文档库 最新最全的文档下载
当前位置:文档库 › MATLAB仿真信道化码和扰码,含有完整代码

MATLAB仿真信道化码和扰码,含有完整代码

MATLAB仿真信道化码和扰码,含有完整代码
MATLAB仿真信道化码和扰码,含有完整代码

重庆交通大学信息科学与工程学院综合性设计性实验报告

专业:通信工程专业11级

学号:

姓名:

实验所属课程:第三代移动通信及其演进技术

实验室(中心):软件与通信实验中心

指导教师:吴仕勋

2014年3月

一、题目

第三代移动通信的信道化码和扰码产生

二、仿真要求

要求一:建立M文件分别产生m序列、gold序列及OVSF序列。

要求二:要求仿真不同序列的自相关和互相关特性。

三、仿真方案详细设计

1、m序列

m序列又叫做伪随机序列、伪噪声(PN)码或伪随机码。

它是由多级移位寄存器或其他延迟元件通过线性反馈产生的最长的码序列,产生框图如下所示:

2、Gold序列

Gold序列是R.Gold于1967年提出来的,它由两个m序列按下述方法演变而来的:把2个码长相同的m序列移位并进行模2加,如果相加的两个m序列

是一对优选对,则相加的结果为一个Gold序列。如下图所示:

3、OVSF序列

OCSF序列又叫正交可变扩频因子,系统根据扩频因子的大小给用户分配资源,数值越大,提供的带宽越小,OVSF码互相关为零,相互完全正交。

4、自相关函数

自相关函数(Autocorrelation Function)在不同的领域,定义不完全等效。函数代码:

function [out]=autocorr(indata)

ln=length(indata);

out=zeros(1,ln);

for ii=0:ln-1

out(ii+1)=sum(indata.*shift(indata,ii))/ln;

end

5、互相关函数

互相关函数是信号分析里的概念,表示的是两个时间序列之间和同一个时间序列在任意两个不同时刻的取值之间的相关程度,即互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2的取值之间的相关程度。

四、仿真结果及结论

偏移量

m 序列的自相关性

偏移量

m 序列的互相关性

偏移量

g o l d 序列的自相关性

偏移量

g o l d 序列的互相关性

偏移量

O V S F 序列的自相关性

偏移量

O V S F 序列的互相关性

从实验结果图我们可以看出,M 序列自相关函数近似于一条直线,它的互相关特性看起来没有什么规律;Gold 序列的自相关特性与m 序列相比,要差一点,但互相关特性要比m 序列好一些;OVSF 序列的自相关特性曲线为一条幅值为1 的直线,互相关特性为一条幅值为0的直线。

五、总结与体会

通过这次实验,我知道了m 序列、Gold 序列、OVSF 序列的产生方法,知道了如何去求它们的自相关特性和互相关特性;而且通过这次实验,我也认识到了自己在MATLAB 编程这方面还比较薄弱,应该在以后的学习生活中,不断提高自己的编程能力。

六、主要仿真代码

mseq函数:

function [mout]=mseq(stg,taps,inidata)

mout=zeros(1,2^stg-1);

fpos=zeros(stg,1);

fpos(taps)=1;

for ii=1:2^stg-1

mout(1,ii)=inidata(stg);

num=mod(inidata*fpos,2);

inidata(2:stg)=inidata(1:stg-1);

inidata(1)=num;

end

goldseq函数:

function [gout]=goldseq(m1, m2, n)

if nargin<3

n=1;

end

gout=zeros(n,length(m1));

for ii=1:n

gout(ii,:)=xor(m1,m2);

m2=shift(m2,1);

end

OVSF函数:

function y=OVSF(SF)

y=zeros(SF,SF);

if SF==1

y=1;

else

y=[OVSF(SF/2) OVSF(SF/2);OVSF(SF/2) -OVSF(SF/2)]; end

shift函数:

function [outregi]=shift(inregi,shiftr)

[h, v]=size(inregi);

outregi=inregi;

shiftr=rem(shiftr,v);

if shiftr>0

outregi(:,1:shiftr)=inregi(:,v-shiftr+1:v);

outregi(:,1+shiftr:v)=inregi(:,1:v-shiftr);

elseif shiftr<0

outregi(:,1:v+shiftr)=inregi(:,1-shiftr:v);

outregi(:,v+shiftr+1:v)=inregi(:,1:-shiftr);

end

自相关函数:

function [out]=autocorr(indata)

ln=length(indata);

out=zeros(1,ln);

for ii=0:ln-1

out(ii+1)=sum(indata.*shift(indata,ii))/ln;

end

互相关函数:

function [out]=crosscorr(indata1, indata2)

ln=length(indata1);

out=zeros(1,ln);

for ii=0:ln-1

out(ii+1)=sum(indata1.*shift(indata2,ii))/ln;

end

主函数:

clear all;

clc

stage=3;

ptap1=[1 3];

ptap2=[2 3];

regi1=[1 1 1];

regi2=[1 1 1];

m_code_1=mseq(stage,ptap1,regi1);

m_code_2=mseq(stage,ptap2,regi2);

m_code1=2*m_code_1-1;

m_code2=2*m_code_2-1;

rho1=autocorr(m_code1);

R1=crosscorr(m_code1,m_code2);

x1=0:length(rho1)-1;

subplot(3,2,1);

plot(x1,rho1);xlabel('偏移量');ylabel('m序列的自相关性'); subplot(3,2,2);

plot(x1,R1);xlabel('偏移量');ylabel('m序列的互相关性');

gold_code_1=goldseq(m_code_1,m_code_2,2);

gold_code=2*gold_code_1-1;

rho2=autocorr(gold_code(1,:));

R2=crosscorr(gold_code(1,:),gold_code(2,:));

x2=0:length(rho2)-1;

subplot(3,2,3);

plot(x2,rho2);xlabel('偏移量');ylabel('gold序列的自相关性'); subplot(3,2,4);

plot(x2,R2);xlabel('偏移量');ylabel('gold序列的互相关性'); ovsf=OVSF(4);

rho3=autocorr(ovsf(1,:));

R3=crosscorr(ovsf(1,:),ovsf(2,:));

x3=0:length(rho3)-1;

subplot(3,2,5);

plot(x3,rho3);xlabel('偏移量');ylabel('OVSF序列的自相关性'); subplot(3,2,6);

plot(x3,R3);xlabel('偏移量');ylabel('OVSF序列的互相关性');

基于MATLAB的卷积码的分析与应用

基于MATLAB的卷积码的分析与应用

毕业设计(论文)任务书

基于MATLAB的卷积码的分析与应用 摘要 随着现代通信的发展,特别是在未来4G通信网络中,高速信息传输和高可靠性传输成为信息传输的两个主要方面,而可靠性尤其重要。因为信道状况的恶劣,信号不可避免会受到干扰而出错。为实现可靠性通信,主要有两种途径:一种是增加发送信号的功率,提高接收端的信号噪声比;另一种是采用编码的方法对信道差错进行控制。前者常常受条件限制,不是所有情况都能采用。因此差错控制编码得到了广泛应用。 介绍了多种信道编码方式,着重介绍了卷积码的编码方法和解码方式。介绍了MATLAB的使用方法、编程方法、语句、变量、函数、矩阵等。介绍了TD-SCDMA通信系统和该系统下的卷积码,搭建了系统通信模型。编写卷积码的编码和解码程序。用MATLAB仿真软件对TD-SCDMA系统的卷积码编解码进行仿真。对其纠正错码性能进行验证,并且对误码率进行仿真和分析。卷积码的编码解码方式有很多,重点仿真Viterbi算法。Viterbi算法就是利用卷积码编码器的格图来计算路径度量,选择从起始时刻到终止时刻的惟一幸存路径作为最大似然路径。沿着最大似然路径回溯到开始时刻,所走过的路径对应的编码输出就是最大似然译码输出序列。它是一种最大似然译码方法,当编码约束长度不大、或者误码率要求不是很高的情况下,Viterbi译码器设备比较简单,计算速度快,因而Viterbi译码器被广泛应用于各种领域。 关键词:卷积码;信道编码;TD-SCDMA;MATLAB

目录 毕业设计(论文)任务书 ............................................................................................I 摘要........................................................................................................................... II Abstract......................................................................................... 错误!未定义书签。第1章绪论 . (1) 1.1课题研究的背景和来源 (1) 1.2主要内容 (2) 第2章相关理论介绍 (3) 2.1信道编码 (3) 2.1.1 信道编码的分类 (3) 2.1.2 编码效率 (3) 2.2线性分组码 (3) 2.3循环码 (5) 2.4卷积码 (6) 2.4.1 卷积码简介 (7) 2.4.2 卷积码的编码 (7) 2.4.3 卷积码的解码 (13) 第3章MATLAB应用 (21) 3.1数和算术的表示方法 (21) 3.2向量与矩阵运算 (21) 3.2.1 通过语句和函数产生 (21) 3.2.2 矩阵操作 (22) 3.3矩阵的基本运算 (22) 3.3.1 矩阵乘法 (22) 3.3.2 矩阵除法 (23) 3.4MATLAB编程 (23) 3.4.1 关系运算 (23) 3.4.2 控制流 (25) 第4章卷积码的设计与仿真 (27) 4.1TD-SCDMA系统 (27) 4.1.1 系统简介 (27) 4.1.2 仿真通信系统模型 (27)

眼图

眼图 一、实验目的 1、了解码间串扰对误码率的影响 2、掌握眼图在衡量基带传输系统性能方面的应用 二、实验内容 用SystemView 模拟示波器观察眼图分析码间串扰和噪声对系统性能的影响 三、实验原理 在实际系统中完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律还不能进行准确计算,为了衡量基带传输系统的性能优劣,在实验室中通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响这就是眼图分析法。 如果将输入波形输入示波器的Y 轴,并且当示波器的水平扫描周期和码元定时同步时,在示波器上显示的图形很象人的眼睛因此被称为眼图。 眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻位于两峰值,中间的水平线是判决门限电平。在无码间串扰和噪声的理想情况下,波形无失真,“眼”开启得最大。当有码间串扰时,波形失真,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了。因此“眼”张开的大小表示了失真的程度。 眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外,也可以用此图形对接收滤波器的特性加以调整以减小码间串扰和改善系统的传输性能。 通常眼图可以用如图3 2 所示的图形来描述:

由此图可以看出 (1) 最佳抽样时刻应选在眼睛张开最大的时刻 (2) 眼图斜边的斜率表示系统对定时抖动或误差的灵敏度,斜边越陡系统对定时抖动越敏感 (3)眼图左右角阴影部分的水平宽度表示信号零点的变化范围称为零点失真量,许多接收设备中定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要 (4) 在抽样时刻阴影区的垂直宽度表示最大信号失真量 (5) 在抽样时刻,上下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决 (6) 横轴对应判决门限电平 四、SystemView 仿真框图 仿真图如下图所示: 参数设置 系统时钟No. of Sample: 501; Sample Rate: 1000Hz; No.of System Loop: 1 器件参数 矩形脉冲0 1V; 100Hz; Offset 0; 0deg

matlab,isrgb函数源代码

function y = isrgb(x) %ISRGB Return true for RGB image. % FLAG = ISRGB(A) returns 1 if A is an RGB truecolor image and % 0 otherwise. % % ISRGB uses these criteria to determine if A is an RGB image: % % - If A is of class double, all values must be in the range % [0,1], and A must be M-by-N-by-3. % % - If A is of class uint8 or uint16, A must be M-by-N-by-3. % % Note that a four-dimensional array that contains multiple RGB % images returns 0, not 1. % % Class Support % ------------- % A can be of class uint8, uint16, or double. If A is of % class logical it is considered not to be RGB. % % See also ISBW, ISGRAY, ISIND. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 1.15.4.2 $ $Date: 2003/08/23 05:52:55 $ wid = sprintf('Images:%s:obsoleteFunction',mfilename); str1= sprintf('%s is obsolete and may be removed in the future.',mfilename); str2 = 'See product release notes for more information.'; warning(wid,'%s\n%s',str1,str2); y = size(x,3)==3; if y if isa(x, 'logical') y = false; elseif isa(x, 'double') % At first just test a small chunk to get a possible quick negative m = size(x,1); n = size(x,2); chunk = x(1:min(m,10),1:min(n,10),:); y = (min(chunk(:))>=0 && max(chunk(:))<=1); % If the chunk is an RGB image, test the whole image

基于MATLAB的LDPC信道编码的研究及实现

本科毕业设计任务书 题目:基于MATLAB的LDPC信道编码的研究及实现

一、毕业设计内容及要求 1、课题说明: 随着无线通信技术的发展和各种传输方式对可靠性要求的不断提高,信道编码作为抗干扰技术的重要手段之一,在数字通信技术领域和数字传输领域显示出越来越重要的作用。近年来,基于中继的协作通信技术通过有效利用空间分集,显著改善通信系统的性能。协作通信技术还可以利用纠错码以进一步提高系统性能。Turbo码和LDPC码作为一种能够逼近香农限的优异差错编码技术,在现代通信中起着举足轻重的作用。LDPC码的种种优点使其成为下一代移动通信(4G)的强有力竞争者,因此LDPC码已经成为信道编码领域的研究热点之一。 本选题的基本任务:在了解LDPC码字的重要作用的基础之上,通过对LDPC码的编译码算法的深入研究,利用MATLAB对LDPC码进行模拟仿真,建立仿真分析模型,分析编码过程中码长、列重、围长等参数的影响,译码时采用不同的译码算法并做出比较。 2、毕业设计的主要内容: (1)了解信道编码在通信系统中的重要作用; (2)掌握LDPC信道编码工作的基本原理; (3)熟悉并掌握LDPC码的编译码算法; (4)利用MATLAB建立LDPC信道编码的仿真模型; (5)对系统进行优化并比较分析码长、列重等参数的影响; (6)比较分析不同的译码算法的影响。 3、毕业设计的基本要求: (1)了解课题的相关知识; (2)调研,比较国内外相关方面的课题; (3)设计方案要进行技术分析,以选择较为合理的方案; (4)实验要求有实验方法和实验数据以及数据分析; (5)设计说明书应包括与有关的叙述说明和计算,内容完整、计算正确; (6)书写工整。计算公式和引用数据要正确,并说明其来源; (7)设计说明书应包括中英文摘要、目录、前言、正文、小结、参考文献; (8)设计说明书图纸应能较好地表达意图,图面布局合理,符合国家制图标准和有关规范。 4、毕业设计工作量: (1)写开题报告,要求不少于2000字;

眼图形成理论研究

1眼图概述 1.1 串行数据的传输 由于通讯技术发展的需要,特别是以太网技术的爆炸式应用和发展,使得电子系统从传统的并行总线转为串行总线。串行信号种类繁多,如PCI Express、SPI、USB等,其传输信号类型时刻在增加。为何串行总线目前应用越来越广泛呢?相比并行数据传输,串行数据传输的整体特点如下: 1 信号线的数量减少,成本降低 2 消除了并行数据之间传输的延迟问题 3 时钟是嵌入到数据中的,数据和时钟之间的传输延迟也同样消除了 4 传输线的PCB设计也更容易些 5 信号完整性测试也更容易 实际中,描述串行数据的常用单位是波特率和UI,串行数据传输示例如下: 图串行数据传输示例 例如,比特率为3.125Gb/s的信号表示为每秒传送的数据比特位是3.125G比特,对应的一个单位间隔即为1UI。1UI表示一个比特位的宽度,它是波特率的倒数,即1UI=1/(3.125Gb/s)=320ps。现在比较常见的串行信号码形是NRZ码,因此在一般的情况下对于串行数据信号,我们的工作均是针对NRZ码进行的。 1.2 眼图的形成原理 眼图,是由于示波器的余辉作用,将扫描所得的每一个码元波形重叠在一起,从而形成眼图。眼图中包含了丰富的信息,从眼图上可以观察出码间串扰和噪声的影响,体现了数字信号整体的特征,从而可以估计系统优劣程度,因而眼图分析是高速互连系统信号完整性分析的核心。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰,

改善系统的传输性能。 目前,一般均可以用示波器观测到信号的眼图,其具体的操作方法为:将示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形就称为眼图。示波器一般测量的信号是一些位或某一段时间的波形,更多的反映的是细节信息,而眼图则反映的是链路上传输的所有数字信号的整体特征,两者对比如下图所示: 图示波器中的信号与眼图 如果示波器的整个显示屏幕宽度为100ns,则表示在示波器的有效频宽、取样率及记忆体配合下,得到了100ns下的波形资料。但是,对于一个系统而言,分析这么短的时间内的信号并不具有代表性,例如信号在每一百万位元会出现一次突波(Spike),但在这100ns 时间内,突波出现的机率很小,因此会错过某些重要的信息。如果要衡量整个系统的性能,这么短的时间内测量得到的数据显然是不够的。设想,如果可以以重复叠加的方式,将新的信号不断的加入显示屏幕中,但却仍然记录着前次的波形,只要累积时间够久,就可以形成眼图,从而可以了解到整个系统的性能,如串扰、噪声以及其他的一些参数,为整个系统性能的改善提供依据。 分析实际眼图,再结合理论,一个完整的眼图应该包含从“000”到“111”的所有状态组,且每一个状态组发生的次数要尽量一致,否则有些信息将无法呈现在屏幕上,八种状态形成的眼图如下所示:

matlab代码大全

MATLAB主要命令汇总 MATLAB函数参考 附录1.1 管理用命令 函数名功能描述函数名功能描述 addpath 增加一条搜索路径 rmpath 删除一条搜索路径 demo 运行Matlab演示程序 type 列出.M文件 doc 装入超文本文档 version 显示Matlab的版本号 help 启动联机帮助 what 列出当前目录下的有关文件 lasterr 显示最后一条信息 whatsnew 显示Matlab的新特性 lookfor 搜索关键词的帮助 which 造出函数与文件所在的目录 path 设置或查询Matlab路径 附录1.2管理变量与工作空间用命令 函数名功能描述函数名功能描述 clear 删除内存中的变量与函数 pack 整理工作空间内存 disp 显示矩阵与文本 save 将工作空间中的变量存盘 length 查询向量的维数 size 查询矩阵的维数 load 从文件中装入数据 who,whos 列出工作空间中的变量名 附录1.3文件与操作系统处理命令 函数名功能描述函数名功能描述 cd 改变当前工作目录 edit 编辑.M文件 delete 删除文件 matlabroot 获得Matlab的安装根目录 diary 将Matlab运行命令存盘 tempdir 获得系统的缓存目录 dir 列出当前目录的内容 tempname 获得一个缓存(temp)文件 ! 执行操作系统命令 附录1.4窗口控制命令 函数名功能描述函数名功能描述 echo 显示文件中的Matlab中的命令 more 控制命令窗口的输出页面format 设置输出格式 附录1.5启动与退出命令 函数名功能描述函数名功能描述 matlabrc 启动主程序 quit 退出Matlab环境 startup Matlab自启动程序 附录2 运算符号与特殊字符附录 2.1运算符号与特殊字符 函数名功能描述函数名功能描述

数字通信系统matlab仿真

课程设计报告 题目:基于MATLAB的通信系统仿真 ———信道编码对通信系统性能的影响 专业:通信工程 姓名:XXX 学号:0730xxxx

基于MATLAB 的通信系统仿真 ———信道编码对通信系统性能的影响 摘要:简述信道编码理论,详细说明分组码的编译原理、实现方法及检错纠错能力,用MATLAB 仿真有无信道编码条件下对通信系统性能的影响及信道编码在不同信道下对通信系统性能的影响,如AWGN 信道和深衰落信道。 关键词:信道编码、分组码、MATLAB 仿真、性能 一、引言 提高信息传输的有效性和可靠性始终是通信技术所追求的目标,而信道编码能够显著的提升信息传输的可靠性。1948年,信息论的奠基人C.E.Shannon 在他的开创性论文“通信的数学理论”中,提出了著名的有噪信道编码定理.他指出:对任何信道,只要信息传输速率R 不大于信道容量C, 就一定存在这样的编码方法:在采用最大似然译码时,其误码率可以任意小.该定理在理论上给出了对给定信道通过编码所能达到的编码增益的上限,并指出了为达到理论极限应采用的译码方法.在信道编码定理中,香农提出了实现最佳编码的三个基本条件 :(1 )采用随机编译码方式 ; (2 )编码长度L→∞ , 即分组的码组长度无限 ; (3)译码采用最佳的最大似然译码算法。【1】 二、信道编码理论 1、信道编码的目的 在数字通信系统中由于信道内存在加性噪声及信道传输特性不理想等容易造成码间串扰同时多用户干扰、多径传播和功率限制等也导致错误译码。为了确保系统的误比特率指标通常采用信道编码。信道编码是为了保证信息传输的可靠性、提高传输质量而设计的一种编码。它是在信息码中增加一定数量的多余码元,使码字具有一定的抗干扰能力。 2、信道编码的实质 信道编码的实质就是在信息码中增加一定数量的多余码元(称为监督码元),使它们满足一定的约束关系,这样由信息码元和监督码元共同组成一个由信道传输的码字。举例而言,欲传输k 位信息,经过编码得到长为n(n>k)的码字,则增加了 n - k = r 位多余码元,我们定义 R = k / n 为编码效率。【2】 3、 信道编码公式 令信息速率为f b ,经过编码以后的速率为f t ,定义:R =f b /f t 为编码率。则对于任何一个信道,总存在一个截止速率R 0,只要R

实训单用SIMULINK观察眼图

用SIMULINK观察眼图项目单 班级:组员: 相关知识: 眼图是指利用实验的方法估计和改善(通过调整)传输系统性能时在示波器上观察到的一种图形。观察眼图的方法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形像人的眼睛,故称为“眼图”。眼图如下所示: 眼图的“眼睛” 张开的大小反映着码间串扰的强弱。“眼睛”张的越大,且眼图越端正,表示码间串扰越小;反之表示码间串扰越大。 当存在噪声时,噪声将叠加在信号上,观察到的眼图的线迹会变得模糊不清。若同时存在码间串扰,“眼睛”将张开得更小。与无码间串扰时的眼图相比,原来清晰端正的细线迹,变成了比较模糊的带状线,而且不很端正。噪声越大,线迹越宽,越模糊;码间串扰越大,眼图越不端正。 眼图对于展示数字信号传输系统的性能提供了很多有用的信息:可以从中看出码间串扰的大小和噪声的强弱,有助于直观地了解码间串扰和噪声的影响,评价一个基带系统的性能优劣;可以指示接收滤波器的调整,以减小码间串扰。 ( 1 )最佳抽样时刻应在“眼睛” 张开最大的时刻。 ( 2 )对定时误差的灵敏度可由眼图斜边的斜率决定。斜率越大,对定时误差就越灵敏。 ( 3 )在抽样时刻上,眼图上下两分支阴影区的垂直高度,表示最大信号畸变。 ( 4 )眼图中央的横轴位置应对应判决门限电平。 ( 5 )在抽样时刻上,上下两分支离门限最近的一根线迹至门限的距离表示各相应电平的噪声容限,噪声瞬时值超过它就可能发生错误判决。 ( 6 )对于利用信号过零点取平均来得到定时信息的接收系统,眼图倾斜分支与横轴相交的区域的大小,表示零点位置的变动范围,这个变动范围的大小对提取定时信息有重要的影响。 任务三:搭建下面的模型:

几种常见窗函数及其MATLAB程序实现

几种常见窗函数及其MATLAB程序实现 2013-12-16 13:58 2296人阅读评论(0) 收藏举报 分类: Matlab(15) 数字信号处理中通常是取其有限的时间片段进行分析,而不是对无限长的信号进行测量和运算。具体做法是从信号中截取一个时间片段,然后对信号进行傅里叶变换、相关分析等数学处理。信号的截断产生了能量泄漏,而用FFT算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的。在FFT分析中为了减少或消除频谱能量泄漏及栅栏效应,可采用不同的截取函数对信号进行截短,截短函数称为窗函数,简称为窗。 泄漏与窗函数频谱的两侧旁瓣有关,对于窗函数的选用总的原则是,要从保持最大信息和消除旁瓣的综合效果出发来考虑问题,尽可能使窗函数频谱中的主瓣宽度应尽量窄,以获得较陡的过渡带;旁瓣衰减应尽量大,以提高阻带的衰减,但通常都不能同时满足这两个要求。 频谱中的如果两侧瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱。不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。信号的加窗处理,重要的问题是在于根据信号的性质和研究目的来选用窗函数。图1是几种常用的窗函数的时域和频域波形,其中矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低,如果仅要求精确读出主瓣频率,而不考虑幅值精度,则可选用矩形窗,例如测量物体的自振频率等;布莱克曼窗主瓣宽,旁瓣小,频率识别精度最低,但幅值识别精度最高;如果分析窄带信号,且有较强的干扰噪声,则应选用旁瓣幅度小的窗函数,如汉宁窗、三角窗等;对于随时间按指数衰减的函数,可采用指数窗来提高信噪比。表1 是几种常用的窗函数的比较。 如果被测信号是随机或者未知的,或者是一般使用者对窗函数不大了解,要求也不是特别高时,可以选择汉宁窗,因为它的泄漏、波动都较小,并且选择性也较高。但在用于校准时选用平顶窗较好,因为它的通带波动非常小,幅度误差也较小。

基于matlab的turbo码编码的结题报告 彭锦程

基于matlab的turbo码编码的结题报告 姓名:彭锦程 学号:10021230 同组人:李世斌 学号:10021229 指导老师:徐小平

一:引言 自从香农的信道编码定理提出之后,人们对设计出好的信道码的探索与研究就从未间断。1993 年,在国际通信会议上法国学者C Berrou 等人首次提出了Turbo 码。在加性高斯白噪声的环境下,采用编码效率R=1/2、交织长度为65536 的Turbo 码,经过18 次迭代译码后,在Eb/N0=0.7dB 时,其误码率已低于10-5,与香农极限只相差0.7dB。Turbo 码以其优异的性能引起各国研究学者的强烈关注,成为研究的热点课题。在第3 代移动通信系统的建议中,无论是UMTS(WCDMA)还是IS2000(CDMA2000),都已将Turbo 码作为高速率、高质量数据传输中信道编码方案的标准。虽然至今Turbo 码在数学上的机理还没有定论,但是,Turbo 码的优越性能及其迭代译码算法的思想,很大程度上已经被人们所理解。 Shannon 编码定理指出:如果采用足够长的随机编码,就能逼近Shannon 信道容量。而Turbo 码以其接近Shannon 理论极限的译码性能,已被采纳为3G移动通信系统的信道编码标准之一。Turbo 码巧妙地将两个简单分量码通过伪随机交织器并行级联来构造具有伪随机特性的长码,并通过在两个软输入/ 软输出(SISO) 译码器之间进行多次迭代实现了伪随机译码。采用迭代译码的方法来提高通信系统的译码性能是Turbo 码的最大特点。 Turbo 码的编码器、译码器结构繁琐,是一种非常复杂的信道编码方案,这使得对Turbo 码的理论分析十分困难,且只能对运算复杂度作宏观分析,对Turbo码的具体实现并没有一个清楚的度量。因此,使用计算机对Turbo 码进行仿真分析是十分必要的。考虑到Turbo 码系统编译码的数据处理量很大,利用生成矩阵对信息序列进行编码、译码时的迭代计算等等,都涉及了矩阵运算,故采用Matlab/ Simulink 来进行建模仿真,同时分析了迭代次数、交织长度及不同译码算法对Turbo 码性能的影响。 二:Turbo 码的编码器和译码器原理 Turbo 码编码器组成 Turbo 码的编码器的基本结构如图1 所示。 图1 Turbo 码的编码器结构图 Turbo 码编码器主要由两个递归系统卷积编码器(RSC) 、一个交织器与一个删余和复用单元组成。递归系统卷积编码器是指带有反馈的系统卷积编码器,其码率可设为R = k/ n ;交织器用来改变信息序列的排列顺序,获得与原始信息序列内容相同,但排列不同的信息序列;删余和复用单元的作用是从总体上改善Turbo码码率,因此通过删余和复用单元, Turbo 码可以获得不同码率的码字。编码器的码字通过信道输出到译码器内。 Turbo 码译码器原理

眼图分析

清风醉明月 slp_art 随笔- 42 文章- 1 评论- 20 博客园首页新随笔联系管理订阅 眼图——概念与测量(摘记) 中文名称: 眼图 英文名称: eye diagram;eye pattern 定义: 示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。 一.概述 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出:

(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。 (3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 (4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。 (5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。 (6)横轴对应判决门限电平。” 二、眼图的一些基本概念 —“什么是眼图?” “眼图就是象眼睛一样形状的图形。 图五眼图定义” 眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。眼图上通常显示的是1.25UI的时间窗口。眼睛的形状各种各样,眼图的形状也各种各样。通过眼图的形状特点可以快速地判断信号的质量。 图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。 图六“双眼皮”眼图

基于matlab的2-3卷积码编码译码设计与仿真

西南科技大学 方向设计报告 课程名称:通信工程方向设计 设计名称:2/3卷积码编译码器仿真与性能分析 姓名: 学号: 班级: 指导教师: 起止日期:2011.12.12-2012.1.6 西南科技大学信息工程学院制

方向设计任务书 学生班级:学生姓名:学号: 设计名称:2/3卷积码编译码器仿真与性能分析 起止日期:2011.12.12-2012.1.6指导教师: 设计要求: (1)分析2/3卷积码编码器结构; (2)分析2/3卷积码译码的Viterbi算法; (3)基于SIMULINK进行2/3卷积码的纠错性能仿真; 方向设计学生日志 时间设计内容 12.15-12.17 查看题目及设计要求。 12.18-12.23 查阅相关资料,设计方案。 12.23-12.27 编写报告及调试程序。 12.28-12.29 完善修改课程设计报告。 12.30-12.31 答辩。

方向设计考勤表 周星期一星期二星期三星期四星期五 方向设计评语表 指导教师评语: 成绩:指导教师: 年月日

2/3卷积码编译码器仿真与性能分析 摘要: 卷积码是一种性能优越的信道编码。它的编码器和译码器都比较容易实现,同时它具有较强的纠错能力。随着纠错编码理论研究的不断深入,卷积码的实际应用越来越广泛。本文简明地介绍了卷积码的编码原理和Viterbi译码原理。并在SIMULINK模块设计中,完成了对卷积码的编码和译码以及误比特统计整个过程的模块仿真。最后,通过在仿真过程中分别改变卷积码的重要参数来加深理解卷积码的这些参数对卷积码的误码性能的影响。经过仿真和实测,并对测试结果作了分析。 关键词: 卷积码编码器、viterbi译码器、SIMULINK

眼图测量

眼图——概念与测量(摘记) 中文名称: 眼图 英文名称: eyediagram;eye pattern 定义: 示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。 一.概述 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出: (1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 (4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。 (5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。 (6)横轴对应判决门限电平。” 二、眼图的一些基本概念 —“什么是眼图?” “眼图就是象眼睛一样形状的图形。 图五眼图定义” 眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。眼图上通常显示的是1.25UI的时间窗口。眼睛的形状各种各样,眼图的形状也各种各样。通过眼图的形状特点可以快速地判断信号的质量。 图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。 图六“双眼皮”眼图 图七的眼图“眼睛里布满血丝”,这表明信号质量太差,可能是测试方法有错误,也可能是PCB布线有明显错误。

基于matlab的通信系统仿真要点

创新实践报告 报告题目:基于matlab的通信系统仿真学院名称:信息工程学院 姓名: 班级学号: 指导老师: 二O一四年十月十五日

一、引言 现代社会发展要求通信系统功能越来越强,性能越来越高,构成越来越复杂;另一方面,要求通信系统技术研究和产品开发缩短周期,降低成本,提高水平。这样尖锐对立的两个方面的要求,只有通过使用强大的计算机辅助分析设计技术和工具才能实现。在这种迫切的需求之下,MATLAB应运而生。它使得通信系统仿真的设计和分析过程变得相对直观和便捷,由此也使得通信系统仿真技术得到了更快的发展。通信系统仿真贯穿着通信系统工程设计的全过程,对通信系统的发展起着举足轻重的作用。通信系统仿真具有广泛的适应性和极好的灵活性,有助于我们更好地研究通信系统性能。通信系统仿真的基本步骤如下图所示:

二、仿真分析与测试 (1)随机信号的生成 利用Matlab 中自带的函数randsrc 来产生0、1等概分布的随机信号。源代码如下所示: global N N=300; global p p=0.5; source=randsrc(1,N,[1,0;p,1-p]); (2)信道编译码 1、卷积码的原理 卷积码(convolutional code)是由伊利亚斯(p.Elias)发明的一种非分组码。在前向纠错系统中,卷积码在实际应用中的性能优于分组码,并且运算较简单。 卷积码在编码时将k 比特的信息段编成n 个比特的码组,监督码元不仅和当前的k 比特信息段有关,而且还同前面m=(N-1)个信息段有关。 通常将N 称为编码约束长度,将nN 称为编码约束长度。一般来说,卷积码中k 和n 的值是比较小的整数。将卷积码记作(n,k,N)。卷积码的编码流程如下所示。 可以看出:输出的数据位V1,V2和寄存器D0,D1,D2,D3之间的关系。根据模2 D0D2D1D3 + + M V1 V2 OUT 02 1V D D =⊕0123 2V D D D D =⊕⊕⊕

眼图

眼图 科技名词定义 中文名称:眼图 英文名称:eye diagram;eye pattern 定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。 应用学科:通信科技(一级学科);通信原理与基本技术(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 目录 概念 成因 码间串扰 概念 眼图是指利用实验的方法估计和改善(通过调整)传输系统性能时在示波器上观察到的一种图形。观察眼图的方法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形像人的眼睛,故称为“眼图”。从“眼图”上可以观察出码间串扰和噪声的影响,从而估计系统优劣程度。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。 成因 眼图的成因:由于示波器的余辉作用,扫描所得的每一个码元波形将重叠在一起,从而形成眼图。 码间串扰

眼图的“眼睛”张开的大小反映着码间串扰的强弱。“眼睛”张的越大,且眼图越端正,表示码间串扰越小;反之表示码间串扰越大。当存在噪声时,噪声将叠加在信号上,观察到的眼图的线迹会变得模糊不清。若同时存在码间串扰,“眼睛”将张开得更小。与无码间串扰时的眼图相比,原来清晰端正的细线迹,变成了比较模糊的带状线,而且不很端正。噪声越大,线迹越宽,越模糊;码间串扰越大,眼图越不端正。眼图对于展示数字信号传输系统的性能提供了很多有用的信息:可以从中看出码间串扰的大小和噪声的强弱,有助于直观地了解码间串扰和噪声的影响,评价一个基带系统的性能优劣;可以指示接收滤波器的调整,以减小码间串扰。( 1 )最佳抽样时刻应在“眼睛”张开最大的时刻。( 2 )对定时误差的灵敏度可由眼图斜边的斜率决定。斜率越大,对定时误差就越灵敏。( 3 )在抽样时刻上,眼图上下两分支阴影区的垂直高度,表示最大信号畸变。( 4 )眼图中央的横轴位置应对应判决门限电平。( 5 )在抽样时刻上,上下两分支离门限最近的一根线迹至门限的距离表示各相应电平的噪声容限,噪声瞬时值超过它就可能发生错误判决。( 6 )对于利用信号过零点取平均来得到定时信息的接收系统,眼图倾斜分支与横轴相交的区域的大小,表示零点位置的变动范围,这个变动范围的大小对提取定时信息有重要的影响。

基于MATLAB的调制解调与信道编译码仿真

基于MATLAB 的调制解调与信道编译码仿真 摘要:随着信息时代的步伐,通信技术得到了全面的发展,信息技术已成为了21世纪最强大的国际化动力。在通信技术中,信息的调制、解调和误码纠错都占有重要的地位。MATLAB 作为一款功能强大的数学工具软件,在通信领域中得到了很广泛的应用。本文基于MATLAB 对信号进行模拟仿真设计,实现对二进制相移键控、循环码的纠错仿真、BPSK 的调制解调等进行仿真设计。 关键字:MATLAB 、调制解调、2PSK 、BPSK 、重复码。 一 、二进制和四进制相移键控调制仿真设计 1.1 二进制相移键控(2PSK )原理 相移键控是利用载波的相位变化来传递数字信息的,而振幅和频率保持不变。在2PSK 中常用0和π分别表示二进制“0”和“1”,2PSK 的信号时域表达式为: 2t )e c p s k n w t ?+()=Acos( n ?表示为第n 个符号的绝对相位,因此上式可改写为: 2Acosw t -Acosw t 1-P P e {psk c c t ()=概为概率为率 由于表示信号的两种码形完全相同,极性相反,故2PSK 信号一般表示一个双极性全占空矩形脉冲序列与一个正弦载波相乘。 2p ()sk e t =s(t)cosw c t 其中: s(t)=∑n a g(t-nTs); 这里,g(t)为脉宽Ts 的单个矩形脉冲;n a 的统计特征为 n a = 概率为 概率为 即发送二进制“0”时(a 1n =+),2p ()sk t e 取0相位;发送二进制符号“1”时(a 1n =+),2p ()s k t e 取π相位。这种以载波的不同相位直接法去表示相应二进制数字信号的调

眼图

眼图 在实际系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,在示波器上显示的图形很象人的眼睛,因此被称为眼图。二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”,当传输N元码时,会显示两N-1只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。在无码间串扰和噪声的理想情况下,在无码间串扰在无码间串扰和噪声的理想情况下,波形无失真,“眼”开启得最大。 图1 眼图的一般描述

在无码间串扰和噪声的理想情况下,波形无失真,“眼”开启得最大。当有码间串扰时,波形失真,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用图1所示的图形来描述。 由图1可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜边越陡,系统对定时抖动越敏感。(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(6)横轴对应判决门限电平。 为了研究噪声和信道带宽引起的信号失真与眼图关系,我们可以用如图2所示的SystemView仿真电路来观察。

完整的遗传算法函数Matlab程序

完整的遗传算法函数Matlab程序 function [x,endPop,bPop,traceInfo] = ga(bounds,eevalFN,eevalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps) n=nargin; if n<2 | n==6 | n==10 | n==12 disp('Insufficient arguements') end if n<3 %Default eevalation opts. eevalOps=[]; end if n<5 opts = [1e-6 1 0]; end if isempty(opts) opts = [1e-6 1 0]; end if any(eevalFN<48) %Not using a .m file if opts(2)==1 %Float ga e1str=['x=c1; c1(xZomeLength)=', eevalFN ';']; e2str=['x=c2; c2(xZomeLength)=', eevalFN ';']; else %Binary ga e1str=['x=b2f(endPop(j,:),bounds,bits); endPop(j,xZomeLength)=',... eevalFN ';']; end else %Are using a .m file if opts(2)==1 %Float ga e1str=['[c1 c1(xZomeLength)]=' eevalFN '(c1,[gen eevalOps]);']; e2str=['[c2 c2(xZomeLength)]=' eevalFN '(c2,[gen eevalOps]);']; else %Binary ga e1str=['x=b2f(endPop(j,:),bounds,bits);[x v]=' eevalFN ... '(x,[gen eevalOps]); endPop(j,:)=[f2b(x,bounds,bits) v];']; end end if n<6 %Default termination information termOps=[100];

基于MATLAB的信道编码分析

题目:基于MATLAB的通信系统仿真 ———信道编码对通信系统性能的影响 专业:通信工程 姓名:崔校通 学号:201300484316 日期: 2016.12.22

目录 一、引言 (2) 二、信道编码理论 (2) 2.1、信道编码的目的 (2) 2.2、信道编码的实质 (3) 2.3、信道编码公式 (3) 三、线性分组码的编译码原理 (3) 3.1、线性分组码的基本概念 (3) 3.2、生成矩阵和校验矩阵 (4) 四、MATLAB仿真 (5) 4.1仿真 (5) 4.1.1原理说明 (5) 4.1.2各子函数说明 (5) 4.2仿真源程序 (5) 4.2.1信道编码 (5) 4.2.2信道解码 (6) 4.2.3交织 (6) 4.2.4解交织 (7) 4.2.5信道衰落 (7) 六程序及仿真图 (8) 1、file1:信道编码对通信系统性能的影响,有无信道编码的影响 (8) 2、file2:在周期性深衰落的信道条件下,交织对通信系统性能的影响 (10) 3、file3:在交织条件下,不同时长的周期性深衰落对系统性能影响的比较 (13)

基于MATLAB的通信系统仿真 ———信道编码对通信系统性能的影响摘要:简述信道编码理论,详细说明分组码的编译原理、实现方法及检错纠错能力,用MATLAB仿真有无信道编码条件下对通信系统性能的影响及信道编码在不同信道下对通信系统性能的影响,如AWGN信道和深衰落信道。 关键词:信道编码、分组码、MATLAB仿真、性能 一、引言 提高信息传输的有效性和可靠性始终是通信技术所追求的目标,而信道编码能够显著的提升信息传输的可靠性。1948年,信息论的奠基人C.E.Shannon在他的开创性论文“通信的数学理论”中,提出了著名的有噪信道编码定理.他指出:对任何信道,只要信息传输速率R不大于信道容量C, 就一定存在这样的编码方法:在采用最大似然译码时,其误码率可以任意小.该定理在理论上给出了对给定信道通过编码所能达到的编码增益的上限,并指出了为达到理论极限应采用的译码方法.在信道编码定理中,香农提出了实现最佳编码的三个基本条件:(1 )采用随机编译码方式; (2 )编码长度L→∞ , 即分组的码组长度无限; (3)译码采用最佳的最大似然译码算法。 二、信道编码理论 2.1、信道编码的目的 在数字通信系统中由于信道内存在加性噪声及信道传输特性不理想等容易造成码间串扰同时多用户干扰、多径传播和功率限制等也导致错误译码。为了确保系统的误比特率指标通常采用信道编码。信道编码是为了保证信息传输的可靠性、提高传输质量而设计的一种编码。它是在信息码中增加一定数量的多余码元,使码字具有一定的抗干扰能力。

相关文档
相关文档 最新文档