文档库 最新最全的文档下载
当前位置:文档库 › Modeling, Structural, and Spectroscopic Studies of Lanthanide-Organic Frameworks

Modeling, Structural, and Spectroscopic Studies of Lanthanide-Organic Frameworks

Modeling, Structural, and Spectroscopic Studies of Lanthanide-Organic Frameworks
Modeling, Structural, and Spectroscopic Studies of Lanthanide-Organic Frameworks

ARTICLES

Modeling,Structural,and Spectroscopic Studies of Lanthanide-Organic Frameworks Marcelo O.Rodrigues,?,?Filipe A.Almeida Paz,?Ricardo O.Freire,§Gilberto F.de Sa′,?

Andre′Galembeck,?Maria C.B.S.M.Montenegro,|Alberto N.Arau′jo,|and S.Alves,Jr.*,?,|

Departamento de Qu?′mica Fundamental,UFPE,50590-470Recife-PE,Brazil,Departamento de Qu?′mica,

Uni V ersidade de A V eiro,CICECO,3810-193A V eiro,Portugal,Departamento de Qu?′mica,UFS,

49100-000Sa?o Cristo′V a?o-SE,Brazil,and Faculdade de Farma′cia,Laborato′rio de Qu?′mica F?′sica,

UP,3810-193Porto,Portugal

Recei V ed:March13,2009;Re V ised Manuscript Recei V ed:July16,2009

In this paper,we report the hydrothermal synthesis of three lanthanide-organic framework materials using as

primary building blocks the metallic centers Eu3+,Tb3+,and Gd3+and residues of mellitic acid:

[Ln2(MELL)(H2O)6](where Ln3+)Eu3+,Tb3+,and Gd3;hereafter designated as(1),(2)and(3)).Structural

characterization encompasses single-crystal X-ray diffraction studies,thermal analysis,and vibrational

spectroscopy,plus detailed investigations on the experimental and predicted(using the Sparkle/AM1model)

photophysical luminescent properties.Crystallographic investigations showed that the compounds are all

isostructural,crystallizing in the orthorhombic space group P nnm and structurally identical to the lanthanum

3D material reported by the group of Williams.(2)is highly photoluminescent,as con?rmed by the measured

quantum yield and lifetime(37%and0.74ms,respectively).The intensity parameters(?2,?4,and?6)of

(1)were?rst calculated using the Sparkle/AM1structures and then employed in the calculation of the rates

of energy transfer(W ET)and back-transfer(W BT).Intensity parameters were used to predict the radiative

decay rate.The calculated quantum yield derived from the Sparkle/AM1structures was approximately16%,

and the experimental value was8%.We attribute the registered differences to the fact that the theoretical

model does not consider the vibronic coupling with O-H oscillators from coordinated water molecules.These

results clearly attest for the ef?cacy of the theoretical models employed in all calculations and open a new

window of interesting possibilities for the design in silico of novel and highly ef?cient lanthanide-organic

frameworks.

Introduction

Crystal engineering of inorganic-organic hybrid networks has,without a doubt,emerged as a research?eld which lies in the interface between synthetic chemistry and materials science. Numerous synthetic and conceptual developments have been reported,in particular concerning the development of protocols for the structural control of an extensive class of crystalline materials with tunable structure,porosity,stability,and functionality.1,2Worldwide interest in this new class of com-pounds arises from their intriguing topological features,ulti-mately constructed by the self-assembly of metallic ions with multifunctional organic ligands3and,on the other,from their promising applications in catalysis,4solid-phase extraction,5gas storage,6magnetic,and as optics materials.7,8

The design and assembly of metal-organic frameworks (MOFs)can be envisaged as a complex algorithm in which the chemical and structural information stored in the ligands is recognized by metallic ions through their coordination abilities.9 Hence,the selection of suitable ligands and metal ions consti-tutes the aspects for a successful construction of these molecular architectures.In particular,the use of lanthanide ions has received special attention in recent years from several research groups.10,11However,most of them have explored the low stereochemical preference inherent to lanthanide ions to intro-duce dissymmetry at the metal centers thus leading mainly to interesting structures.12,13These lanthanide-containing MOFs have great potential to be ef?ciently used as light-conversion molecular devices(LCMDs)14in which the coordinated ligands absorb the incident radiation and transfer energy to the emitting metal ion,thus increasing the overall photoluminescent(PL) properties.15These photophysical features have been extensively explored in materials science,in particular in the development of IR-emitters,16organic light-emitting diodes(OLEDs),17and optic sensors,18,19but remain somehow underexplored for MOFs. Lanthanide-containing MOFs have been assembled from a multitude of organic ligands,20,21among which the aromatics polycarboxylates are of particular interest due to their chemical stability and photophysical properties.22-24Mellitic acid(ben-zenehexacarboxylic acid),for instance,is a high connectivity ligand which can establish bridges between several metal centers,25adopt several coordination modes,26,27and produce multidimensional networks,including2D and3D structures.28 It is important to emphasize that previous reports of MOFs with this ligand detach the synthesis from the structural investiga-

*Corresponding author.E-mail:salvesjr@ufpe.br.Tel.:+55812126-

7475.Fax:+55812126-8442.

?UFPE.

?CICECO.

§UFS.

|UP.

J.Phys.Chem.B2009,113,12181–1218812181

10.1021/jp9022629CCC:$40.75 2009American Chemical Society

Published on Web08/18/2009

tions.29Hence,to date,a detailed study of the photoluminescent properties of functional compounds with mellitic acid residues is inexistent in the literature.

Our research group has been developing over the past few years a number of theoretical approaches which predict very well several spectroscopic properties such as singlet and triplet energy positions,30-32electronic spectra of lanthanide complexes,30-32ligand?eld parameters,B q k,33-354f-4f in-tensity parameters,?λ(λ)2,4,and6),36-39energy transfer rates,W ET,between the lanthanide trivalent ions and the ligand,quantum yields,and luminescence ef?ciencies for these complexes.40-43Following our interest in the synthesis and characterization of MOF-type materials containing lan-thanide centers,44-50in this paper we wish to report a detailed photophysical investigation of the properties of the3D [Ln2(MELL)(H2O)6]materials(where Ln3+)Eu3+,Tb3+,and Gd3+;hereafter designated as(1),(2),and(3)).The structure of the La-based material has been described by Williams29and collaborators,and recently Lin reported the surfactant-assisted synthesis of the nanoscale[Gd2(MELL)(H2O)6]and demon-strated the potential utility in magnetic resonance imaging (MRI).51In this report we follow that previous paper by preparing and fully characterizing in the solid state the structures of the Eu3+,Tb3+,and Gd3+based materials.Spectroscopic properties such as intensity parameters?λ(λ)2,4and6), rates of energy transfer(W ET),and back-transfer(W BT),radiative (A rad)and nonradiative(A nrad)decay rates,quantum ef?ciency (η),and quantum yields(q)of these functional materials were theoretically predicted using the optimized Sparkle/AM1struc-ture.This study attests to the ef?cacy of the former approach. The semiempirical Sparkle model has also been employed as an important tool in the design of new light-converting molecular devices(LCMDs).52,53Because this model permits the treatment of large structures with a great number of atoms in a relatively short period of time,we decided to use it for the?rst time in the prediction of the complete geometry of a lanthanide-containing MOF material.

Experimental Section

Chemicals.Mellitic acid and lanthanide oxides(99.99%) were purchased from Aldrich and used without further puri?ca-tion.Ln(NO3)3·6H2O(where Ln3+)Eu3+,Tb3+,and Gd3+) was obtained by reaction of nitric acid with the corresponding lanthanide oxide.

Syntheses.An equimolar mixture(0.85mmol)of mellitic acid and Ln(NO3)3·6H2O and H2O(4.0mL)was placed inside a8.0mL Te?on-lined stainless steel autoclave.The reaction took place at433K in static conditions and under autogenous pressure over a period of72h,after which the vessel was allowed to cool to room temperature(RT).Products were washed with water and acetone and dried in open air.The yield, based on Ln3+,was about75%for all samples.The hydrother-mal synthetic approach afforded high-quality single crystals suitable for X-ray crystallographic analysis,with the empirical formulas determined as[Ln2(MELL)(H2O)6](where Ln3+) Eu3+,Tb3+,and Gd3+;designated as(1),(2),and(3),respec-tively).All materials were found to be insoluble in water and in common organic solvents.

Selected FT-IR data(in cm-1).(1):3468-3213(s),1609 (s),1568(s),1449(s),1344(s),918(w),676(w),590(w), 505(w).(2):3468-3213(s),1611(s),1555(s),1443(s),1338 (s),918(w),719(w),676(w),590(w),548(w),492(w).(3): 3486-3000(s),1609(s),1563(s),1454(s),1344(s),918(w), 673(w),587(w),511(w).

Temperature ranges(K)and observed weight losses.(1): 383-458K(-5.25%),458-533K(-8.40%),700-1200K (-37.4%).(2):376-458K(-4.92%),453-549K(-8.43%), 750-1210K(-37.31%).(3):387-454K(-4.93%),454-550 K(-8.42%),780-1165K(-37.1%).

General Instrumentation.FT-IR spectra were recorded from KBr pellets(in the400-4000cm-1spectral range)using a BRUKER IFS66.Raman spectra were acquired in a Renishaw Raman Image Spectrophotometer,coupled to an optical micro-scope which focuses the incident radiation inside a1μm spot, and equipped with a632.8nm laser as the excitation source(4 mW power).Spectra were collected from28scans over the 2000-100cm-1spectral region.

Photoluminescence spectra were acquired using an ISS PC1 spectro?uorimeter at RT and at77K.The excitation device was equipped with a300W Xe lamp and a pholographic grating. Emission spectra were collected with a25cm monochromator (0.1nm resolution)connected to a photomultiplier.The excita-tion and emission slit widths were?xed at 1.0mm.All monochromators are equipped with1200grooves/mm.The experimental quantum yield(q)was determined by employing the method developed by Bril et al.,54for which q of a given material can be calculated by a direct comparison with standard phosphors with known q values.The quantum yield can,thus, be calculated from

where r ST and r x apply for the exciting radiation re?ected by the standard and the sample,respectively,and q ST is the quantum yield of the standard phosphor.The?Φx and?ΦST terms correspond to the integrated photon?ux(photon·s-1)for the sample and standard phosphors.Sodium salicylate(Merck,PA), whose q ST is55%at RT as reported by Malta,55was used as tandard.

Termogravimetric data(TG)were obtained from ca.3.0mg of each sample with a thermobalance model TGA50(Shim-adzu),in the298-1473K temperature range,using a platinum crucible,under dynamic nitrogen atmosphere(50mL·min-1), and with a heating rate of10K·min-1.

Single-Crystal X-Ray Diffraction Studies.Single crystals of[Ln2(MELL)(H2O)6]materials were manually harvested from the crystallization vials and mounted on Hampton Research CryoLoops using FOMBLIN Y per?uoropolyether vacuum oil (LVAC25/6)purchased from Aldrich56with the help of a Stemi 2000stereomicroscope equipped with Carl Zeiss lenses.Data were collected on a Bruker X8Kappa APEX II charge-coupled device(CCD)area-detector diffractometer(Mo K R graphite-monochromated radiation,λ)0.71073?)controlled by the APEX-2software package57and equipped with an Oxford Cryosystems Series700cryostream monitored remotely using the software interface Cryopad.58Images were processed using the software package SAINT+,59and data were corrected for absorption by the multiscan semiempirical method implemented in SADABS.60Structures were solved using the Patterson synthesis algorithm implemented in SHELXS-97,61,62which allowed the immediate location of the crystallographically independent Ln3+metallic centers.All remaining non-hydrogen atoms were directly located from difference Fourier maps calculated from successive full-matrix least-squares re?nement cycles on F2using SHELXL-97.62,63Non-hydrogen atoms were successfully re?ned using anisotropic displacement parameters.

q)(1-r ST1-r x)(?Φx?ΦST)q ST(1)

12182J.Phys.Chem.B,Vol.113,No.36,2009Rodrigues et al.

Hydrogen atoms associated with the coordinated water molecules were markedly visible in difference Fourier maps and were included in the?nal structural models with the O-H and H···H distances restrained to0.95(1)?and1.55(1)?,plus U iso?xed at1.5×U eq of the attached oxygen atom,to ensure a chemically reasonable geometry for these chemical moieties. The last difference Fourier map synthesis showed:for(1), the highest peak(0.366e?-3)and deepest hole(-1.697e?-3) located at0.65?from C(3)and at0.91?from O(3), respectively;for(3),the highest peak(0.390e?-3)and deepest hole(-0.852e?-3)located at0.70?from C(2)and at1.87?from O(1W),respectively;for(2),the highest peak(0.417e?-3) and deepest hole(-0.519e?-3)located at0.75?from C(3) and at0.89?from Tb(1),respectively.

Crystallographic data(excluding structure factors)for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication data(deposition numbers are given in Table S1, Supporting Information).Copies of the data can be obtained free of charge on application to CCDC,12Union Road, Cambridge CB22EZ,U.K.(fax:(+44)1223336033;e-mail: deposit@https://www.wendangku.net/doc/e910541734.html,).

Theoretical Calculations

Geometry Optimization and Transition Energies.The ground state geometry for the Eu3+-containing material was calculated using the Sparkle/AM1model.64In this report,and for the?rst time,it was possible to employ a quantum chemical methodology to predict the complete geometry of a lanthanide inorganic-organic hybrid network.The unit cell,composed by a total of382atoms including12Eu3+ions,was properly optimized.We note that the use of another quantum chemical methodology such as Hartree-Fock(HF)or density functional theory(DFT)using an effective core potential(ECP)to treat the Eu3+ions is unfeasible owing to the high computational effort needed.

In a recent report,65we described the complete geometry calculation of a dieuropium complex composed by134atoms using HF/6-31G*/ECP methodology.In that paper,we employed the quasi-relativistic ECP of Dolg et al.66This calculation was performed on a Pentium IV-3GHz with2GB of RAM in 2880h.This clearly attests how the use of ab initio or DFT methodologies is unfeasible to investigate lanthanide inorganic-organic hybrid networks.

The Sparkle/AM1model is implemented in the Mopac2007 software package.67The keywords used in the calculation reported in this manuscript were:PRECISE,GNORM)0.25, SCFCRT)1.D-10(to increase the SCF convergence criterion), and XYZ(for Cartesian coordinates).

The single-crystal X-ray structure and Sparkle/AM1opti-mized geometry were both used to calculate the singlet and triplet excited states using a con?guration interaction single (CIS)approach based on the intermediate neglecting of a differential overlap/spectroscopic(INDO/S)method68,69imple-mented in the ZINDO software program.70

Judd-Ofelt Intensity Parameters Calculation.The ex-perimental intensity parameters,?λ,for the Eu3+-containing material were determined from where A0J is the coef?cient of spontaneous emission for the 5D0f7F J transitions; is the Lorentz local-?eld correction term given by )n(n2+2)2/9;n is the refractive index of the

medium(in this case n)1.5);and|?5D0|U(λ)|7F J?|2are the square reduced matrix element whose values are0.0032,0.0023,and

0.0002forλ)2,4,and6,respectively.71,72The transition 5D0f7F6was not observed experimentally;consequently,the experimental?6parameter could not be estimated.

The coordinative interaction between a lanthanide cation

and the bonding atoms of an organic ligand can be described

by the Judd-Ofelt theory,73,74after which the intensity

parameters?λ(λ)2,4,and6)are de?ned by

with

Details on the parameters of eqs3and4are discussed in

detail elsewhere.75-77

The values of charge factors(g)and the cation polarizability

(R)are given in Table S5(see Supporting Information).These

values,used for the calculation of theγp t andΓp t,respectively,

were adjusted using a nonlinear minimization of a four-

dimensional surface response.The generate simulating annealing

(GSA)method aimed at?nding one of its local minima,which

ideally should be the global minimum and be chemically

consistent.In the minimization procedure,we considered both

the Sparkle/AM1and the crystallographic structural models.The

response function,F respectively,was de?ned as

where i runs over Sparkle/AM1and crystallographic geometries;

?2Calc and?4Calc are the intensity parameters calculated for each structure;and?2Exp and?4Exp are the intensity parameters obtained from the experimental emission spectrum.The?6 parameter was not observed,hence it was not considered in the minimization procedure.The values are in the range of those physically acceptable.

Energy Transfer Rates and Quantum Yields.Models used to calculate the energy transfer rates between the ligands and the lanthanide trivalent ion,plus the numerical solution of the rate equations and the emission quantum yields,are described in detail by Malta and collaborators.78

Results and Discussion

We have modi?ed the synthetic procedure reported by

Williams and collaborators29for[La2(MELL)(H2O)6]with the

purpose of increasing overall crystallinity and obtaining phase-

pure materials with other lanthanide centers.Indeed,we found

that by using the primary building blocks in a1:1ratio in the

initial reactive gel and using longer reaction times at slightly

lower temperatures,the compounds could be isolated as large

?

λ)

4e2ω3A

0J

3p ?7F|Uλ|5D0?2

(2)

?

λ

)(2λ+1)∑

t,p

|B

λtp

|2

(2t+1)

(3)

B

λtp

)

2

?E

?r t+1?θ(t,p)γp t-

[(λ+1)(2λ+3)

2λ+1

]?r t?(1-σλ)?f|C(λ)|f?Γp tδt,λ+1(4)

F

resp

)∑

i)1

2

|?

2

calc-?

2

exp|+|?

4

calc-?

4

exp|(5)

Studies of Lanthanide-Organic Frameworks J.Phys.Chem.B,Vol.113,No.36,200912183

and very well-formed single crystals (crystal size in the ca.10-50μm range).

Single-crystal X-ray diffraction analysis revealed that com-pounds (1),(2),and (3)are isostructural crystallizing in the orthorhombic space group Pnnm ,structurally identical to the lanthanum and gadolinium materials reported by Willians 29and Li 51(Table S1,Supporting Information).

Each mellitate anion is coordinated to eight Ln 3+cations via two coordination modes typical of carboxylate groups:79two -COO -groups are bridging four distinct Ln 3+via syn,syn-bridges,while the remaining four display a syn,syn -chelate coordination mode.The crystallographically independent Ln 3+ion is thus coordinated to six oxygen atoms arising from six symmetry-equivalent mellitate anions.The coordination sphere is completed by three water molecules.Therefore,the chemical environment is best described as a distorted tricapped trigonal prism as shown in Figure 1.

All carboxylate groups are highly twisted out of the plane of the benzene ring.Noteworthy,these deviations are related to the coordination mode,with this behavior being already reported in similar compounds.80,81The Ln -O bond lengths and internal polyhedral O -Ln -O angles for (1),(2),and (3)are typical (see Table S2in the Supporting Information).80,82

The aromatic rings and the Ln 3+cations are stacked on the bc plane of the unit cell forming a two-dimensional plane net.83The resulting framework has a one-dimensional channel system running parallel to the c -axis formed by distorted hexagonal pores with average cavity size of ca.8.3×6.6?(see Figure 2).All coordinated water molecules,pointing toward the channels,are involved in hydrogen bonding interactions with oxygen atoms of the neighboring carboxylate groups,acting as bifurcated donors,with a graph set motif of S (3):84O(1W)-H(1A)···O(1),O(1W)-H(1B)···O(2),O(2W)-H(2A)···O(1),and O(2W)-H(2B)···O(2W).Hydrogen bonding geometric details are given in Table S3(Supporting Information).

Figure 3shows a comparison between the crystallographic unit cell and the Sparkle/AM1optimized geometry for (1).It is important to emphasize that the crystallographic unit cell was modi?ed before being optimized using the Sparkle/AM1method.This was performed to minimize the disorder effect caused by uncompleted fragments.Therefore,20symmetry-related Eu 3+cations were removed,and the oxygen atoms arising from uncompleted mellitate residues were substituted by water ligands.One of the 12polyhedra was selected to predict the photoluminescent properties which will be discussed later in this paper.The optimized atomic coordinates for the

coordination polyhedron,as determined by the Sparkle/AM1model,are supplied in Table S5(see Supporting Information).The photoluminescence of (3)was collected at 77K (λexc )320nm).Since the emitting level of the Gd 3+ion is around 32000cm -1,the ?rst excited triplet state of the mellitate ligand is unable to effectively sensitize the metal ion.The triplet state energy level was estimated from the zero phonon,which was considered to be the 0-0transition 85centered at 413nm (24213cm -1).

Figure 4shows the excitation spectra of (1)and (2)acquired at RT while monitoring the Eu 3+and Tb 3+emissions at 614and 545nm in the 200-600and 200-500nm ranges,respectively.The (1)excitation exhibits a broadband between 220and 350nm (λmax )312nm)from the πf π*electronic transition associated with the organic moiety.The peaks observed in the 350-580nm range result from the intra f -

f

Figure 1.Schematic representation of the tricapped trigonal prismatic coordination polyhedron of the Ln 3+ion.Symmetry transformation used to generate equivalent atoms:i x ,y ,1-z ;ii 3/2-x ,y +1/2,3/2-z ;iii

3/2-x ,y -1/2,3/2-z

.

Figure 2.View along the c-axis of the extended structure of [Ln 2(MELL)(H 2O)6],showing the distorted hexagonal channels oc-cupied by aqua ligands.The hydrogen bonds are represented as light-blue dashed lines.For geometrical details on the hydrogen bonds,see Table S3(Supporting

Information).

Figure 3.Molecular structure of (1):(a)obtained from single-crystal crystallography;(b)optimized by Sparkle/AM1model.

12184J.Phys.Chem.B,Vol.113,No.36,2009Rodrigues et al.

transitions of the Eu 3+ion.The (2)excitation spectrum displays an intense broadband centered at about 320nm.The transitions corresponding to the Tb 3+ion absorption levels are very weak in comparison to those of the ligand,thus indicating that an indirect process of energy transfer is the only photophysical pathway responsible for the high lumi-nescence of the sample.

The emission spectrum of (2)(Figure 5)acquired at room temperature markedly shows the typical green Tb 3+emission associated with the 5D 4f 7F J transitions.The 5D 4f 7F 5transi-tion centered at ca.545nm is the strongest corresponding to ca.66%of the integrated emission spectrum.The main channel responsible by the photoluminescence quenching is a thermal back transference.86According to Latva and co-workers,87this quenching mechanism is only observable when the energy difference between the lowest triplet state of the ligand and the 5D 4level of Tb 3+(20400cm -1)is lower than about 1850cm -1.In this case,the energy back transference does not seem to play an important role.Ef?cient energy transference from the antenna ligand to the emitting 5D 4ion level is con?rmed with a measured quantum yield of 37%and a long lifetime (τ)of 0.74ms.

The emission spectra of (1)depicted in Figure 6were collected at 77K in the 350-720nm spectral range,by a direct excitation of the Eu 3+ion at 394nm and by the singlet state of the ligand (λ)310nm).The spectra display narrow bands characteristic of the Eu 3+5D 0f 7F J transitions.Those

attributed to the 5D 0f 7F 2transition (centered at ca.614nm)give the major contribution to the red photoluminescence of the material.A broadband between 410and 520nm is attributed to the emission arising from the ligand which provides an inef?cient energy transfer from the ligand excited state to the emitting 5D 0level of the Eu 3+ion as previously evidenced by the excitation spectrum.

The relative intensities and splitting of the emission bands are dependent upon the extent in which the (2J +1)degeneracy is removed by the symmetry of the ?rst coordination sphere.88As mentioned above and determined from the single-crystal X-ray measurements,the geometry of the nine-coordinated coordination environment around the Ln 3+ions is slightly distorted from that of a tricapped trigonal prism.This implies that the point group of the Eu 3+coordination sphere is reduced from D 3h to D 3symmetry.In accordance to the selection rules for the electric dipole transition,under D 3point symmetry the 5

D 0f 7F 0transition is absent and the 5D 0f 7F 2transition shows a small sideband at the lower energy side.89Hence,the analysis of the local lanthanide ion chemical environment provided by emission spectroscopy is in good agreement with the X-ray diffraction data.

Table 1collects the theoretical and experimental values for the intensity parameters (?2,?4),radiative and nonra-diative rates of spontaneous emission (A rad and A nrad ,respec-tively),quantum ef?ciency (η)and yield (q ),and experi-mental lifetime (τ)for (1).The experimental radiative rate (A rad )441.70s -1),the high value for experimental nonra-diative rate (A nrad )23336.08s -1),and the short lifetime τof 0.34ms can be associated to the nonradiative decay channels controlling the relaxation process and arising from the vibronic coupling of the O -H oscillators from the water molecules coordinated to the Ln 3+cations.Indeed,the inef?cient energy transference and the high contribution of the nonradiative relaxation process provide a plausible explanation for the observed low experimental quantum yields (q )8%).

The theoretical values of the intensity parameters ?λ(λ)2and 4)calculated using the crystallographic and Sparkle/AM1geometries are in good agreement with those obtained experimentally (Table 1).The value of ?2is relatively low when compared directly to those for Eu - -diketonates,14,36,41,42thus ultimately indicating,on the one hand,a reduced

degree

Figure 4.Excitation spectra of (1)and (2)collected at

RT.

Figure 5.Emission spectra of (2)collected at RT in the 400-720nm spectral

range.

Figure 6.Low temperature (77K)emission spectra of (1)registered in the 400-720nm spectral range.

Studies of Lanthanide-Organic Frameworks J.Phys.Chem.B,Vol.113,No.36,200912185

of covalence involving the metal-to-ligand coordination bond and,on the other,a slightly polarized chemical environment in the vicinity of the lanthanide ion.The?4parameter is less sensitive to the coordination sphere than?2.However, its value re?ects the chemical environment rigidity surround-ing the Ln3+cation.(1)shows a low?4value(see Table1) indicating a considerable rigidity associated with the MOFs.90 As shown in Figure7,the ligand-to-metal energy transfer may occur through either the singlet or triplet ligand states. The theoretical singlet and triplet values calculated using the INDO/S-CIS method for the(1)Sparkle/AM1geometry are 39075and24635cm-1.The calculated triplet values are in good agreement with the experimental one(24213cm-1). As depicted in the energy level diagram for(1)(Figure7), the singlet state does not have appropriate resonance conditions with the excited states of Eu3+.Nevertheless,we considered the singlet f5D4channel in all our calculations.The radiative and nonradiative decay rates calculated from crystallographic and Sparkle/AM1geometries are given in both Figure7and Table1.The calculated values of A rad and A nrad are in accordance with the experimental data.

The energy transfer rates are larger for those levels dominated by the exchange mechanism,5D0and5D1,than for those dominated by the dipole-dipole interaction.Typical values of the remaining transfer rates were assumed to be identical to those found for coordination compounds,namely,Φ)104,Φ(1) )106,Φ(2))108,andΦ(3))105s-1.91The energy transfer and back-transfer rates from the ligand triplet state(T1)to the 5D1and5D0levels and energy transfer rates from the singlet state(S1)to the5D4level are summarized in Table2.These results clearly indicate that energy transference is predominant from the triplet state of the ligand to the5D1and5D0levels of the Eu3+ion.

The radiative(A rad)and nonradiative(A nrad)rates and the lifetime value(τ)of the5D0level were used in the quantum yield calculations.Obtained results(derived from the Sparkle/ AM1and crystallographic structures)are summarized in Table 1.The theoretical quantum yields are of the same order of magnitude of the experimental one.We attribute the registered differences to the fact that the theoretical model does not consider the vibronic coupling with O-H oscillators from coordinated water molecules.

Conclusion

Three MOF materials constructed from lanthanide ions and mellitic acid residues have been synthesized via a hydrothermal approach,and their structural and spectroscopic properties were https://www.wendangku.net/doc/e910541734.html,pounds are isostructural,crystallizing in the orthorhombic space group Pnnm.Each mellitate anion is coordinated to eight Ln3+,and due to this high connectivity, remarkable3D frameworks topologically identical to the rutile structure are formed.The structure contains hexagonal channels running along the[001]crystallographic direction,having a cross-section of about8.3×6.6?.

The(2)material is highly photoluminescent,a property justi?ed by ef?cient energy transference from the antenna ligand to the emitting5D4Tb3+level.This feature was further con?rmed by the measurement of the quantum yield and lifetime (37%and0.74ms,respectively).

The optimized molecular geometry for(1)was obtained by employing the Sparkle/AM1approach showing a good agreement with the crystallographic structural model.This theoretical methodology was proven to be a versatile alterna-tive over the more traditional protocols used in MOF research based on lanthanides ions.When compared with Eu- -diketonates complexes,the value of?2indicates reduced degree of covalence involving the metal-ligand coordination bond and also a slightly polarizable chemical environment for the lanthanide center.The low value of the?4parameter re?ects the chemical environment rigidity of the Ln3+ions. The small discrepancies registered for the theoretical and experimental values of quantum yields can be rationalized

TABLE1:Theoretical Intensity Parameters?2and?4,Radiative(A rad)and Nonradiative(A nrad)Decay Rates,Quantum

Ef?ciency(η),and Quantum Yield(q)Values Derived from the Experimental Data and Optimized Sparkle/AM1Structural Models a

?2?4A rad A nradτηq (10-20cm2)(10-20cm2)(s-1)(s-1)(ms)(%)(%) experimental data11.82 2.72441.702336.080.3615.98.0 Sparkle/AM1model10.22 6.84459.162318.62-16.516.3

a Related experimental data,including the lifetime(τ)of the Eu3+center,were obtained at RT for the as-synthesized(1)

material.

Figure7.Energy level diagram for the(1)material showing the most

probable channels for the intramolecular energy transfer processes.

TABLE2:Calculated Values of Intramolecular Energy Transfer and Back-Transfer Rates for the(1)Material

Singlet f5D4Triplet f5D1Triplet f5D0 geometry W ET1(s-1)a W BT1(s-1)b W ET2(s-1)a W BT2(s-1)b W ET3(s-1)a W BT3(s-1)b X-ray model 4.15×105 1.72×10-12 2.30×109 4.84×104 1.08×109 4.96 Sparkle/AM1model8.45×104 1.08×109 2.36×1080 3.20×10-3 1.53×10-7

a W ET,Transfer rate.

b W BT,Back-transfer rate.

12186J.Phys.Chem.B,Vol.113,No.36,2009Rodrigues et al.

taking into account the fact that the model does not account for the vibronic coupling with the water molecules.Never-theless,an excellent agreement was observed for the theoreti-cal and experimental values of quantum ef?ciency.These results clearly attest for the ef?cacy of the theoretical models employed in all calculations and,therefore,a new window of interesting possibilities for the design of novel and highly ef?cient lanthanide-organic frameworks.

Acknowledgment.The authors acknowledge the?nancial support from CAPES and CNPq(Brazilian agencies)through the PADCT,IMMC(Instituto do Mile?nio de Materiais Com-plexos),and from RENAMI(Rede de Nanotecnologia Molecular e de Interfaces,Brazil).We also wish to thank CENAPAD (Centro Nacional de Processamento de Alto Desempenho)at Campinas,Brazil,for providing access to their computational facilities and Fundac?a?o para a Cie?ncia e a Tecnologia for ?nancial support(PPCDT/QUI/58377/2004).

Supporting Information Available:Crystallographic in-formation(in particular crystal solution and re?nement,crystal-lographic distances and hydrogen bonding geometrical param-eters)as tabulated data and CIF?les.Sparkle/AM1optimized atomic coordinates for the coordination polyhedron of the Eu3+ center in the(1)structure.This material is available free of charge via the Internet at https://www.wendangku.net/doc/e910541734.html,.

References and Notes

(1)Yaghi,O.M.;O’Keeffe,M.;Ockwig,N.W.;Chae,H.K.; Eddaoudi,M.;Kim,J.Nature2003,423,705–714.

(2)Rowsell,J.L.C.;Yaghi,O.M.Microporous Mesoporous Mater. 2004,73,3–14.

(3)Rosi,N.L.;Kim,J.;Eddaoudi,M.;Chen,B.L.;O’Keeffe,M.; Yaghi,O.M.J.Am.Chem.Soc.2005,127,1504–1518.

(4)Szeto,K.C.;Prestipino,C.;Lamberti,C.;Zecchina,A.;Bordiga, S.;Bjorgen,M.;Tilset,M.;Lillerud,K.P.Chem.Mater.2007,19,211–220.

(5)de Carvalho,P.H.V.;Barreto,A.S.;Rodrigues,M.O.;Prata,V.

d.M.;Alves,P.B.;de Mesquita,M.E.;Ju′nior,S.A.;Navickiene,S.J. Sep.Sci.2009,32,2132–2138.

(6)Dinca,M.;Yu,A.F.;Long,J.R.J.Am.Chem.Soc.2006,128, 17153–17153.

(7)Hifumi,H.;Yamaoka,S.;Tanimoto,A.;Citterio,D.;Suzuki,K. J.Am.Chem.Soc.2006,128,15090–15091.

(8)de Bettencourt-Dias,A.Dalton Trans.2007,2229–2241.

(9)Lehn,J.M.Pure Appl.Chem.1994,66,1961–1966.

(10)Xu,N.;Shi,W.;Liao,D.Z.;Yan,S.P.;Cheng,P.Inorg.Chem. 2008,47,8748–8756.

(11)Chen,B.L.;Yang,Y.;Zapata,F.;Lin,G.N.;Qian,G.D.; Lobkovsky,E.B.Ad V.Mater.2007,19,1693.

(12)Wang,F.Q.;Zheng,X.J.;Wan,Y.H.;Sun,C.Y.;Wang,Z.M.; Wang,K.Z.;Jin,L.P.Inorg.Chem.2007,46,2956–2958.

(13)Pan,L.;Huang,X.Y.;Li,J.;Wu,Y.G.;Zheng,N.W.Angew. Chem.,Int.Ed.2000,39,527–530.

(14)Pavithran,R.;Kumar,N.S.S.;Biju,S.;Reddy,M.L.P.;Junior, S.A.;Freire,R.O.Inorg.Chem.2006,45,2184–2192.

(15)Bunzli,J.C.G.;Piguet,C.Chem.Soc.Re V.2005,34,1048–1077.

(16)Sun,L.N.;Zhang,H.J.;Yu,J.B.;Yu,S.Y.;Peng,C.Y.;Dang, S.;Guo,X.M.;Feng,https://www.wendangku.net/doc/e910541734.html,ngmuir2008,24,5500–5507.

(17)de Bettencourt-Dias,A.Inorg.Chem.2005,44,2734–2741.

(18)Zhao,B.;Chen,X.Y.;Cheng,P.;Liao,D.Z.;Yan,S.P.;Jiang, Z.H.J.Am.Chem.Soc.2004,126,15394–15395.

(19)Park,S.S.;An,B.;Ha,C.S.Microporous Mesoporous Mater. 2008,111,367–378.

(20)Sun,Y.Q.;Zhang,J.;Chen,Y.M.;Yang,G.Y.Angew.Chem., Int.Ed.2005,44,5814–5817.

(21)Broker,G.A.;Klingshirn,M.A.;Rogers,R.D.J.Alloys Compd. 2002,344,123–127.

(22)Daiguebonne,C.;Kerbellec,N.;Guillou,O.;Bunzli,J.C.;Gumy,

F.;Catala,L.;Mallah,T.;Audebrand,N.;Gerault,Y.;Bernot,K.;Calvez,

G.Inorg.Chem.2008,47,3700–3708.

(23)de Lill,D.T.;de Bettencourt-Dias,A.;Cahill,C.L.Inorg.Chem. 2007,46,3960–3965.

(24)Rodrigues,M.O.;Brito-Silva,A.M.;Alves,S.;De Simone,C.A.; Araujo,A.A.S.;de Carvalho,P.H.V.;Santos,S.C.G.;Aragao,K.A.S.; Freire,R.O.;Mesquita,M.E.Quim.No V a2009,32,286–U28.

(25)Yang,E.;Zhang,J.;Li,Z.J.;Gao,S.;Kang,Y.;Chen,Y.B.; Wen,Y.H.;Yao,Y.G.Inorg.Chem.2004,43,6525–6527.

(26)Kyono,A.;Kimata,M.;Hatta,T.Inorg.Chim.Acta2004,357, 2519–2524.

(27)Kumagai,H.;Kawata,S.;Kitagawa,S.Inorg.Chim.Acta2002, 337,387–392.

(28)Harnisch,J.A.;Thomas,L.M.;Guzei,I.A.;Angelici,R.J.Inorg. Chim.Acta1999,286,207–214.

(29)Chui,S.S.Y.;Siu,A.;Feng,X.;Zhang,Z.Y.;Mak,T.C.W.; Williams,https://www.wendangku.net/doc/e910541734.html,mun.2001,4,467–470.

(30)de Mesquita,M.E.;Junior,S.A.;Oliveira,F.C.;Freire,R.O.; Junior,N.B.C.;de Sa,https://www.wendangku.net/doc/e910541734.html,mun.2002,5,292–295.

(31)Biju,S.;Reddy,M.L.P.;Freire,https://www.wendangku.net/doc/e910541734.html,mun. 2007,10,393–396.

(32)Freire,R.O.;Vila-Nova,S.P.;Brunet,E.;Juanes,O.;Rodriguez-Ubis,J.C.;Alves,S.Chem.Phys.Lett.2007,443,378–382.

(33)Albuquerque,R.Q.;Freire,R.O.;Malta,O.L.J.Phys.Chem.A 2005,109,4607–4610.

(34)Freire,R.O.;Rocha,G.B.;Albuquerque,R.Q.;Simas,A.M.J. Lumin.2005,111,81–87.

(35)Beltrao,M.A.;Santos,M.L.;Mesquita,M.E.;Barreto,L.S.;da Costa,N.B.;Freire,R.O.;dos Santos,M.A.C.J.Lumin.2006,116, 132–138.

(36)dos Santos,E.R.;dos Santos,M.A.C.;Freire,R.O.;Junior, S.A.;Barreto,L.S.;de Mesquita,M.E.Chem.Phys.Lett.2006,418, 337–341.

(37)de Mesquita,M.E.;Junior,S.A.;Silva,F.R.G.;dos Santos, M.A.C.;Freire,R.O.;Junior,N.B.C.;de Sa,G.F.J.Alloys Compd. 2004,374,320–324.

(38)de Mesquita,M.E.;Junior,S.A.;Junior,N.B.C.;Freire,R.O.; Silva,F.R.G.E.;de Sa,G.F.J.Solid State Chem.2003,171,183–188.

(39)da Costa,N.B.;Freire,R.O.;dos Santos,M.A.C.;Mesquita, M.E.J.Mol.Struct.-Theochem2001,545,131–135.

(40)Souza,A.P.;Paz,F.A.A.;Freire,R.O.;Carlos,L.D.;Malta, O.L.;Alves,S.;de Sa,G.F.J.Phys.Chem.B2007,111,9228–9238.

(41)Lima,P.P.;Ferreira,R.A.S.;Freire,R.O.;Paz,F.A.A.;Fu, L.S.;Alves,S.;Carlos,L.D.;Malta,O.L.ChemPhysChem2006,7,735–746.

(42)de Mesquita,M.E.;Silva,F.R.G.E.;Albuquerque,R.Q.;Freire, R.O.;da Conceicao,E.C.;da Silva,J.E.C.;Junior,N.B.C.;de Sa,G.F. J.Alloys Compd.2004,366,124–131.

(43)Pavithran,R.;Reddy,M.L.P.;Junior,S.A.;Freire,R.O.;Rocha,

G.B.;Lima,P.P.Eur.J.Inorg.Chem.2005,412–94137.

(44)Shi,F.N.;Cunha-Silva,L.;Ferreira,R.A.S.;Mafra,L.;Trindade, T.;Carlos,L.D.;Paz,F.A.A.;Rocha,J.J.Am.Chem.Soc.2008,130, 150–167.

(45)Shi,F.N.;Trindade,T.;Rocha,J.;Paz,F.A.A.Cryst.Growth Des.2008,8,3917–3920.

(46)Soares-Santos,P.C.R.;Cunha-Silva,L.;Paz,F.A.A.;Ferreira, R.A.S.;Rocha,J.;Trindade,T.;Carlos,L.D.;Nogueira,H.I.S.Cryst. Growth Des.2008,8,2505–2516.

(47)Rodrigues,M.O.;da Costa,N.B.;de Simone,C.A.;Araujo,

A.A.S.;Brito-Silva,A.M.;Paz,F.A.A.;de Mesquita,M.E.;Junior, S.A.;Freire,R.O.J.Phys.Chem.B2008,112,4204–4212.

(48)Chelebaeva,E.;Larionova,J.;Guari,Y.;Ferreira,R.A.S.;Carlos, L.D.;Paz,F.A.A.;Trifonov,A.;Guerin,C.Inorg.Chem.2008,47,775–777.

(49)Girginova,P.I.;Paz,F.A.A.;Soares-Santos,P.C.R.;Ferreira, R.A.S.;Carlos,L.D.;Amaral,V.S.;Klinowski,J.;Nogueira,H.I.S.; Trindade,T.Eur.J.Inorg.Chem.2007,423,8–4246.

(50)Cunha-Silva,L.;Mafra,L.;Ananias,D.;Carlos,L.D.;Rocha,J.; Paz,F.A.A.Chem.Mater.2007,19,3527–3538.

(51)Taylor,K.M.L.;Jin,A.;Lin,W.B.Angew.Chem.,Int.Ed.2008, 47,7722–7725.

(52)Freire,R.O.;Albuquerque,R.Q.;Junior,S.A.;Rocha,G.B.;de Mesquita,M.E.Chem.Phys.Lett.2005,405,123–126.

(53)Freire,R.O.;Silva,F.R.G.E.;Rodrigues,M.O.;de Mesquita, M.E.;Junior,N.B.D.J.Mol.Model2005,12,16–23.

(54)Bril,A.;Jagerveenis,A.W.D.J.Res.Natl.Bur.Stand.Sect. A-Phys.Chem.1976,80,401–407.

(55)Malta,O.L.;Brito,H.F.;Menezes,J.F.S.;Silva,F.R.G.E.; Donega,C.D.;Alves,S.Chem.Phys.Lett.1998,282,233–238.

(56)Kottke,T.;Stalke,D.J.Appl.Crystallogr.1993,26,615–619.

(57)APEX-2Data Collection Software,Version2.1-RC13;Bruker AXS, Delft:The Netherlands,2006.

(58)Cryopad Remote monitoring and control,Version1.451;Oxford Cryosystems:Oxford,United Kingdom,2006.

(59)SAINT+Data Integration Engine,v.7.23a;Bruker AXS:Madison, Wisconsin,USA,1997-2005.

Studies of Lanthanide-Organic Frameworks J.Phys.Chem.B,Vol.113,No.36,200912187

(60)Sheldrick,G.M.SADABS V.2.01,Bruker/Siemens Area Detector Absorption Correction Program;Bruker AXS:Madison,Wisconsin,USA, 1998.

(61)Sheldrick,G.M.SHELXS-97,Program for Crystal Structure Solution;University of Go¨ttingen,1997.

(62)Sheldrick,G.M.Acta Cryst.A2008,64,112–122.

(63)Sheldrick,G.M.SHELXL-97,Program for Crystal Structure Re?nement;University of Go¨ttingen,1997.

(64)Freire,R.O.;Rocha,G.B.;Simas,A.M.Inorg.Chem.2005,44, 3299–3310.

(65)Freire,R.O.;Rocha,G.B.;Simas,A.M.J.Mol.Model2006,12, 373–389.

(66)Dolg,M.;Stoll,H.;Savin,A.;Preuss,H.Theor.Chim.Acta1989, 75,173–194.

(67)Stewart,J.J.P.Version7.058ed.;Chemistry,S.C.,Ed.;Colorado Springs,USA:2008.

(68)Ridley,J.E.;Zerner,M.C.Theor.Chim.Acta1976,42,223-236.

(69)Zerner,M.C.;Loew,G.H.;Kirchner,R.F.;Muellerwesterhoff, U.T.J.Am.Chem.Soc.1980,102,589–599.

(70)Zerner,M. C.ZINDO manual,QTP;University of Florida: Gainesville,FL,1990.

(71)Judd,B.R.Operator Techniques in Atomic Spectroscopy;McGraw-Hill Book Company:USA,1998.

(72)Guan,J.B.;Chen,B.;Sun,Y.Y.;Liang,H.;Zhang,Q.J.J.Non-Cryst.Solids2005,351,849–855.

(73)Judd,B.R.Phys.Re V.1962,127,750–761.

(74)Ofelt,G.S.J.Chem.Phys.1962,37,511–&.

(75)Malta,O.L.;Brito,H.F.;Menezes,J.F.S.;Silva,F.R.G.E.; Alves,S.;Farias,F.S.;deAndrade,A.V.M.J.Lumin.1997,75,255–268.

(76)Malta,O.L.;Ribeiro,S.J.L.;Faucher,M.;Porcher,P.J.Phys. Chem.Solids1991,52,587–593.

(77)Malta,O.L.;dosSantos,M.A.C.;Thompson,L.C.;Ito,N.K.J. Lumin.1996,69,77–84.

(78)Malta,O.L.;Legendziewicz,J.;Huskowska,E.;Turowska-Tyrk,

I.;Albuquerque,R.Q.;Donega,C.D.;Silva,F.R.G.E.J.Alloys Compd. 2001,323,654–660.

(79)Cao,R.;Sun,D.F.;Liang,Y.C.;Hong,M.C.;Tatsumi,K.;Shi, Q.Inorg.Chem.2002,41,2087–2094.

(80)Li,Z.F.;Wang,C.X.;Wang,P.;Zhang,Q.H.Acta Crystallogr., Sect.E:Struct.Rep.Online2006,62,M914–M915.

(81)Deluzet,A.;Guillou,O.Acta Crystallogr.,Sect.C:Cryst.Struct. Commun.2003,59,M277–M279.

(82)Inabe,T.J.Mater.Chem.2005,15,1317–1328.

(83)Wu,L.P.;Munakata,M.;KurodaSowa,T.;Maekawa,M.;Suenaga, Y.Inorg.Chim.Acta1996,249,183–189.

(84)Bernstein,J.;Davis,R.E.;Shimoni,L.;Chang,N.L.Angew.Chem., Int.Ed.1995,34,1555–1573.

(85)Alves,S.;deAlmeida,F.V.;deSa,G.F.;Donega,C.D.J.Lumin. 1997,72-4,478–480.

(86)Tedeschi,C.;Azema,J.;Gornitzka,H.;Tisnes,P.;Picard,C.Dalton Trans.2003,1738–1745.

(87)Latva,M.;Takalo,H.;Mukkala,V.M.;Matachescu,C.;Rodrigu-ezUbis,J.C.;Kankare,J.J.Lumin.1997,75,149–169.

(88)Kang,J.G.;Kim,T.J.Bull.Korean Chem.Soc.2005,26,1057–1064.

(89)Binnemans,K.;VanHerck,K.;GorllerWalrand,C.Chem.Phys. Lett.1997,266,297–302.

(90)Driesen,K.;Fourier,S.;Gorller-Walrand,C.;Binnemans,K.Phys. Chem.Chem.Phys.2003,5,198–202.

(91)Malta,O.L.;Silva,F.R.G.E.;Longo,R.Chem.Phys.Lett.1999, 307,518–526.

JP9022629

12188J.Phys.Chem.B,Vol.113,No.36,2009Rodrigues et al.

船舶原理

1.什么是船舶的浮性? 船舶在各种装载情况下具有漂浮在水面上保持平衡位置的能力 2.什么是静水力曲线?其使用条件是什么?包括哪些曲线?怎样用静水力曲线查某一吃水时的排水量和浮心位置? 船舶设计单位或船厂将这些参数预先计算出并按一定比例关系绘制在同一张图中;漂心坐标曲线、排水体积曲线;当已知船舶正浮或可视为正浮状态下的吃水时,便可在静水力曲线图中查得该吃水下的船舶的排水量、漂心坐标及浮心坐标等 3.什么是漂心?有何作用?平行沉浮的条件是什么? 船舶水线面积的几何中心称为漂心;根据漂心的位置,可以计算船舶在小角度纵倾时的首尾吃水;船舶在原水线面漂心的铅垂线上少量装卸重量时,船舶会平行沉浮;(1)必须为少量装卸重物(2)装卸重物p的重心必须位于原水线面漂心的铅垂线上 4.什么是TPC?其使用条件如何?有何用途? 每厘米吃水吨数是指船在任意吃水时,船舶水线面平行下沉或上浮1cm时所引起的排水量变化的吨数;已知船舶在吃水d时的tpc数值,便可迅速地求出装卸少量重物p之后的平均吃水变化量,或根据吃水的改变量求船舶装卸重物的重量 5.什么是船舶的稳性? 船舶在使其倾斜的外力消除后能自行回到原来平衡位置的性能。 6.船舶的稳性分几类? 横稳性、纵稳性、初稳性、大倾角稳性、静稳性、动稳性、完整稳性、破损稳性 7.船舶的平衡状态有哪几种?船舶处于稳定平衡状态、随遇平衡状态、不稳定平衡状态的条件是什么? 稳定平衡、不稳定平衡、随遇平衡 当外界干扰消失后,船舶能够自行恢复到初始平衡位置,该初始平衡状态称为稳定平衡当外界干扰消失后,船舶没有自行恢复到初始平衡位置的能力,该初始平衡状态称为不稳定平衡 当外界干扰消失后,船舶依然保持在当前倾斜状态,该初始平衡状态称为随遇平衡8.什么是初稳性?其稳心特点是什么?浮心运动轨迹如何? 指船舶倾斜角度较小时的稳性;稳心原点不动;浮心是以稳心为圆心,以稳心半径为半径做圆弧运动 9.什么是稳心半径?与吃水关系如何? 船舶在小角度倾斜过程中,倾斜前、后的浮力作用线的交点,与倾斜前的浮心位置的线段长,称为横稳性半径!随吃水的增加而逐渐减少 10.什么是初稳性高度GM?有何意义?影响GM的因素有哪些?从出发港到目的港整个航行过程中有多少个GM? 重心至稳心间的距离;吃水和重心高度;许多个 11.什么是大倾角稳性?其稳心有何特点? 船舶作倾角为10°-15以上倾斜或大于甲板边缘入水角时点的稳性 12.什么是静稳性曲线?有哪些特征参数? 描述复原力臂随横倾角变化的曲线称为静稳性曲线;初稳性高度、甲板浸水角、最大静复原力臂或力矩、静稳性曲线下的面积、稳性消失角 13.什么是动稳性、静稳性? 船舶在外力矩突然作用下的稳性。船舶在外力矩逐渐作用下的稳性。 14.什么是自由液面?其对稳性有何影响?减小其影响采取的措施有哪些? 可自由流动的液面称为自由液面;使初稳性高度减少;()减小液舱宽度(2)液舱应

船舶原理及结构课程教学大纲

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 《船舶原理与结构》课程教学大纲 一、课程基本信息 1、课程代码:NA325 2、课程名称(中/英文):船舶原理与结构/Principles of Naval Architecture and Structures 3、学时/学分:60/3.5 4、先修课程:《高等数学》《大学物理》《理论力学》 5、面向对象:轮机工程、交通运输工程 6、开课院(系)、教研室:船舶海洋与建筑工程学院船舶与海洋工程系 7、教材、教学参考书: 《船舶原理》,刘红编,上海交通大学出版社,2009.11。 《船舶原理》(上、下册),盛振邦、刘应中主编,上海交通大学出版社,2003、2004。 《船舶原理与结构》,陈雪深、裘泳铭、张永编,上海交通大学出版社,1990.6。 《船舶原理》,蒋维清等著,大连海事大学出版社,1998.8。 相关法规和船级社入级规范。 二、课程性质和任务 《船舶原理与结构》是轮机工程和交通运输工程专业的一门必修课。它的主要任务是通过讲课、作业和实验环节,使学生掌握船舶静力学、船舶阻力、船舶推进、船舶操纵性与耐波性和船体结构的基本概念、基本原理、基本计算方法,培养学生分析、解决问题的基本能力,为今后从事工程技术和航运管理工作,打下基础。 本课程各教学环节对人才培养目标的贡献见下表。

三、教学内容和基本要求 课程教学内容共54学时,对不同的教学内容,其要求如下。 1、船舶类型 了解民用船舶、军用舰船、高速舰船的种类、用途和特征。 2、船体几何要素 了解船舶外形和船体型线力的一般特征,掌握船体主尺度、尺度比和船型系数。 3、船舶浮性 掌握船舶的平衡条件、船舶浮态的概念;掌握船舶重量、重心位置、排水量和浮心位置的计算方法;掌握近似数值计算方法—梯形法和辛普森法。 2

2020年研究生入学考试考纲

武汉理工大学交通学院2020年研究生入学考试大纲 2020年研究生入学考试考纲 《船舶流体力学》考试说明 一、考试目的 掌握船舶流体力学相关知识是研究船舶水动力学问题的基础。本门考试的目的是考察考生掌握船舶流体力学相关知识的水平,以保证被录取者掌握必要的基础知识,为从事相关领域的研究工作打下基础。 考试对象:2020年报考武汉理工大学交通学院船舶与海洋工程船舶性能方向学术型和专业型研究生的考生。 二、考试要点 (1)流体的基本性质和研究方法 连续介质概念;流体的基本属性;作用在流体上的力的特点和表述方法。 (2)流体静力学 作用在流体上的力;流体静压强及特性;压力体的概念,及静止流体对壁面作用力计算。 (3)流体运动学 研究流体运动的两种方法;流体流动的分类;流线、流管等基本概念。 (4)流体动力学 动量定理;伯努利方程及应用。 (5)船舶静力学 船型系数;浮性;稳性分类;移动物体和液舱内自由液面对船舶稳性的影响;初稳性高计算。 (6)船舶快速性 边界层概念;船舶阻力分类;尺度效应,及船模阻力换算为实船阻力;方尾和球鼻艏对阻力的影响;伴流和推力减额的概念;空泡现象对螺旋桨性能的影响;浅水对船舶性能的影响。 三、考试形式与试卷结构 1. 答卷方式:闭卷,笔试。 2. 答题时间:180分钟。 3. 试卷分数:总分为150分。 4. 题型:填空题(20×1分=20分);名词解释(10×3分=30分);简述题(4×10分=40分);计算题(4×15分=60分)。 四、参考书目 1. 熊鳌魁等编著,《流体力学》,科学出版社,2016。 2. 盛振邦、刘应中,《船舶原理》(上、下册)中的船舶静力学、船舶阻力、船舶推进部分,上海交通大学出版社,2003。 1

《船舶原理与结构》课程教学提纲

《船舶原理与结构》课程教学大纲 一、课程基本信息 1、课程代码: 2、课程名称(中/英文):船舶原理与结构/Principles of Naval Architecture and Structures 3、学时/学分:60/3.5 4、先修课程:《高等数学》《大学物理》《理论力学》 5、面向对象:轮机工程、交通运输工程 6、开课院(系)、教研室:船舶海洋与建筑工程学院船舶与海洋工程系 7、教材、教学参考书: 《船舶原理》,刘红编,上海交通大学出版社,2009.11。 《船舶原理》(上、下册),盛振邦、刘应中主编,上海交通大学出版社,2003、2004。 《船舶原理与结构》,陈雪深、裘泳铭、张永编,上海交通大学出版社,1990.6。 《船舶原理》,蒋维清等著,大连海事大学出版社,1998.8。 相关法规和船级社入级规范。 二、课程性质和任务 《船舶原理与结构》是轮机工程和交通运输工程专业的一门必修课。它的主要任务是通过讲课、作业和实验环节,使学生掌握船舶静力学、船舶阻力、船舶推进、船舶操纵性与耐波性和船体结构的基本概念、基本原理、基本计算方法,培养学生分析、解决问题的基本能力,为今后从事工程技术和航运管理工作,打下基础。 本课程各教学环节对人才培养目标的贡献见下表。

三、教学内容和基本要求 课程教学内容共54学时,对不同的教学内容,其要求如下。 1、船舶类型 了解民用船舶、军用舰船、高速舰船的种类、用途和特征。 2、船体几何要素 了解船舶外形和船体型线力的一般特征,掌握船体主尺度、尺度比和船型系数。 3、船舶浮性 掌握船舶的平衡条件、船舶浮态的概念;掌握船舶重量、重心位置、排水量和浮心位置的计算方法;掌握近似数值计算方法—梯形法和辛普森法。

2019年上海交通大学船舶与海洋工程考研良心经验

2019年上海交通大学船舶与海洋工程考研良心经验 我本科是武汉理工大学的,学的也是船舶与海洋工程,成绩属于中等偏上吧,也拿过两次校三等奖学金,六级第二次才考过。 由于种种原因,我到了8月份才终于下定决心考交大船海并开始准备,只有4个多月,时间比较紧迫。但只要你下定决心,什么时候开始都不算晚,也不要因为复习得不好,开始的晚了就降低学校的要求,放弃了自己的名校梦。每个人情况不一样,自己好好做决定,即使暂时难以决定,也要早点开始复习。决定是在可以在学习过程中做的,学习计划也是可以根据自己的情况更改的。所以即使不知道考哪,每天学习多久,怎样安排学习计划,那也要先开始,这样你才能更清楚学习的难度和量。万事开头难,千万不要拖。由于准备的晚怕靠个人来不及,于是在朋友推荐下我报了新祥旭专业课的一对一,个人觉得一对一比班课好,新祥旭刚好之专门做一对一比较专业,所以果断选择了新祥旭,如果有同学需要可以加卫:chentaoge123 上交船海考研学硕和专硕的科目是一样的,英语一、数学一、政治、船舶与海洋工程专业基础(801)。英语主要是背单词和刷真题,我复习的时间不多,背单词太花时间,就慢慢放弃了,就只是刷真题,真题中出现的陌生单词,都抄到笔记本上背,作文要背一下,准备一下套路,最好自己准备。英语考时感觉着超级简单,但只考了65分,还是很郁闷的。数学是重中之重,我八月份开时复习,直接上手复习全书,我觉得没有必要看课本,毕竟太基础,而且和考研重点不一样,看了课本或许也觉得很难,但是和考研不沾边。计划的是两个月复习一遍,开始刷题,然后一边复习其他的,可是计划跟不上变化,数学基础稍差,复习的较慢,我又不想为了赶进度而应付,某些地方掌握多少自己心里有数,若是只掌握个大概,也不利于后面的学习。所以自打复习开始,我就没放下过数学,期间也听一些网课,高数听张宇、武忠祥的,线代肯定是李永乐,概率论听王式安,课可以听,但最主要还是自己做题,我只听了一些强化班,感觉自己复习不好的地方听了一下。我真题到了11月中旬才开始做,实在是太晚,我8月开始复习时网上就有人说真题刷两遍了,能不慌吗,但再慌也要淡定,不要因此为了赶进度而自欺欺人,做什么事外界的声音是一回事,自己的节奏要自己把握好,不然

船舶原理整理资料,名词解释,简答题,武汉理工大学

第一章 船体形状 三个基准面(1)中线面(xoz 面)横剖线图(2)中站面(yoz 面)总剖线图(3) 基平面 (xoy 面)半宽水线图 型线图:用来描述(绘)船体外表面的几何形状。 船体主尺度 船长 L 、船宽(型宽)B 、吃水d 、吃水差t 、 t = dF – dA 、首吃水dF 、尾吃水dA 、平均吃水dM 、dM = (dF + dA )/ 2 } 、型深 D 、干舷 F 、(F = D – d ) 主尺度比 L / B 、B / d 、D / d 、B / D 、L / D 船体的三个主要剖面:设计水线面、中纵剖面、中横剖面 1.水线面系数Cw :船舶的水线面积Aw 与船长L,型宽B 的乘积之比。 2.中横剖面系数Cm :船舶的中横剖面积Am 与型宽B 、吃水d 二者的乘积之比值。 3.方型系数Cb :船舶的排水体积V,与船长L,型宽B 、吃水d 三者的乘积之比值。 4. 棱形系数(纵向)Cp :船舶排水体积V 与中横剖面积Am 、船长L 两者的乘积之比值。 5. 垂向棱形系数 Cvp :船舶排水体积V 与水线面积Aw 、吃水d 两者的乘积之比值。 船型系数的变化区域为:∈( 0 ,1 ] 第二章 船体计算的近似积分法 梯形法则约束条件(限制条件):(1) 等间距 辛氏一法则通项公式 约束条件(限制条件):(1)等间距 (2)等份数为偶数 (纵坐标数为奇数 )2m+1 辛氏二法则 约束条件(限制条件)(1)等间距 (2)等份数为3 3m+1 梯形法:(1)公式简明、直观、易记 ;(2)分割份数较少时和曲率变化较大时误差偏大。 辛氏法:(1)公式较复杂、计算过程多; (2)分割份数较少时和曲率变化较大时误差相对较小。 第三章 浮性 船舶(浮体)的漂浮状态:(1 )正浮(2)横倾(3)纵倾(4)纵横倾 排水量:指船舶在水中所排开的同体积水的重量。 平行沉浮条件:少量装卸货物P ≤ 10 ℅D 每厘米吃水吨数: TPC = 0.01×ρ×Aw {指使船舶吃水垂向(水平)改变1厘米应在船上施加的力(或重量) }{或指使船舶吃水垂向(水平)改变1厘米时,所引起的排水量的改变量 } (1)船型系数曲线 (2)浮性曲线 (3)稳性曲线 (4)邦金曲线 静水力曲线图:表示船舶正浮状态时的浮性要素、初稳性要素和船型系数等与吃水的关系曲线的总称,它是由船舶设计部门绘制,供驾驶员使用的一种重要的船舶资料。 第四章 稳性 稳性:是指船受外力作用离开平衡位置而倾斜,当外力消失后,船能回复到原平衡位置的能力。 稳心:船舶正浮时浮力作用线与微倾后浮力作用线的交点。 稳性的分类:(1)初稳性;(2)大倾角稳性;(3)横稳性;(4)纵稳性;(5)静稳性;(6)动稳性;(7)完整稳性;(8)非完整稳性(破舱稳性) 判断浮体的平衡状态:(1)根据倾斜力矩与稳性力矩的方向来判断;(2)根据重心与稳心的 相对位置来判断 浮态、稳性、初稳心高度、倾角 B L A C w w ?=d B A C m m ?=d V C ??=B L b L A V C m p ?=d A V C w vp ?=b b p vp m w C C C C C C ==, 002n n i i y y A l y =+??=-????∑[]012142...43n n l A y y y y y -=+++++[]0123213332...338n n n l A y y y y y y y --=++++++P D ?= P f P f x = x y = y = 0 ()P P d= cm TPC q ?= m g b g b g GM = z z = z BM z = z r z -+-+-

船舶原理题库

船舶原理试题库 第一部分船舶基础知识 (一)单项选择题 1.采用中机型船的是 A. 普通货船 C.集装箱船D.油船 2.油船设置纵向水密舱壁的目的是 A.提高纵向强度B.分隔舱室 C.提高局部强度 3. 油船结构中,应在 A.货油舱、机舱B.货油舱、炉舱 C. 货油舱、居住舱室 4.集装箱船的机舱一般设在 A. 中部B.中尾部C.尾部 5.需设置上下边舱的船是 B.客船C.油船D.液化气体船 6 B.杂货船C.散货船D.矿砂船 7 A. 散货船B.集装箱船C.液化气体船 8.在下列船舶中,哪一种船舶的货舱的双层底要求高度大 A.杂货船B.集装箱船C.客货船 9.矿砂船设置大容量压载边舱,其主要作用是 A.提高总纵强度B.提高局部强度 C.减轻摇摆程度 10 B.淡水舱C.深舱D.杂物舱 11.新型油船设置双层底的主要目的有 A.提高抗沉性B.提高强度 C.作压载舱用 12.抗沉性最差的船是 A.客船B.杂货船C散货船 13.横舱壁最少和纵舱壁最多的船分别是 B.矿砂船,集装箱船 C.油船,散货船D.客船,液化气体船 14.单甲板船有 A. 集装箱船,客货船,滚装船B.干散货船,油船,客货船 C.油船,普通货船,滚装船 15.根据《SOLASl974 A.20 B.15 D.10 16 A. 普通货船C.集装箱船D.散货船17.关于球鼻首作用的正确论述是 A. 增加船首强度

C.便于靠离码头D.建造方便 18.集装箱船通常用______表示其载重能力 A.总载重量B.满载排水量 C.总吨位 19. 油船的______ A. 杂物舱C.压载舱D.淡水舱 20 A. 集装箱船B,油船C滚装船 21.常用的两种集装箱型号和标准箱分别是 B.40ft集装箱、30ft集装箱 C.40ft集装箱、10ft集装箱 D.30ft集装箱、20ft集装箱 22.集装箱船设置双层船壳的主要原因是 A.提高抗沉性 C.作为压载舱 D. 作为货舱 23.结构简单,成本低,装卸轻杂货物作业效率高,调运过程中货物摇晃小的起货设备是 B.双联回转式 C.单个回转式D.双吊杆式 24. 具有操作与维修保养方便、劳动强度小、作业的准备和收尾工作少,并且可以遥控操 作的起货设备是 B.双联回转式 D.双吊杆式 25.加强船舶首尾端的结构,是为了提高船舶的 A.总纵强B.扭转强度 C.横向强度 26. 肋板属于 A. 纵向骨材 C.连接件D.A十B 27. 在船体结构的构件中,属于主要构件的是:Ⅰ.强横梁;Ⅱ.肋骨;Ⅲ.主肋板;Ⅳ. 甲板纵桁;Ⅴ.纵骨;Ⅵ.舷侧纵桁 A.Ⅰ,Ⅱ,Ⅲ,ⅣB.I,Ⅱ,Ⅲ,Ⅴ D.I,Ⅲ,Ⅳ, Ⅴ 28.船体受到最大总纵弯矩的部位是 A.主甲板B.船底板 D.离首或尾为1/4的船长处 29. ______则其扭转强度越差 A.船越长B.船越宽 C.船越大 30 A.便于检修机器B.增加燃料舱 D.B+C 31

考试大纲-重庆交通大学知识交流

硕士生入学复试考试《船舶原理与结构》 考试大纲 1考试性质 《船舶原理》和《船舶结构设计》均是船舶与海洋工程专业学生重要的专业基础课。它的评价标准是优秀本科毕业生能达到的水平,以保证被录取者具有较好的船舶原理和结构设计理论基础。 2考试形式与试卷结构 (1)答卷方式:闭卷,笔试 (2)答题时间:180分钟 (3)题型:计算题50%;简答题35%;名词解释15% (4)参考数目: 《船舶原理》,盛振邦、刘应中,上海交通大学出版社,2003 《船舶结构设计》,谢永和、吴剑国、李俊来,上海交通大学出版社,2011年 3考试要点 3.1 《船舶原理》 (1)浮性 浮性的一般概念;浮态种类;浮性曲线的计算与应用;邦戎曲线的计算与应用;储备浮力与载重线标志。 (2)船舶初稳性 稳性的一般概念与分类;初稳性公式的建立与应用;重物移动、

增减对稳性的影响;自由液面对稳性的影响;浮态及初稳性的计算;倾斜试验方法。 (3)船舶大倾角稳性 大倾角稳性、静稳性与动稳性的概念;静、动稳性曲线的计算及其特性;稳性的衡准;极限重心高度曲线;IMO建议的稳性衡准原则;提高稳性的措施。 (4)抗沉性 抗沉性的概念;安全限界线、渗透率、可浸长度、分舱因数的概念;可浸长度计算方法;船舶分舱制;提高抗沉性的方法。 (5)船舶阻力的基本概念与特点 船舶阻力的分类;阻力相似定律;阻力(摩擦阻力、粘压阻力、兴波阻力)产生的机理和特性。 (6)船舶阻力的确定方法 船模阻力试验方法;阻力换算方法;阻力近似计算的概念及方法;艾尔法、海军系数法等。 (7)船型对阻力的影响 船型变化及船型参数,主尺度及船型系数的影响,横剖面面积曲线形状的影响,满载水线形状的影响,首尾端形状的影响。 (8)浅水阻力特性 浅水对阻力影响的特点;浅窄航道对船舶阻力的影响。 (9)船舶推进器一般概念 推进器的种类、传送效率及推进效率;螺旋桨的几何特性。

计算机辅助船舶制造(考试大纲)

课程名称:计算机辅助船舶制造课程代码:01234(理论) 第一部分课程性质与目标 一、课程性质与特点 《计算机辅助船体建造》是船舶与海洋工程专业的一门专业必修课程,通过本课程各章节不同教学环节的学习,帮助学生建立良好的空间概念,培养其逻辑推理和判断能力、抽象思维能力、综合分析问题和解决问题的能力,以及计算机工程应用能力。 我国社会主义现代化建设所需要的高质量专门人才服务的。 在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生具有比较熟练的计算机运用能力和综合运用所学知识去分析和解决问题的能力。 二、课程目标与基本要求 通过本课程学习,使学生对船舶计算机集成制造系统有较全面的了解,掌握计算机辅助船体建造的数学模型建模的思路和方法,培养计算机的应用能力,为今后进行相关领域的研究和开发工作打下良好的基础。 本课程基本要求: 1.正确理解下列基本概念: 计算机辅助制造,计算机辅助船体建造,造船计算机集成制造系统,船体型线光顺性准则,船体型线的三向光顺。 2.正确理解下列基本方法和公式: 三次样条函数,三次参数样条,三次B样条,回弹法光顺船体型线,船体构件展开计算的数学基础,测地线法展开船体外板的数值表示,数控切割的数值计算,型材数控冷弯的数值计算。 3.运用基本概念和方法解决下列问题: 分段装配胎架的型值计算,分段重量重心及起吊参数计算。 三、与本专业其他课程的关系 本课程是船舶与海洋工程专业的一门专业课,该课程应在修完本专业的基础课和专业基础课后进行学习。 先修课程:船舶原理、船体强度与结构设计、船舶建造工艺学 第二部分考核内容与考核目标 第1章计算机辅助船体建造概论 一、学习目的与要求 本章概述计算机辅助船体建造的主要体系及技术发展。通过对本章的学习,掌握计算机辅助制造的基本概念,了解计算机辅助船体建造的特点、造船计算机集成制造系统的基本含义和主要造船集成系统及其发展概况。 二、考核知识点与考核目标 (一)计算机辅助制造的基本概念(重点)(P1~P5) 识记:计算机在工业生产中的应用,计算机在产品设计中的应用,计算机在企业管理中的应用,计算机应用一体化。 理解:CIM和CIMS概念,计算机辅助制造的概念和组成 (二)造船CAM技术的特点(重点)P6~P8 识记:船舶产品和船舶生产过程的特点,造船CAM技术的特点 理解:船舶产品和船舶生产过程的特点与造船CAM技术之间的联系 应用:造船CAM技术应用范围 (三)计算机集成船舶制造系统概述(次重点)(P8~P11)

船舶维修技术实用手册

船舶维修技术实用手册》出版社:吉林科学技术出版社 出版日期:2005年 作者:张剑 开本:16开 册数:全四卷+1CD 定价:998.00元 详细介绍: 第一篇船舶原理与结构 第一章船舶概述 第二章船体结构与船舶管系 第三章锚设备 第四章系泊设备 第五章舵设备 第六章起重设备 第七章船舶系固设备 第八章船舶抗沉结构与堵漏 第九章船舶修理 第十章船舶人级与检验 第二篇现代船舶维修技术 第一章故障诊断与失效分析 第二章油液监控技术 第三章新材料、新工艺与新技术 第三篇船舶柴油机检修 第一章柴油机概述 第二章柴油机主要机件检修 第三章配气系统检修 第四章燃油系统检修 第五章润滑系统检修 第六章冷却系统检修 第七章柴油机操纵系统检修 第八章实际工作循环 第九章柴油机主要工作指标及其测定 第十章柴油机增压 第十一章柴油机常见故障及其应急处理

第四篇船舶电气设备检修 第一章船舶电气设备概述 第二章船舶常用电工材料 第三章船舶电工仪表及测量 第四章船舶常用低压电器及其检修 第五章船舶电机维护检修 第六章船舶电站维护检修 第七章船舶辅机电气控制装置维护检修第八章船舶内部通信及其信号装置检修第九章船舶照明系统维护检修 第五篇船舶轴舵系装置检修 第一章船舶轴系检修 第二章船舶舵系检修 第三章液压舵机检修 第四章轴舵系主要设备与要求 第五章轴舵系检测与试验 第六篇船舶辅机检修 第一章船用泵概述 第二章往复泵检修 第三章回转泵检修 第四章离心泵和旋涡泵 第五章喷射泵检修 第六章船用活塞空气压缩机检修 第七章通风机检修 第八章船舶制冷装置检修 第九章船舶空气调节装置检修 第十章船用燃油辅机锅炉和废气锅炉检修第十一章船舶油分离机检修 第十二章船舶防污染装置检修 第十三章海水淡化装置检修 第十四章操舵装置检修 第十五章锚机系缆机和起货机检修 第七篇船舶静电安全检修技术 第一章船舶静电起电机理 第二章舱内静电场计算 第三章船舶静电安全技术研究 第四章静电放电点燃估算 第五章船舶静电综合分析防治对策

船舶原理 名词解释啊

1长宽比L/B 快速性、操纵性 宽吃水比B/d 稳性、摇荡性、快速性、操纵性 深吃水比D/d 稳性、抗沉性、船体强度 宽深比B/D 船体强度、稳性 长深比L/D 船体强度、稳性 2船长:船舶的垂线间长代表船长,即沿设计夏季载重水线,由首柱前缘至舵柱后缘或舵杆中心线的长度 3型宽:在船体最宽处,沿设计水线自一舷的肋骨外缘量至另一舷的肋骨外缘之间的水平距离 4型表面:不包括船壳板和甲板板厚度在内的船体表面 5型深:在船长中的处,由平板龙骨上缘量至上甲板边线下缘的垂直距离 6型吃水:在船长中点处由平板龙骨上缘量至夏季载重水线的垂直距离 7型线图是表示船体型表面形状的图谱,由纵剖线图、横剖线图、半宽水线图和型值表组成; 8浮性:船舶在给定载重条件下,能保持一定的浮态的性能; 9平衡条件:作用在浮体上的重力与浮力大小相等、方向相反并作用于同一铅垂线上; 10净载重量NDW:指船舶在具体航次中所能装载货物质量的最大值 11漂浮条件:满足平衡条件,且船体体积大于排水体积; 12浮心:浮心是船舶所受浮力的作用中心,也是排水体积的几何中心; 13漂心:船舶水线面积的几何中心; 14平行沉浮:船舶装卸货物前后水线面保持平行的现象; 15每厘米吃水吨数(TPC):船舶吃水d每变化1cm,排水量变化的吨数,称为TPC。 16储备浮力:满载吃水以上的船体水密容积所具有的浮力 17干舷:在船长中点处由夏季载重水线量至上甲板边线上缘的垂直距离 18船舶稳性:船舶在外力(矩)作用下偏离其初始平衡位置,当外力(矩)消失后船舶能自行恢复到初始平衡状态的能力 19静稳性曲线:稳性力臂GZ或稳性力矩Ms随横倾角?变化曲线 20动稳性曲线:稳性力矩所做的功Ws或动稳性力臂I d随横倾角?变化的曲线 21吃水差比尺:是一种少量载荷变动时核算船舶纵向浮态变化的简易图表,它表示在船上任意位置加载100t后,船舶首、尾吃水该变量的图表 22最小倾覆力矩(力臂):船舶所能承受动横倾力矩(力臂)的极限 23进水角:船舶横倾至最低非水密度开口开始进水时的横倾角 24可浸长度:船舶进水后的水线恰与限界线相切时的货仓最大许可舱长称为可浸长度 25稳性衡准数K是指船舶最小倾覆力矩(臂)与风压倾侧力矩(臂)之比 26稳性的调整方法:船内载荷的垂向移动及载荷横向对称增减 27静稳性力臂的表达式:1)基点法2)假定重心法3)初稳心点法 28船体强度:为保证船舶安全,船体结构必须具有抵抗各种内外作用力使之发生极度形变和破坏的能力 29局部强度表示方法:①均布载荷;②集中载荷;③车辆甲板载荷;④堆积载荷 30MTC为每形成1cm吃水差所需的纵倾力矩值,称为每厘米纵倾力矩 31载荷纵向移动包括配载计划编制时不同货舱货物的调整及压载水、淡水或燃油的调拨等情况 32重量增减包括中途港货物装卸、加排压载水、油水消耗和补给、破舱进水等情况 33抗沉性:是指船舶在一舱或数舱破损进水后,仍能保持一定浮性和稳性,使船舶不致沉没或延缓沉没时间,以确保人命和财产安全的性能

船舶概论课程总结

《船舶概论》课程总结 本学期安管1101班的《船舶原理》课程已经考试结束,现将教学及考试情况小结如下: 一、教学情况。 本门课程采用多媒体课件进行教学,通过大量图片和视频,结合适度的现场教学,有利于学生对理论知识、设备和工艺的理解。本门课程使用的教材为人民交通出版社出版、邓召庭主编的《船舶概论》,内容涉及船舶类型、基本性能、船体结构、设备与系统和建造工艺。课程内容涉及面广,但内容深度不大,没有难以理解的理论和复杂的计算,但需要学生认真听讲、认真复习。教学评价采用形成性评价,因此在教学过程中注重对学生作业、测验等日常学习的把握,抓好课堂出勤和课堂控制,努力使学生掌握相关知识要点。 在教学过程当中,教师发现本门课程内容涉及面很广,但学生之前缺乏相关的知识基础,加之本门课程教学时数不多、进度较快,因此学生在学习的时候对知识的消化有一定的困难,也在一定程度上影响了同学们学习的兴趣和对知识的掌握。 二、考试分析。 此次考试是由任课教师统一出题,试卷标准符合学院要求。 试卷难易程度中等,题目范围涉及教材的全部内容,有船舶分类与用途、船舶几何形状、船舶航行性能、船体结构、船舶舱室设计、船舶设备与系统和船舶建造工艺。试题内容结合学生专业特点及日后工作的实际情况,题型有选择、判断题、名词解释、简答题和识图体,分值分别为:1,1,2,5和1分。 安管1101班共有29名学生中参加期末考试,其中卷面分数90~100分无;80~89分7人,占24.1%;70~79分11人,占37.9%;60~69分8人,占到27.6%;60分以下3人,占10.3%,最高分85,最低分24分。结合平日的各项考核成绩,形成性评价的总评平均分为75分。 三、改进教学及考核方法的建议。 安全管理专业的学生缺少船舶专业相关知识的积累,因此提高教学质量应该从研究教学方法和提高学生学习积极性两方面入手,进一步增加教学用实图、实物设备,尽量多的通过现场教学的方法展开教学;认真研究学生的学习心理,适当增加船舶方面专业知识的了解,激发他们的学习兴趣。 船体教研室:卢永然 2012.12.10

船舶原理习题20151116

《船舶原理》习题 船体形状 1.名词解释:垂线间长;设计水线长;型宽;型深;型吃水;干舷;水线面系数;中横剖面系数;方形系数;棱形系数。 2.已知某船船长L=100m;吃水d=5.0m;排水体积V=7500m3,方形系数C b=0.6;中横剖面系数 C m=0.9,试求:①中横剖面面积A M;②纵向棱形系数C p。 近似计算方法 1.已知某船吃水为4.2m的水线分为10等分,其纵坐标间距l=3.5m,自首向尾的纵坐标值(半宽,m)分别为: 站号012345678910 半宽值0 3.3 5.3 5.9 5.9 5.9 5.9 5.85 5.22 3.66 1.03 用梯形法则计算其水线面积? 浮性 1.名词解释:浮性,排水量,正浮,横倾,纵倾,每厘米吃水吨数,水线面面积曲线。 2.简述浮体的平衡条件。 3.简述水的密度变化对浮态的影响。 稳性 1.名词解释:稳性,静稳性,初稳性,稳心,初稳性高度,纵倾1cm力矩。 2.简述稳性分类 3.简述根据初稳性公式判断船舶的平衡状态? 4.三心(浮心、重心、稳性)之间的关系 5.静稳性图的特征 6.提高船舶稳性的措施 7.某船正浮时初稳性高GM=0.6m,排水量△=10000t,把船内100t货物向上移动3m,再向右舷横向移动10m,求货物移动后船的横倾角φ。 8.某船排水量D=17000t,稳性高GM=0.76m。若要GM达到1m,需从甲板间舱向底舱移动货物,设垂向移动距离l z=8m,问应移动多少吨货物? 抗沉性 1.名词解释:抗沉性,渗透率,限界线,可浸长度 2.根据船舱进水情况可将船舱分为三类舱,分别作出简略介绍 快速性 1.名词解释:船舶阻力,推进器,螺旋桨直径,螺距比,盘面比 2.简述阻力分类及其产生原因 3.简述螺旋桨产生推力的原因 4.简述船体伴流产生原因及分类 5.简述螺旋桨产生空泡原因 6.简述空泡对螺旋桨的影响 7.某船装有功率为2000马力的主机,正常航速为12节,因锅炉故障,使主机功率下降10%,试估算航速将下降多少? 操纵性与耐波性 1.名词解释:船舶操纵性,船舶耐波性,航向稳定性,回转性,反横距,正横距,纵距,战术直径,定常回转直径。

船舶结构力学+流体力学+专业英语+船舶原理与结构回忆版

2011 上海交通大学 船舶结构力学+流体力学+专业英语+船舶原理与结构回忆版 必选题(45’) 一、填空题(每空1分,共20分) 1,已知某船L, B, T,▽, 求Cb= 。 2,已知海水比重,船的▽,求△= 。 3,已知L, L/B, L/d, L/T, Cb,Aw,求▽= ,Cwp= 干舷= 4,船舶按用途分类, 5,(英语)写出高性能船舶的英语单词:气垫船、水翼艇、多体船、远洋渡船、豪华班船 6,三种船长的用法:静水力性能计算一般采用,分析阻力性能时常用,而在船进坞、靠码头或通过船闸时应该注意它的。 7,民船的两种载重量、。 8,三种平衡状态:,,。浮心在重心一下对应什么平衡状态 二、多选题(共20分,每题2分,回忆的不全) 1,一般货船包括哪几种(散货船、干货船等等) 2,B/d影响船舶的哪几种性能 3,(英语)船舶的几种运动:3种平动,3种转动的单词(首摇、垂荡等)4,(英语)船舶阻力的分类 5,提高稳定性的几种方法 6,静稳性曲线的特征量有哪几个 …… 三、简答(5分) 解释中拱中垂的概念 船舶结构力学(52.5’) 一、(1)随着高强度钢的应用,为什么要更重视船舶稳定性问题,需要校核稳性的构件有哪些?(5分) (2)矩阵位移法为什么要进行约束处理?如果是外力平衡体也需要约束处理吗?(5分)

二、用力法或位移法(任选1种)解图示结构,求2点挠度,画出2-3杆弯矩图,各杆长度均为L (22.5分) 三、李兹法求2处转角(基函数自取) (20分) 水动力学(52.5’) 四、小题每题2.5分:(选择、填空) 1,动力粘性系数的量纲 2,波长相同的深水波与浅水波比较波速 3,涡量输运与什么有关,速度、涡量 4,圆柱体的附加质量 5,势函数、流函数存在的条件 6,边界层分离发生在逆压区还是顺压区 7,欧拉方程运用的条件 8,速度水头、压力水头的公式 9,记不清了 五、参见《工程流体力学习题解析》P2旋转锥那题,原题(6分)

阻力名词解释

A相当平板假定,即船体的摩擦阻力与同速度、同长度、同湿面积的平板摩擦阻力相等。忽略了船体外表面弯曲度和粗糙度。 B由于船体弯曲表面影响使其摩擦阻力与相当平板计算所得结果的差别称为形状效应。 C长度(尺度)效应:模型与实船之间的绝对尺度不同,不可能做完全相似试验。引起力、力矩、等系数的差别称为尺度效应。 D粘压阻力与摩擦阻力系数之比为一常数k。K为形状系数。(k+1) 为形状因子。 E相当速度:是指形似船之间,为了保证傅汝德数Fr相等,它们的速度必须满足一定的对应关系,对船模与实船—— F不利干扰:首尾横波波谷叠加,使合成波波幅增大,导致波能增大,使兴波阻力增大,产生不利干扰。 G有利干扰:首波波峰在船尾与尾波波谷叠加,使合成波波幅减小,导致波能减小,使兴波阻力减小,产生有利干扰。 H破波阻力:低速丰满船型,在船首附近观察到破浪,使阻力有所增加,增加的阻力称为破波阻力。 I兴波长度:船首横波的第一个波峰和船尾横波第一个波峰之间的距离称为兴波长度。 J附体阻力的主要成分是摩擦阻力和粘压阻力 K由于波浪阻力增值的存在,如保持静水中相同功率时,航速必然会有所下降,这种航速的减小称为速度损失或简称失速。 L考虑到波浪中的阻力增值,如要维持静水中的相同航速,则必须较原静水功率有所增加,所增加的功率称为储备功率。 M汹涛阻力:船舶在风浪中的阻力将较静水中的为大,所增加的阻力称为波浪中阻力的增值,为。。。与风浪的大小、方向、船型及航速有关。 N回流速度:当流体流经船体时,由于船体曲率的影响,除首尾两端外,船体周围水的流速将比原来的流速有所增大,平均增量与船速的方向相反,所以称为回流速度。 O孤立波:高于船速向前传的波 R平行中体:指在船体中部附近与横剖面完全相同的一段船体。 S海军系数 总的摩擦阻力系数可取为光滑平板摩擦阻力系数Cf再加上一个与雷诺数无关的粗糙度补贴系数ΔCf 。我国取ΔCf = 0.4×10-3。

船舶与海洋工程专业综合

《船舶与海洋工程专业综合》 2015年研究生入学考试考纲 第一部分考试说明 一、考试性质 《船舶与海洋工程专业综合》是2013年武汉理工大学船舶与海洋工程专业硕士研究生入学考试科目。通过本科目综合考查考生是否熟练地掌握了《船舶与海洋工程专业综合》所涵盖的基本理论和基本知识,以满足硕士生阶段专业学习的需要。 考试对象为报考武汉理工大学船舶与海洋工程专业的2013年全国硕士研究生入学考试的准考考生。 二、考试学科范围及考试中所占比例 考试范围:船舶静力学、船舶设计原理、船体强度与结构设计、船舶建造工艺学 以上考试范围包含的四部分在《船舶与海洋工程专业综合》考试中均占25%的比例。 三、评价标准 1.掌握船体近似计算的方法,定积分及变上限积分的实际应用; 2.掌握船舶静水力曲线的计算原理及方法; 3.掌握船舶浮性、稳性的基本概念、稳性衡准值的计算方法及浮态计算方法; 4.掌握动稳性的基本概念及评价方法;掌握船舶稳性的基本衡准的基本原理及方法; 5.掌握非完整稳性的概念及破舱稳性的计算方法; 6.掌握船舶设计基本原理,并能用基本原理及技术方法,分析和解决有关船舶设计中的实际问题; 7.能对一般排水型船舶进行总强度计算; 8.掌握船体结构设计的一般方法; 9.掌握船舶建造的基本理论、工艺原则、工艺装备和工艺方法,分析和解决船舶建造工艺问题。 四、考试形式与试卷结构 1.答卷方式:闭卷,笔试; 2.答题时间:180分钟; 3.试卷分数:总分为150分;其中,船舶静力学、船舶设计原理、船体强度与结构设计、船舶建造工 艺学各部分试题的分数均占总分的25%左右。 4.题型比例: (1)名词解释题约16%;

船舶原理第一、五~十章整理

一.船舶类型 1.船舶类型: 按用途分:军用舰艇和民用船舶 商船: 1)集装箱船:以运载集装箱为主的专门运输船舶,可分为全集装箱船和半集装箱船。 2)散货船:专门用于载运粉末状、颗粒状、块状等废包装类大宗货物的运输船舶。主要有普通散货船、专用散货船、兼用散货船及特种散货船等。 (轻便型:20000~35000载重t;灵便型:40000~47000载重t;巴拿马型:5~8万t; 好望角型:10~18万t) 3)油船:专门用于载运散装石油及成品油的液货船。(分为原油船和成品油船) 4)滚装船:把装有集装箱及其他拣货的半挂车或装有货物的带轮子的托盘作为货运单元,由牵引车或叉车直接进出货舱进行装卸的船舶。 5)载驳船:用来运送装载驳船的运输船舶,又名子母船。 6)冷藏船:使易腐货物处于冻结状态或某种低温条件下进行载运的专用船舶。 2.运输船舶的发展趋势:大型化(限制:航程长,航道、港口限制,货源充沛,码头作业效率)、高速化、自动化、专用化。 3.军用船舶与民用船舶的界定: 1)吨位概念不同,商船所说的吨位是载货量非本身自重,而军舰所指的是排水量就是本身的自重。 2)技术含量不同。 3)速度不同。 五.船舶抗沉性 1.抗沉性:船舶在一舱或数舱破损进水后,仍能漂浮于水面,并保持一定浮态和稳性的能力。 2.抗沉性的保证方法:使船舶具有足够的储备浮力和稳性、船舶分舱。 3.安全界限线:在船侧由舱壁甲板上表面向下量76mm处画一条与舱壁甲板边线平行的线。 4.渗透率:船舱内实际进水体积与空舱的型体积之比。 5.可浸长度:公约和规范规定的两水密横舱壁间的极限长度,意味着对应干舷最小。(即船舱破损后,海损水线恰好与安全限界线相切的进水舱的舱长) 6.许可舱长:可浸长度与分舱因数的乘积。 7.分舱因数F:由船长和船舶的业务衡准数决定的,用以确定许可舱长的因数。 8.1.00>=F>0.5为一舱制船舶,任一舱破损都不致沉没;0.5>=F.0.33为两舱制船舶,任何相邻两舱破损不沉没;0.33>=F>0.25为三舱制船舶。 9.增加重量法:将破舱进水后的进水看作是故意加载的液体。 10.损失浮力法:将破舱进水的那部分舱内体积看成是脱离船体的一部分,即该部分的浮力已经损失,将他从排水量中扣除,使船舶浮力减少。 六.船舶阻力 1.船舶航速由阻力大小、主机功率大小、螺旋桨(推进器)效率高低三个因素决定。 2.快速性:一:对一定排水量的船舶,在给定主机功率消耗的条件下能达到的航速高低。航速高,快速性好。二:对一定排水量的船舶,为维持一定的航速所需的主机功率大小。功率小,快速性好。可以说快速性的优劣取决于船舶阻力和推进性能。

船舶原理名词解释

1.舷弧:船舶的甲板边线自船中向首尾逐渐升高,称为“舷弧”。 2.梁拱:甲板中线比其左右舷的甲板边线高,其高度差称为梁拱。 3.舷弧和梁拱作用:有利于甲板上浪, 上浪后使甲板积水自首尾向船中,且自甲板中线流向船尾。 4.型线图:表示船体几何形状的图。 5.型表面:钢船型表面为外板的内表面,水泥船和木质船的型表面为船壳的外表面。 6.型线图的三个基准面:中线面,中站面,基平面 7.中线面:将船体分为左右舷两个对称部分的纵向垂直平面。 8.中站面:在船长中点处垂直于中线面和基平面的横向平面。 9.基平面:过龙骨线和中站面的交点O,并平行于设计水线面的平面。 10.平行中体:在船中前后有一段横剖面形状和中横剖面相同的船体,称为平行中体 11.船型系数:表示船体水下部分面积和体积肥瘦程度的无因次系数,这些系数的大小对分析船型和船舶性能等有很大作用。 12主尺度:根据《钢制海船入籍规范》定义的船型尺度。它位于吨位证上 13.最大尺度:包括各种附体结构在内的,从一端点到另一端点的总尺度。 14.登记尺度:根据《1966年国际船舶吨位丈量公约》中定义的,是主管机关在登记和计算船舶总吨位,净吨时所用的尺度。位于吨位证书上 15.主要剖面:中纵剖面,中横剖面,设计水线面这三个大致反映出船体几何形状特征 11.船长:首尾垂线间长 12.附体:桨、舵、舭龙骨、轴支架。 13.型长:沿设计水线,由首柱前缘量至舵柱后缘的水平间距,无舵柱的量至舵杆中心线。 14.型宽:在船舶最宽处,由一舷的肋骨外缘至另一舷外缘之间的水平间距。 15.型吃水:在船长中点处,由平板龙骨上缘量至夏季满载水线的垂直距离。 16.型深:在船的中横剖面处,沿船舷自平板龙骨上缘至上层连续甲板横梁上缘的垂直距离。 17.吃水差:首尾吃水的差值。 18.船体系数:水线面Aw,船中剖面面积Am,水线面系数Cw,中

武汉理工大学船舶推进期末考试习题

名词解释: 1. 进程、滑脱、滑脱比、伴流、推力减额、标称伴流、实效伴流、推进特性 曲线、螺旋桨有效推力曲线、结构效率、实效螺距等。 2. 空泡问题 3. 尾部形状对快速性的影响 4. 叶元体速度三角形及力的多边形,叶元体的效率表达式及提高效率的措施 5. 等推力法测量实效伴流 6. 船桨机平衡配合问题 计算问题 已知某沿海高速客船当航速kn V S =,船体有效功率kW P E =,螺旋桨直径m D 84.0=,主 机额定功率为kW ?2?,额定转速xxxrpm N =,齿轮箱减速比为x i =,轴系效率和减速箱效率均为?,螺旋桨的敞水性征曲线为 J D C K J B A K Q T ?-=?-=10 若取相对旋转效率0.1=ηR ,水密度3 1025m kg =ρ,试求: 1,敞水收到功率和敞水转矩? 2,该船的伴流分数? 3,该船的推力减额分数 ? 4,螺旋桨敞水效率,推进效率 ? 5 该桨的实效螺距比和零转矩螺距比 ? 解答: 已知条件: s m kn V S 861.1225==, kN V P R S E 806.53861.12/692/=== rps n 1515.1560/2.2/2000== 1,求0 0Q P D 和?(4分) kW P P R G S S D 35.5320.1975.0975.05600=???=???=ηηη m kN n P Q D ?=??= = 592.51515 .15235.532200ππ 2,求 w ?(4分)

9604 .0096.0149.00568.084 .01515 .15025.1592 .55 2 5 20 =??-==??= = J J D n Q K Q ρ 0496 .0861 .1284 .01515.159604.011=??- =- =S V JnD w 3,求 t ?(4分) KN D n D n K T J K T T 33.28025.12418.02418.05.0722.04 24 2 =???===?-=ρ 0504 .033 .28903.2612/1=- =- =T R t 4,6507 .020== Q T K K J πη 650.035.532/2/692==D η 5, 444 .10 1===T K J D P , 552 .10 2===Q K J D P 已知内河双桨推轮的螺旋桨直径D=2.0米,主机额定功率kW P DB 736=,额定转速 rpm N 240=,直接传动,该船的推进因子为05.0,1.0==t w ,0.1=R η,轴系效率 取1.0, 该系列螺旋桨的敞水性征曲线如下 J D P K J D P K Q T ?-+-=?-?+-=494.0/35.010382.0/448.000361.0 请解答下列问题: 1,在设计拖速h km V T /18=时,充分吸收主机功率条件下确定螺距比。(5分) 2,该船的系柱拖力及所需的主机功率。(5分) 3,若船体阻力为 2 209.0)(V kN R =,船速单位为h km /,求该船的自由航速及所需的主 机功率。(5分) 解答: 已知条件: s m h km V S 0.5/18==, kW P P S D 7360==,rps n 460/240== m D 0.2=,水密度 3 1000m kg =ρ 1,在设计拖速下有

相关文档
相关文档 最新文档