文档库 最新最全的文档下载
当前位置:文档库 › 第四章湍流流动的近壁处理

第四章湍流流动的近壁处理

第四章湍流流动的近壁处理
第四章湍流流动的近壁处理

第四章湍流流动的近壁处理

壁面对湍流有明显影响。在很靠近壁面的地方,粘性阻尼减少了切向速度脉动,壁面也阻止了法向的速度脉动。离开壁面稍微远点的地方,由于平均速度梯度的增加,湍动能产生迅速变大,因而湍流增强。因此近壁的处理明显影响数值模拟的结果,因为壁面是涡量和湍流的主要来源。

实验研究表明,近壁区域可以分为三层,最近壁面的地方被称为粘性底层,流动是层流状态,分子粘性对于动量、热量和质量输运起到决定作用。外区域成为完全湍流层,湍流起决定作用。在完全湍流与层流底层之间底区域为混合区域(Blending region),该区域内分子粘性与湍流都起着相当的作用。近壁区域划分见图4-1。

图4-1 边界层结构

第一节壁面函数与近壁模型

近壁处理方法有两类:第一类是不求解层流底层和混合区,采用半经验公式(壁面函数)来求解层流底层与完全湍流之间的区域。采用壁面函数的方法可以避免改进模型就可以直接模拟壁面存在对湍流的影响。第二类是改进湍流模型,粘性影响的近壁区域,包括层流底层都可以求解。

对于多数高雷诺数流动问题,采用壁面函数的方法可以节约计算资源。这是因为在近壁区域,求解的变量变化梯度较大,改进模型的方法计算量比较大。由于可以减少计算量并具有一定的精度,壁面函数得到了比较多的应用。对于许多的工程实际流动问题,采用壁面函数处理近壁区域是很好的选择。

如果我们研究的问题是低雷诺数的流动问题,那么采用壁面函数方法处理近壁区域就不合适了,而且壁面函数处理的前提假设条件也不满足。这就需要一个合适的模型,可以一直求解到壁面。FLUENT提供了壁面函数和近壁模型两种方法,以便供用户根据自己的计算问题选择。

4.1.1壁面函数

FLUENT 提供的壁面函数包括:1,标准壁面函数;2,非平衡壁面函数两类。标准壁面函数是采用Launder and Spalding [L93]的近壁处理方法。该方法在很多工程实际流动中有较好的模拟效果。

4.1.1.1 标准壁面函数

根据平均速度壁面法则,有:

**1

ln()U Ey k = 4-1

其中,1/41/2

*/p p

w U C k U μτρ

,1/41/2

*

p p C k y y μρμ

≡,并且

k =0.42,是Von Karman 常数;E =9.81,是实验常数;p U 是P 点的流体平均速度;p k 是P 点的湍动能;p y 是P 点到壁面的距离;μ是流体的动力粘性系数。

通常,在*

30~60y >区域,平均速度满足对数率分布。在FLUENT 程序中,这一条件改变为*

11.225y >。

当网格出来*

11.225y <的区域时候,FLUENT 中采用层流应力应变关系,即:

**U y =。这里需要指出的是FLUENT 中采用针对平均速度和温度的壁面法则中,采用了*

y ,而不是

y +(/u y τρμ≡)。对于平衡湍流边界层流动问题,这两个量几乎相等。

根据雷诺相似,我们可以根据平均速度的对数分布,同样给出平均温度的类似分布。

FLUENT 提供的平均温度壁面法则有两种:1,导热占据主要地位的热导子层的线性率分布;2,湍流影响超过导热影响的湍流区域的对数分布。

温度边界层中的热导子层厚度与动量边界层中的层流底层厚度通常都不相同,并且随流体介质种类变化而变化。例如,高普朗特数流体(油)的热导子层厚度比其粘性底层厚度小很多;对于低普朗特数的流体(液态金属)相反,热导子层厚度比粘性底层厚度大很多。

1/41/2

*

()w p p P T T c C k T q μρ-≡

'' 4-2 =()1/41/2

*2

*

1/41/2

22

1Pr Pr 21Pr ln()1Pr Pr Pr 2

p p t p t p t c C k y U q Ey P k C k U U q μμρρ?+?''?

????++????

??????+-??

''?? **

**()()T T y y y y <> 4-3

其中P 的计算采用下列公式[L93]

1/4

1/2Pr /41sin(/4)Pr Pr t t A Pr P k ππ????

??=- ? ? ????

??? 4-4

其中,f k 是流体导热系数;ρ是流体密度;p c 是流体定压比热;q ''壁面热流;p T 近邻壁面控制体温度;w T 壁面温度;Pr /p f c k μ=为分子普朗特数;Pr t 是湍流普朗特数,壁

面取0.85;A =26,是Van Dries 常数;k =0.42,是V on Karman 常数;E =9.793,是壁面函

数常数;c U 是**

T y y =时的平均速度大小。

Fluent 中,当选择了流体介质后,就可以根据流体介质的物理性质,计算出分子普朗特数,热导子区厚度*

T y ,存储备用。在求解的时候,根据*

y 与已经存储的*

T y 之间大小关系,判断是采用线性法则还是对数法则来计算壁面温度W T 或热流率q ''。

在采用雷诺应力模型或ε-k 双方程模型时,包括壁面近邻的控制体的湍动能都要计算,其边界条件为湍动能在壁面法向方向上梯度为零。

湍动能产生项k G 及耗散率是湍动能输运方程的源项组成部分,根据局部平衡假设来计算。根据这一假设,与壁面毗邻的控制体种湍动能及其耗散率是相同的。则湍动能产生率为:

p

p w w

w

k y k C k y U

G 2

/14/1μρτττ=??≈ 4-5 耗散率不需要求解输运方程,直接用如下公式计算:

p

p

p ky k C 2/34/3με=

4-6

以上所介绍的标准壁面函数是FLUENT 程序的默认设置。标准壁面函数包含了定常剪

切和局部平衡假设条件,如果壁面有很强的压力梯度,并且很强的非平衡性,

4.1.1.2 非平衡壁面函数

在非平衡壁面函数方法中,平均温度的壁面法则与标准壁面函数中相同。而对数分布的平均速度对压力梯度更加敏感:

???

? ??=μρρ

τμμy k C E

k k

C U w 2

/14/12/14/1ln 1/~ 4-7 式中,??

????+-+???? ??-=μρρνννν22/1*2/1*ln 21~

y k k y y y y k k y dx dp U U 4-8 νy 是物理粘性底层厚度,用下式计算:

2/14/1*

p

k C y y μννρμ≡

4-9

其中,225.11*

=νy 。

非平衡壁面函数在计算近壁控制体湍动能时采用了双层的概念,并且需要求解湍动能k 。假定与壁面毗邻的控制体积是由粘性底层和完全湍流构成,则湍流量由如下公式得到:

?????=w t ττ0

ννy y y y >< ?????=p

p k k y y k 2)(ν ννy y y y >< ???????=y

C k y k

l 2/322νε ννy y y y >< 4-10 式中,4

/3-=μkC C l ,νy 是有量纲的粘性底层厚度,2

/14/1*p

k C y y μννρμ≡ 。 利用上面的公式,近壁控制体里面的控制体平均湍动能产生率及其耗散率就可以计算出来。这里我们可以看出,非平衡壁面函数抛弃了标准壁面函数中的局部平衡假设,从而可以考虑非平衡的影响。

标准壁面函数对于高雷诺数流动问题,有壁面作用的流动过程等有较好的计算结果;非平衡壁面函数则把壁面函数方法推广到有压力梯度和非平衡的流动过程中。但是,如果流动情况偏离了壁面函数的理想条件,则壁面函数就不合适了。如:高粘度流体流过狭窄的通道,壁面由渗透的流动,大压力梯度并导致边界层分离的流动,由强体积力的流动,近壁区域三维性很强的流动问题。如果要成功解决上述问题,必须采用改进模型的方法来模拟近壁流动。FLUENT 提供了双层区模型(Two-Layer Zonal Model )。

4.1.1.3双层区模型

在双层区模型中,认为近壁流动只分两个区域,即粘性影响的区域和完全湍流,用基于到壁面距离y 的雷诺数y Re 来区分两个区域。

μ

ρy

k y ≡

Re 4-11 其中,y 是计算网格到壁面的垂直距离;FLUENT 中,y 是到最近壁面的距离:

w r r r y w

w

-≡Γ∈min 4-12

式中,r

是点在流场中的位置矢量;w r

是在边界上的位置矢量;w Γ是所有壁面边界的集合;这样,我们可以去处理流场里有复杂边界的问题。而且,这样定义y 跟网格的形状没有关系,对非结构网格也同样适合。

在完全湍流区域(200Re >y ),采用雷诺应力模型或者ε-k 模型;在粘性影响区域(200Re

u t l k C μρμ=

耗散率计算

ε

εl k 2

/3= 4-13 上面的长度尺度根据参考文献[L29]的方法计算:

]1[Re u y A l u e y c l -

-= 4-14

]1[Re ε

εA l y e

y c l -

-= 4-15

如果所有的计算区域都在粘性影响的区域以内(200Re

需要求解,而是用上面的代数方程来就得。上面长度尺度计算过程中的模型常数采用Chen and Pater [L29]的结果。

4

/3-=μ

kC c l , 70=u A , l c A 2=ε

表4-1 几种壁面处理方法比较

第二节 湍流计算中近壁处理对网格的要求

一个成功的湍流计算离不开好的网格。在许多的湍流中,空间的有效粘性系数不同,是平均动量和其它标量输运的主要决定因素。因此,如果需要有足够的精度,这就需要保证湍流量要比较精确求解。由于湍流与平均流动有较强的相互作用,因此求解湍流问题比求解层流时候更依赖网格。

你可以用后处理面板去画出+

y ,*

y 和y Re 的值来检查网格是否满足自己的计算要求。需要指出的是计算出来的+

y ,*y 和y Re 并不是只与几何参数有关的固定量,它们也和最后的收敛解有关系。所以,如果你把网格加密一倍(到壁面的距离减少一半),计算得到的+

y

并不一定是加密前计算的+

y 的一半。

对于近壁网格而言,不同的近壁处理对网格要求也不同。下面对常见的几种近壁处理的网格要求做个说明。

第一网格到壁面距离要在对数区内。通常计算的距离为+y (μρτ/y u ≡或*

y 。如果网

格在对数区内,+y 和*y 的值差不多大小。我们知道,对数区的+

y >30~60。FLUENT 在

+y <12.225时候采用层流(线性)准则,因此网格不必要太密,因为壁面函数在粘性底层

根本不起作用。对数区与完全湍流的交界点随压力梯度和雷诺数变化。如果雷诺数增加,该点远离壁面。但在边界层里,必须有几个网格点。

壁面函数处理时网格划分

采用双层模型时近壁网格要求

当采用双层模型时,网格衡量参数是+y ,并非*

y 。最理想的网格划分是需要第一网格在+

y =1位置。如果稍微大点,比如+

y =4~5,只要位于粘性底层内,都是可以接收的。理想的网格划分需要在粘性影响的区域内(200Re

采用双层区模型时网格划分

采用Spalart-Allmaras 模型时的近壁网格要求

该模型属于低雷诺数模型。这就要求网格能满足求解粘性影响区域内的流动,引入了阻尼函数,用以削弱粘性底层的湍流粘性影响。因此,理想的近壁网格要求和采用双层模型时候的网格要求一致。

对于大涡模拟,壁面条件采用了壁面法则,因此对近壁网格划分没有太多限制。但是,如果要得到比较好的结果,最好网格要细,最近网格距离壁面在+

y =1的量级上。

第三节 用FLUENT 求解湍流问题设定

1,击活粘性模型面板上的湍流模型(Spalart-Allmaras, k-epsilon, Reynolds Stress or Large Eddy Simulation );如果选择k-epsilon 模型,将需要继续选择采用标准ε-k 模型、重整化群ε-k 模型或可实现ε-k 模型中的一种。

2,如果流动问题中包含壁面,选择ε-k 或者雷诺应力模型,在粘性模型面板上选择近壁处理方式。近壁处理方式包括:标准壁面函数;非平衡壁面函数和双层区模型。 3,Option 选项设置; 4,变量的边界条件设置; 5,全场变量赋初始值;

任意选项设置:

如果选择Spalart-Allmaras 模型,会出现如下选项: ● Vorticity-based production

● Strain/vorticity-based production

● Viscous heating (always activated for the coupled solvers) 如果选择标准k ε-模型或可实现k ε-模型,会出现如下选项: ● Viscous heating (always activated for the coupled solvers ) ● inclusion of buoyancy effects on ε

如果选择重整化群k ε-模型,出现的选项为: ● Differential viscousity model ● Swirl modification

● Viscous heating (Always activated for the coupled solvers ) ● Inclusion of buoyancy effects on ε

如果选择雷诺应力模型(RSM ),会有如下选项: ● Wall reflection effects on Reynolds stresses

● wall boundary conditions for the Reynolds stresses from equation ● Quadratic pressure-strain model

● Viscous heating (always activated for the coupled solvers ) ● Inclusion of buoyancy effects on ε

如果选择大涡模拟(LES ),则选择项为:

● Smagoringsky-Lilly model for the subgrid-scale viscosity ● RNG model for the subgrid-scale viscosity

● Viscous heating (always activated for the coupled solvers ) 可以更改里面的模型系数,但很多时候不需要这么做。

第三章,湍流模型

第三章,湍流模型 第一节, 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 第二节,平均量输运方程 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。对于速度,有: i i i u u u '+= 3-3 其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3) 类似地,对于压力等其它标量,我们也有: φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。 把上面的表达式代入瞬时的连续与动量方程,并取平均(去掉平均速度i u 上的横线),我们可以把连续与动量方程写成如下的笛卡儿坐标系下的张量形式: 0)(=?? +??i i u x t ρρ 3-5 () j i j l l ij i j j i j i i u u x x u x u x u x x p Dt Du -?? +???????????? ????-??+????+??-=ρδμρ32 3-6 上面两个方程称为雷诺平均的Navier-Stokes (RANS )方程。他们和瞬时Navier-Stokes 方程有相同的形式,只是速度或其它求解变量变成了时间平均量。额外多出来的项j i u u ''-ρ是雷诺应力,表示湍流的影响。如果要求解该方程,必须模拟该项以封闭方程。 如果密度是变化的流动过程如燃烧问题,我们可以用法夫雷(Favre )平均。这样才可以求解有密度变化的流动问题。法夫雷平均就是出了压力和密度本身以外,所有变量都用密度加权平均。变量的密度加权平均定义为: ρρ/~ Φ=Φ 3-7 符号~表示密度加权平均;对应于密度加权平均值的脉动值用Φ''表示,即有: Φ''+Φ=Φ~ 。很显然,这种脉动值的简单平均值不为零,但它的密度加权平均值等于零,即: 0≠Φ'', 0=Φ''ρ Boussinesq 近似与雷诺应力输运模型 为了封闭方程,必须对额外项雷诺应力j i u u -ρ进行模拟。一个通常的方法是应用Boussinesq 假设,认为雷诺应力与平均速度梯度成正比,即: ij i i t i j j i t j i x u k x u x u u u δμρμρ)(32 ??+-??? ? ????+??=''- 3-8 Boussinesq 假设被用于Spalart-Allmaras 单方程模型和ε-k 双方程模型。Boussinesq 近似 的好处是与求解湍流粘性系数有关的计算时间比较少,例如在Spalart-Allmaras 单方程模型中,只多求解一个表示湍流粘性的输运方程;在ε-k 双方程模型中,只需多求解湍动能k 和耗散率ε两个方程,湍流粘性系数用湍动能k 和耗散率ε的函数。Boussinesq 假设的缺点是认为湍流粘性系数t μ是各向同性标量,对一些复杂流动该条件并不是严格成立,所以具有其应用限制性。

第四章 层流流动与湍流流动

第四章层流流动及湍流流动 由于实际流体有粘性,在流动时呈现两种不同的流动形态:层流流动及湍流流动,并在流动过程中产生阻力。 对可压缩流体,阻力使流体受压缩。 对不可压缩流体,阻力使流体的一部分机械能转化为热能散失,这个转变过程不可逆。散失的热量称为能量损失。 单位质量(或单位体积)流体的能量损失,称为水头损失(或压力损失),并以h w(或Δp)表示。 本章首先讨论流体的流动状态,再对粘性流体在两种流动状态下的能量损失进行分析。 第一节流动状态及阻力分类 一、流体的流动状态 1.雷诺试验:1882年雷诺作了如教材45页图4-1所示的流体流动形态试验。 试验装置:在圆管的中心用细玻璃管向圆管的水流中引入红色液体的细流。 试验情况: (1)当水的流速较小时(图4-1a),红色液体细流不与周围水混和,自己保持直线形状与水一起向前流动。 (2)如把水的流速逐渐增大,至一定程度时,红色细流便开始上下振荡,呈波浪形弯曲(如图4-1b)。 (3)当再把水流速度增大,红色细流的振荡加剧,至水的流速增大至某一速度后,圆管中红色细流消失,红色液体混入整个圆管的水中(如图4-1c)。 试验的三种不同状况说明: (1)对(图4-1a)所示,表明水的质点只有向前流动的位移,没有垂直水流方向的移动,即各层水的质点不相互混和,都是平行地移动的,这种流动称为层流; (2)对(图4-1b)所示,说明流动的水质点已开始有垂直水流方向的位移,离开圆管轴线较远的部位水的质点仍保持平行流动的状态; (3)对(图4-1c)所示,说明流动中水的质点运动已变得杂乱无章,各层水相互干扰,这种流动形态称为紊流或湍流。

2.雷诺数: 流体之所以出现不同的流动形态,主要由流体质点流动时其本身所具有的惯性力和所受的粘性力的数值比例决定。 惯性力相对较大时,流体趋向于作紊流式的流动; 粘性力则起限制流体质点作纵向脉动的作用,遏止紊流的出现。 雷诺根据此原理提出了一个判定流体流动状态的无量纲参数——雷诺数(Re): 对在圆管中流动的流体而言,雷诺数的表现形式为 v:圆管内流体的平均流速(m/s);ε:动力粘度(Pa·s)。 D:圆管直径(m);ν:运动粘度(m2/s)。 实验确定,流体开始由层流形态向紊流转变时,称为下临界雷诺数, Re=2100~2320;当Re>10000~13800时流体的流动形态为稳定的紊流,称上临界雷诺数;当Re=(2100~2320)~(10000~13800),流动形态为过渡状态,可以是紊流或层流。临界雷诺数随体系的不同而变化,即使同一体系,它也会随其外部因素(如圆管内表面粗糙度和流体中的起始扰动程度等)的不同而改变,所以临界雷诺数为一个范围数。 对于非圆管中的流体流动,雷诺数的表现形式为 R:水力半径(m);A:流体的有效截面积(m2); x:截面上与流体接触的固体周长(湿周)(m)。 (但水力半径R不是圆截面的几何半径r,如充满流体圆管的水力半径为: ) 这里,取下临界雷诺数为500。对工程中常见的明渠水流,下临界雷诺数常取300。 当流体绕过固体(如绕过球体)流动时,出现层状绕流(物体后无旋涡)和紊状绕流(物体后形成旋涡)的现象,此时雷诺数用下式计算:

壁湍流猝发过程中速度分量的相位差对雷诺应力影响的实验研究

第23卷 第1期2008年2月 实 验 力 学 J OU RNAL OF EXPERIM EN TAL M ECHANICS Vol.23 No.1 Feb.2008 文章编号:100124888(2008)0120017210 壁湍流猝发过程中速度分量的相位差 对雷诺应力影响的实验研究3 刘薇,赵瑞杰,姜楠 (天津大学机械工程学院力学系天津市现代工程力学重点实验室,天津300072) 摘要:用IFA300恒温热线风速仪和×形二分量热线探针,以采样间隔小于最小湍流时间尺度的分辨率,精细测量了风洞中平板湍流边界层不同法向位置的瞬时流向、展向速度分量的时间序列信号。用子波分析辨识壁湍流相干结构猝发事件的能量最大准则,确定壁湍流相干结构猝发事件的时间尺度;用条件相位平均技术提取了相干结构猝发过程中流向、展向脉动速度分量条件相位平均波形,用互相关方法研究了相干结构猝发过程中流向、展向脉动速度分量条件相位平均波形的相位差关系及其对雷诺应力的影响,发现在缓冲层和对数律区,展向脉动速度与流向脉动速度的条件相位平均波形具有不同的相位;当两者相位基本一致时,雷诺应力达到正的最大值,此时湍流相干结构的产生非常活跃;当两者相位差分别集中在90°和270°附近时,雷诺应力的幅值减小并接近于零,此时湍流相干结构的产生和猝发都得到了抑制。 关键词:壁湍流;相干结构;猝发;雷诺应力;相位差 中图分类号:O357 文献标识码:A 0 引言 1967年,美国斯坦福大学的Kline小组[1]对湍流近壁区条纹结构进行的全面细致的观测工作,标志着开始对湍流近壁区相干结构进行系统的研究,并将这一系列的过程称为相干结构的猝发。湍流猝发现象不仅产生和输运大部分的湍动能,而且与Reynolds应力的产生以及被动标量的输运有着密切关系[2]。Wallace et al(1972)[3]、L u&Willmart h(1973)[4]、Raupach(1981)[5]的实验均表明在湍流边界层和槽道流中猝发现象对Reynolds应力的产生起着重要作用。几乎90%的湍动能或者Reynolds应力产生于近壁区域,而猝发中上抛事件和下扫事件产生的Reynolds应力分别占全部的60%~70%[6]。 开展相干结构研究的最终目的是通过研究相干结构的动力学行为和规律,建立符合相干结构机理的数学模型和湍流模式,在工程中更加准确地预报湍流,探索在工程中通过控制相干结构控制湍流的有效途径[7]。著名流体力学家Liep mann[8]在1979年就曾经预言,可以通过控制相干结构控制湍流。现在控制相干结构已成为控制湍流的有效途径,在减小壁面摩擦阻力、降低流动噪声方面具有重要的应用前景,对于提高管道和飞行器的运输效率、降低能耗,提高空中飞行器和水下兵器的隐身性能方面具有重要的工程应用价值。 子波变换是新近发展起来的一种数学方法[9],通过信号与一个被称为子波的解析函数进行卷积将3收稿日期:2007207223;修订日期:2008201216 基金项目:国家自然科学基金资助项目10472081;教育部中国高等学校新世纪优秀人才计划资助项目;天津市科技发展计划资助项目06TXTJJ C13800 通讯作者:姜楠(1968-),男,教授,博士生导师。E2mail:nanj@https://www.wendangku.net/doc/e210529718.html,

湍流流动的近壁处理详解

壁面对湍流有明显影响。在很靠近壁面的地方,粘性阻尼减少了切向速度脉动,壁面也阻止了法向的速度脉动。离开壁面稍微远点的地方,由于平均速度梯度的增加,湍动能产生迅速变大,因而湍流增强。因此近壁的处理明显影响数值模拟的结果,因为壁面是涡量和湍流的主要来源。 实验研究表明,近壁区域可以分为三层,最近壁面的地方被称为粘性底层,流动是层流状态,分子粘性对于动量、热量和质量输运起到决定作用。外区域成为完全湍流层,湍流起决定作用。在完全湍流与层流底层之间底区域为混合区域(Blending region),该区域内分子粘性与湍流都起着相当的作用。近壁区域划分见图4-1。 图4-1,边界层结构 第一节,壁面函数与近壁模型 近壁处理方法有两类:第一类是不求解层流底层和混合区,采用半经验公式(壁面函数)来求解层流底层与完全湍流之间的区域。采用壁面函数的方法可以避免改进模型就可以直接模拟壁面存在对湍流的影响。第二类是改进湍流模型,粘性影响的近壁区域,包括层流底层都可以求解。 对于多数高雷诺数流动问题,采用壁面函数的方法可以节约计算资源。这是因为在近壁区域,求解的变量变化梯度较大,改进模型的方法计算量比较大。由于可以减少计算量并具有一定的精度,壁面函数得到了比较多的应用。对于许多的工程实际流动问题,采用壁面函数处理近壁区域是很好的选择。 如果我们研究的问题是低雷诺数的流动问题,那么采用壁面函数方法处理近壁区域就不合适了,而且壁面函数处理的前提假设条件也不满足。这就需要一个合适的模型,可以一直求解到壁面。FLUENT提供了壁面函数和近壁模型两种方法,以便供用户根据自己的计算问题选择。

4.1.1壁面函数 FLUENT 提供的壁面函数包括:1,标准壁面函数;2,非平衡壁面函数两类。标准壁面函数是采用Launder and Spalding [L93]的近壁处理方法。该方法在很多工程实际流动中有较好的模拟效果。 4.1.1.1 标准壁面函数 根据平均速度壁面法则,有: **1 ln()U Ey k = 4-1 其中,1/41/2 * /p p w U C k U μτρ ≡ ,1/41/2 * p p C k y y μρμ≡,并且 k =0.42,是V on Karman 常数;E =9.81,是实验常数;p U 是P 点的流体平均速度;p k 是P 点的湍动能;p y 是P 点到壁面的距离;μ是流体的动力粘性系数。 通常,在*30~60y >区域,平均速度满足对数率分布。在FLUENT 程序中,这一条件改变为*11.225y >。 当网格出来*11.225y <的区域时候,FLUENT 中采用层流应力应变关系,即:**U y =。这里需要指出的是FLUENT 中采用针对平均速度和温度的壁面法则中,采用了*y ,而不是y +(/u y τρμ≡)。对于平衡湍流边界层流动问题,这两个量几乎相等。 根据雷诺相似,我们可以根据平均速度的对数分布,同样给出平均温度的类似分布。FLUENT 提供的平均温度壁面法则有两种:1,导热占据主要地位的热导子层的线性率分布;2,湍流影响超过导热影响的湍流区域的对数分布。 温度边界层中的热导子层厚度与动量边界层中的层流底层厚度通常都不相同,并且随流体介质种类变化而变化。例如,高普朗特数流体(油)的热导子层厚度比其粘性底层厚度小很多;对于低普朗特数的流体(液态金属)相反,热导子层厚度比粘性底层厚度大很多。 1/41/2 * ()w p p P T T c C k T q μρ-≡ '' 4-2 =()1/41/2 *2*1/41/222 1Pr Pr 21Pr ln()1Pr Pr Pr 2p p t p t p t c C k y U q Ey P k C k U U q μμρρ?+?''? ????++???? ??????+-??''?? ** **()()T T y y y y <> 4-3

近壁面函数的简单理解

一个成功的湍流计算离不开好的网格。在许多的湍流中,空间的有效粘性系数不同,是平均动量和其它标量输运的主要决定因素。因此,如果需要有足够的精度,这就需要保证湍流量要比较精确求解。由于湍流与平均流动有较强的相互作用,因此求解湍流问题比求解层流时候更依赖网格。对于近壁网格而言,不同的近壁处理对网格要求也不同。下面对常见的几种近壁处理的网格要求做个说明。采用壁面函数时候的近壁网格:第一网格到壁面距离要在对数区内。对数区的y+ >30~60。FLUENT在y+ <时候采用层流(线性)准则,因此网格不必要太密,因为壁面函数在粘性底层更本不起作用。对数区与完全湍流的交界点随压力梯度和雷诺数变化。如果雷诺数增加,该点远离壁面。但在边界层里,必须有几个网格点。壁面函数处理时网格划分采用双层模型时近壁网格要求当采用双层模型时,网格衡量参数是y+ ,并非y* 。最理想的网格划分是需要第一网格在y+ =1位置。如果稍微大点,比如=4~5,只要位于粘性底层内,都是可以接收的。理想的网格划分需要在粘性影响的区域内(Rey<200 )至少有十个网格,以便可以计算粘性区域内的平均速度和湍流量。采用双层区模型时网格划分采用Spalart-Allmaras 模型时的近壁网格要求该模型属于低雷诺数模型。这就要求网格能满足求解粘性影响区域内的流动,引入了阻尼函数,用以削弱粘性底层的湍流粘性影响。因此,理想的近壁网格要求和采用双层模型时候的网格要求一致。采用大涡模拟的近壁网格要求对于大涡模拟,壁面条件采用了壁面法则,因此对近壁网格划分没有太多限制。但是,如果要得到比较好的结果,最好网格要细,最近网格距离壁面在 y+=1的量级上。 for Hexa mesh, ==>Y+是第一层高度一半和 viscous length scale 的比值 for Tetra mesh==>Y+是第一层高度1/3和 viscous length scale 的比值 y+就是Yplus,它跟你在湍流模型里采用的近壁面函数选取有关,若Yplus为个位数,选增强型壁面函数,若在两位数以上,选标准或非平衡的壁面函数。 y+的意思是底层网格必须划分在对数率成立的区域内。 一般应使y+的值为15~300,但是y+是模拟完成后才知道的。 而且同一个模型不同地方不同流速y+不一样,所以不是很精确。如果模拟传热应注意y+对结果的影响。

第三章_湍流模型

第三章 湍流模型 第一节 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 Direct Numerical Simulation 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

湍流的产生和解释

湍流的产生和解释 湍流是如何产生的有哪些模型可以预测和解释湍流现象 关于第一个问题,可以先从流体的流动讲起。假设有这样一根管道,我在一头加上一个水龙头,然后通过调节水龙头的大小来控制水的速度。一开始,水龙头开度比较小,这时候是层流(如下图)。 细致地调节细管中红水的流速,当它与主流管内水流速度相近时,可以看到清水中有稳定而清晰的红色水平流线,表明这时主流管中各水层互不干扰地流动。逐渐加大水龙头的开度,层流就慢慢的变成湍流了。这时流线不再清楚可辨,流场中有许多小漩涡,层流被破坏,相邻流层间不但有滑动,还有混合。这时的流体作不规则运动,有垂直于流管轴线方向的分速度产生(如下图)

所以我们现在可以说,层流与湍流的最大区别就是流速了(单单对于上例来说)。流速较小的时候,流动比较规则,分层现象比较明显。流速大了之后就开始乱了,各种漩涡,滑动。 现在来看看究竟怎么区别层流和湍流,或者说究竟与哪些因素有关。这里我们先引入雷诺数的概念。雷诺数(Reynolds number)一种可用来表征流体流动情况的无量纲数,以Re 表示,Re=ρvd/ η,其中v、ρ、η分别为流体的流速、密度与黏性系数,d 为一特征长度。黏性就是指当流体运动时,层与层之间有阻碍相对运动的内摩擦力。举个例子,假如有一群人手拉手的往前跑,大家开始跑得都很慢,突然有一个人不想跟他们一起玩这个脑残的游戏了,所以任性的加快了速度。如果手拉的不紧,他就很容易逃脱—这就是黏性比较小,相互之间摩擦力较小;如果手拉的越紧,他就越不容易逃脱—这就是黏性比较大,相互之间摩擦力较大。另一方面,要是不容易逃脱,他只要加快速度,终究是可以逃脱的。 这个例子或许不那么恰当,但是可以说明雷诺数的概念了。雷诺数其实是一个无量纲数,表示作用于流体微团的惯性力与粘性力之比。当雷诺数较小时,黏滞力对流场的影响大于惯性力,流场中流速的扰动会因黏滞力而衰减,流体流动稳定,为层流;反之,若雷诺数较大时,惯性力对流场的影响大于黏滞力,流体流动较不稳定,流速的微小变化容易发展、增强,形成紊乱、不规则的湍流流场。这里贴一张从层流发展为湍流的图(中间有一段过渡段,这也很容易理解,数值上的绝对反映到实际情况下,基本都有一段过渡段)。 再简单的概况一下,湍流就是当流体的惯性力影响大于黏滞力时,流动有 较规则分层明显的层流变为不规则的运动的情况。 对于第二个问题,有哪些模型可以预测和解释湍流现象 现在的模型大多都是近似的模型。如果硬要说说预测和解释的话,应该是连续方程和N-S方程,这两个方程基本上可以描述世界上所有的流动现象。但是由于各种原因(理论上,这个偏微分方程的求解是世界性的难题,计算流体力学方面,直接求解对计算机的

湍流理论发展概述

湍流理论发展概述 一、湍流模型的研究背景 自然环境和工程装置中的流动常常是湍流流动,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,这就给理论分析带来了极大地困难。这也就引发了对湍流过程进行模拟的想法。 对湍流最根本的模拟方法是在湍流尺度的网格尺寸内求解瞬态的三维N-S 方程的全模拟方法,此时无需引进任何模型。然而由于计算方法及计算机运算水平的限制,该种方法不易实现。另一种要求稍低的方法是亚网格尺寸度模拟即大涡模拟(LES),也是由N-S 方程出发,其网格尺寸比湍流尺度大,可以模拟湍流发展过程的一些细节,但由于计算量仍然很大,只能模拟一些简单的情况,直接应用于实际的工程问题也存在很多问题[1]。目前数值模拟主要有三种方法:1. 平均N-S方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS),而模拟的前提是建立合适的湍流模型。 所谓的湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平均量的封闭方程组。目前常用的湍流模型可根据所采用的微分方程数进行分类为:零方程模型、一方程模型、两方程模型、四方程模型、七方程模型等。对于简单流动而言,一般随着方程数的增多,精度也越高,计算量也越大、收敛性也越差。但是,对于复杂的湍流运动,则不一定。湍流模型可根据微分方程的个数分为零方程模型、一方程模型、二方程模型和多方程模型。这里所说的微分方程是指除了时均N-S 方程外,还要增加其他方程才能是方程封闭,增加多少个方程,则该模型就被成为多少个模型。

第四章 湍流流动的近壁处理

第四章,湍流流动的近壁处理 壁面对湍流有明显影响。在很靠近壁面的地方,粘性阻尼减少了切向速度脉动,壁面也阻止了法向的速度脉动。离开壁面稍微远点的地方,由于平均速度梯度的增加,湍动能产生迅速变大,因而湍流增强。因此近壁的处理明显影响数值模拟的结果,因为壁面是涡量和湍流的主要来源。 实验研究表明,近壁区域可以分为三层,最近壁面的地方被称为粘性底层,流动是层流状态,分子粘性对于动量、热量和质量输运起到决定作用。外区域成为完全湍流层,湍流起决定作用。在完全湍流与层流底层之间底区域为混合区域(Blending region),该区域内分子粘性与湍流都起着相当的作用。近壁区域划分见图4-1。 图4-1,边界层结构 第一节,壁面函数与近壁模型 近壁处理方法有两类:第一类是不求解层流底层和混合区,采用半经验公式(壁面函数)来求解层流底层与完全湍流之间的区域。采用壁面函数的方法可以避免改进模型就可以直接模拟壁面存在对湍流的影响。第二类是改进湍流模型,粘性影响的近壁区域,包括层流底层都可以求解。 对于多数高雷诺数流动问题,采用壁面函数的方法可以节约计算资源。这是因为在近壁区域,求解的变量变化梯度较大,改进模型的方法计算量比较大。由于可以减少计算量并具有一定的精度,壁面函数得到了比较多的应用。对于许多的工程实际流动问题,采用壁面函数处理近壁区域是很好的选择。

如果我们研究的问题是低雷诺数的流动问题,那么采用壁面函数方法处理近壁区域就不合适了,而且壁面函数处理的前提假设条件也不满足。这就需要一个合适的模型,可以一直求解到壁面。FLUENT 提供了壁面函数和近壁模型两种方法,以便供用户根据自己的计算问题选择。 4.1.1壁面函数 FLUENT 提供的壁面函数包括:1,标准壁面函数;2,非平衡壁面函数两类。标准壁面函数是采用Launder and Spalding [L93]的近壁处理方法。该方法在很多工程实际流动中有较好的模拟效果。 4.1.1.1 标准壁面函数 根据平均速度壁面法则,有: **1ln()U Ey k = 4-1 其中,1/41/2*/p p w U C k U μτρ≡,1/41/2* p p C k y y μρμ≡,并且 k =0.42,是V on Karman 常数;E =9.81,是实验常数;p U 是P 点的流体平均速度;p k 是P 点的湍动能;p y 是P 点到壁面的距离;μ是流体的动力粘性系数。 通常,在* 30~60y >区域,平均速度满足对数率分布。在FLUENT 程序中,这一条件改变为*11.225y >。 当网格出来*11.225y <的区域时候,FLUENT 中采用层流应力应变关系,即:**U y =。这里需要指出的是FLUENT 中采用针对平均速度和温度的壁面法则中,采用了*y ,而不是y +(/u y τρμ≡)。对于平衡湍流边界层流动问题,这两个量几乎相等。 根据雷诺相似,我们可以根据平均速度的对数分布,同样给出平均温度的类似分布。FLUENT 提供的平均温度壁面法则有两种:1,导热占据主要地位的热导子层的线性率分布;2,湍流影响超过导热影响的湍流区域的对数分布。 温度边界层中的热导子层厚度与动量边界层中的层流底层厚度通常都不相同,并且随流体介质种类变化而变化。例如,高普朗特数流体(油)的热导子层厚度比其粘性底层厚度小很多;对于低普朗特数的流体(液态金属)相反,热导子层厚度比粘性底层厚度大很多。 1/41/2* ()w p p P T T c C k T q μρ-≡''& 4-2

管内湍流流动速度分布和温度分布的推导

管内湍流流动速度分布和温度分布的推导 一、流体在圆管内的速度分布 流体在圆管内的速度分布是指流体流动时管截面上质点的速度随半径的变化关系。无论是层流或是湍流,管壁处质点速度均为零,越靠近管中心流速越大,到管中心处速度为最大。但两种流型的速度分布却不相同。由于速度场与雷洛数有十分密切的关系所以在此我们先介绍下流型判据——雷洛数: 1、流型判据——雷诺准数 流体的流动类型可用雷诺数Re 判断。 μρu d =R e (1-28) Re 准数是一个无因次的数群。 大量的实验结果表明,流体在直管内流动时, (1) 当Re ≤2000时,流动为层流,此区称为层流区; (2) 当Re ≥4000时,一般出现湍流,此区称为湍流区; (3) 当2000< Re <4000 时,流动可能是层流,也可能是湍流,与外界干扰有关,该区称为不稳定的过渡区。 雷诺数的物理意义 Re 反映了流体流动中惯性力与粘性力的对比关系,标志流体流动的湍动程度。其值愈大,流体的湍动愈剧烈,内摩擦力也愈大。 下面我们重点推到湍流时管内的速度场: 2、湍流时的速度分布 湍流时流体质点的运动状况较层流要复杂得多,截面上某一固定点的流体质点在沿管轴向前运动的同时,还有径向上的运动,使速度的大小与方向都随时变化。湍流的基本特征是出现了径向脉动速度,使得动量传递较之层流大得多。此时剪应力不服从牛顿粘性定律表示,但可写成相仿的形式: dy u d e . )(+=μτ (1) 式中e 称为湍流粘度,单位与μ相同。但二者本质上不同:粘度μ是流体的物性,反映了分子运动造成的动量传递;而湍流粘度e 不再是流体的物性,它反映的是质点的脉动所造成的动量传递,与流体的流动状况密切相关。 湍流时的速度分布目前尚不能利用理论推导获得,而是通过实验测定,结果如图1所示,

FLUENT常用的湍流模型及壁面函数处理

FLUENT常用的湍流模型及壁面函数处理 本文内容摘自《精通CFD工程仿真与案例实战》。实际上也是帮助文档的翻译,英文好的可直接参阅帮助文档。 FLUENT中的湍流模型很多,有单方程模型,双方程模型,雷诺应力模型,转捩模型等等。这里只针对最常用的模型。 1、湍流模型描述 2、湍流模型的选择

有两种方法处理近壁面区域。一种方法,不求解粘性影响内部区域(粘性子层及过渡层),使用一种称之为“wall function”的半经验方法去计算壁面与充分发展湍流区域之间的粘性影响区域。采用壁面函数法,省去了为壁面的存在而修改湍流模型。 另一种方法,修改湍流模型以使其能够求解近壁粘性影响区域,包括粘性子层。此处使用的方法即近壁模型。(近壁模型不需要使用壁面函数,如一些低雷诺数模型,K-W湍流模型是一种典型的近壁湍流模型)。

所有壁面函数(除scalable壁面函数外)的最主要缺点在于:沿壁面法向细化网格时,会导致使数值结果恶化。当y+小于15时,将会在壁面剪切力及热传递方面逐渐导致产生无界错误。然而这是若干年前的工业标准,如今ANSYS FLUENT采取了措施提供了更高级的壁面格式,以允许网格细化而不产生结果恶化。这些y+无关的格式是默认的基于w方程的湍流模型。对于基于epsilon方程的模型,增强壁面函数(EWT)提供了相同的功能。这一选项同样是SA模型所默认的,该选项允许用户使其模型与近壁面y+求解无关。(实际上是这样的:K-W方程是低雷诺数模型,采用网格求解的方式计算近壁面粘性区域,所以加密网格降低y+值不会导致结果恶化。k-e方程是高雷诺数模型,其要求第一层网格位于湍流充分发展区域,而此时若加密网格导致第一层网格处于粘性子层内,则会造成计算结果恶化。这时候可以使用增强壁面函数以避免这类问题。SA模型默认使用增强壁面函数)。 只有当所有的边界层求解都达到要求了才可能获得高质量的壁面边界层数值计算结果。这一要求比单纯的几个Y+值达到要求更重要。覆盖边界层的最小网格数量在10层左右,最好能达到20层。还有一点需要注意的是,提高边界层求解常常可以取得稳健的数值计算结果,因为只需要细化壁面法向方向网格。与增加精度向伴随的是计算开销的增加。对于非结构网格,建议划分10~20层棱柱层网格以提高壁面边界层的预测精度。棱柱层厚度应当被设计为保证有15层或更多网格节点。这可以在获得计算结果后,通过查看边界层中心的最大湍流粘度,该值提供了边界层的厚度(最大值的两倍位置即边界层的边)。棱柱层大于边界层厚度是必要的,否则棱柱层会限制边界层的增长。 一些建议:(1)对于epsilon方程,使用enhanced壁面函数。(2)若壁面函数有助于epsilon方程,则可以使用scalable壁面函数。(3)对于基于w 方程的模型,使用默认的增强壁面函数。(4)SA模型,使用增强壁面处理。 以上内容翻译自Fluent理论文档P121。 1、标准壁面函数 ANSYS FLUENT中的标准壁面函数是基于launder与spalding的工作,在工业上有广泛的应用。

湍流的产生和解释

湍流的产生和解释 湍流是如何产生的?有哪些模型可以预测和解释湍流现象? 关于第一个问题,可以先从流体的流动讲起。假设有这样一根管道,我在一头加上一个水龙头,然后通过调节水龙头的大小来控制水的速度。一开始,水龙头开度比较小,这时候是层流(如下图)。 细致地调节细管中红水的流速,当它与主流管内水流速度相近时,可以看到清水中有稳定而清晰的红色水平流线,表明这时主流管中各水层互不干扰地流动。逐渐加大水龙头的开度,层流就慢慢的变成湍流了。这时流线不再清楚可辨,流场中有许多小漩涡,层流被破坏,相邻流层间不但有滑动,还有混合。这时的流体作不规则运动,有垂直于流管轴线方向的分速度产生(如下图)。

所以我们现在可以说,层流与湍流的最大区别就是流速了(单单对于上例来说)。流速较小的时候,流动比较规则,分层现象比较明显。流速大了之后就开始乱了,各种漩涡,滑动。 现在来看看究竟怎么区别层流和湍流,或者说究竟与哪些因素有关。这里我们先引入雷诺数的概念。雷诺数(Reynolds number)一种可用来表征流体流动情况的无量纲数,以Re表示,Re=ρvd/η,其中v、ρ、η分别为流体的流速、密度与黏性系数,d为一特征长度。黏性就是指当流体运动时,层与层之间有阻碍相对运动的内摩擦力。举个例子,假如有一群人手拉手的往前跑,大家开始跑得都很慢,突然有一个人不想跟他们一起玩这个脑残的游戏了,所以任性的加快了速度。如果手拉的不紧,他就很容易逃脱—这就是黏性比较小,相互之间摩擦力较小;如果手拉的越紧,他就越不容易逃脱—这就是黏性比较大,相互之间摩擦力较大。另一方面,要是不容易逃脱,他只要加快速度,终究是可以逃脱的。 这个例子或许不那么恰当,但是可以说明雷诺数的概念了。雷诺数其实是一个无量纲数,表示作用于流体微团的惯性力与粘性力之比。当雷诺数较小时,黏滞力对流场的影响大于惯性力,流场中流速的扰动会因黏滞力而衰减,流体流动稳定,为层流;反之,若雷诺数较大时,惯性力对流场的影响大于黏滞力,流体流动较不稳定,流速的微小变化容易发展、增强,形成紊乱、不规则的湍流流场。这里贴一张从层流发展为湍流的图(中间有一段过渡段,这也很容易理解,数值上的绝对反映到实际情况下,基本都有一段过渡段)。 再简单的概况一下,湍流就是当流体的惯性力影响大于黏滞力时,流动有较规则分层明显的层流变为不规则的运动的情况。 对于第二个问题,有哪些模型可以预测和解释湍流现象? 现在的模型大多都是近似的模型。如果硬要说说预测和解释的话,应该是

第9章 湍流基础

第9章湍流基础 透平叶栅中的流动是一种性质极为复杂的流动,由于在现代透平中流动的雷诺数很高,同时透平转子对流动的强烈影响,都使得流道中的实际流动呈现湍流状态]1[。如果仍然采用层流模型进行数值研究,结果与真实值间的差距就会加大。此外,湍流其本身也是一个很复杂的问题,一方面它是流体力学领域中尚未解决的问题之一;另一方面,在求解湍流模型的过程中还会产生很多数学上的问题]2[。如此一来,叶栅流道内的三维湍流的数值计算就吸引了众多的学者和工程技术人员。 9.1 湍流的基本概念 9.1.1 湍流的概念和基本结构 自然界中的流动问题和工程实践中所处理的各种流体运动问题更多的是湍流流动问题。如水在江河中的流动水通过各种水工建筑物、水处理建筑物的流动,管道中水的流动,污染物质在河流及海洋中的扩散,大气边界层流动等均多为湍流。湍流是不同于层流的又一种流动形态。英国的雷诺于1883年,通过其著名的圆管实验深入的揭示了这两种不同的粘性流动形态]3[。虽然一百多年来人们对湍流的研究不断深入,但是由于湍流运动的极端复杂性,它的基本机理至今仍未被人们所掌握,甚至至今仍然没有一个精确的定义。 雷诺(Osborne Reynolds,1842年—1912年)把湍流定义为一种蜿蜒曲折、起伏不定的流动(sinuous motion)。泰勒(G.I.Taylor 1886年—1975年)和冯·卡门对湍流的定义是“湍流是常在流体流过固体表面或者相同流体分层流动中出现的一种不规则的流动”。欣策(J.O.Hinze )在他的著作“Turbulence”一书中则认为湍流的更为确切的定义应该是“湍流是流体运动的一种不规则的情形。在湍流中各种流动的物理量随时间和空间坐标而呈现出随机的变化,因而具有明确的统计平均值”。同时,在这本书中还把泰勒和卡门对湍流所下定义中提到的两种流动状况给予专门名称:“壁面湍流”表示流过固体壁面的湍流,“自由湍流”表示流动中没有固体壁面限制的湍流流动。]4[ 湍流的运动极不规则,极不稳定,每一点的速度随时间和空间都是随机变化的,因此其结构十分复杂。现代湍流理论认为]5[:湍流是由各种不同尺度的涡构成的,大涡的作用是从平均流动中获得能量,是湍流的生成因素,但这种大涡是不稳定的,它不断地破碎成小涡。换句话说,从低频的大涡到高频的小涡是一个能量级联过程,这个过程一直进行到湍动能的耗散。如果没有连续的外部能量的提供,湍流将逐渐衰退消失,但是湍流应力和平均流动的速度梯度之间的相互作用通过频谱提供能量来防止湍流的衰退,这个过程称作“湍流的生成过程”,且能量相对粘性耗散的产生率是一个测量流动均衡状态的量。 湍流流动是一种大雷诺数、非线性、三维非定常流动。它具有随机性、扩散性、耗散性、有旋性、记忆特性和间歇现象等特点,运动极不规则。为了方便研究湍流的基本特性,将湍流分为均匀湍流、各向同性湍流和各向异性湍流。均匀湍流和各向同性湍流是湍流中最简单而且在理论上研究最多的。所谓均匀湍流是指湍流场中任何一点同一方向的速度分量的均方值处处都是相等的,任何两点的速度相关只与该两点的相对位置有关;各向同性湍流是指湍流的湍动速度分量及其对空间导数的平均值不受坐标系在空间的方位而改变。实际的湍流,一般都是非各向同性的。这是由于尺度大的湍动运动的速度受到平均运动流场的影响。但对于尺度很小的湍动运动,湍动的特性不直接依赖于平均运动流场的性质,具有各向同性的特征。因此研究这种局部各向同性的湍流具有重要的理论和实际意义。

湍流知识1

湍流模型的选择 1 湍流简介 湍流出现在速度变动的地方。这种波动使得流体介质之间相互交换动量、能量和浓度变化,而且引起了数量的波动。由于这种波动是小尺度且是高频率的,所以在实际工程计算中直接模拟的话对计算机的要求会很高。实际上瞬时控制方程可能在时间上、空间上是均匀的,或者可以人为的改变尺度,这样修改后的方程耗费较少的计算机。但是,修改后的方程可能包含有我们所不知的变量,湍流模型需要用已知变量来确定这些变量。 2 选择一个湍流模型 不幸的是没有一个湍流模型对于所有的问题是通用的。选择模型时主要依靠以下几点:流体是否可压、建立特殊的可行的问题、精度的要求、计算机的能力、时间的限制。为了选择最好的模型,你需要了解不同条件的适用范围和限制 这一章的目的是给出在FLUENT中湍流模型的总的情况。我们将讨论单个模型对cpu 和内存的要求。同时陈述一下一种模型对那些特定问题最适用,给出一般的指导方针以便对于你需要的给出湍流模型。 3 构建湍流模型——标准k-e模型 最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。在FLUENT 中,标准k-e模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。适用范围广、经济、合理的精度,这就是为什么它在工业流场和热交换模拟中有如此广泛的应用了。它是个半经验的公式,是从实验现象中总结出来的。 由于人们已经知道了k-e模型适用的范围,因此人们对它加以改造,出现了RNG k-e 模型和带旋流修正k-e模型。 (附上: 3.1 RNG k-e模型 RNG k-e模型来源于严格的统计技术。它和标准k-e模型很相似,但是有以下改进: RNG模型在e方程中加了一个条件,有效的改善了精度。 考虑到了湍流漩涡,提高了在这方面的精度。 RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-e模型使用的是用户提供的常数。 然而标准k-e模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。这些公式的效用依靠正确的对待近壁区域; 这些特点使得RNG k-e模型比标准k-e模型在更广泛的流动中有更高的可信度和精度。3.2 带旋流修正k-e模型 带旋流修正的 k-e模型是近期才出现的,比起标准k-e模型来有两个主要的不同点:带旋流修正的k-e模型为湍流粘性增加了一个公式。为耗散率增加了新的传输方程,这个方程

湍流知识

湍流模型的选择 1.湍流简介 湍流出现在速度变动的地方。这种波动使得流体介质之间相互交换动量、能量和浓度变化,而且引起了数量的波动。由于这种波动是小尺度且是高频率的,所以在实际工程计算中直接模拟的话对计算机的要求会很高。实际上瞬时控制方程可能在时间上、空间上是均匀的,或者可以人为的改变尺度,这样修改后的方程耗费较少的计算机。但是,修改后的方程可能包含有我们所不知的变量,湍流模型需要用已知变量来确定这些变量。 2.选择一个湍流模型 不幸的是没有一个湍流模型对于所有的问题是通用的。选择模型时主要依靠以下几点:流体是否可压、建立特殊的可行的问题、精度的要求、计算机的能力、时间的限制。为了选择最好的模型,你需要了解不同条件的适用范围和限制 这一章的目的是给出在FLUENT中湍流模型的总的情况。我们将讨论单个模型对cpu 和内存的要求。同时陈述一下一种模型对那些特定问题最适用,给出一般的指导方针以便对于你需要的给出湍流模型。 3.构建湍流模型——标准k-e模型 最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。在FLUENT 中,标准k-e模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。适用范围广、经济、合理的精度,这就是为什么它在工业流场和热交换模拟中有如此广泛的应用了。它是个半经验的公式,是从实验现象中总结出来的。 由于人们已经知道了k-e模型适用的范围,因此人们对它加以改造,出现了RNG k-e模型和带旋流修正k-e模型。 (附上: 3.1 RNG k-e模型 RNG k-e模型来源于严格的统计技术。它和标准k-e模型很相似,但是有以下改进: ·RNG模型在e方程中加了一个条件,有效的改善了精度。 ·考虑到了湍流漩涡,提高了在这方面的精度。 ·RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-e模型使用的是用户提供的常数。 ·然而标准k-e模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。这些公式的效用依靠正确的对待近壁区域 这些特点使得RNG k-e模型比标准k-e模型在更广泛的流动中有更高的可信度和精度。 3.2 带旋流修正k-e模型 带旋流修正的k-e模型是近期才出现的,比起标准k-e模型来有两个主要的不同点。 ·带旋流修正的k-e模型为湍流粘性增加了一个公式。 ·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。 带旋流修正的k-e模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。 带旋流修正的k-e模型和RNG k-e模型都显现出比标准k-e模型在强流线弯曲、漩涡和旋转有更好的表现。由于带旋流修正的k-e模型是新出现的模型,所以现在还没有确凿的证据表明它比RNG k-e模型有更好的表现。但是最初的研究表明带旋流修正的k-e模型在所有k-e模型中流动分离和复杂二次流有很好的作用。 带旋流修正的k-e模型的一个不足是在主要计算旋转和静态流动区域时不能提供自然

相关文档