面考虑如何将这个问题用数学描述。 设123,,A A A 三种糖果的购买重量分别为123,,x x x kg ,这时两个目标函数分别为花钱:1123min ()4 2.8 2.4f x x x =++x ,糖果总重量:2123max ()f x x x =++x ,如果统一用最小值问题表示,则有约束的多目标优化问题可以表示为 123123123123121234 2.8 2.4min -4 2.8 2.4206.. +3,,0 x x x x x x x x x x x x s t x x x x x ++?? ??++??++≤??++≥?? ≥??≥?()模型建立以后,可以考虑用后面的方法进行求解。

多目标优化的求解方法

多目标优化的求解方法 多目标优化(MOP)是数学规划的一个重要分支,是多于一个的数值目标函数在给定区域上的最优化问题。 多目标优化问题的数学形式可以描述为如下: 多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。目前主要有以下方法: (1)评价函数法。常用的方法有:线性加权和法、极大极小法、理想点法。评价函数法的实质是通过构造评价函数式把多目标转化为单目标。 (2)交互规划法。不直接使用评价函数的表达式,而是使决策者参与到求解过程,控制优化的进行过程,使分析和决策交替进行,这种方法称为交互规划法。常用的方法有:逐步宽容法、权衡比替代法,逐次线性加权和法等。 (3)分层求解法。按目标函数的重要程度进行排序,然后按这个排序依次进行单目标的优化求解,以最终得到的解作为多目标优化的最优解。 而这些主要是通过算法来实现的, 一直以来很多专家学者采用不同算法解决多目标优化问题, 如多目标进化算法、多目标粒子群算法和蚁群算法、模拟退火算法及人工免疫系统等。

在工程应用、生产管理以及国防建设等实际问题中很多优化问题都是多目标优化问题, 它的应用很广泛。 1)物资调运车辆路径问题 某部门要将几个仓库里的物资调拨到其他若干个销售点去, 在制定调拨计划时一般就要考虑两个目标, 即在运输过程中所要走的公里数最少和总的运输费用最低, 这是含有两个目标的优化问题。利用首次适配递减算法和标准蚁群算法对救灾物资运输问题求解, 求得完成运输任务的最少时间, 将所得结果进行了比较。 2)设计 如工厂在设计某种新产品的生产工艺过程时, 通常都要求产量高、质量好、成本低、消耗少及利润高等, 这就是一个含有五个目标的最优化问题; 国防部门在设计导弹时, 要考虑导弹的射程要远、精度要最高、重量要最轻以及消耗燃料要最省等,这就是一个含有四个目标的最优化问题。Jo等人将遗传算法与有限元模拟软件结合应用于汽车零件多工序冷挤压工艺的优化。Chung等人也成功应用遗传算法对锻件工艺进行了优化。 3)投资 假设某决策部门有一笔资金要分配给若干个建设项目, 在确定投资方案时, 决策者总希望做到投资少收益大。Branke等人采用基于信封的多目标进化算法成功地解决了计划投资地选择问题。 4)模拟移动床过程优化与控制 一个工业化模拟移动床正常运行时, 一般有七股物料进、出吸附塔, 其中起关键作用的物料口将作为决策量引起目标值的变化。根据实际生产要求通常包括生产率、产品纯度、吸附剂消耗量等多个目标。模拟移动床分离过程由于其过程操作变量的强耦合性、工艺机理的复杂性及分离性能的影响因素繁多性, 需要众多学者对其操作优化和过程控制进行深入的研究。Huang等人利用TPS 算法解决了模拟移动床多个冲突目标的最大最小的问题, 并与NSGA2 算法的结果进行了比较。吴献东等人运用粒子群算法开发出一种非线性模拟移动床( SMB )色谱分离过程的优化策略。 5)生产调度 在离散制造生产系统中, 一个工件一般经过一系列的工序加工完成, 每道工序需要特定机器和其他资源共同完成, 各工件在各机器上的加工顺序(称技术约束条件)通常是事先给定的。车间调度的作用

多目标优化实例和matlab程序

NSGA -II 算法实例 目前的多目标优化算法有很多, Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。 一、 数值例子 多目标优化问题 424221********* 4224212212112 12min (,)10min (,)55..55 f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤??-≤≤? 二、 Matlab 文件 1.适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2; y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2); 2.调用gamultiobj 函数,及参数设置: clear clc fitnessfcn=@f; %适应度函数句柄 nvars=2; %变量个数 lb=[-5,-5]; %下限 ub=[5,5]; %上限 A=[];b=[]; %线性不等式约束

Aeq=[];beq=[]; %线性等式约束 options=gaoptimset('paretoFraction',0.3,'populationsize',100, 'generations',200,'stallGenLimit',200,'TolFun',1e-100,'Plo tFcns',@gaplotpareto); % 最优个体系数paretoFraction 为0.3;种群大小populationsize 为100,最大进化代数generations 为200, % 停止代数stallGenLimit 为200, 适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端 [x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,option s) 3. 计算结果 图1. 实例1对应的Pareto 前沿图 -40-35-30-25-20 -15-10-5-50 5 10 15 202530 35 Objective 1O b j e c t i v e 2 Pareto front

相关文档