文档库 最新最全的文档下载
当前位置:文档库 › 真均方根值 钳式表

真均方根值 钳式表

真均方根值 钳式表
真均方根值 钳式表

真均方根值钳式表

HHM250

产品特点:

?4位LCD显示屏

?电流测量值可达660 AC

?电压测量值可达600 Vac

?电压频率测量值可达100 Khz

?电流频率测量值可达30 Khz

?用于测量和保持电机启动电流的浪涌模式

产品描述

HHM250是在多功能仪表上配上夹钳,在低成本便携式套装中提供高精度和可靠性。通过这种夹钳,可以测量最高660安培的交流电流和最高600伏特的交流电压。最适合监测电源以进行检修和评估。精确地测量均方根电压和电流频率。

规格:

数字显示屏:4位液晶显示屏(LCD),

最大读数为6600

低电量指示:电池图形显示

采样率:3x/秒

两节1.5V"AAA"电池

(随附)

自动断电:15分钟

工作温度和湿度:0 ~ 40°C

(32 ~ 104°F);相对湿度<70%

存放温度和湿度:-10 ~ 60°C (14 ~ 140°F);相对湿度<80%

钳口直径:大约25 mm (1")

外形尺寸:209(高)x 74(宽)x 36 mm (厚)(8.2 x 2.9 x 1.4") 重量:大约255 g (9.1 oz)

配件(包含):手提箱、两节1.5V"AAA"电池、测试引线和

操作手册

离散数学自学笔记命题公式及其真值表

离散数学自学笔记命题公式及其真值表 我们把表示具体命题及表示常命题的p,q,r,s等与f,t统称为命题常元(proposition constant)。深入的讨论还需要引入命题变元(proposition variable)的概念,它们是以“真、假”或“1,0”为取值范围的变元,为简单计,命题变元仍用p,q,r,s等表示。相同符号的不同意义,容易从上下文来区别,在未指出符号所表示的具体命题时,它们常被看作变元。 命题常元、变元及联结词是形式描述命题及其推理的基本语言成分,用它们可以形式地描述更为复杂的命题。下面我们引入高一级的语言成分——命题公式。 定义1.1 以下三条款规定了命题公式(proposition formula)的意义: (1)命题常元和命题变元是命题公式,也称为原子公式或原子。 (2)如果A,B是命题公式,那么(┐A),(A∧B),(A∨B),(A→B),(A?B)也是命题公式。 (3)只有有限步引用条款(1),(2)所组成的符号串是命题公式。 命题公式简称公式,常用大写拉丁字母A,B,C等表示。公式的上述定义方式称为归纳定义,第四章将对此定义方式进行讨论。 例1.8 (┐(p→(q∧r)))是命题公式,但(qp),p→r,p1∨p2∨…均非公式。 为使公式的表示更为简练,我们作如下约定: (1)公式最外层括号一律可省略。 (2)联结词的结合能力强弱依次为┐,(∧,∨),→,?,(∧,∨)表示∧与∨平等。 (3)结合能力平等的联结词在没有括号表示其结合状况时,采用左结合约定。湖南省自考网:https://www.wendangku.net/doc/e910342336.html,/整理 例如,┐p→q∨(r∧q∨s)所表示的公式是((┐p)→(q∨((r∧q)∨s))) 设A是命题公式,A1是A 的一部分,且A1也是公式,则A1称为公式A的子公式。

证明组合恒等式的方法与技巧

证明组合恒等式的方法与技巧 摘要本文是以高中二项式定理和排列组合知识为理论基础,对几个常见重要的例题作分析,总结组合恒等式常见的证明方法与技巧。对组合恒等式的证明方法本文主要讲了组合公式法,组合数性质法,二项式定理法,比较系数法,数列求和法,数学归纳法,组合分析法。 关键字组合,组合数,组合恒等式,二项式定理 Proof Methods and Skills of Combinatorial Identity ABSTRACT This thesis primarily analyses some common but significant examples on the basis of binomial theorem and permutation and combination knowledge of senior middle school to summarize the common demonstrating methods and technique of combinatorial identity. For combinatorial identity, here it mainly introduces the methods of combination formula, unitized construction, mathematical induction ,and so on . KEY WORDS combination,combinatorial identity,binomial theorem 前言 组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排 列组合、二项式定理为基础。组合恒等式的证明有一定的难度和特殊的

恒等式的证明

恒等式的证明

————————————————————————————————作者:————————————————————————————————日期:

第五讲恒等式的证明 代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析. 两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等. 把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等. 证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧. 1.由繁到简和相向趋进 恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式). 例1 已知x+y+z=xyz,证明: x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz. 分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边. 证因为x+y+z=xyz,所以 左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2) =(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2 =xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx) =xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx) =xyz+xyz+xyz+xyz =4xyz=右边. 说明本例的证明思路就是“由繁到简”.

三角恒等式证明9种基本技巧

三角恒等式证明9种基本技巧 三角恒等式的证明是三角函数中一类重要问题,这类问题主要以无条件和有条件恒等式出现。根据恒等式的特点,可采用各种不同的方法技巧,技巧常从以下各个方面表示出来。 1.化角 观察条件及目标式中角度间联系,立足于消除角间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是证明三角恒等式时一种常用技巧。 例1求证:tan 23x - tan 21x =x x x 2cos cos sin 2+ 思路分析:本题的关键是角度关系:x=23x -2 1 x ,可作以下证明: 2.化函数 三角函数中有几组重要公式,它们不仅揭示了角间的关系,同时揭示了函数间的相互关系,三角变换中,以观察函数名称的差异为主观点,以化异为为同(如化切为弦等)的思路,恰当选用公式,这也是证明三角恒等式的一种基本技巧。 例2 设A B A tan )tan(-+A C 22sin sin =1,求证:tanA 、tanC 、tanB 顺次成等比数列。 思路分析:欲证tan 2 C = tanA ·tanB ,将条件中的弦化切是关键。 3.化幂 应用升、降幂公式作幂的转化,以便更好地选用公式对面临的问题实行变换,这也是三角恒等式证明的一种技巧。 例3求证 cos4α-4cos2α+3=8sin 4 α 思路分析:应用降幂公式,从右证到左:

将已知或目标中的常数化为特殊角的函数值以适应求征需要,这方面的例子效多。如 1=sin 2 α+cos 2 α=sec 2 α-tan 2 α=csc 2 α-cot 2 α=tan αcot α=sin αcsc α=cos αsec α,1=tan450 =sin900 =cos00 等等。如何对常数实行变换,这需要对具体问题作具体分析。 例4 求证 αααα2 2sin cos cos sin 21--=α α tan 1tan 1+- 思路分析:将左式分子中“1”用“sin 2 α+cos 2 α”代替,问题便迎刃而解。 5.化参数 用代入、加减、乘除及三角公式消去参数的方法同样在证明恒等式时用到。 例5 已知acos 2 α+bsin 2 α=mcos 2 β,asin 2 α+bcos 2 α=nsin 2 β,mtan 2 α=ntan 2 β(β≠n π) 求证:(a+b)(m+n)=2mn 6.化比 一些附有积或商形式的条件三角恒等式证明问题,常可考虑应用比例的有关定理。用等比定理,合、分比定理对条件加以变换,或顺推出结论,或简化条件,常常可以为解题带来方便。 例6 已知(1+ cos α)(1- cos β)=1- 2 ( ≠0,1)。求证:tan 2 2α= -+11tan 22 β 思路分析:综观条件与结论,可考虑从条件中将 分离出来,以结论中 -+11为向导,应用合比定理即可达到论证之目的。

离散数学自学笔记命题公式及其真值表

我们把表示具体命题及表示常命题的p,q,r,s等与f,t统称为命题常元(proposition constant)。深入的讨论还需要引入命题变元(proposition variable)的概念,它们是以“真、假”或“1,0”为取值范围的变元,为简单计,命题变元仍用p,q,r,s等表示。相同符号的不同意义,容易从上下文来区别,在未指出符号所表示的具体命题时,它们常被看作变元。 命题常元、变元及联结词是形式描述命题及其推理的基本语言成分,用它们可以形式地描述更为复杂的命题。下面我们引入高一级的语言成分——命题公式。 定义1.1 以下三条款规定了命题公式(proposition formula)的意义: (1)命题常元和命题变元是命题公式,也称为原子公式或原子。 (2)如果A,B是命题公式,那么(┐A),(A∧B),(A∨B),(A→B),(A?B)也是命题公式。 (3)只有有限步引用条款(1),(2)所组成的符号串是命题公式。 命题公式简称公式,常用大写拉丁字母A,B,C等表示。公式的上述定义方式称为归纳定义,第四章将对此定义方式进行讨论。 例1.8 (┐(p→(q∧r)))是命题公式,但(qp),p→r,p1∨p2∨…均非公式。 为使公式的表示更为简练,我们作如下约定: (1)公式最外层括号一律可省略。 (2)联结词的结合能力强弱依次为┐,(∧,∨),→,?,(∧,∨)表示∧与∨平等。 (3)结合能力平等的联结词在没有括号表示其结合状况时,采用左结合约定。 例如,┐p→q∨(r∧q∨s)所表示的公式是((┐p)→(q∨((r∧q)∨s))) 设A是命题公式,A1是A 的一部分,且A1也是公式,则A1称为公式A的子公式。 如对公式A:┐p→q∨(r∧q∨s),则p,┐p ,q ,(r∧q∨s)及q∨(r∧q∨s)都是公式A的子公式,而┐q,┐p→q,虽然是公式,但确不是A的一部分,因此不是A 的子公式;q∨(r∧虽然是公式A的一部分,但不是公式,因而也不是A的子公式。 如果公式A含有命题变元p1,p2,…,pn,记为A(p1,…,pn),并把联结词看作真值运算符,那么公式A可以看作是p1,…,pn的真值函数。对任意给定的p1,…,pn 的一种取值状况,称为指派(assignments),用希腊字母a,b等表示,A均有一个确定的真值。当A对取值状况a 为真时,称指派a弄真A,或a是A的成真赋值,记为a (A)= 1;反之称指派a弄假A,或a是A的成假赋值,记为a (A)= 0.对一切可能的指派,

2 离散数学-命题公式,真值表

2 命题公式,真值表 (1) 数理逻辑是通过引入表意符号研究人类思维中的推理过程及推理正确与否的数学分支. 数学------??? 符号运算 推理---思维过程:前提 结论 命题逻辑---研究由命题为基本单位构成的前提和结论之间的可推导关系.(逻辑演算) 即将推理(不涉及内函)形式化. 例1 (a) 4是偶数. 张林学习优秀. 太阳系以外的星球上有生物. (b) 这朵花真美丽! 现在开会吗? (c) 3 5.x +> 我正在说慌. 特征分析(a) 陈述句,非真即假. (b) 感叹句,疑问句. (c) 悖论. 定义1 能辩真假的陈述句,称为命题,用,,,P Q Z 表示.其判断结果称为命题的真值. 成真的命题称为真命题,其真值为真,记为,T 或为1.成假的命题称假命题,其真值为假,记为,F 或为0. 例2 (1) 2008年奥运会在北京举行. (2) 22 5.?= (3) 计算机程序的发明者是诗人拜伦. 用符号表是上述命题,并求真值. 解 (1) :P 2008年奥运会在北京举行. .T (2) :Q 22 5.?= .F (3) :R 计算机程序的发明者是诗人拜伦. .F (2) 3, 35,+ 3(4 1).+- 例3 (1) 今天没有数学考试. (2) 下午,我写信或做练习. (3) 王芳不但用功,而且成绩优秀. (4) 如果太阳从西边出来了,那么地球停止转动.

(5) 2是素数,当且仅当三角形有三条边. 特征分析(a)存在自然语言中的虚词. (b)语句可以分解,细化. 定义2 称下列符号为逻辑联结词 否定 ? 非 P ? 析取 ∨ 或者 P Q ∨ 合取 ∧ 且 P Q ∧ 蕴涵 → 若----,则----- P Q → 等价 ? 当且仅当 P Q ? 逻辑联结词真值的规定 例4 将下列命题符号化. (1) 小李聪明,但不用功. ()P Q ∧? (2) 单位派小王或小苏出差. P Q ∨ (3) 如果椅子是紫色的,且是园的,那么地是平的. ()P Q R ∧→ (4) n 是偶数当且仅当它能被2整除. P Q ? 注 1 逻辑联结词:运算符.顺序 ,,,,.?∧∨→? 2 自然语言中 虽然---,但是----; 不但---,而且----; ∧ 只有----,才----; 除非----,才-----; → 3 ∨ 可兼或(相容) ∨ 不可兼或(排斥) 小王是山东人或是河北人. ()()P Q P Q P Q ∨?∧?∨?∧ 4 ,P Q -----------------------简单命题

三角函数恒等式的证明

三角形内有关角的三角函数恒等式的证明 张思明 课型和教学模式:习题课,“导学探索,自主解决”模式 教学目的: (1)掌握利用三角形条件进行角的三角函数恒等式证明的主要方法,使学生熟悉三角变换的一些常用方法和技巧(如定向变形,和积互换等)。 (2)通过自主的发现探索,培养学生发散、创造的思维习惯和思维能力,体验数形结合、特殊一般转化的数学思想。并利用此题材做学法指导。 (3)通过个人自学、小组讨论、互相启发、合作学习,培养学生自主与协作相结合的学习能力和敢于创新,不断探索的科学精神。 教学对象:高一(5)班 教学设计: 一.引题:(A,B环节) 1.1复习提问:在三角形条件下,你能说出哪些有关角的三角恒等式? 拟答: , …… , ,

…… 这些结果是诱导公式,的特殊情况。 1.2今天开始的学习任务是解决这类问题:在三角形条件下,有关角的三角恒等式的证明。学习策略是先分若干个学习小组(四人一组),分头在课本P233---P238,P261-266的例题和习题中,找出有三角形条件的所有三角恒等式。 1.3备考:期待找出有关△ABC内角A、B、C的三角恒等式有: (1)P233:例题10:sinA+sinB+sinC=4cosA/2cosB/2cosC/2 (2)P238:习题十七第6题:sinA+sinB-sinC=4sinA/2sinB/2cosC/2. (3) cosA+cosB+cosC=1+4sinA/2sinB/2sinC/2. (4) sin2A+sin2B+sin2C=4sinAsinBsinC. (5)cos2A+cos2B+cos2C=-1-4cosAcosBcosC. (6)P264:复参题三第22题:tgA+tgB+tgC = tgAtgBtgC. (7) 也许有学生会找出:P264--(23)但无妨。 1.4请各组学生分工合作完成以上恒等式的证明: 提示:建议先自学例题10,注意题目之间的联系,以减少证明的重复劳动。 二.第一层次的问题解决(C,D环节) 2.1让一个组上黑板,请学生自主地挑出有“代表性”的3题(不超过3题)书写证明过程。然后请其他某一个组评判或给出不同的证法。 证法备考:(1)左到右:化积---->提取----->化积。 (2)左到右:化积---->提取----->化积sin(A+B)/2=cosC/2

真值表化简法

在设计逻辑电路图时,由真值表直接得到的函数往往比较复杂。代数法和卡诺图法等方法对于变量数目较多的逻辑函数则效果不佳,本文介绍一种可以化简复杂逻辑函数的方法──表格法,该方法可以对变量数目较多的逻辑函数也可以进行化简。 2、原理 在介绍化减法之前,先说明三个概念: 蕴涵项──在函数的任何积之和式中,每个乘积项称为该函数的蕴涵项。对应于卡诺图中的任一标1单元(最小项)以及2m个相邻单元所形成的圈都是函数的蕴涵项。 素项──若函数的一个蕴涵项不是该函数中其它蕴涵项的一个子集,则此蕴涵项称为素蕴涵项,简称素项。 实质素项──若函数的一个素项所包含的某一最小项,不包括在该函数的其它任何素项中则此素项称为实质素蕴涵项,简称实质素项。 列表化简法的基本原理是利用逻辑函数的最小项,通过对相邻最小项的合并,消去多余变量因子,获得逻辑函数的最简式的。列表化简法的思路是先找出给定函数F的全部素项,然后找出其中的实质素项;若实质素项不能覆盖F的所有最小项,则进一步找出所需素项,以构成F的最简素项集。 下面用列表化简法将下列函数化简为最简与或表达式。 F(A,B,C,D)=Σ(0,3,4,5,6,7,8,10,11) 3、建立素项表 首先,找出给定函数的全部素项。 (1)先将每个最小项所对应的二进制数按其“1”的个数分组得表1; 表1 最小项

(2)将表1中的相邻两个组之间二进制数进行比较、合并得到一次化简结果,称为一次乘积项,其项号记为i(j-i),其中i为最小项中的小项号,j为最小项中的大项号,得表2; 表2 一次乘积项

(3)再将表2中的相邻两组内的二进制数进行比较、合并、便得到第二次化简结果,称为二次乘积项,其项号记为i(n,m),其中i为两个一次乘积项中的小项号,n为原最小项的项号差,m为一次乘积项的项号差,得表3; 表3 二次乘积项 不能与其它一次乘积项合并的一次乘积项是素项,分别以a,b,c,d,e,f记之,不能合并的二次乘积项也是素项,以g记之。

求给定命题公式真值表并根据真值表求公式主范式

“离散数学”实验报告(求给定命题公式地真值表并根据真值表求公式地主范式) 专业网络工程 班级 1202班 学号 12407442 姓名张敏慧 2013.12.14

目录 一.实验目地 3 二.实验内容 (3) 求任意一个命题公式地真值表 (3) 三.实验环境 3 四. 实验原理和实现过程(算法描述)3 1.实验原理 (3) 2.实验流程图 (5) 五.实验代码 6 六. 实验结果14 七. 实验总结19

一.实验目地 本实验课程是网络工程专业学生地一门专业基础课程,通过实验,帮助学生更好地掌握计算机科学技术常用地离散数学中地概念.性质和运算;通过实验提高学生编写实验报告.总结实验结果地能力;使学生具备程序设计地思想,能够独立完成简单地算法设计和分析. 熟悉掌握命题逻辑中地真值表.主范式等,进一步能用它们来解 决实际问题. 二.实验内容 求任意一个命题公式地真值表,并根据真值表求主范式 详细说明: 求任意一个命题公式地真值表 本实验要求大家利用C/C++语言,实现任意输入公式地真值表计算.一般我们将公式中地命题变元放在真值表地左边,将公式地结果放在真值表地右边.命题变元可用数值变量表示,合适公式地表示及求真值表转化为逻辑运算结果;可用一维数表示合式公式中所出现地n个命题变元,同时它也是一个二进制加法器地模拟器,每当在这个模拟器中产生一个二进制数时,就相当于给各个命题变元产生了一组真值指派.算法逻辑如下: (1)将二进制加法模拟器赋初值0 (2)计算模拟器中所对应地一组真值指派下合式公式地真值. (3)输出真值表中对应于模拟器所给出地一组真值指派及这组真值指派所对应地一行真值. (4)产生下一个二进制数值,若该数值等于2n-1,则结束,否则转(2). 三.实验环境;

恒等证明-第4讲恒等式证明竞赛班教师版

第四讲 利用恒等式解题 代数式的恒等变形可以认为是解决数学问题必不可少的一种变形(运算)的方式。将已知、求证的式子进行适当、巧妙的变形,使问题得到解决,也是衡量一个同学数学能力的标准之一。因此,国内外各级数学竞赛试题中,都有大量涉及恒等变形的试题。 一、 基础知识 1. 恒等变形的意义 如果一个等式中的字母取允许范围内的任意一个值,等式总能成立,那么这个等式叫做恒等式;把一个式子变形为与原式恒等的另一种不同形式的式子,这种变形叫做恒等变形。 2. 恒等变形的分类 恒等变形主要分为无条件限制等式和有条件限制等式变形两大类; 恒等变形主要形式可概括为整式变形、分式变形和根式变形。 3. 三种数学方法在恒等变形中的体现 初中同学接触到的数学方法在恒等变形中的体现主要有:换元法、配方法、待定系数法。 二、 例题部分-分式部分 例1.(★,1999年北京市)不等于0的三个正数a 、b 、c 满足1111 a b c a b c ++= ++,求证:a 、b 、c 中至少有两个互为相反数。 《初中数学竞赛同步辅导》,华中师范大学出版社,P113,例5 例2.(★)不等于0的三个正数a 、b 、c 满足 1111 a b c a b c ++= ++,求证:对任意整数n , 21 21 21 212121 1 111 n n n n n n a b c a b c ------++= ++; 《初中数学竞赛同步辅导》,华中师范大学出版社,P116,4 《奥数教程》初二年级,华东师范大学出版社,P90,例3 例3.(★)设a 、b 、c 都不为0,2a b c ++=,1111 2 a b c ++=;求证:a ,b ,c 中至少有一个等于2; 【证明】:由 11112a b c ++=,得2abc ab bc ca =++,故()()0a b c ab bc ca abc ++++-= 从而()()()0a b b c c a +++=,若a +b =0,则c =2,其余类似; 例4.(★★)若x 、y 、z 不全相等,且111 x y z p y z x + =+=+=,求所有可能得p ,并且证明:0xyz p += 【证明】:由x 、y 、z 不全相等,则x 、y 、z 必互不相等;∵1 p z x =+ ,及1x p y =-,得1y p z yp =+-,

代数恒等式的证明练习

1. 求证: ①(a+b+c)2+(a+b-c)2-(a-b-c)2-(a-b-c)2=8ab ②(x+y )4+x 4+y 4=2(x 2+xy+y 2)2 ③(x-2y)x 3-(y-2x)y 3=(x+y)(x-y)3 ④3 n+2+5 n+2―3 n ―5 n =24(5 n +3 n-1) ⑤a 5n +a n +1=(a 3 n -a 2 n +1)(a 2 n +a n +1) 2.己知:a 2+b 2=2ab 求证:a=b 3.己知:a+b+c=0 求证:①a 3+a 2c+b 2c+b 3=abc ②a 4+b 4+c 4=2a 2b 2+2b 2c 2+2c 2a 2 4.己知:a 2=a+1 求证:a 5=5a+3 5.己知:x +y -z=0 求证: x 3+8y 3=z 3-6xyz 6.己知:a 2+b 2+c 2=ab+ac+bc 求证:a=b=c 7.己知:a ∶b=b ∶c 求证:(a+b+c )2+a 2+b 2+c 2=2(a+b+c)(a+c) 8.己知:abc ≠0,ab+bc=2ac 求证: c b b a 1111-=- 9.己知:a c z c b y b a x -=-=- 求证:x+y+z=0 10.求证:(2x -3)(2x+1)(x 2-1)+1是一个完全平方式 11己知:ax 3+bx 2+cx+d 能被x 2+p 整除 求证:ad=bc

练习20 1.④左边=5 n(5 2-1)+3 n-1(33-3)= 24(5 n+3 n-1)注意右边有3n-1 2.左边-右边=(a-b)2 3.②左边-右边=(a2+b2-c2)2-4a2b2=…… 4.∵a5=a2a2a,用a2=a+1代入 5.用z=x+2y代入右边 6.用已知的(左-右)×2 7.用b2=ac分别代入左边,右边化为同一个代数式 8.在已知的等式两边都除以abc 9.设三个比的比值为k, 10.(2x2-x-2)2 11. 用待定系数法

任意命题公式的真值表

实验报告 实验名称:任意命题公式的真值表 实验目的与要求:通过实验,帮助学生更好地掌握计算机科学技术常用的离散数学中的概念、性质和运算,包括联结词、真值表、运算的优先级等,提高学生编写实验报告、总结实验结果的能力,培养学生的逻辑思维能力和算法设计的思想,能够独立完成简单的算法设计和分析,进一步用它们来解决实际问题,帮助学生学习掌握C/C++语言程序设计的基本方法和各种调试手段,使学生具备程序设计的能力。 实验内容提要:求任意一个命题公式的真值表 实验步骤:(一)、关于命题公式的形式和运算符(即联结词)的运算 首先根据离散数学的相关知识,命题公式由命题变元和运算符(即联结词)组成,命题变元用大写字母英文表示(本次试验没有定义命题常元T和F,即T、F都表示命题变元),每个命题变元都有两种真值指派0和1,对应于一种真值指派,命题公式有一个真值,由所有可能的指派和命题公式相应的真值按照一定的规范构成的表格称为真值表。 目前离散数学里用到的包括扩充联结词总共有九种,即析取(或)、合取(与)、非、蕴含、等值、与非、或非、异或、蕴含否定,常用的为前五种,其中除了非运算为一元运算以外,其它四种为二元运算。所以本次实验设计时只定义了前五种运算符,同时用“/”表示非,用“*”表示合取,用“+”表示析取,用“>”表示蕴含,用“:”表示等值,且这五种运算符的优先级依次降低,如果需用括号改变运算优先级,则用小括号()改变。 以下为上述五种运算符运算时的一般真值表,用P和Q表示命题变元:1.非,用“/”表示 2.合取(与),用“*”表示

3.析取(或),用“+”表示 4.蕴含,用“>”表示 5.等值,用“:”表示 (二)、命题公式真值的计算 对于人来说,计算数学表达式时习惯于中缀表达式,例如a*b+c,a*(b+c)等等,而对于计算机来说,计算a*b+c还好,计算a*(b+c)则困难,因为括号的作用改变了运算的顺序,让计算机识别括号而改变计算顺序显得麻烦。经理论和实践研究,用一种称之为后缀表达式(逆波兰式)的公式形式能让计算机更容易计算表达式的真值。例如上面的a*(b+c),其后缀表达式为abc+*,计算时从左边开始寻找运算符,然后按照运算符的运算规则将与其相邻的前面的一个(非运算时为一个)或两个(其它四种运算为两个)操作数运算,运算结果取代原来的运算符和操作数的位置,然后重新从左边开始寻找运算符,开始下一次计算,比如上式,从左边开始寻找运算符,先找到+,则计算b+c,结果用d表示,这时后缀表达式变为ad*,又重新开始从左边开始寻找运算符,找到*,则计算a*d,

三角函数恒等式证明的基本方法

三角函数恒等式证明的基本方法 三角函数恒等式是指对定义域内的任何一个自变量x 都成立的等式;三角函数恒等式的证明问题是指证明给定的三角函数等式对定义域内的任何一个自变量x 都成立的数学问题。这类问题主要包括:①三角函数等式一边较繁杂,一边较简单;②三角函数等式的两边都较繁杂两种类型。那么在实际解答三角函数恒等式的证明问题时,到底应该怎样展开思路,它的基本方法如何呢?下面通过典型例题的解析来回答这个问题。 【典例1】解答下列问题: 1、证明下列三角函数恒等式: (1)4222sin sin cos cos 1αααα++=; (2) 22(cos 1)sin 22cos ααα-+=-; (3)若sin α.cos α<0,sin α.tan α<0, =±2tan 2 α 。 【解析】 【知识点】①同角三角函数的基本关系;②二次根式的定义与性质;③分式的定义与性质。 【解题思路】(1)对左边运用同角三角函数的基本关系,通过运算就可得到右边,从而证明恒等式;(2)对左边运用同角三角函数的基本关系,通过运算就可得到右边,从而证明恒等式;(3)对左边运用分式的性质,同角三角函数的基本关系和二次根式的性质,通过运算就

可得到右边,从而证明恒等式。 【详细解答】(1)Q 左边=sin 2α( sin 2α+ cos 2α)+ cos 2α= sin 2α+ cos 2α=1 =右边,∴4222sin sin cos cos 1αααα++=;(2)Q 左边= cos 2α-2 cos α+1+ sin 2α =2-2 cos α=右边,∴22(cos 1)sin 22cos ααα-+=-;(3) Q sin α.cos α<0,sin α.tan α<0,∴α是第二象限的角,?2 α 是第一象限或第三象限的角,①当 2 α 是第一象限的角时,左边 |1sin |2|cos | 2α α+- |1sin |2|cos | 2 α α-=1sin 1sin 2 2cos 2 α α α +-+=2tan 2α;②当2 α是第一象限的角时,左边 |1sin |2|cos |2α α+-|1sin | 2|cos | 2α α- = 1sin 1sin 2 2cos 2 α α α --+-=-2tan 2α;?左边=±2tan 2 α=右边,∴若若 sin α.cos α<0,sin α.tan α<0 ±2tan 2α。 2、求证:22sin()sin() sin cos αβαβαβ+-=1-22tan tan βα ; 【解析】

组合恒等式的证明方法与技巧

证明组合恒等式的方法与技巧 前言 组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排前言列组合、二项式定理为基础.组合恒等式的证明有一定的难度和特殊的技巧,且灵活性很强,要求学生掌握这部分知识,不但要学好有关的基础知识,基本概念和基本技能,而且还要适当诱导学生拓宽思路、发挥才智,培养解决问题方法多样化的思想.下面就以例题讲解的形式,把证明组合恒等式的常见方法与技巧一一列举出来. 1. 利用组合公式证明 组合公式:m n C = n! !n m m (-)! 例1. 求证:m m n C =n 1 1m n C -- 分析:这是组合恒等式的一个基本性质,等式两边都只是一个简单的组合数.由此,我们只要把组合公式 代入,经过简化比较,等号两边相等即可. 证:∵ m m n C = m n! !n m m (-)! … 1 1m n C --= n n !1!n m m (-1)(-)(-)!=n n !m 1!n m m m (-1)(-)(-)!=m n! !n m m (-)! ∴ m m n C =n --1 1m n C . 技巧:利用组合公式证明时,只须将等式中的组合数用公式代入,经过化简比较即可,此方法思路清晰,对处理比较简单的等式证明很有效,但运算量比较大,如遇到比较复杂一点的组合恒等式,此方法而不可取. 2. 利用组合数性质证明 组合数的基本性质:(1)m n C =n m n C - (2)1m n C +=m n C +1 m n C - (3)k k n C =n k 11n C -- (4)++...+=012n 2n n n n n C C C C ?

恒等式的证明

第五讲恒等式的证明 代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析. 两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等. 把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等. 证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧. 1.由繁到简和相向趋进 恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式). 例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz. 分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边. 证因为x+y+z=xyz,所以 左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2) =(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2 =xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx) =xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx) =xyz+xyz+xyz+xyz

离散数学命题公式真值表C++或C语言实验报告

离散数学实验报告 专业班级:12级计算机本部一班姓名:鲍佳珍 学号:201212201401016 实验成绩: 1.【实验题目】 命题逻辑实验二 2.【实验目的】 熟悉掌握命题逻辑中真值表,进一步能用它们来解决实际问题。 3.【实验内容】 求任意一个命题公式的真值表 4、【实验要求】 C或C++语言编程实现 5. 【算法描述】 1.实验原理 真值表:表征逻辑事件输入和输出之间全部可能状态的表格。列出命题公式真假值的表。通常以1表示真,0 表示假。命题公式的取值由组成命题公式的命题变元的取值和命题联结词决定,命题联结词的真值表给出了真假值的算法。真值表是在逻辑中使用的一类数学表,用来确定一个表达式是否为真或有效。 2.实验过程 首先是输入一个合理的式子,生成相应真值表,然后用函数运算,输出结果:要求可生成逻辑非、合取、析取、蕴含、双条件表达式的真值表,例如:输入 !a 输出真值表如下: a !a 0 1 10 输入a&&b 输出真值表如下: a b a&&b 0 0 0 0 1 0 1 0 0 1 1 1 输入a||b 输出真值表如下:

a b a||b 0 0 0 0 1 1 1 0 1 1 1 1 输入a->b 输出真值表如下: a b a->b 0 0 1 0 1 1 1 0 0 1 1 1 输入a<>b (其中<>表示双条件) 输出真值表如下: a b a<>b 0 0 1 0 1 0 1 0 0 1 1 1 6.【源程序(带注释)】 #include #include void hequ(); void yunhan(); void xiqu(); void shuang(); void fei();//声明五个函数 int main() { int ch; char s[10];

离散数学之逻辑运算和命题公式真值表

1、逻辑联接词的运算 从键盘输入两个命题变元P和Q的真值,输出它们的合取、析取、条件、双条件和P的否定的真值。 #include int main() { int a,b; int hequ(int P,int Q); int xiqu(int P,int Q); int tiaojian(int P,int Q); int shuangtiaojian(int P,int Q); int Pfaoding(int P); int show(int a,int b); cout<<"请输入P和Q的真值:\n"; cin>>a>>b; show(a,b); return 0; } int hequ(int P,int Q) { if(P==0) P=P; else P=1; if(Q==0) Q=Q; else Q=1; return(P&Q); } int xiqu(int P,int Q) { if(P==0) P=P; else P=1; if(Q==0) Q=Q; else Q=1; return(P|Q); } int tiaojian(int P,int Q)

{ if(P==0) P=P; else P=1; if(Q==0) Q=Q; else Q=1; if(P==1&&Q==0) return(0); else return(1); } int shuangtiaojian(int P,int Q) { if(P==0) P=P; else P=1; if(Q==0) Q=Q; else Q=1; return(!P^Q); } int Pfaoding(int P) { if(P==0) P=P; else P=1; return(!P); } int show(int a,int b) { cout<<"P Q P∧Q P∨Q P→Q P←→Q ┐P"<

逻辑命题公式计算

题号:第一题 题目:电梯模拟 1,需求分析: 计算命题演算公式的真值 所谓命题演算公式是指由逻辑变量(其值为TRUE或FALSE )和逻辑运算符人(AND )、 V( OR)和「( NOT )按一定规则所组成的公式(蕴含之类的运算可以用A、V和「来表示)。公式运算的先后顺序为「、人、V,而括号()可以改变优先次序。已知一个命题演算公式及各变量的值,要求设计一个程序来计算公式的真值。 要求: ( 1)利用二叉树来计算公式的真值。首先利用堆栈将中缀形式的公式变为后缀形式;然后根据后缀形式, 从 叶结点开始构造相应的二叉树;最后按后序遍历该树, 求各子树之值, 即每到达一个结点, 其子树之值已经计算出来, 当到达根结点时, 求得的值就是公式之真值。 ( 2)逻辑变元的标识符不限于单字母,而可以是任意长的字母数字串。 ( 3)根据用户的要求显示表达式的真值表。 2,设计: 2.1 设计思想: <1> ,数据结构设计: (1) 线性堆栈1 的数据结构定义 typedef struct { DataType stack [MaxStackSize]; int top; /* 当前栈的表长*/ } SeqStack; 用线性堆栈主要是用来存储输入的字符, 它的作用就是将中缀表达式变成后缀表达式。 (2) 线性堆栈2 的数据结构定义 typedef struct { BiTreeNode *stack [MaxStackSize]; int top; /* 当前栈的表长*/ } TreeStack; 这个堆栈和上面的堆栈的唯一不同就是它们存储的数据的类型不同, 此堆栈存储的是树节点,它的作用是将后缀表达式构成一棵二叉树。 (3)树节点数据结构定义typedef struct Node { DataType data; struct Node *leftChild; struct Node *rightChild; }BiTreeNode; <2>算法设计详细思路如下:首先实现将中缀表达式变成后缀表达式:在将中缀表达式变成后缀表达式的

恒等式证明

初一数学竞赛系列讲座(7) 有关恒等式的证明 一、知识要点 恒等式的证明分为一般恒等式的证明和条件恒等式证明,对于一般恒等式的证明,常常通过恒等变形从一边证到另一边,或证两边都等于同一个数或式。在恒等变形过程中,除了要掌握一些基本方法外,还应注意应用一些变形技巧,如:整体处理、“1”的代换等;对于条件恒等式的证明,如何处理好条件等式是关键,要认真分析条件等式的结构特征,以及它和要证明的恒等式之间的关系。 二、例题精讲 例1 求证:a 1+(1-a 1)a 2+(1-a 1)(1-a 2)a 3+…+(1-a 1)(1-a 2)…(1-a n-1)a n =1-(1-a 1)(1-a 2)…(1-a n-1)(1-a n ) 分析:要证等式成立,只要证明1- a 1- (1-a 1)a 2- (1-a 1)(1-a 2)a 3 -…- (1-a 1)(1-a 2)…(1-a n-1)a n =(1-a 1)(1-a 2)…(1-a n-1)(1-a n ) 证明:1- a 1- (1-a 1)a 2- (1-a 1)(1-a 2)a 3 -…- (1-a 1)(1-a 2)…(1-a n-1)a n =(1-a 1)[ 1- a 2- (1-a 2)a 3- (1-a 2)(1-a 3)a 4 -…- (1-a 2)(1-a 3)…(1-a n-1)a n ] =(1-a 1) (1-a 2)[ 1- a 3- (1-a 3)a 4- (1-a 3)(1-a 4)a 5 -…- (1-a 3)(1-a 4)…(1-a n-1)a n ] =(1-a 1) (1-a 2) (1-a 3)[ 1- a 4- (1-a 4)a 5- (1-a 4)(1-a 5)a 6 -…- (1-a 4)(1-a 5)…(1-a n-1)a n ] =…… =(1-a 1)(1-a 2)…(1-a n-1)(1-a n ) ∴ 原等式成立 例2 证明恒等式 ()()()()()() 11322321121132322121a a a a a a a a a a a a a a a a a a a a a a a a n n n n ++++++=++++++ (第二十届全俄数学奥林匹克九年级试题) 证明 评注:裂项是恒等变形中常用的一种方法 ()()()()()()11322321121322211113232121132322121111111111111a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a n n n n n n n ++++++=???? ??+-++???? ??+-+???? ??+-=???? ??+-++???? ??+-+???? ??+-=++++++

求给定命题公式的真值表并根据真值表求公式的主范式

求给定命题公式的真值表并根据真值表求公式的主范式(求给定命题公式的真值表并根据真值表求公式的主范式) 专业网络工程 班级 1202班 学号 12407442 姓名张敏慧 2013.12.14 目录 一.实验目的 ....................................................... 3 二.实验内容 (3) 求任意一个命题公式的真值 表 ..................................................................... ..... 3 三.实验环 境 (3) 四. 实验原理和实现过程(算法描述) (3) 1.实验原 理 ..................................................................... ...................................... 3 2.实验流程 图 ..................................................................... .................................. 5 五.实验代 码 (6) 六. 实验结果 (14)

七. 实验总结 (19) - 1 - 一.实验目的 本实验课程是网络工程专业学生的一门专业基础课程,通过实验,帮助学生更好地掌握计算机科学技术常用的离散数学中的概念、性质和运算;通过实验提高学生编写实验报告、总结实验结果的能力;使学生具备程序设计的思想,能够独立完成简单的算法设计和分析。 熟悉掌握命题逻辑中的真值表、主范式等,进一步能用它们来解决实际问题。 二.实验内容 求任意一个命题公式的真值表,并根据真值表求主范式 详细说明: 求任意一个命题公式的真值表 本实验要求大家利用C/C,,语言,实现任意输入公式的真值表计算。一般我 们将公式中的命题变元放在真值表的左边,将公式的结果放在真值表的右边。命题变元可用数值变量表示,合适公式的表示及求真值表转化为逻辑运算结果;可用一维数表示合式公式中所出现的n个命题变元,同时它也是一个二进制加法器的模拟器,每当在这个模拟器中产生一个二进制数时,就相当于给各个命题变元产生了一组真值指派。算法逻辑如下: (1)将二进制加法模拟器赋初值0 (2)计算模拟器中所对应的一组真值指派下合式公式的真值。 (3)输出真值表 中对应于模拟器所给出的一组真值指派及这组真值指派所对应的一行真值。 n(4)产生下一个二进制数值,若该数值等于2-1,则结束,否则转(2)。 三.实验环境; 使用visual C++6.0为编程软件,采用C语言为编程语言实现。

相关文档
相关文档 最新文档