文档库 最新最全的文档下载
当前位置:文档库 › 双电层理论在选矿中的应用

双电层理论在选矿中的应用

双电层理论在选矿中的应用
双电层理论在选矿中的应用

电化学原理及其应用(习题及答案)

第六章电化学原理及其应用 一、选择题 1.下列电极反应中,溶液中的pH值升高,其氧化态的氧化性减小的是(C) A. Br2+2e = 2Br- B. Cl2+2e=2Cl— C. MnO4—+5e+8H+=2Mn2++4H2O D. Zn2++2e=Zn 2.已知H2O2在酸性介质中的电势图为O2 0.67V H2O2 1.77V H2O,在碱性介质中的电势图为O2-0.08V H2O2 0.87V H2O,说明H2O2的歧化反应(C) A.只在酸性介质中发生 B.只在碱性介质中发生 C.无论在酸、碱性介质中都发生D.与反应方程式的书写有关 3.与下列原电池电动势无关的因素是Zn |Zn2+‖H+,H2 | Pt (B) A. Zn2+的浓度 B. Zn电极板的面积 C.H+的浓度 D.温度 4.298K时,已知Eθ(Fe3+/Fe)=0.771V,Eθ(Sn4+/Sn2+)=0.150V,则反应2Fe2++Sn4+=2Fe3++Sn2+的△r G mθ为(D)kJ/mol。 A. -268.7 B. -177.8 C. -119.9 D. 119.9 5.判断在酸性溶液中下列等浓度的离子哪些能共存(D) A Sn2+和Hg2+ B. SO32—和MnO4— C. Sn4+和Fe D. Fe2+和Sn4+ 已知Eθ(Hg2+/Hg)=0.851V,Eθ(Sn4+/Sn2+)=0.15V ,Eθ(MnO4—/Mn2+)=1.49V Eθ(SO42—/H2SO3)=1.29V ,Eθ(Fe2+/Fe)= —0.44V 6.已知下列反应在标准状态下逆向自发进行 Sn4++Cu = Sn2++Cu2+ Eθ(Cu2+/Cu)=(1) , Eθ(Sn4+/Sn2+)=(2) 则有(C) A. (1) = (2) B. (1)<(2) C. (1)>(2) D. 都不对 二、填空题 1.将下列方程式配平 3PbO2 + 2 Cr3+ + ____H2O___ =1Cr2O72—+ 3Pb2+ + __2H+___ (酸性介质) 2MnO2 + 3 H2O2 +__2OH-___ =2MnO4—+ ___4H2O______ (碱性介质)2.现有三种氧化剂Cr2O72—,H2O2,Fe3+,若要使Cl—、Br—、I—混合溶液中的I—氧化为I2,而Br-和Cl-都不发生变化,选用Fe3+最合适。(EθCl2/Cl-=1.36V, EθBr2/Br-=1.065V, EθI2/I-=0.535V) 3.把氧化还原反应Fe2++Ag+=Fe3++Ag设计为原电池,则正极反应为Ag++ e = Ag,负极反应为Fe3++e= Fe2+ ,原电池符号为Pt︱Fe3+(c1),Fe2+(c2)‖Ag+(c3)︱Ag。 4.在Mn++n e=M(s)电极反应中,当加入Mn+的沉淀剂时,可使其电极电势值降低,如增加M的量,则电极电势不变 5.已知EθAg+/Ag=0.800V, K sp=1.6×10—10则Eθ(AgCl/Ag)= 0.222V。 6.已知电极反应Cu2++2e=Cu的Eo为0.347V,则电极反应2Cu - 4e =2Cu2+的Eθ值为0.347V 。7.用氧化数法配平下列氧化还原反应。 (1)K2Cr2O7+H2S+H2SO4K2SO4+Cr2(SO4)3+S+H2O K2Cr2O7+3H2S+4H2SO4 =K2SO4+Cr2(SO4)3+3S+7H2O

双电层理论

双电层理论 一.界面与相际 一个相的表面叫作“界面”,界面的轮廓清晰,他的范围不会超过一原子层,可以看成是与另一相相互接触的表面。 相际:指两相之间,性质变化的区域,窄宽不等,其范围小之两个分子直径,大到数千个埃以上;其性质与两相中任意一相的本体性质都有所不同。 一个电极系统,也从在界面和相际,如图1-1所示。相际内溶液的性质发生变化,例如溶液浓度与本体浓度不同。当溶液中含有表面活性物质时,表面活性物质的表面吸附使C表>C本体。相际内除了浓度随着距离改变外,各类双电层电位差在相际建立;各类吸附现象在相际发生;大多数电化学反应(电极反应)在相际进行。电极系统的各种特性都将在相际中充分反映出来。 图1-1 电极系统的相、相界和相际 M-金属相;L-电解质溶液二.双电层的形成 金属是由具有一定结合力的原子或离子结合而成的晶体。晶体点阵上的质点离开点阵变成离子需要能量,需要外力做功。任何一种金属与电解质

溶液接触时

,其界面上的原子(或离子)之间必然发生相互作用,形成双电层。 1.界面电荷层 (1)当性质不同的相接触时,在相界面上形成了不同性质的电势差。 (2)出现电势差的原因是带电粒子或偶极子在界面层中的非均匀分布 双电层:由于电极和溶液界面带有的电荷符号相反,故电极/溶液界面上的荷电物质能部分地定向排列在界面两侧。 2.界面电荷层的形成 (1)自发形成的双电层 (a )离子双电层 (b )吸附双电层 (c )偶极双电层 (2)强制形成的双电层 金属电极与电解质溶液接触,可以自发形成双电层,也可以在外电源作用下强制形成双电层 + + + + + M M

双电层

双电层:(1)决定电位离子层:是固定在胶核表面,并决定其电荷和电位一层离子。它是由胶体表面的分子解离为离子,或从溶液中吸附某一种离子而构成。(2)补偿离子层:由于胶体表面决定电位离子层带电,产生电场和静电引力,吸附土壤溶液中带相反电荷的离子,形成补偿离子层。 电荷的来源:1、同晶异质代换作用在自然界中,组成铝硅酸盐矿物晶层的硅四面体和铝八面体中并不完全是硅和铝离子,可以被其他想近或稍大的离子代换。例如四面体中的硅可被铝代换,八面体中的铝可被铁镁代换。这种离子代换作用只改变了矿物的化学组成,而矿物的晶体构造形式不变,叫做~。如硅氧片中的Si4+被Al3+所取代,水铝片中的Al3+被Mg2+、Fe2+所取代,而使晶层产生剩余负电荷。永久电荷(内电荷):粘粒矿物晶层内的同晶置换所产生的电荷。电荷数量取决于同晶替代的多少。特点:不受pH的影响。 2:1型矿物带负电的主要原因。永久负电荷数量的多少依下规律:蒙脱石、蛭石>水云母类>高岭石2 晶格破碎边缘的断键在矿物风化破碎的过程中,晶体晶格边缘的离子有一部分电荷未得到中和,而产生剩余价键,使晶层带电3 胶核表面分子(或原子团)的解离(1)黏土矿物晶面上-OH的解离(2)腐殖质上某些官能团的解离(COOH)(3)含水铁、铝氧化物的解离(Al2O3.3H2O)(4)含水氧化硅的解离带电:净电荷可变电荷:随ph改变而产生的电荷 1:1型矿物特点:晶层与晶层间距离稳定,连接紧密,内部空隙小,电荷量少,单位个体小,分散度低。多出现于南方酸性土壤,如高岭石类 高岭石组黏粒矿物(1:1型矿物)1:1型单位晶层: 由一个硅片和一个铝片构成。硅片顶端的活性氧与铝片底层的活性氧通过共用的方式形成单位晶层。这样1:1型层状铝硅酸盐的单位晶层有两个不同的层面,一个是由具有六角形空穴的氧原子层面,一个是由氢氧构成的层面。包括高岭石、埃洛石、珍珠陶土等 特点:(1) 1:1型单位晶胞(层)化学式:Al4Si4O10(OH)8 (2) 膨胀性小晶层间距约0.72nm,硅片和铝片之间存在氢键(3) 电荷数量少同晶替代极少(4)颗粒较大(有效直径0.2~2μm)可塑性、粘结性、吸湿性、粘着性弱 2:1型粘土矿物特点:胀缩性大,吸湿性强,易在两边硅氧片中以Al3+代Si4+,有时可在铝氧片中以Mg2+代Al3+→带负电→吸附阳离子。如蒙脱石,这类矿物多出现于北方土壤。 蒙脱石组黏粒矿物(2:1型矿物)2:1型单位晶层由两个硅片夹一个铝片构成。两个硅片顶端的氧都向着铝片,铝片上下两层氧分别与硅片通过共用顶端氧的方式形成单位晶层。这样2:1型层状硅酸盐的单位晶层的两个层面都是氧原子面。包括蒙脱石、绿脱石、蛭石等特点:(1) 2:1型单位晶胞的理论化学式:Al4Si8O20(OH)4·nH2O (2) 膨胀性大晶层以分子引力联结,晶层间距:蒙脱石0.96~2.14nm 蛭石0.96~1.45nm (3) 电荷数量大同晶替代现象普遍(4) 颗粒较细,呈片状可塑性、粘结性、吸湿性、粘着性显著,对耕作不利蒙脱石在我国北方土壤分布较广,蛭石分布在风化不太强而排水良好的土壤中 水化云母组黏粒矿物(2:1型矿物)水化云母(伊利石)组(又称2 :1型非膨胀性矿物) 特点:(1) 2 :1型单位晶胞化学式:K2(Al·Fe·Mg)4(Si·Al)8O20(OH)4·nH2O (2) 非膨胀性晶层之间吸附的K+的强吸附力,层间距1.0nm (3) 电荷数量大同晶替代现象普遍,主要发生在硅片,电荷量较大,但部分被层间K+中和,有效电荷量少于蒙脱石(4) 可塑性等性质

电化学原理知识点

电化学原理 第一章 绪论 两类导体: 第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。 第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。 三个电化学体系: 原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。 电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。 腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。 阳极:发生氧化反应的电极 原电池(-)电解池(+) 阴极:发生还原反应的电极 原电池(+)电解池(-) 电解质分类: 定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。 分类: 1.弱电解质与强电解质—根据电离程度 2.缔合式与非缔合式—根据离子在溶液中存在的形态 3.可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。 水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。可分为原水化膜与二级水化膜。 活度与活度系数: 活度:即“有效浓度”。 活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。 规定:活度等于1的状态为标准态。对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。 离子强度I : 离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为: 注:上式当溶液浓度小于0.01mol ·dm-3 时才有效。 电导:量度导体导电能力大小的物理量,其值为电阻的倒数。 符号为G ,单位为S ( 1S =1/Ω)。 影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。 当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω-1 ·cm2·eq-1。 与 K 的关系: 与 的关系: 当λ趋于一个极限值时,称为无限稀释溶液当量电导或极限当量电导。 离子独立移动定律:当溶液无限稀释时,可以完全忽略离子间的相互作用,此时离子的运动 i i i x αγ=∑ =2 2 1i i z m I I A ?-=±γlog L A G κ= KV =λN c N c k 1000=λ- ++=000λλλ

电化学双电层理论和模型

双电层 双电层的形成:当两相接触时,如果电子或离子等荷电粒子在两相中具有不同的电化学位,荷电粒子就会在两相之间发生转移或交换,界面两侧便形成符号相反的两层电荷,人们把界面上的这两个荷电层称为双电层。如金属、溶液界面(M/L)两侧,若μM+>μM+(L),则荷电粒子发生转移,金属表面荷负点;反之,则金属表面荷正,这种双电层常称为离子双层。尽管有时上述的离子双层并不存在,但金属与溶液界面间仍然会存在着电位差,无论是金属表面,还是溶液表面,都存在着偶极层。由于偶极子正负电荷分隔开而形成的双电层,称为偶极双电层。对任何一种金属而言,由于金属的电子会“溢出”金属表面形成双极子。所以即使溶液一侧不存在偶极子层,但对金属与溶液的界面来说,这种偶极双层总是存在的。 此外,溶液中某一种离子有可能被吸附于电极与溶液界面上,形成一层电荷。这层电荷又借助静电作用吸引溶液中同等数量的带相反电荷的离子而形成双电层,可称之为吸附双层。这里应当注意:界面上第一层电荷的出现,靠的是静电力以外的其他化学与物理作用,而第二层电荷则是由第一层电荷的静电力引起的。如果界面上有了吸附双层,当然也会产生一定大小的电位差。 金属与溶液界面的电位差系由上述的三种类型电位差的一部分或全部组成,但其中对电极反应速度有重大影响的,则主要是离子双层的电位差。 离子双层的形成有两种可能的情况。一是在电极与溶液一旦接触后的瞬间自发形成的。另一种情况,是在外电源作用下强制形成的双电层。因为有的时候,当金属与溶液接触时,并不能自发地形成双电层。如将纯汞(Hg)放入Kill溶液的界面上常常不能自发的形成双电层。但是,如果将Hg电极与外电源负极连接,外电源就向Hg电极供应电子,在其电位达到K+还原电位之前,电极上不会发生电化学反应,因而此时Hg电极上有了多余的电子而带上负电。这层负电荷吸引溶液中相同数量的正电荷(如K+),形成双电层。 双电层的结构模型:金属电极和溶液之间界面上形成的双电层,从结构上可以有离子双电层、表面偶极双电层和吸附双电层等三种类型。关于带质点在双层内分布的问题,各个时期提出了不同的模型。这里着重讨论离子双电层结构的几个经典模型。 (1)平板电容器模型 早在19世纪末,亥姆霍茨(Helmholtz)就曾提出“平板电容器”模型,或称为“紧密双电层”,模型。按照这种模型,电极表面上和溶液中的剩余电荷都紧密地排列在紧密两

高三化学一轮复习:电化学原理及其应用

电化学原理及其应用 1.家蝇的雌性信息素可用芥酸(来自菜籽油)与羧酸X在浓NaOH溶液中进行阳极氧化得到。 电解总反应式为: 则下列说法正确的是( ) A.X为C2H5COOH B.电解的阳极反应式为:C21H41COOH+X-2e-+2H2O―→C23H46+2CO2-3+6H+ C.电解过程中,每转移a mol电子,则生成0.5a mol雌性信息素 D.阴极的还原产物为H2和OH- 解析:A项根据原子守恒可判断X为C2H5COOH;B项由于电解质溶液为浓NaOH,因此阳极反应式应为C21H41COOH+X-2e-+60H-―→C23H46+2CO2-3+4H2O;C项根据电解总反应可知每生成1 mol雌性信息素转移2 mol电子,则C项正确;D项阴极的还原产物为H2,OH-并非氧化还原产物. 答案:AC 2.下列关于铜电极的叙述正确的是( ) A.铜锌原电池中铜是负极 B.用电解法精炼粗铜时,粗铜作阴极 C.在镀件上电镀铜时可用金属铜做阳极 D.电解稀硫酸制H2和O2时铜做阳极 解析:铜锌原电池中锌活泼,锌做负极;电解精炼铜时,粗铜中的铜失去电子,做阳极; 电镀铜时,应选用铜片做阳极,镀件做阴极,含有铜离子的溶液做电镀液。电解稀硫酸时,铜做阳极,失电子的是铜而不是溶液中的OH-,因而得不到氧气。 答案:C 3.普通水泥在固化过程中自由水分子减少并产生Ca(OH)2,溶液呈碱性。根据这一特点,科学家发明了电动势(E)法测水泥初凝时间,此法的原理如图所示,反应的总方程式为:2Cu +Ag2O===Cu2O+2Ag。 下列有关说法不正确的是( ) A.工业上制备普通水泥的主要原料是黏土和石灰石

电化学原理及其应用(习题及答案)

电化学原理及其应用 (习题及答案) https://www.wendangku.net/doc/e110255877.html,work Information Technology Company.2020YEAR

第六章电化学原理及其应用 一、选择题 1.下列电极反应中,溶液中的pH值升高,其氧化态的氧化性减小的是( C ) A. Br2+2e = 2Br- B. Cl2+2e=2Cl— C. MnO4—+5e+8H+=2Mn2++4H2O D. Zn2++2e=Zn 2.已知H2O2在酸性介质中的电势图为 O2 0.67V H2O2 1.77V H2O,在碱性介质中的电势图为O2-0.08V H2O2 0.87V H2O,说明H2O2的歧化反应(C) A.只在酸性介质中发生 B.只在碱性介质中发生 C.无论在酸、碱性介质中都发生D.与反应方程式的书写有关 3.与下列原电池电动势无关的因素是 Zn | Zn2+‖H+,H2 | Pt (B) A. Zn2+的浓度 B. Zn电极板的面积 C.H+的浓度 D.温度 4.298K时,已知Eθ(Fe3+/Fe)=0.771V,Eθ(Sn4+/Sn2+)=0.150V,则反应 2Fe2++Sn4+=2Fe3++Sn2+的△r G mθ为(D)kJ/mol。 A. -268.7 B. -177.8 C. -119.9 D. 119.9 5.判断在酸性溶液中下列等浓度的离子哪些能共存(D) A Sn2+和Hg2+ B. SO32—和MnO4— C. Sn4+和Fe D. Fe2+和Sn4+ 已知Eθ(Hg2+/Hg)=0.851V,Eθ(Sn4+/Sn2+)=0.15V ,Eθ(MnO4—/Mn2+)=1.49V Eθ(SO42—/H2SO3)=1.29V ,Eθ(Fe2+/Fe)= —0.44V 6.已知下列反应在标准状态下逆向自发进行 Sn4++Cu = Sn2++Cu2+

电化学原理及其应用

5月6日晨测:化学原理及其应用(时间:40分钟) 可能用到的相对原子质量: Cu -64 Zn -65 1.(2020·广西省桂林市高三联合调研)钠硫电池以熔融金属钠、熔融硫和多硫化钠(Na 2S x )分别作为两个电极的反应物,固体Al 2O 3陶瓷(可传导Na +)为电解质,总反应为2Na+xS Na 2S x ,其反应原理如图所示。下列叙述正 确的是( ) A .放电时,电极a 为正极 B .放电时,内电路中Na +的移动方向为从b 到a C .充电时,电极b 的反应式为S x 2--2e -=xS D .充电时,Na +在电极b 上获得电子,发生还原反应 2.(2020·吉林省吉林市高三二调)金属(M)-空气电池具有原料易得,能量密度高等优点,有望成为新能源汽车和移动设备的电源,该类电池放电的总反应方程式为:2M +O 2+2H 2O =2M(OH)2。 (已知:电池的“理论比能量”指单位质量的电极材料理论上能释放出的最大电能)下列说法正确的是( ) A .电解质中的阴离子向多孔电极移动 B .比较Mg 、Al 、Zn 三种金属-空气电池,Mg -空气电池的理论比能量最高 C .空气电池放电过程的负极反应式2M -4e -+4OH -=2M(OH)2 D .当外电路中转移4mol 电子时,多孔电极需要通入空气22.4L(标准状况) 3.(2020·福建省龙岩市高三质量检测)我国某科研团队设计了一种新型能量存储/转化装置(如下图所示)。闭合K 2、断开K 1时,制氢并储能;断开K 2、闭合K 1时,供电。下列说法错误的是( ) A .制氢时,溶液中K +向Pt 电极移动 B .制氢时,X 电极反应式为22Ni(OH)e OH NiOOH H O ---+=+ C .供电时,Zn 电极附近溶液的pH 降低

{高中试卷}高三化学一轮复习:电化学原理及其应用[仅供参考]

20XX年高中测试 高 中 试 题 试 卷 科目: 年级: 考点:

监考老师: 日期: 电化学原理及其应用 1.家蝇的雌性信息素可用芥酸(来自菜籽油)与羧酸X在浓NaOH溶液中进行阳极氧化得到。电解总反应式为: 则下列说法正确的是( ) A.X为C2H5COOH 3+6H+B.电解的阳极反应式为:C21H41COOH+X-2e-+2H2O―→C23H46+2CO2- C.电解过程中,每转移a mol电子,则生成0.5a mol雌性信息素 D.阴极的还原产物为H2和OH- 解析:A项根据原子守恒可判断X为C2H5COOH;B项由于电解质溶液为浓NaOH,因此阳极反应 3+4H2O;C项根据电解总反应可知每生成1 式应为C21H41COOH+X-2e-+60H-―→C23H46+2CO2- mol雌性信息素转移2 mol电子,则C项正确;D项阴极的还原产物为H2,OH-并非氧化还原产物. 答案:AC 2.下列关于铜电极的叙述正确的是( ) A.铜锌原电池中铜是负极 B.用电解法精炼粗铜时,粗铜作阴极 C.在镀件上电镀铜时可用金属铜做阳极 D.电解稀硫酸制H2和O2时铜做阳极 解析:铜锌原电池中锌活泼,锌做负极;电解精炼铜时,粗铜中的铜失去电子,做阳极;电

镀铜时,应选用铜片做阳极,镀件做阴极,含有铜离子的溶液做电镀液。电解稀硫酸时,铜做阳极,失电子的是铜而不是溶液中的OH-,因而得不到氧气。 答案:C 3.普通水泥在固化过程中自由水分子减少并产生Ca(OH)2,溶液呈碱性。根据这一特点,科学家发明了电动势(E)法测水泥初凝时间,此法的原理如图所示,反应的总方程式为:2Cu+Ag2O===Cu2O+2Ag。 下列有关说法不正确的是( ) A.工业上制备普通水泥的主要原料是黏土和石灰石 B.测量原理装置图中,Ag2O/Ag极发生氧化反应 C.负极的电极反应式为:2Cu+2OH--2e-===Cu2O+H2O D.在水泥固化过程中,由于自由水分子的减少,溶液中各离子浓度的变化导致电动势变化解析:A项工业上制备普通水泥的主要原料正确;B项测量原理装置图中,Ag2O/Ag极发生还原反应;C项负极材料Cu失电子,该电极反应式正确;D项在溶液中通过离子移动来传递电荷,因此各离子浓度的变化导致电动势变化。 答案:B 4. LiFePO4电池具有稳定性高、安全、对环境友好等优点,可用于电动汽车。电池反应为:FePO4 +Li 放电 充电 LiFePO4,电池的正极材料是LiFePO4,负极材料是石墨,含Li+导电固体为电解 质。 下列有关LiFePO4电池说法正确的是( ) A.可加入硫酸以提高电解质的导电性B.放电时电池内部Li+向负极移动 C.充电过程中,电池正极材料的质量减少

电化学原理及其应用

第4章电化学原理及应用 5课时 教学目标及基本要求 1. 明确原电池及相关的概念。了解电极的分类,了解电极电势的概念。 2. 能用能斯特方程式进行有关计算。能应用电极电势的数据判断氧化剂、还原剂的相对强弱及氧化还原反应自发进行的方向和程度。 3. 了解摩尔吉布斯自由能变与原电池电动势,标准摩尔吉布斯自由能变与氧化还原反应平衡常数的关系。 4. 了解电解、电镀、电抛光的基本原理,了解它们在工程上的应用。了解金属腐蚀及防护原理。 教学重点 1. 原电池符号的书写 2. 影响电极电势的因素 3. 电极电势与吉布斯的关系 4. 电极电势的应用 教学难点 1. 电极类型 2. 能斯特方程及相关计算 3. 应用电极电势判断氧化剂、还原剂的相对强弱 本章教学方式(手段)及教学过程中应注意的问题 本章采用多媒体结合板书的方式进行教学。 在教学过程中注意 1. 原电池的设计 2. 浓度、酸度对电极电势的影响 3. 电极电势的应用 主要教学内容 4.1 原电池(Electrochemical cell) 任何自发进行的氧化还原(oxidation-reduction) 反应,只要设计适当,都可以设计成原电池

用以产生电流。 4.1.1 原电池的结构与工作原理 Zn(s)+Cu2+(aq)=Zn2+(aq)+Cu(s) 负极Zn(s) → Zn2+(aq)+2e-(Oxidation) 正极Cu2+(aq)+2e-→ Cu(s) (Reduction) 总反应:Zn(s)+ Cu2+(aq) → Zn2+(aq)+ Cu(s) 原电池的符号(图式)(cell diagram) 表示: 如铜- 锌原电池, : Zn ∣ZnSO4(c1) ┊┊CuSO4(c2) ∣Cu 规定:(1) 负极(anode) 在左边,正极(Cathode) 在右边,按实际顺序从左至右依次排列出各个相的组成及相态; (2) 用单实竖线表示相界面, 用双虚竖线表示盐桥; (3) 溶液注明浓度,气体注明分压; (4) 若溶液中含有两种离子参加电极反应, 可用逗号隔开,并加上惰性电极. 4.1.2 电极类型 按氧化态、还原态物质的状态分类: 第一类电极:元素与含有这种元素离子的溶液一起构成的电极。 (1) 金属──金属离子电极: Zn2+| Zn ;Cu2+| Cu ;Ni2+| Ni (2) 气体——离子电极: H+ |H2(g) | Pt 2H+ + 2e-=H2(g) Cl-| Cl2(g) | PtCl2(g) + 2e-=2Cl- 第二类电极: (1) 金属──金属难溶盐电极: 甘汞电极:Cl-|Hg2Cl2(s)| Hg Hg2Cl2(s) + 2e-=2 Hg (s) + 2 Cl- 银-氯化银电极:Cl-| AgCl(s) | Ag AgCl(s) + e-=Ag (s) + Cl- (2) 金属──难溶金属氧化物电极: 锑—氧化锑电极:H+ ,H2O(g) | Sb2O2(s) |Sb Sb2O2(s) + 6 H+ + 6 e-=2Sb +3H2O(g) 第三类电极: 氧化还原电极: MnO4-,Mn2+| Pt 2 MnO4-+ 16H+ + 10e-→ 2Mn2++8H2O 4.2 电极电势

双电层理论的四个模型

双电层(electrical double layer) 假设,将一个金属片放进电解液中,那么会发生什么呢?更准确地描述是: 在电极与电解液的界面处,物质与电荷的分布状态是怎样的? (1)Helmholtz模型 首先,亥姆赫兹(Helmholtz)试图探究这个问题,他建立了一个模型,我们简称其为H模型,其核心思想是:相反的电荷等量分布于界面两侧。这也是“double layer”的由来。 进而,这个结构可以等效为一个平板电容器,并用如下公式描述单侧的电荷密度(σ)与两层电荷间的电势差(V)的关系,其中,d为正负电荷中心的距离。 σ=εε0 d V 而且,该电容器的电容(Cd)可表示为: eσeV =C d= εε0 d 至此,H模型成功地将将一个电化学的普遍场景抽象为两个基本公式。然而,该模型存在一个明显缺陷:由上式可推论出,Cd是一个恒定值,然而实验观测中,Cd是一个变量,相对电位与电解液浓度等都会对其产生影响。比如,汞电极在NaF电解液中,测得Cd值如下图所示: 其中,可以看到明显的两个趋势是:

(1)Cd相对于电位成V型的对称分布; (2)电解液的浓度越高,Cd数值越大。 因此,一个良好双电层模型需要解释这两个现象。 (2)Gouy-Chapman模型 随后,Gouy和Chapman联手改进了这个模型,我们简称其为G-C模型。G-C 模型的核心是引入了一个新的概念: 扩散层(diffuse layer) 让我们回到电极与电解液的界面处,电荷在电极这一侧是严格分布于其表面。然而,在电解液这一侧却不是这样:由于不同离子间的相互作用,使得很多电荷会扩散到远离界面的体相溶液中。 因此,G-C模型可由下图近似表示: 经过G-C模型的改进,原本电容公式中的d就变成了一个变量。 不难想象,当界面两侧电势差较大时,更多的离子会被压缩到靠近电极的位置;当电解液浓度高时,离子也可以在较小的空间上与电极达到电荷平衡。经过G-C 模型的改进,双电层预测NaF的水溶液作为电解液,其电容与电位及浓度关系如下,

双电层理论

双电层理论 界面与相际 一个相的表面叫作“界面”,界面的轮廓清晰,他的范围不会超过一原子层,可以看成是与另一相相互接触的表面。 相际:指两相之间,性质变化的区域,窄宽不等,其范围小之两个分子直径,大到数千个埃以上;其性质与两相中任意一相的本体性质都有所不同。 一个电极系统,也从在界面和相际,如图1-1所示。相际内溶液的性 质发生变化,例如溶液浓度与本体浓度不同。当溶液中含有表面活性物质时,表面活性物质的表面吸附使C QC本体。相际内除了浓度随着距离改变外,各类双电层电位差在相际建立;各类吸附现象在相际发生;大多数电化学反应 (电极反应)在相际进行。电极系统的各种特性都将在相际中充分反映出来。 图1-1电极系统的相、相界和相际M-金属相;L-电解质溶液 二.双电层的形成 金属是由具有一定结合力的原子或离子结合而成的晶体。晶体点阵上 的质点离开点阵变成离子需要能量,需要外力做功。任何一种金属与电解质

溶液接触时,其界面上的原子 (或离子)之间必然发生相互作用,形成双电 1?界面电荷层 (1) 当性质不同的相接触时,在相界面上形成了不同性质的电势差。 (2) 出现电势差的原因是带电粒子或偶极子在界面层中的非均匀分布 双电层:由于电极和溶液界面带有的电荷符号相反,故电极 /溶液界面 上的荷电物质能部分地定向排列在界面两侧 2. 界面电荷层的形成 (1)自发形成的双电层 (2)强制形成的双电层 金属电极与电解质溶液接触,可以自发形成双电层,也可以在外电源作 用下强 制形成双电层。以如下电极反应为例: (a )离子双电层 (c )偶极双电层 (b )吸附双电层

理想极化电极 2Hg —2e = Hg22+, 0=0.1 V K+ + e-= K , 忙-1.6V 理想极化电极:在一定的电势范围内,可以借助外电源任意改变双电层的带电状况(因而改变界面区的电势差),而不致引起任何电化学反应的电极。如KCI溶液中的汞电极。 不极化电极:指有电流通过时,电极与溶液界面间电势差不发生任何变化的电极。 双电层的建立,引起电位差的变化,这种电位差变化对金属离子继续进入溶液有阻滞作用,相反有利于返回金属表面。这两个相反的过程逐渐趋于速度相等的状态,即达到动态平衡,最终在相界面建立起稳定的离子双电层。 由此可以解释,在阴极保护中,如果利用外加直流电流或脉冲电流来改变双电层的带电状况,引起金属与介质之间的电位变化,使其电位差达到一个可以阻滞金属离子转入介质中的范围,进而使得被保护金属(阴极)的电化学反应降低甚至停止

高考化学复习专题:电化学原理及其应用(含答案)

专题三电化学原理及其应用 命题规律 电化学内容是高考试卷中的常客,对原电池和电解池的考查往往以选择题的形式考查两电极反应式的书写、两电极附近溶液性质的变化、电子的转移或电流方向的判断等。在第Ⅱ卷中会以应用性和综合性进行命题,如与生产生活(如金属的腐蚀和防护等)相联系,与无机推断、实验及化学计算等学科内知识综合,尤其特别注意燃料电池和新型电池的正、负极材料分析和电极反应式的书写。题型新颖,但不偏不怪,只要注意基础知识的落实,以及能力的训练便可以从容应对。 考点研析 考点一原电池原理及应用 1.(2009·福建理综,11改编)控制合适的条件,将反应2Fe3++2I-2Fe2++I2设计成如下图所示的原电池。下列判断不正确的是 ( ) A.反应开始时,乙中石墨电极上发生氧化反应 B.反应开始时,甲中石墨电极上Fe3+被还原 C.电流计读数为零时,反应达到化学平衡状态 D.电流计读数为零后,在甲中溶入FeCl2固体,乙中石墨电极为负极 试回答: (1)乙池中若换为Fe电极和FeCl2溶液,则原电池是怎样工作的? (2)电流计读数为零后,若在乙中溶入KI固体,则原电池反应能继续发生吗?若向甲中加入固体Fe呢?

2.(2010·安徽理综,11)某固体酸燃料电池以CsHSO 4固体为电解质传递H + ,其基本结构见下图,电池总反应可表示为:2H 2+O 2===2H 2O ,下列有关说法正确的是 ( ) A .电子通过外电路从b 极流向a 极 B .b 极上的电极反应式为:O 2+2H 2O +4e - ===4OH - C .每转移0.1 mol 电子,消耗1.12 L 的H 2 D .H + 由a 极通过固体酸电解质传递到b 极 3.(2010·广东理综,23改编)铜锌原电池(如下图)工作时,下列叙述正确的是 ( ) A .正极反应为:Zn -2e - ===Zn 2+ B .电池反应为:Zn +Cu 2+ ===Zn 2+ +Cu C .在外电路中,电子从正极流向负极 D .盐桥中的K + 移向ZnSO 4溶液 考点二 电解原理及其应用 4.(2009·安徽理综,12)Cu 2O 是一种半导体材料,基于绿色化学理念设计的一制取Cu 2O 的电解池示意图如下,电解总反应为:2Cu +H 2O=====通电 Cu 2O +H 2↑。下列说法正确的是( ) A .石墨电极上产生氢气 B .铜电极发生还原反应 C .铜电极接直流电源的负极 D .当有0.1 mol 电子转移时,有0.1 mol Cu 2O 生成 5.以惰性电极电解CuSO 4溶液。一段时间后取出电极,加入9.8 g Cu(OH)2后溶液与电解前相同,则电解时电路中流过的电子为 ( ) A .0.1 mol B .0.2 mol C .0.3 mol D .0.4 mol

电化学加工原理及应用总结

电化学加工原理及应用 电化学加工(Electrochemical Making),也称电解加工,是利用金属在外电场作用下的高速局部阳极溶解实现电化学反应,对金属材料进行加工的方法。常用的电化学加工有电解加工、电磨削、电化学抛光、电镀、电刻蚀和电解冶炼等。 电化学加工的原理: 电化学加工是利用金属在电解液中的电化学阳极溶解来将工件成型的。如图1 所示,工件接直流电源的正极为阳极,按所需形状制成的工具接直流电源的负极为阴极。阳极表面铁原子在外电源的作用下放出两个电子,成为正的二价铁离子而溶解进入电解液中(Fe-2e=Fe+2)。溶入电解液中的Fe+2又与OH-离子化合,生成Fe(OH)2沉淀,随着电解液的流动而被带走。Fe(OH)2 又逐渐为电解液中及空气中的氧氧化为Fe(OH)3红褐色沉淀。 正的H+被吸收到阴极表面,从电源得到电子而析出氢气(2H++2e=H2↑)。电解液从两极间隙(0.1~0.8 mm)中高速(5~60 m/s)流过。当工具阴极向工件进给并保持一定间隙时即产生电化学反应,在相对于阴极的工件表面上,金属材料按对应于工具阴极型面的形状不断地被溶解到电解液中,随着工件表面金属材料的不断溶解,工具阴极不断地向工件进给,溶解的电解产物不断地被电解液冲走,工件表面也就逐渐被加工成接近于工具电极的形状,如此下去直至将工具的形状复制到工件上。 电化学加工的应用: 电化学加工应用主要有电解加工、电化学抛光、电镀、电铸、电解磨削等方面。具体应用于发动机叶片加工、火炮膛线加工、加工锻模型腔、深孔、小孔、长键槽、等截面叶片整体叶轮以及零件去毛刺、难导电硬脆材料加工等。

航空发动机叶片加工----相对于叶片的几何结构及采用的材料, 电解加工能充分发挥其技术特长。尽管由于叶片精密锻造、精密铸造、精密辊轧技术的提高而有更多的叶片采用精密成形, 使电解加工叶片的数量有一些减少, 但随着叶片材料向高强、高硬、高韧性方向发展和钛合金、钴镍超级耐热合金的采用, 以及超精密、超薄、大扭角、低展弦比等特殊结构叶片的出现, 对电解加工又提出了新的、更高的要求, 电解加工依然是优选工艺方法之一。 如空心冷却涡轮叶片和导向器叶片上的许多小孔, 特别是深小孔和呈多向不同角度分布的小孔,用普通机械钻削方法特别困难, 甚至不能加工;而用电火花、激光加工又有表面再铸层问题, 且加工孔深也有限;采用电解方法则加工效率、加工质量明显提高, 加工孔深大大增加, 还可以采用复合多孔加工方式, 使加工效率提高几倍、十几倍。 为了满足第三代、第四代飞机高推重比、高可靠性的要求, 各类新型航空、航天发动机相继采用整体叶轮、整体叶盘结构。电解加工与数控技术的结合,是可望解决难切削材料整体叶盘的优质、高效、低成本加工问题的有效途径。 火炮膛线加工----随着兵器技术的发展,对火炮身管的要求也越来越高。随 着炮管材料变硬,膛线数目增多,槽线变深,缠角变大,机械拉削难以实现膛线的加工;因电解加工具有一次成型、加工效率高,离子级溶解、表面质量好,工具损耗小、无残余应力的优点,在深孔和膛线加工中尤为突出。因此,电解加工膛线变得不可或缺。 零件去毛刺----去毛刺是机械加工最后阶段必须进行的一项重要的技术,对 于可达性差、与主孔垂直的内部交叉阵列孔毛刺,一般的加工方法难以实现对其去除。目前国内主要采用手工的方法进行去除,该方法存在去除效率低、成本高的缺点,故需寻求一种去除效率高、自动化程度高的加工方法。 电化学去毛刺是金属在电解液中发生基于电化学作用的阳极溶解而去除零 件毛刺的加工工艺方法,这是一种先进的去毛刺技术,是电化学加工中发展较快、应用较广的一项工艺,它具有去除毛刺质量好、安全可靠、高效等优点,且能去除可达性差的复杂内腔部位的毛刺,现已在汽车发动机、航空航天、气动液压等领域得到运用。在汽车转向器中的螺杆轴上内交叉阵列小孔毛刺去除的实例实验验证中得到了良好的加工效果。 难导电硬脆材料加工----因半导体、光学玻璃、工程陶瓷等难导电硬脆材料 具有耐磨性强、硬度高等优良性能,故在电子、光学等领域得到了广泛应用。但难导电硬脆材料的脆性大,采用传统机械加工方法成本高、效率低,且易产生微裂纹,从而严重影响表面质量和性能。电加工是依靠电能、热能而不是机械能实现加工的,可以加工任何硬、脆、韧、软及高熔点的导电材料,而难导电硬脆材料一般不能直接采用电加工方法加工。郭永丰等研究了基于绝缘陶瓷辅助电火花加工原理在煤油中对绝缘陶瓷的电火花磨削加工,但加工效率较低。黑松彰雄研究了机械电解电火花复合磨削技术,该技术能实现对非导电陶瓷的高效精密加工,但仍存在放电难以控制和电能利用率低等问题。刘永红等提出了双电极同步伺服电火花机械复合磨削技术,实现了对非导电陶瓷的磨削加工,但辅助电极送给及控制系统较为复杂,导致放电状态难以精确控制。

电化学原理思考题答案解析

第三章 1.自发形成的双电层和强制形成的双电层在性质和结构上有无不同?为什么?2.理想极化电极和不极化电极有什么区别?它们在电化学中有什么重要用途?答:当电极反应速率为0,电流全部用于改变双电层的电极体系的电极称为理想极化电极,可用于界面结构和性质的研究。理想不极化电极是指当电极反应速率和电子反应速率相等时,极化作用和去极化作用平衡,无极化现象,通向界面的电流全部用于电化学反应,可用作参比电极。 3.什么是电毛细现象?为什么电毛细曲线是具有极大值的抛物线形状? 答:电毛细现象是指界面张力随电极电位变化的现象。溶液界面存在双电层,剩余电荷无论带正电还是负电,同性电荷间相互排斥,使界面扩大,而界面张力力图使界面缩小,两者作用效果相反,因此带电界面的张力比不带电时小,且电荷密度越大,界面张力越小,因此电毛细曲线是具有极大值的抛物线形状。 4.标准氢电极的表面剩余电荷是否为零?用什么办法能确定其表面带电状况?答:不一定,标准氢电极电位为0指的是氢标电位,是人为规定的,电极表面剩余电荷密度为0时的电位指的是零电荷电位,其数值并不一定为0;因为形成相间电位差的原因除了离子双电层外,还有吸附双电层\ 偶极子双电层\金属表面电位。可通过零电荷电位判断电极表面带电状况,测定氢标电极的零电荷电位,若小于0则电极带正电,反之带负电。 5.你能根据电毛细曲线的基本规律分析气泡在电极上的附着力与电极电位有什么关系吗?为什么有这种关系?(提示:液体对电极表面的润湿性越高,气体在电极表面的附着力就越小。) 6.为什么在微分电容曲线中,当电极电位绝对值较大时,会出现“平台”?7.双电层的电容为什么会随电极电位变化?试根据双电层结构的物理模型和数学模型型以解释。8.双电层的积分电容和微分电容有什么区别和联系?9.试述交流电桥法测量微分电容曲线的原理。10.影响双电层结构的主要因素是什么?为什么? 答:静电作用和热运动。静电作用使符号相反的剩余电荷相互靠近,贴于电极表面排列,热运动使荷电粒子外散,在这两种作用下界面层由紧密层和分散层组成。11.什么叫ψ1电位?能否说ψ1电位的大小只取决于电解质总浓度而与电解质本性无关?ψ1电位的符号是否总是与双电层总电位的符号一致?为什么? 答:距离电极表面d处的电位叫ψ1电位。不能,因为不同的紧密层d的大小不同,而紧密层的厚度显然与电解质本性有关,所以不能说ψ1电位的大小只取决于电解质总浓度而与电解质本性无关。当发生超载吸附时ψ1电位的符号与双电层总电位的符号不一致。12.试述双电层方程式的推导思路。推导的结果说明了什么问题? 13.如何通过微分电容曲线和电毛细曲线的分析来判断不同电位下的双电层结构?答:14.比较用微分电容法和电毛细曲线法求解电极表面剩余电荷密度的优缺点。15.什么是特性吸附?哪些类型的物质具有特性吸附的能力?答:溶液中的各种粒子还可能因非静电作用力而发生吸附称为特性吸附。大部分无机阴离子,部分无机阳离子以及表面活性有机分子可发生特性吸附。

【免费下载】电化学原理及应用

电化学原理及应用 主题1 基本概念、原理 肥城六中 【高考命题聚焦】 山东高考题考查方式和内容 山东2013 考试说明200720082009201020112012 了解原电池的工作原理。29题(2): Fe3+与Cu形成 的原电池的设 计 15题A项:常 规原电池的构 成条件判断 13题A、B项: 电化学腐蚀C 项:原电池工 作原理及现象 了解电解池的工作原理。29题(2): 电镀铜时的阳 极选择 12题D项: 电解过程中常 见金属离子 Fe3+、Cu2+、Al 3+在阴极上的 放电顺序 了解常见化学电源的种类及其工作原理。 29题(2): 丙烷燃料电池 中阴离子的移 动方向的判断 29题(1): 干电池中正负 极材料的选择 和电子流向的 判断 29题(2): 新型钠硫电池 形成条件中各 部件作用 13题D项: Zn - MnO2干 电池工作原理 【热点考向探究】 考点一:原电池的工作原理 【例1】如图在置于空气的容器里盛有NaCl溶液,再放入缠绕铜丝的铁钉,下列叙述正 确的是() A. 铜丝发生原电池反应而被消耗 B. 溶液中的钠离子和氯离子分别移向铁钉和铜丝 C. 一段时间后铁钉上出现红色物质 D. 如果把铜丝换成镁丝,则镁丝发生氧化反应 【例2】如图是一种染料敏化太阳能电池的示意图。电池的一个电极由有机光敏燃料(S) 涂覆在TiO2纳米晶体表面制成,另一电极由导电玻璃镀铂构成,电池中发生的反应为: 、 管 路 敷 设 技 术 而 且 可 保 障 各 类 管 路 习 题 到 位 。 在 管 路 敷 设 过 程 中 , 要 加 强 看 护 关 于 管 路 高 中 资 料 试 卷 连 接 管 口 处 理 高 中 资 料 试 卷 弯 扁 度 固 定 盒 位 置 保 护 层 防 腐 跨 接 地 线 弯 曲 半 径 标 高 等 , 要 求 技 术 交 底 。 管 线 敷 设 技 术 中 包 含 线 槽 、 管 架 等 多 项 方 式 , 为 解 决 高 中 语 文 电 气 课 件 中 管 壁 薄 、 接 口 不 严 等 问 题 , 合 理 利 用 管 线 敷 设 技 术 。 线 缆 敷 设 原 则 : 在 分 线 盒 处 , 当 不 同 电 压 回 路 交 叉 时 , 应 采 用 金 属 隔 板 进 行 隔 开 处 理 ; 同 一 线 槽 内 , 强 电 回 路 须 同 时 切 断 习 题 电 源 , 线 缆 敷 设 完 毕 , 要 进 行 检 查 和 检 测 处 理 。 、 电 气 课 件 中 调 试 试 卷 调 控 试 验 ; 对 设 备 进 行 调 整 使 其 在 正 常 工 况 下 与 过 度 工 作 下 都 可 以 正 常 工 作 ; 对 于 继 电 保 护 进 行 整 核 对 定 值 , 审 核 与 校 对 图 纸 , 编 写 复 杂 设 备 与 装 置 高 中 资 料 试 卷 调 试 方 案 , 编 写 重 要 设 备 高 中 资 料 试 卷 试 验 方 案 以 及 系 统 启 动 方 案 ; 对 整 套 启 动 过 程 中 高 中 资 料 试 卷 电 气 设 备 进 行 调 试 工 作 并 且 进 行 过 关 运 行 高 中 资 料 试 卷 技 术 指 导 。 对 于 调 试 过 程 中 高 中 资 料 试 卷 技 术 问 题 , 作 为 调 试 人 员 , 需 要 在 事 前 掌 握 图 纸 资 料 、 设 备 制 造 厂 家 出 具 高 中 资 料 试 卷 试 验 报 告 与 相 关 技 术 资 料 , 并 且 了 解 现 场 设 备 高 中 资 料 试 卷 布 置 情 况 与 有 关 高 中 资 料 试 卷 电 气 系 统 接 线 等 情 况 , 然 后 根 据 规 范 与 规 程 规 定 , 制 定 设 备 调 试 高 中 资 料 试 卷 方 案 。 、 电 气 设 备 调 试 高 中 资 料 试 卷 技 术 置 时 , 需 要 在 最 大 限 度 内 来 确 保 机 组 高 中 资 料 试 卷 安 全 , 并 且 尽 可 能 地 缩 小 故 障 高 中 资 料 试 卷 破 坏 范 围 , 或 者 对 某 些 异 常 高 中 资 料 试 卷 工 况 进 行 自 动 处 理 , 尤 其 要 避 免 错 误 高 中 资 料 试 卷 保 护 装 置 动 作 , 并 且 拒 绝 动 作 , 来 避 免 不 必 要 高 中 资 料 试 卷 突 然 停 机 。 因 此 , 电 力 高 中 资 料 试 卷 保 护 装 置 调 试 技 术 , 要 求 电 力 保 护 装 置 做 到 准 确 灵 活 。 对 于 差 动 保 护 装 置 高 中 资 料 试 卷 调 试 技 术 是 指 发 电 机 一 变 压 器 组 在 发 生 内 部 故 障 时 , 需 要 进 行 外 部 电 源 高 中 资 料 试 卷 切 除 从 而 采 用 高 中 资 料 试 卷 主 要 保 护 装 置 。

相关文档