文档库 最新最全的文档下载
当前位置:文档库 › 阻尼振动概念及形式

阻尼振动概念及形式

阻尼振动概念及形式
阻尼振动概念及形式

4.阻尼振动的概念

教学目标

1 知道什么叫自由振动,理解固有频率的含义。

2 知道什么叫阻尼振动,能从能量的角度分析阻尼振动产生的原因。

3 知道什么叫驱动力,理解它是按效果命名的力。

4 知道什么叫受迫振动。理解系统做受迫振动的频率等于驱动力的频率,而与系统的固有频率无关。

5 知道什么叫共振,理解共振发生的条件,了解常见的共振应用和防止的实例。

教学重点:1受迫振动的频率等于驱动力的频率,而与系统的固有频率无关。

2 什么是共振及共振的产生条件。

教学难点:

1 对受迫振动的频率等于驱动力的频率,而与系统固有频率无关的理解。

2 当f驱=f固时,物体做受迫振动的振幅最大,即对共振发生条件的理解。

教学内容:复习:1.前几节已经学过哪些类型的简谐运动?

2. 简谐运动的能量与什么因素有关?简谐运动中什么形式的能量之间发生相互转化?机械能是否守恒?

3.简谐运动是等幅振动吗?

教师总结:之前学习的简谐运动就是自由振动,即无阻尼振动

新课:一自由振动

1.定义:系统不受外力作用,也不受任何阻力,只在自身回复力作用下的振动,称为自由振动,又叫做无阻尼振动。

2.自由振动的周期和频率叫系统的固有周期和固有频率,由系统本身的特征决定,与振幅无关。弹簧振子和单摆的周期?

二、阻尼振动

1.定义:系统在振动过程中受到阻力的作用,振动逐渐消逝,振动能量逐步转化为其他能量,这种振动叫做阻尼振动。

2.特点:①振幅逐渐减小,又叫减幅振动

②周期为固有周期不变(摆长始终不变),与振动有无阻尼

及阻尼大小无关。

3.位移-时间图像(振动图象):在一段不太长时间内振幅没

有明显减小,可近似为简谐运动。

思考:①钟摆在摆动过程中不可避免的受到空气等阻力作

用,但它的振幅始终保持不变,怎样获得持续振动?

三、受迫振动

1.驱动力:如果用周期性的外力作用于振动系统,补偿系统的能量损耗,使

系统持续等幅地振动下去,这种周期性的外力叫做驱动力。

2.受迫振动:系统在驱动力作用下的振动叫做受迫振动。

3.受迫振动的频率:等于驱动力的频率,与系统的固有频率没有关系

问题:固有频率对受迫振动有什么影响呢?

演示2 先让A摆摆动,带动其余各摆做受迫振动

猜想、观察、描述?

四、共振

1.定义:驱动力的频率等于振动物体的固有频率时,受迫振动的振幅最

大,这种现象叫做共振。

2.产生条件:驱动力的频率等于振动物体的固有频率。

3.共振曲线:右图表示受迫振动的振幅A与驱动力的频率f的关系。可

以看出:当驱动力的频率等于振动物体的固有频率时,振幅最大;驱动

力的频率跟固有频率相差越大,振幅越小。

理解:当驱动力频率越接近物体的固有频率时,驱动力与物体运动一致的次数越多,驱动力对它起加速作用、对物体做正功越多,振幅就越大.当驱动力频率等于物体固有频率时,驱动力始终对物体做正功,使振动能量不断增加,振幅不断增大,

思考生活中是否还有其它应用和防止共振的实例(可参照课本),可讨论后回答。

洗衣机,展示共振筛图片,播放大桥共振的视频

五、共振的应用和防止

1.应用:使驱动力的频率接近或等于振动物体的固有频率:共振筛、共鸣箱(音叉)、转速计

2.防止:使驱动力的频率远离振动物体的固有频率,且相差越大越好

军队过桥时要用便步,火车过桥时要放慢速度;机器运转时为了防止共振要调节转速;

在振动物体底座加防振垫;装修剧场、房屋时使用吸声材料等等

形成原因

受迫振动

振动的分类

阻尼振动:振幅减小

能量转化

无阻尼振动:等幅振动

阻尼振动与受迫振动 实验报告

《阻尼振动与受迫振动》实验报告 一、实验目的 1. 观测阻尼振动,学习测量振动系统基本参数的方法; 2. 研究受迫振动的幅频特性和相频特性,观察共振现象; 3. 观测不同阻尼对受迫振动的影响。 二、实验原理 1. 有粘滞阻尼的阻尼振动 弹簧和摆轮组成一振动系统,设摆轮转动惯量为J ,粘滞阻尼的阻尼力矩大小定义为角速度d θ/dt 与阻尼力矩系数γ的乘积,弹簧劲度系数为k ,弹簧的反抗力矩为-k θ。忽略弹簧的等效转动惯量,可得转角θ的运动方程为 220d d J k dt dt θθγθ++= 记ω0为无阻尼时自由振动的固有角频率,其值为ω0=k/J ,定义阻尼系数β =γ/(2J ),则上式可以化为: 2220d d k dt dt θθ βθ++= 小阻尼即22 00βω-<时,阻尼振动运动方程的解为 ( )) exp()cos i i t t θθβφ=-+ (*) 由上式可知, 阻尼振动角频率为d ω=阻尼振动周期为2d d T π ω= 2. 周期外力矩作用下受迫振动的解 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为 22cos d d J k M t dt dt θθγθω++= ()( )) ()exp cos cos i i m t t t θθβφθωφ=-++- 这可以看作是状态(*)式的阻尼振动和频率同激励源频率的简谐振动的叠加。 一般t >>τ后,就有稳态解 ()()cos m t t θθωφ=- 稳态解的振幅和相位差分别为 m θ=

22 02arctan βω φωω =- 其中,φ的取值范围为(0,π),反映摆轮振动总是滞后于激励源支座的振动。 3. 电机运动时的受迫振动运动方程和解 弹簧支座的偏转角的一阶近似式可以写成 ()cos m t t ααω= 式中α m 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧总转 角为()cos m t t θαθαω-=-。于是在固定坐标系中摆轮转角θ的运动方程为 ()22cos 0m d d J k t dt dt θθγθαω++-= 也可以写成 22cos m d d J k k t dt dt θθγθαω++= 于是得到 2 m θ= 由θ m 的极大值条件0m θω? ?=可知,当外激励角频率ω=系统发生共振, θ m 有极大值 α 引入参数(0ζβωγ==,称为阻尼比。 于是,我们得到 m θ= ()() 02 02arctan 1ζωωφωω=- 三、实验任务和步骤 1. 调整仪器使波耳共振仪处于工作状态。 2. 测量最小阻尼时的阻尼比δ和固有角频率ω0。 3. 测量阻尼为3和5时的振幅,并求δ。 4. 测定受迫振动的幅频特性和相频特性曲线。 四、实验步骤。

大学物理实验简谐振动与阻尼振动的实验报告

湖北文理学院物理实验教学示范中心 实 验 报 告 学院 专业 班 学号: 姓名: 实验名称 简谐振动与阻尼振动的研究 实验日期: 年 月 日 实验室: N1-103 [实验目的]: 1. 验证在弹性恢复力作用下,物体作简谐振动的有关规律;测定弹簧的弹性系数K 和有效质量m. 2. 测定阻尼振动系统的半衰期和品质因数,作出品质因数Q 与质量M 的关系曲线。 [仪器用具]:仪器、用具名称及主要规格(包括量程、分度值、精度等) 气垫导轨、滑块、附加质量(2)、弹簧(4)、光电门(2)、数字毫秒计. [实验原理]:根据自己的理解用简练的语言来概括(包括简单原理图、相关公式等) 1.简谐振动 在水平气垫导轨上的滑块m 的两端连接两根弹性系数1k 、2k 近乎相等的弹簧,两弹簧的另一端分别固定在气轨的两端点。滑块的运动是简谐振动。其周期为: 2 122k k M T +== π ω π 由于弹簧不仅是产生运动的原因,而且参 加运动。因此式中M 不仅包含滑块(振子)的质量m ,还有弹簧的有效质量0m 。M 称为弹簧振子系统的有效质量。经验 证:0m m M += 其中 s m m 31 0=,s m 为弹簧质量。假设:k k k ==21则有周期: 22T πω= = 若改变滑块的质量m ?,则周期2T 与m ?成正比。222 4422M m T k k ππ?=+。以2T 为纵坐标,以m ?为横坐标,作2T -m ?曲线。则为一条斜率为242k π的直线。由斜率可以求出弹簧的弹性系数k 。求出弹性系数后再根据式22 42M T k π=求出弹簧的 有效质量。 2.阻尼振动 简谐振动是一种振幅相等的振动,它是忽略阻尼振动的理想情况。事实上,阻尼力不可避免,而抵抗阻力做功的结果,使振动系统的能量逐渐减小。因此,实验中发生的一切自由振动,振幅总是逐渐减小以至等于零的。这种振动称为阻尼振动。用品质因数(即Q 值),来反映阻尼振动衰减的特性。其定义为:振动系统的总能量E 与在一个周期中所损耗能 量E ?之比的π2倍,即 2E Q E π =?;通过简单推导也有: 12 ln 2 T Q T π= 2 1T 是 阻尼振动的振幅从 0A 衰减为 2 0A 所用时 间,叫做半衰期。测出半衰期就可以计算出品质因数Q 。在实验中,改变滑块的质量。作质量与品质因数的关系曲线。 [实验内容]: 简述实验步骤和操作方法 1. 打开气泵观察气泵工作是否正常,气轨出气孔出气大小是否均匀。 2. 放上滑块,调节气轨底座,使气轨处于水平状态。 3. 把滑块拉离平衡位置,记录下滑块通过光电门10次所用的时间。 4. 改变滑块质量5次,重复第3步操作。 5. 画出m T -2 关系曲线,.据m T -2关系曲线,求出斜率K ,并求出弹性系数k 。 6. 用天平测量滑块(附挡光片)、每个附加物的质量后;求出弹簧的有效质量。 7. 用秒表测量滑块儿的振幅从A 0衰减到A 0/2所用的时间2 1T ;求出系统的品质因数Q 8. 滑块上增至4个附加物,重复步骤7作出Q-m ?的关系曲线;

阻尼振动与受迫振动实验报告

阻尼振动与受迫振动 一、 实验目的 1. 观测阻尼振动,学习测量振动系统基本参数的方法; 2. 研究受迫振动的幅频特性和相频特性,观察共振现象; 3. 观测不同阻尼对受迫振动的影响。 二、 实验原理 1. 有粘滞阻尼的阻尼振动 在弹簧和摆轮组成的振动系统中,摆轮转动惯量为J ,γ为阻尼力矩系数,ω0=√ k /J 为无阻尼时自由振动的固有角频率,定义阻尼系数β=γ/(2J ),则振动方程为 2220d d k dt dt θθ β θ++= 在小阻尼时,方程的解为 ()) exp()cos i i t t θθβφ=-+ 在取对数时,振幅的对数和β有有线性关系,通过实验测出多组振 幅和周期,即可通过拟合直线得出阻尼系数进而得出其他振动参数。 2. 周期外力矩作用下受迫振动 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为 22cos d d J k M t dt dt θθγθω++=

()( )) ()exp cos cos i i m t t t θθβφθωφ=-++- 其中包含稳定项和衰减项,当t >>τ后,就有稳态解 ()()cos m t t θθωφ=- 稳态解的振幅和相位差分别为 m θ= 22 02arctan βω φωω=- 上式中反映当ω与固有频率相等时相位差达到90度。 3. 电机运动时的受迫振动运动方程和解 弹簧支座的偏转角的一阶近似式可以写成 ()cos m t t ααω= 式中αm 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧总转角为()cos m t t θαθαω-=-。于是在固定坐标系中摆轮转角θ的运动方程为 22cos m d d J k k t dt dt θθγθαω++= 于是得到 2 m θ= 由θm 的极大值条件0m θω? ?=可知,当外激励角频率ω=时,系统发生共振, θm 有极大值α 引入参数(0ζβωγ ==,称为阻尼比,于是有

阻尼振动与受迫振动 实验报告

《阻尼振动与受迫振动》实验报告一、实验目的1.观测阻尼振动,学习测量振动系统基本参数的方法;2.研究受迫振动的幅频特性和相频特性,观察共振现象;3.观测不同阻尼对受迫振动的影响。 二、实验原理1.有粘滞阻尼的阻尼振动弹簧和摆轮组成一振动系统,设摆轮转动惯量为J ,粘滞阻尼的阻尼力矩大小定义为角速度d θ/dt 与阻尼力矩系数γ的乘积,弹簧劲度系数为k ,弹簧的反抗力矩为-k θ。忽略弹簧的等效转动惯量,可得转角θ的运动方程为 220d d J k dt dt θθγθ++=记ω0为无阻尼时自由振动的固有角频率,其值为ω0=,定义阻尼系数k/J β=γ/(2J ),则上式可以化为: 2220d d k dt dt θθβθ++=小阻尼即时,阻尼振动运动方程的解为2200βω-< (*)( )) exp()cos i i t t θθβφ=-+由上式可知,阻尼振动角频率为 ,阻尼振动周期为d ω=2d d T π=2.周期外力矩作用下受迫振动的解 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为22cos d d J k M t dt dt θθγθω++=()( ))()exp cos cos i i m t t t θθβφθωφ=-++-这可以看作是状态(*)式的阻尼振动和频率同激励源频率的简谐振动的叠加。一般t >>τ后,就有稳态解 ()()cos m t t θθωφ=-稳态解的振幅和相位差分别为路须同时切断习题电源,备制造厂家出具高中资料需要进行外部电源高中资料

m θ=2202arctan βωφωω=-其中,φ的取值范围为(0,π),反映摆轮振动总是滞后于激励源支座的振动。3.电机运动时的受迫振动运动方程和解弹簧支座的偏转角的一阶近似式可以写成 ()cos m t t ααω=式中αm 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧总转角为。于是在固定坐标系中摆轮转角θ的运动方程为()cos m t t θαθαω-=-()22cos 0m d d J k t dt dt θθγθαω++-=也可以写成 22cos m d d J k k t dt dt θθγθαω++= 于是得到m θ=由θm 的极大值条件可知,当外激励角频率时, 0m θω ??=ω=系统发生共振,θm 有极大值。α 引入参数,称为阻尼比。(0ζβ ωγ==于是,我们得到 m θ=()()0202arctan 1ζωωφωω=-三、实验任务和步骤 1.调整仪器使波耳共振仪处于工作状态。 2.测量最小阻尼时的阻尼比ζ和固有角频率ω0。进行隔开处理;同一线槽内人员,需要在事前掌握图纸电机一变压器组在发生内部

振动基础简答题

振动,广义地讲,指一个物理量在它的平均值附近不停地经过极大值和极小值而往复变化。 机械振动指机械或结构在它的静平衡位置附近的往复弹性运动。 任何具有弹性和惯性的力学系统均可能产生机械振动。 振动系统发生振动的原因是由于外界对系统运动状态的影响,即外界对系统的激励或作用,称之为振动系统的激励或输入。 振动的分类1:①线性振动:是指系统在振动过程中,振动系统的惯性力、阻尼力、弹性力分别与绝对加速度、相对加速度、相对位移成线性关系。线性振动系统的振动可以用线性微分方程描述。②非线性振动:非线性振动系统在振动的过程中,系统的惯性力、阻尼力、弹性力与绝对加速度、相对加速度、相对位移的关系没有线性系统那样简单,非线性系统的振动过程只能用非线性微分方程描述。 分类2:①确定性振动:一个振动系统,如果对任意时刻t,都可以预测描述它的物理量的确定的值x,即振动是确定的或可以预测的,这种振动称为确定性振动。②随机振动:无法预测它在未来某个时刻的确定值,如汽车行驶时由于路面不平引起的振动,地震时建筑物的振动。随机振动只能用概率统计(期望、方差、谐方差、相关函数等)方法描述。 系统的自由度数定义为描述系统运动所需要的独立坐标(广义坐标)的数目。 分类3:在实际中遇到的大多数振动系统,其质量和刚度都是连续分布的,通常需要无限多个自由度才能描述它们的振动,它们的运动微分方程是偏微分方程,这就是连续系统。在结构的质量和刚度分布很不均匀时,往往把连续结构简化为若干个集中质量、集中阻尼、集中刚度组成的离散系统,所谓离散系统,是指系统只有有限个自由度。描述离散系统的振动可用常微分方程。 分类4:按激励情况分:①自由振动:系统在初始激励下或原有的激励消失后的振动;②强迫振动:系统在持续的外界激励作用下产生的振动。 分类5:按响应情况分,确定性振动和随机振动。确定性振动分为:①简谐振动:振动的物理量为时间的正弦或余弦函数;②周期振动:振动的物理量为时间的周期函数;③瞬态振动:振动的物理量为时间的非周期函数,通常只在一段时间内存在。 机械或结构产生振动的内在原因:本身具有在振动时储存动能和势能,而且释放动能和势能并能使动能和势能相互转换的能力。 基本元件:惯性元件(储存和释放动能)、弹性元件(储存和释放势能)、阻尼元件(耗散振动能量) 基本元件的基本特征:弹性元件:忽略它的质量和阻尼,在振动过程中储存势能。弹性力与其两端的相对位移成比例,如弹簧:F s=?k?x;扭簧:T s=?k t(θ2?θ1);阻尼元件:阻尼力的大小与阻尼元件两端的相对速度曾比例,方向相反,这种阻尼又称为黏性阻尼。忽略黏性阻尼元件的质量和弹性,则作用力:F d=?c?υ;惯性元件:

有关阻尼振动的研究

阻尼振动的探究 摘要: 以弹簧振子的阻尼振动及RLC电路的阻尼振荡为例,探究了阻尼振动。同时,以这两个阻尼振动系统为例分析了阻尼振动衰减时的特点。 关键词: 阻尼振动阻尼系数衰减 R esearch on damped vibration Abstract:: Abstract This article researches into damped vibration by the example of spring oscillator’s damped vibration and the example of RLC’s damped vibration.At the same time,this article researches the points of damped vibration’s attenuation by the two examples. Keyword: damped vibration damping coefficient attenuation 简谐运动又叫做无阻尼自由振动。但实际上,任何的振动系统都是会受到阻力作用的,这种实际振动系统的振动叫做阻尼振动。在阻尼系统中,振动系统要不断地克服阻力做功,

所以它的能量将不断地减少。一定时间后回到平衡位置。弹簧振子在有阻力情况下的振动就是阻尼振动。 分析安置在一个水平光滑表面的弹簧振子。取弹簧处于自然长度时的平衡位置为坐标原点。忽略空气等阻力,则弹簧振子只受到弹簧的弹力作用。即 由牛顿第二定律,可得 此微分方程的通解为 给定初始值,弹簧在t=0时,x=,,则此微分方程的解为 弹簧振子在初始时刻,被拉离坐标原点距离,即弹簧被拉长(而后,弹簧由于弹簧拉力作用而返回原点,很容易就可以想到弹簧将作往复运动。如方程所描述弹簧作简谐振动。如果考虑弹簧振子运动时的阻力,情况将如何呢? 由实验,可知运动物体的速度不太大时,介质对物体的阻力与速度成正比。又阻力总与速度方向相反,所以阻力与速度有如下关系: 为正比例常数。则此时,上面所列弹簧振子的运动方程应为: 考虑此方程,令。可知即为弹簧振子在无阻力振动时的角频率,称为阻尼系数,如此可得: 此微分方程通解为: A,B由弹簧振子的初始值,即t=0时的x,值决定。由上通解无法直观看出弹簧振子的实际运动景象如何。下面以与的大小关系分为三种情况考虑。 时,可将通解化为如下形式: ) 其中 而由弹簧振子的初始值决定。其位移时间图像,大致如下

阻尼振动与受迫振动实验报告

阻尼振动与受迫振动实验报告 一、实验目的 (一)观察扭摆的阻尼振动,测定阻尼因数。 (二)研究在简谐外力矩作用下扭摆的受迫振动,描绘扭摆在不同阻尼的情况下的共振曲线(即幅频特性曲线)。 (三)描绘外加强迫力矩与受迫振动之间的位相随频率变化的特性曲线(即相频特性曲线)。 (四)观测不同阻尼对受迫振动的影响。 二、实验仪器 扭摆(波尔摆)一套,秒表,数据采集器,转动传感器。 三、实验任务 1、调整仪器使波耳共振仪处于工作状态。 2、测量最小阻尼时的阻尼比ζ和固有角频率ω0。 3、测量其他2种或3种阻尼状态的振幅,并求ζ、τ、Q和它们的不确定度。 4、测定受迫振动的幅频特性和相频特性曲线。 四、实验步骤 1、打开电源开关,关断电机和闪光灯开关,阻尼开关置于“0”档,光电门H、I可以手动微调,避免和摆轮或者相位差盘接触。手动调整电机偏心轮使有机玻璃转盘F上的0位标志线指示0度,亦即通过连杆E和摇杆M使摆轮处于平衡位置。然后拨动摆轮使偏离平衡位置150至200度,松开手后,检查摆轮的自由摆动情况。正常情况下,震动衰减应该很慢。 2、开关置于“摆轮”,拨动摆轮使偏离平衡位置150至200度后摆动,由大到小依次读取显示窗中的振幅值θj;周期选择置于“10”位置,按复位钮启动周期测量,停止时读取数据10 T。 d 并立即再次启动周期测量,记录每次过程中的10 T的值。 d (1)逐差法计算阻尼比ζ; (2)用阻尼比和振动周期T d计算固有角频率ω0。 3、依照上法测量阻尼(2、3、4)三种阻尼状态的振幅。求出ζ、τ、Q和它们的不确定度。 4、开启电机开关,置于“强迫力”,周期选择置于“1”,调节强迫激励周期旋钮以改变电机运动角频率ω,选择2个或3个不同阻尼比(和步骤3中一致),测定幅频和相频特性曲线,注意阻尼比较小(“0”和“1”档)时,共振点附近不要测量,以免振幅过大损伤弹簧;每次调节电机状态后,摆轮要经过多次摆动后振幅和周期才能稳定,这时再记录数据。要求每

理论力学振动试验(2015)

(1) 实验二:简谐振动幅值测量 、实验目的 1. 了解振动信号位移、速度、加速度之间的关系。 2?学会用速度传感器测量简谐振动的位移、速度、加速度幅值。 、实验装置框图 实验装置与仪器框图见图1。 图1实验装置框图 三、实验原理 在振动测量中,有时往往不需要测量振动信号的时间历程曲线,而只需要测量振动信 号的幅值。振动信号的幅值可根据位移、速度、加速度的关系,用位移传感器或速度传感 器、加速度传感器来测量。 设振动位移、速度、加速度分别为 x 、u 、a ,其幅值分别为X 、V 、A : x= Bsi A? ) ■-二矽二 Bco s (t -: ) dt d 2y a = ― - - 2 Bs i n (t _ :) dt 2 式中:B ——位移振幅 ----------- 振动角频率 : ——初相位 X=B 故: V = ? B = 2 二 fB A = 2 B =(2 二 f)2B 振动信号的幅值可根据式(4-2)中位移、速度、加速度的关系,分别用位移传感器、 度传感器或加速度传感器来测量。也可利用虚拟式信号分析仪和测振仪中的微分、积分功 能来测量。 四、实验方法 1. 激振信号源输出端接电动式激振器,用电动式激振器对简支梁激振。 2. 用速度传感器拾振,速度传感器的输出端接测振仪。 3. 开启激振信号源的电源开关,对系统施加交变的正弦激振力,使系统产生简谐振 动,调整信号源的输出调节开关便可改变振幅大小。调整信号源的输出调节开关时注意不 要过载。

4?分别用测振仪的位移X、速度V、加速度A各档进行测量和读数 五、实验结果与分析 1 ?实验数据表2- 1 2?根据位移X,按公式⑵计算速度V、加速度A。 3?根据速度V,按公式⑵计算位移X、加速度A o 4?根据加速度A,按公式(2)计算位移X、速度V o 5?位移、速度、加速度幅值的实测值与计算值有无差别?若有差别原因是什么?

阻尼振动与受迫振动实验论文

阻尼振动与受迫振动实验论文 王& (清华大学工程物理系&&&,中国,北京123456) (收稿日期:2014-05-25) 摘 要 此次实验借助波尔振动仪研究阻尼振动和受迫振动的特性,通 过改变外激励的周期来改变受迫力频率来观察不同,并绘制幅频和 相频特性曲线。 关键词 振动 阻尼 外力 振幅 相位差 引 言 振动是自然界最普遍的运动形式之一,是物理量随时间做周期 性变化的运动。阻尼振动和受迫振动在物理和工程技术中得到广泛的重视。本实 验借助波尔振动仪研究机械阻尼振动和受迫振动的特性。 一 实验目的 1.观测阻尼振动,学习测量振动系统基本参数的方法; 2.研究受迫振动的幅频特性和相频特性,观察共振现象; 3.观测不同阻尼对受迫振动的影响。 二 实验原理 1.有粘滞阻尼的阻尼振动 弹簧和摆轮组成一振动系统,设 摆轮转动惯量: J 粘滞阻尼的阻尼力矩: 角速度d θ/dt 与阻尼力矩系数γ的乘积 弹簧劲度系数为: k 弹簧的反抗力矩为: -k θ。 忽略弹簧的等效转动惯量,可得转角θ的运动方 220d d J k dt dt θθγθ++= (1) 记无阻尼时自由振动的固有角频率:ω0,其值为ω0=k/J , 定义阻尼系数: β=γ/(2J ),则上式可以化为: 2220d d k dt dt θθβθ++= (2) 小阻尼即2200βω-<时,阻尼振动运动方程的解为 ()() 220exp()cos i i t t t θθβωβφ=--+ (3)

由上式可知,阻尼振动角频率为220d ωωβ=-,阻尼振动周期为2d d T πω= 2.周期外力矩作用下受迫振动的解 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为 22cos d d J k M t dt dt θθγθω++= (4) ()()() ()220exp cos cos i i m t t t t θθβωβφθωφ=--++- (5) 这可以看作是状态(3)式的阻尼振动和频率同激励源频率的简谐振动的 叠加。 稳态解 ()()cos m t t θθωφ=- (6) 稳态解的振幅和相位差分别为 ()22222 0/4m M J θωωβω=-+ (7) 2202arctan βωφωω =- (8) 其中,φ的取值范围为(0,π),反映摆轮振动总是滞后于激励源支座的 振动。 3.电机运动时的受迫振动运动方程和解 弹簧支座的偏转角的一阶近似式可以写成 ()cos m t t ααω==r cos wt R (9) 式中αm 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧 总转角为()cos m t t θαθαω-=-。于是在固定坐标系中摆轮转角θ的运 动方程为 ()22cos 0m d d J k t dt dt θθγθαω++-= (10) 也可以写成 22cos m d d J k k t dt dt θθγθαω++= (4’) 于是得到 ()2 022 222 04m m αωθωωβω=-+ (7’) 由θm 的极大值条件0m θω??=可知,当外激励角频率220 2ωωβ=-

试验十三阻尼振动的研究

实验十三 阻尼振动的研究 实验目的 1.研究振动系统所受阻尼力和速度成正比时,其振幅随时间的衰减规律。 2.测量振动系统的半衰期和品质因数。 3.测量滑块儿的阻尼常数。 实验仪器 气垫导轨,滑块儿,光电计时装置,弹簧两组,附加物4块,天平,秒表等。 实验原理 简谐振动是一种振幅相等的振动,它是忽略阻尼振动的理想情况。事实上,阻尼力不可避免,而抵抗阻力做功的结果,使振动系统的能量逐渐减小。因此,实验中发生的一切自由振动,振幅总是逐渐减小以至等于零的。这种振动称为阻尼振动。如果物体的速度v 不大,实验结果证明,阻尼力f 和v 成正比而方向相反。设物体在x 轴上振动,则 dt dx v f αα?=?= (2-13-1) 式中α为阻尼常数。 气垫导轨上,滑块儿和弹簧组成的振动系统,在空气阻力作用下,作的是阻尼振动。若质量为m (包含档光片)的滑块儿,在弹力-kx 、阻尼力dt dx α?的作用下产生的加速 度为2 2 dt x d ,由牛顿第二定律得 dt dx kx dt x d m α??=22 (2-13-2) 式中k 为弹簧的倔强系数。令m k =2 0ω,m αβ=2, (2-13-2) 式改写成 022 02 2=++x dt dx dt x d ωβ (2-13-3) 式中β为阻尼因数;0ω为振动系统的固有的圆频率。当2 02ωβ<时,(2-13-3)式的 解为 )cos(0o f t t e A x ?ωβ+=?? (2-13-4) 公式(2-13-4)称为阻尼振动方程,其中220βωω?=f 为振动的圆频率,A 0、0?分别为振幅和初相位。由此可见,滑块儿作阻尼振动时,振幅应按指数规律衰减,衰减的快慢取决于β。阻尼振动的周期

理论力学振动试验(2015)

实验二:简谐振动幅值测量 、实验目的 1. 了解振动信号位移、速度、加速度之间的关系。 2?学会用速度传感器测量简谐振动的位移、速度、加速度幅值。 、实验装置框图 实验装置与仪器框图见图1。 图1实验装置框图 三、实验原理 在振动测量中,有时往往不需要测量振动信号的时间历程曲线,而只需要测量振动信 号的幅值。振动信号的幅值可根据位移、速度、加速度的关系,用位移传感器或速度传感 器、加速度传感器来测量。 设振动位移、速度、加速度分别为 x 、u 、a ,其幅值分别为X 、V 、A : x= Bsi A? ) ■-二矽二 Bco s (t -:) dt d 2y a = ― - - 2 Bs i n (t _ :) dt 2 式中:B ——位移振幅 ----------- 振动角频率 : ——初相位 X=B 故: V = ? B = 2 二 fB A = 2 B =(2 二 f)2B 振动信号的幅值可根据式(4-2)中位移、速度、加速度的关系,分别用位移传感器、 度传感器或加速度传感器来测量。也可利用虚拟式信号分析仪和测振仪中的微分、积分功 能来测量。 四、实验方法 1. 激振信号源输出端接电动式激振器,用电动式激振器对简支梁激振。 2. 用速度传感器拾振,速度传感器的输出端接测振仪。 3. 开启激振信号源的电源开关,对系统施加交变的正弦激振力,使系统产生简谐振 动,调整信号源的输出调节开关便可改变振幅大小。调整信号源的输出调节开关时注意不 要过载。 (1)

4?分别用测振仪的位移X、速度V、加速度A各档进行测量和读数 五、实验结果与分析 1 ?实验数据表2- 1 2?根据位移X,按公式⑵计算速度V、加速度A。 3?根据速度V,按公式⑵计算位移X、加速度A o 4?根据加速度A,按公式(2)计算位移X、速度V o 5?位移、速度、加速度幅值的实测值与计算值有无差别?若有差别原因是什么?

阻尼振动和受迫振动实验报告

清华大学实验报告 工程物理系工物40 钱心怡 75 实验日期:2015年3月3日 一.实验名称 阻尼振动和受迫振动 二.实验目的 1.观测阻尼振动,学习测量振动系统参数的基本方法 2.研究受迫振动的频幅特性和相频特性,观察共振现象 3.观察不同阻尼对振动的影响 三.实验原理 1.阻尼振动 在转动系统中,设其无阻尼时的固有角频率为ω0,并定义阻尼系数β其转动的角度与时间的关系满足如下方程 解上述方程可得当系统处于弱阻尼状态下时,即β<ω0时,θ和t满足如下关系 解得阻尼振动角频率为ωd=,阻尼振动周期为T d= 同时可知lnθ和t成线性关系,只要能通过实验数据得到二者之间线性关系的系数,就可以进一步解得阻尼系数和阻尼比。 2.周期性外力作用下的受迫振动 当存在周期性外力作用时,振动系统满足方程

θ和t满足如下关系: 该式中的第一项随着时间t的增大逐渐趋于0,因此经过足够长时间后,系统在外力作用下达到平衡,第一项等于0,在该稳定状态下,系统的θ和t满足关系: 其中;(θ∈(0,π)) 3.电机运动时的受迫振动 当波尔共振仪的长杆和连杆的长度远大于偏心轮半径时,当偏心轮电机匀速转动时,设其角速度为ω,此时弹簧的支座是弹簧受迫振动的外激励源,摆轮转角满足以下方程: 即为 与受周期性外力矩时的运动方程相同,即有

可知,当ω=ω0时φ最大为,此时系统处于共振状态。 四.主要实验仪器和实验步骤 1.实验仪器 波尔共振仪主要由振动系统和提供外激励的两个部分组成。振动系统包括弹簧和摆轮。弹簧一端固定在摇杆上。摆轮周围有一圈槽型缺口,其中有一个长缺口在平衡时对准光电门。右侧的部分通过连杆向振动装置提供外激励,其周期可进行调节。上面的有机玻璃盘随电机一起转动。当摆轮转到平衡位置时,闪光灯闪烁,照亮玻璃盘上的白色刻度线,其示数即为在外激励下摆轮转动时落后于电动机的相位。 2.实验步骤 (1)调整仪器 打开电源并断开电机和闪光灯的开关。阻尼调至0档。手动调整电机的偏心轮使其0标志线与0度刻线对齐。同时,调整连杆和摇杆使摆轮处于平衡位置。拨动摆轮使其偏离平衡位置150度至180度,松开后观察摆轮自由摆动的情况,如衰减很慢则性能优良。 (2)测量最小阻尼比ζ和固有角频率ω0 开关置于摆轮,阻尼开关置于0档,拨动摆轮至偏转约180度后松开,使之摆动。由大到小依次读取显示窗中的振幅; 将周期置于“10”位置按复位钮启动周期测量,停止时读取数据,并立即按复位钮启动周期测量,记录每次的值; (3)测量阻尼振动的振幅

减振器阻尼对汽车大冲击性能的影响分析

减振器阻尼对汽车大冲击性能的影响分析 作者:长安汽车股份有限公司董益亮彭旭阳 摘要:本文简要介绍了汽车大冲击性能分析评价指标和分析评价方法。利用ADAMS软件建立了某轿车四通道平顺性分析模型,分析了减震器阻尼在不同车速下对大冲击性能的影响,提出了优化方案。实车验证结果表明,该方法是一种有效的汽车大冲击性能分析评价方法。 关键字:冲击,乘坐舒适性,评价 1 前言 汽车在路面上行驶时,除了随机路面外,偶尔也会遇到冲击路面,如减速带、路面凸块和凹坑、铁路交叉口、路面接缝等,这类路面统称为冲击路面,其特点是冲击较大,冲击的产生间隔足够长的距离,这样在下次冲击来之前,车辆的振动已充分衰减。来自路面的剧烈冲击,通过轮胎、悬架、车身和座椅传给人体,同时会引起悬架和车身的跳动。 大冲击舒适性是用户评价汽车乘坐舒适性的重要内容,也是汽车厂家在汽车开发过程中需要控制的重要指标之一。在汽车开发的底盘调校阶段,一般通过减振器阻、弹簧和缓冲块来优化汽车的大冲击乘坐舒适性,其中减振器阻尼力的优化最为重要和复杂。 2 汽车冲击性能分析评价方法 2.1 冲击乘坐舒适性评价指标 当汽车遇到路面冲击时,会导致以下汽车振动响应: 1) 主振动(Primary Ride):车体的刚体振动响应,如俯仰和侧倾,乘员有时会感受到悬架限位块的撞击。 2) 冲击(Impact):乘员通过座椅和地板感受到的来自路面的较大冲击,以及车体上下运动速度迅速改变。 本文用地板、座椅等所关心位置的最大(绝对值)的加速度,以及车身的最大振动俯仰角和振动衰减的快慢作为大冲击振动下的客观评价指标。

2.2 大冲击仿真分析方法 目前,大冲击CAE分析方法主要有两类,一是基于平顺性轮胎模型的整车道路仿真分析方法,二是基于四通道的整车台架仿真分析方法。 第一种方法必须使用平顺性轮胎模型,常用的平顺性轮胎模型主要有ftire、swift 轮胎模型等,并配合使用冲击路面模型,冲击路面模型主要有三角形凸块路面、矩形凸块路面、锯齿形凸块路面等[1],见图1。 图1 基于平顺性轮胎模型的整车道路仿真分析 第二种方法用四通道实验台模拟路面垂向冲击激励[4],可以使用普通的操稳轮胎模型,如Pacjka 轮胎模型,见图2。 图2 基于四通道的整车台架仿真分析 第一种方法能够同时仿真分析大冲击引起的纵向和垂向振动响应,与比较接近实际情况,仿真结果较精确,但国内对平顺性轮胎模型研究较少,而且没有建立平顺性轮胎模型的试验条件,限制了其推广应用。第二种方法只能仿真路面冲击引起的垂向振动响应,与实际情况有差距,但可避开使用平顺性轮胎模型,另外,操稳轮胎模型国内研究较多,也有建立操稳轮胎模型的试验条件。 由于减振器阻尼力主要影响汽车的垂向振动响应,本文使用基于四通道的仿真分析方法。

气垫导轨上的阻尼振动的研究

气垫导轨上阻尼振动的研究 摘要:气垫导轨实验中,理论上是无摩擦的,但实际上是存在许多阻尼因素。本实验研究了振动系统的半衰期,阻尼振动的平均寿命,品质因数以及滑块的阻尼因数。 关键词:气垫导轨;阻尼因数;品质因数;半衰期;阻尼振动的平均寿命 Study on damped vibration on air track Abstract :In the air track experiment, In the theory there is no friction, but in fact there are a lot of damping factor.The experimental study of the vibration system of the half-life ,the average life expectancy of damping vibration, quality factor and damping factor of the slide block . Key words: air cushion guide; damping coefficient; quality factor; half-life ;the average life expectancy of damping vibration 前言 气垫导轨是大学实验中一种常用仪器,理论上是无摩擦的,但实际上是存在许多阻尼因素,往往不能忽视,因此我们研究以减小实验误差。 简谐振动是一种振幅相等的振动,它是忽略阻尼振动的理想情况。事实上,阻尼力不可避免,而抵抗阻力做功的结果,使振动系统的能量逐渐减小。因此,实验中发生的一切自由振动,振幅总是逐渐减小以至等于零的。这种振动称为阻尼振动。 本实验用了气垫导轨,气源,滑块儿,光电计时装置,弹簧两组,附加物4块,天平,秒表等来研究。 1主要研究内容 原理 如果物体的速度v 不大,实验结果证明,阻尼力f 和v 成正比而方向相反。设物体在x 轴上振动,则 dt dx v f α α-=-= (13-1) 式中α为阻尼常数。 气垫导轨上,滑块儿和弹簧组成的振动系统,在空气阻力作用下,作的是阻尼振动。若质量为m (包含档光片)的滑块儿,在弹力-kx 、阻尼力 dt dx α -的作用 下产生的加速度为2 2 dt x d ,由牛顿第二定律得 dt dx kx dt x d m α --=22 (13-2) 式中k 为弹簧的倔强系数。令 m k = 20 ω , m αβ= 2,(2-13-2) 式改写成

第一章4阻尼振动受迫振动

学案4阻尼振动受迫振动 [学习目标定位] 1.知道阻尼振动和无阻尼振动并能从能量的观点给予说明.2.知道受迫振动的概念.知道受迫振动的频率等于驱动力的频率,而跟振动物体的固有频率无关.3.理解共振的概念,知道常见的共振的应用和危害. 1.振幅是表示振动强弱的物理量.对同一振动系统,振幅越大,表示振动系统的能量越大. 2.简谐运动是一种理想化的振动状态,没有考虑阻力做功,即没有能量损失.弹簧振子和单摆在振动过程中动能和势能不断相互转化,机械能守恒(忽略阻力的作用). 一、阻尼振动 1.系统在振动过程中受到阻力的作用,振动逐渐消逝,振动能量逐步转变为其他能量,这种振动叫做阻尼振动. 2.系统不受外力作用,也不受任何阻力,只在自身回复力作用下的振动,称为自由振动,又叫做无阻尼振动.自由振动的频率,叫做系统的固有频率.固有频率由系统本身的特征决定. 二、受迫振动 如果用周期性的外力作用于振动系统,补偿系统的能量损耗,使系统持续等幅地振动下去,这种周期性外力叫做驱动力,系统在驱动力作用下的振动叫做受迫振动. 三、共振 驱动力的频率等于振动物体的固有频率时,受迫振动的振幅最大,这种现象叫做共振. 一、阻尼振动 [问题设计] 在研究弹簧振子和单摆振动时,我们强调忽略阻力的影响,它们做的振动都属于简谐运动.在实验室中让一个弹簧振子振动起来,经过一段时间它将停止振动,你知道是什么原因造成的吗 答案阻力阻碍了振子的运动,使机械能转化为内能. [要点提炼] 对阻尼振动的理解

图1 1.系统受到摩擦力或其他阻力作用.系统克服阻尼的作用要消耗机械能,因而振幅减小,最后停下来,阻尼振动的图像如图1所示. 2.能量变化:由于振动系统受到摩擦阻力和其他阻力作用,系统的机械能随时间减少,同时振幅也在逐渐减小.阻尼越小,能量减少越慢,振幅减小越慢;阻尼过大时,系统将不能发生振动. 3.物体做阻尼振动时,振幅虽不断减小,但振动的频率仍由自身结构特点所决定,并不会随振幅的减小而变化.例如:用力敲锣,由于锣受到空气的阻尼作用,振幅越来越小,锣声减弱,但音调不变. 二、受迫振动 [问题设计] 图2 如图2所示,当弹簧振子自由振动时,振子就会慢慢地停下来,怎样才能使振子能够持续振动下去 答案有外力作用于弹簧振子. [要点提炼] 1.受迫振动 加在振动系统上的周期性外力,叫做驱动力.系统在驱动力作用下的振动叫做受迫振动.2.受迫振动的周期和频率 物体做受迫振动时,振动稳定后的频率等于驱动力的频率,跟系统的固有频率无关(填“有关”或“无关”). 三、共振 [问题设计] 你知道部队过桥时为什么要便步走吗 答案防止共振现象发生. [要点提炼]

阻尼振动

阻尼振动是否具有“周期性”和“等时性” 简谐运动在不考虑摩擦和其他阻力等因素的影响时,振动过程中系统的机械能守恒,所以不管是单摆还是弹簧振子在振动过程中振幅始终保持不变,这种振动称为无阻尼振动。然而,实际的振动总要受到阻力的影响,由于要克服阻力做功,振动系统的机械能不断减少。同时振动系统与周围介质相互作用,振动向外传播形成波,随着波的传播,系统的机械能不断减少,因此振幅也逐渐减小。这种振幅逐渐减小的振动叫做阻尼振动,阻尼振动的图象如 图1所示。 学生学完这节内容后,存在两方面疑问:一是阻尼振动是否具有“周期性”,二是阻尼振动是否具有“等时性”(振子连续两次通过平衡位置的时间间隔相同)。这两个问题教材没有涉及,在图象中也不能反映出来,但是课后有些学生会提出,有些资料中也会出现相 关的问题。 一、定性分析 要想知道阻尼振动是否具有“周期性”,首先要知道什么是机械振动的周期。人教版高二《物理》教材(必修加选修)中对周期的定义是这样的:物体完成一次全振动所需的时间,叫做振动的周期。在周期的定义中存在全振动这个概念,全振动是指做机械振动的物体从某个点出发,等到下次回到该点时的运动状态和开始振动时的运动状态完全相同,且所用时间最短。所以能重复原来的运动状态(位移、速度、加速度等)的机械振动才是全振动,非等幅的阻尼振动不是全振动,所以它是没有周期的。 关于阻尼振动是否具有“等时性”,有两种不同的说法。第一种说法认为具有“等时性”,理由是阻尼振动的振幅虽然在不断减小,但可以看成是由很多个振幅不断减小的简谐运动的叠加,由于简谐运动具有等时性,它的周期与振幅无关,所以阻尼振动和简谐运动的相位是一致的,节奏也是相同的,所以具有“等时性”。第二种说法认为不具有“等时性”,理由是物体做阻尼振动时,由于机械能的损失。振子前后两次通过同一点时,后一次的速度肯定比前一次的小。这样,从平衡位置到达最大位移处的平均速度总比返回时的平均速度大,所以回来就变慢了,对应的时间也就长了。按这种推理,阻尼振动的振动节奏会变得越来越慢,最后停止下来,周期变为无穷大,所以不具有“等时性”。 二、定量分析 以上是对阻尼振动所做的定性分析,接下来我们做定量分析。

《阻尼振动与受迫振动》实验报告

《阻尼振动与受迫振动》实验报告

《阻尼振动与受迫振动》实验报告 工程物理系 核41 崔迎欢 2014011787 一.实验名称:阻尼振动与受迫振动 二.实验目的 1. 观测阻尼振动,学习测量振动系统基本参数的方法; 2. 研究受迫振动的幅频特性和相频特性,观察共振现象; 3. 观测不同阻尼对受迫振动的影响。 三..实验原理 1. 有粘滞阻尼的阻尼振动 弹簧和摆轮组成一振动系统,设摆轮转动惯量为J ,粘滞阻尼的阻尼力矩大小定义为角速度d θ/dt 与阻尼力矩系数γ的乘积,弹簧劲度系数为k ,弹簧的反抗力矩为-k θ。忽略弹簧的等效转动惯量,可得转角θ的运动方程为 220d d J k dt dt θθ γθ++= 记ω0为无阻尼时自由振动的固有角频率,其值为ω0=k/J ,定义阻尼系数β=γ

/(2J ),则上式可以化为: 2220d d k dt dt θθ βθ++= 小阻尼即2 2 00 β ω-<时,阻尼振动运动方程 的解为 ())2 20exp()cos i i t t t θθβωβφ=--+ (*) 由上式可知,阻尼振动角频率为 220d ωωβ=-2d d T πω= 2. 周期外力矩作用下受迫振动的解 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为 22cos d d J k M t dt dt θθ γθω++= ()()) ()2 20exp cos cos i i m t t t t θθβωβφθωφ=--++- 这可以看作是状态(*)式的阻尼振动和频率同激励源频率的简谐振动的叠加。一般t >>τ后,就有稳态解 ()()cos m t t θθωφ=- 稳态解的振幅和相位差分别为 ()2 222 2 4m θωωβω = -+ 22 02arctan βωφωω=- 其中,φ的取值范围为(0,π),反映

实验七阻尼振动与受迫振动

实验七阻尼振动与受迫振动 实验目的要求 1、研究在简谐外力矩作用下扭摆的受迫振动,描绘在不同阻尼情况下的共振曲线(即幅频特性曲线)。 2、描绘外加强迫力矩位相与受迫振动位相之差,随频率变化的曲线(即相频特性曲线)。 3、观察扭摆的阻尼振动,测定阻尼系数。 二、仪器用具 GZY一3型共振仪,停表。 1、共振仪结构如图一 摆盘B为一铜环,它与盘形螺旋弹簧T的内端相连,并可绕垂直轴摆动。在摆盘的外围装有固定铝园环D。其上刻有角度标尺。每小格为2度。摆动的角振幅A或某一时刻的角位移φ可由固定在摆盘上的指针Z在外园标尺上读出。弹簧的另一端固定在摇杆C上,由它把外力矩传到摆盘上,摇杆的另一端与连L相连,杆L的另一端与偏心轮P相连,偏心轮由交流电动机轴直接传动而产生周期性外力。变动偏心的位置就可改变外力的振幅,外力,的频率决定于电动机的转速(6—45转/分),电动机的转速可由面板上的转速粗微调旋扭进行调节。 摆盘在电磁铁的两极间摆动,改变直流励磁电流,即可改变电磁铁的磁场强度,摆盘在磁场中运动产生涡电流,从而引起电磁阻尼,摆盘所受阻尼大小可调节阻尼旋扭从电流表读数来确定(电流值不允许超过3A)。 为测量外加强迫力矩和受迫振动二者之间的位相差α,在环形标尺零点下方设置了光电触发器,当摇杆通过平衡位置(零点)由光电触发器产生一高压脉冲,使摆盘指针的尖端在环形标尺上产生一放电火花,由火花的位相及相应的振幅A,可计算出α值。 2、使用方法: 通电前第一步要进行摆盘摆幅对称性调节,可调节连杆的长度,使摇杆指针摆幅对称。 第二步转动偏心轮使摇臂指针指在刻度盘“0”位,同时摆盘指针在静止状态时也要指在刻度盘“0”位。如果摆盘指针不在“0”位,可调节扭丝弹簧松紧位置.第三步放电打火时间的调整,是通过调节光电管(左管)位置,使摇杆指针在通过“0”位置时放电打火,(注意放电灯火开关不能长时间打开,以延长继电器及光电管使用寿命)。 第四步要测出扭摆的固有频率ω0,要求由累积5个周期(5T)测得。 三、实验原理 l、扭摆的阻尼振动: 在有阻力矩的情况下,使扭摆由某一摆角开始做自由振动。此时扭摆受到两个力矩作用,一是弹性恢复力矩M弹,它与摆的扭转角φ成正比,即M弹=-Cφ(C为扭转系数);二 是阻力矩M阻,可近似认为与摆动的角速度成正比,即M阻=-r(r为阻矩系数),若扭摆的转动惯量为I,则根据转动定律可列出扭摆的运动方程: 即(1)令(β称为组尼系数,)(ω0称为固有原频率) 解(1)式即得出转盘的角位移随时间的变化关系,当阻力较小,β2(ω02时,此运动方程的

相关文档
相关文档 最新文档