文档库 最新最全的文档下载
当前位置:文档库 › 高二数学排列组合二项式定理测试题

高二数学排列组合二项式定理测试题

高二数学排列组合二项式定理测试题
高二数学排列组合二项式定理测试题

排列组合、二项式定理、概率单元测试卷 (时间:100分钟)

一、选择题(每小题有四个选项,只有一个是正确的,共40分)

1.某公司员工义务献血,在体检合格的人中,O 型血的有10人,A 型血的有5人,B 型血的有8人,AB 型血的有3人,从四种血型的人中各选1人去献血,不同的选法种数为( D )

A 、26

B 、300

C 、600

D 、1200 2.n ∈N *,则(20-n )(21-n)……(100-n)等于

( C )

A .80

100n A -

B .n

n A --20100

C .81

100n A -

D .81

20n A -

3、设东、西、南、北四面通往山顶的路各有2、3、3、4条路,只从一面上山,而从任意一

面下山的走法最多,应 (D ) A 、从东边上山 B 、从西边上山 C 、从南西上山 D 、从北边上山

4、在(1-x )5-(1-x )6的展开式中,含x 3

的项的系数是 ( C ) A 、-5 B 、 5 C 、10 D 、-10

5、有4名男生3名女生排成一排,若3名女生中有2名站在一起,但3名女生不能全排在

一起,则不同的排法种数有 ( A ) A 、2880

B 、3080

C 、3200

D 、3600

6.若()4

234

012341+=++++x a a x a x a x a x ,则1234+++a a a a 的值为 ( B )

A .0

B .15

C .16

D .17

7.从3名男生和2名女生中选出3名代表去参加辩论比赛,则所选出的3名代表中至少有1名女生的选法共有 ( A ) A .9种

B .10种

C .12种

D .20种

8.三张卡片的正反面上分别写有数字0与2,3与4,5与6,把这三张卡片拼在一起表示

一个三位数,则三位数的个数为 ( B) A . 36 B .40

C .44

D .48

9、

12

展开式中含x 的正整数次幂的项共有 ( C )

(A )1项 (B )2项 (C )3项 (D )4项

10、从6人中选4人分别去北京,上海,广州,重庆四个城市游览,每人只去一个城市游览,

但甲,乙两人都不去北京,则不同的选择方案有 ( B ) A 、300种 B 、240种 C 、144种 D 、96种

二、填空题(每小题4分,共20分)

11、在10)(a x -的展开式中,7x 的系数是15,则实数a = -0.5 ; 12、310(1)(1)x x -+的展开式中,5

x 的系数是 207 ;(用数字作答)

13、3名老师带领6名学生平均分成三个小组到三个工厂进行社会调查,每小组有1名老师和2名学生组成,不同的分配方法有 540 种。(用数字作答)

14、体育老师把9个相同的足球放入编号为1、2、3的三个箱子里,要求每个箱子放球的个数不少于其编号,则不同的放法有____10____种。

15、一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于8分的取法有__66__种 (用数字作答).

排列组合、二项式定理、概率单元测试答题纸 姓名 座号

一、选择题(4分×10=40分)

二、填空题(4分×5=20分) 11、

-0.5 12、 207

13、

540 14、 10

15、 _66

三、解答题(本大题共5小题,解答应写出文字说明、证明过程或演算步骤)

16、(8分)某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种,现在餐厅准备了五种不同的荤菜,若要保证每位顾客有200种以上不同选择,则餐厅至少还需准备不同的素菜品种?(要求写出必要的解答过程)

解:在5种不同的荤菜中取出2种的选择方式应有102

5=C 种,设素菜为x 种,

2002

52≥?C C x 解得7≥x ,

17、(8分)用0,1,2,3,4,5六个数字组成无重复数字的五位数,分别求出下列各类数

的个数

(1)奇数;(2)比20300大的数;

⑴288 ⑵474

18、(12分)在二项式n 1

的展开式中,前三项系数的绝对值成等差数列

(1)求展开式的常数项; (2)求展开式中二项式系数最大的项; (3)求展开式中各项的系数和。

解:展开式的通项为3

r 2n r n r 1

r x

C )2

1(T -+-=,r=0,1,2,…,n

由已知:2n 21n 0n 0C )21(,C )21(,C )21(-成等差数列,∴ 2

n 1n C 411C 212+=?∴ n=8

(1)835T 5=

(2)5T 二项式系数最大 (3)令x=1,各项系数和为256

1

19、(12分)已知n m ,是正整数,n m x x x f )1()1()(+++=的展开式 中x 的系数为7,

(1) 试求)(x f 中的2x 的系数的最小值;

(2) 对于使)(x f 的2x 的系数为最小的n m ,,求出此时3x 的系数;

(3) 对于使)(x f 的2x 的系数为最小的n m ,,求此时)003

.0(f 的近似值(精确到0.01);

⑴9 ⑵ 5 ⑶ 2.02

高中数学100个热点问题(三): 排列组合中的常见模型

第80炼 排列组合的常见模型 一、基础知识: (一)处理排列组合问题的常用思路: 1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。 例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法? 解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求, 只需将剩下的元素全排列即可,所以排法总数为44496N A =?=种 2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。 例如:在10件产品中,有7件合格品,3件次品。从这10件产品中任意抽出3件,至少有一件次品的情况有多少种 解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简 单。3310785N C C =-=(种) 3、先取再排(先分组再排列):排列数m n A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列。但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。 例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。 解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生,共有2143C C 种可能,然后将选出的三个人进行排列:33A 。所以共有213433108C C A =种方案 (二)排列组合的常见模型 1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。 例如:5个人排队,其中甲乙相邻,共有多少种不同的排法

排列组合测试题(含答案)

一、选择题: 1. 将3个不同的小球放入 4个盒子中,则不同放法种数有 A . 81 B . 64 C . 12 D . 14 2. 5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有 3 . a,b,c,d,e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法 总数是 A. 20 B . 16 C . 10 D . 6 4.现有男、女学生共 8人,从男生中选 2人,从女生中选1人分别参加数学、物理、化 学三科竞赛,共有 90种不同方案,那么男、女生人数分别是 A .男生2人女生6人 B .男生3人女生5人 C .男生5人女生3人 D .男生6人女生2人. 5 . 6 . .180 B . 90 C . 45 D . 360 6 . 由数字1、 2、3、4、5组成没有重复数字的五位数,其中小于 50000的偶数共有 A . 60个 B . 48 个 C . 36 个 D . 24个 7 . 3张不同的电影票全部分给 10个人,每人至多一张 ,则有不同分法的种数是 A . .1260 B . 120 C . 240 D . 720 & n N 且n 55,则乘积(55 n)(56 n)L (69 n )等于 A . 55 n A 69 n B . A 59 n C . A 55 n D . A 14 n 9.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为 A . 120 B . 240 C . 280 D . 60 10 .不共面的四个定点到面 的距离都相等,这样的面 共有几个 15 . 4名男生,4名女生排成一排,女生不排两端,则有 ___________ 种不同排法? (8640 ) 17 .在1,2,3,…,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数, 这样的四位数有 ___________________ 个? ( 840) C . A 5 2 3 D . A>A 3 A 1 A 1 A 3 A 2 A 3 A 3 A . 3 B . 4 C . 6 11.设含有10个元素的集合的全部子集数为 的值为 20 15 16 A.- B . C .- 128 128 128 D . 7 S ,其中由3个元素组成的子集数为 T ,则T S 21 D . 128

高中数学排列组合专题

排列组合 一.选择题(共5小题) 1.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有() A.36种B.42种C.50种D.72种 2.某城市的街道如图,某人要从A地前往B地,则路程最短的走法有() A.8种 B.10种C.12种D.32种 3.某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是() A.72 B.120 C.144 D.168 4.现将甲乙丙丁4个不同的小球放入A、B、C三个盒子中,要求每个盒子至少放1个小球,且小球甲不能放在A盒中,则不同的放法有() A.12种B.24种C.36种D.72种 5.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有() A.300种B.240种C.144种D.96种 二.填空题(共3小题) 6.某排有10个座位,若4人就坐,每人左右两边都有空位,则不同的坐法有种. 7.四个不同的小球放入编号为1,2,3的三个盒子中,则恰有一个空盒的放法共有种(用数字作答). 8.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的

插法共有种. 三.解答题(共8小题) 9.一批零件有9个合格品,3个不合格品,组装机器时,从中任取一个零件,若取出不合格品不再放回,求在取得合格品前已取出的不合格品数的分布列10.已知展开式的前三项系数成等差数列. (1)求n的值; (2)求展开式中二项式系数最大的项; (3)求展开式中系数最大的项. 11.设f(x)=(x2+x﹣1)9(2x+1)6,试求f(x)的展开式中: (1)所有项的系数和; (2)所有偶次项的系数和及所有奇次项的系数和. 12.求(x2+﹣2)5的展开式中的常数项. 13.求值C n5﹣n+C n+19﹣n. 14.3名男生,4名女生,按照不同的要求排队,求不同的排队方案的种数.(1)选5名同学排成一行; (2)全体站成一排,其中甲只能在中间或两端; (3)全体站成一排,其中甲、乙必须在两端; (4)全体站成一排,其中甲不在最左端,乙不在最右端; (5)全体站成一排,男、女各站在一起; (6)全体站成一排,男生必须排在一起; (7)全体站成一排,男生不能排在一起; (8)全体站成一排,男、女生各不相邻; (9)全体站成一排,甲、乙中间必须有2人; (10)全体站成一排,甲必须在乙的右边; (11)全体站成一排,甲、乙、丙三人自左向右顺序不变; (12)排成前后两排,前排3人,后排4人. 15.用1、2、3、4、5、6共6个数字,按要求组成无重复数字的自然数(用排列数表示).

排列组合测试题(含答案)

排列组合 2016.11.16 一、选择题: 1. 将3个不同的小球放入4个盒子中,则不同放法种数有 A .81 B .64 C .12 D .14 2.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有 A .33A B .334A C .523533A A A - D .23113 23233A A A A A + 3.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是 A.20 B .16 C .10 D .6 4.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是 A .男生2人女生6人 B .男生3人女生5人 C .男生5人女生3人 D .男生6人女生2人. 5. 6. A .180 B .90 C .45 D .360 6.由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有 A .60个 B .48个 C .36个 D . 24个 7.3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是 A .1260 B .120 C .240 D .720 8.n N ∈且55n <,则乘积(55)(56) (69)n n n ---等于 A .5569n n A -- B .15 69n A - C .15 55n A - D .14 69n A - 9.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为 A .120 B .240 C .280 D .60 10.不共面的四个定点到面α的距离都相等,这样的面α共有几个 A .3 B .4 C .6 D .7 11.设含有10个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,则T S 的值为 A. 20128 B .15128 C .16128 D .21128 15.4名男生,4名女生排成一排,女生不排两端,则有 种不同排法. (8640 )

高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = C 14A 34C 13 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

高中数学排列组合与概率统计习题

高中数学必修排列组合和概率练习题 一、选择题(每小题5分,共60分) (1)已知集合A={1,3,5,7,9,11},B={1,7,17}.试以集合A 和B 中各取一个数作 为点的坐标,在同一直角坐标系中所确定的不同点的个数是C (A)32(B)33(C)34(D)36 解分别以{}1357911,,,,,和{}1711,,的元素为x 和y 坐标,不同点的个数为1163P P g 分别以{}1357911,,,,,和{}1711,,的元素为y 和x 坐标,不同点的个数为1163P P g 不同点的个数总数是1111636336P P P P +=g g ,其中重复的数据有(1,7),(7,1),所以只有34个 (2)从1,2,3,…,9这九个数学中任取两个,其中一个作底数,另一个作真 数,则可以得到不同的对数值的个数为 (A)64(B)56(C)53(D)51 解①从1,2,3,…,9这九个数学中任取两个的数分别作底数和真数的“对数式”个数为292P ; ②1不能为底数,以1为底数的“对数式”个数有8个,而应减去; ③1为真数时,对数为0,以1为真数的“对数式”个数有8个,应减去7个; ④2324log 4log 92log 3log 9 ===,49241log 2log 32log 3log 9 == =,应减去4个 所示求不同的对数值的个数为29287453()C ---=个 (3)四名男生三名女生排成一排,若三名女生中有两名站在一起,但三名女生 不能全排在一起,则不同的排法数有 (A )3600(B )3200(C )3080(D )2880 解①三名女生中有两名站在一起的站法种数是23P ; ②将站在一起的二名女生看作1人与其他5人排列的排列种数是66P ,其中的 三名女生排在一起的站法应减去。站在一起的二名女生和另一女生看作1人与4名男生作全排列,排列数为55P ,站在一起的二名女生和另一女生可互换位置的排列,故三名女生排在一起的种数是1525P P 。 符合题设的排列数为: 26153625665432254322454322880P P P P -=?????-????=????=种()()() 我的做法用插空法,先将4个男生全排再用插空743342274534522880A A C A A C A --= (4 )由100+展开所得x 多项式中,系数为有理项的共有 (A )50项(B )17项(C )16项(D )15项 解1000100110011r 100r r 100100100100100100=C )+C )++C )++C --L L

(完整)高中数学排列组合专题复习

高考数学轻松搞定排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 m种不同的方法,在第2类 1 办法中有 m种不同的方法,…,在第n类办法中有n m种不同的方法,那么2 完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m种不同的方法,做第2步 1 有 m种不同的方法,…,做第n步有n m种不同的方法,那么完成这件事共2 有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 两个位置.

(完整版)排列组合练习题___(含答案)

排列组合练习题 1、三个同学必须从四种不同的选修课中选一种自己想学的课程,共有种 不同的选法。 2、8名同学争夺3项冠军,获得冠军的可能性有种。 3、乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安 排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种。 4、从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天, 要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有。 5、有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人) 得2本,其它每人一本,则共有种不同的奖法。 6、有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有种。 7、有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成 一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种。 8、五种不同的收音机和四种不同的电视机陈列一排,任两台电视机不靠在一起,有 种陈列方法。 9、有6名同学站成一排:甲、乙、丙不相邻有种不同的排法。 10、五个人排成一排,要求甲、乙不相邻,且甲、丙也不相邻的不同排法的种数是 11、6名男生6名女生排成一排,要求男女相间的排法有种。 12、4名男生和3名女生排成一排,要求男女相间的排法有种。 13、有4男4女排成一排,要求女的互不相邻有种排法;要求男女相间有 种排法。 14、一排有8个座位,3人去坐,要求每人左右两边都有空位的坐法有种。

15、三个人坐在一排7个座位上,若3个人中间没有空位,有种坐法。 若4个空位中恰有3个空位连在一起,有种坐法。 16、由1、2、3、4、5组成一个无重复数字的5位数,其中2、3必须排在一起,4、5 不能排在一起,则不同的5位数共有个。 17、有4名学生和3位老师排成一排照相,规定两端不排老师且老师顺序固定不变, 那么不同的排法有种。 18、从6名短跑运动员中选4人参加4 100米的接力赛,如果其中甲不能跑第一棒, 乙不能跑第四棒,共有种参赛方案。 19、现有6名同学站成一排:甲不站排头也不站排尾有种不同的排法甲 不站排头,且乙不站排尾有种不同的排法 20、有2位老师和6名学生排成一排,使两位老师之间有三名学生,这样的排法共 有种。 21、以正方体的顶点为顶点的四面体共有个。 22、由1、2、3、4、5、6组成没有重复数字的六位数,其中个位数字小于十位数字, 十位数字小于百位数字,则这样的数共有个。 23、A,B,C,D,E五人站一排,B必须站A右边,则不同的排法有种。 24、晚会原定的5个节目已排成节目单,开演前又加了2个节目,若将这2 个节目 插入原节目单中,则不同的插法有种。 25、书架上放有6本书,现在要再插入3本书,保持原有书的相对顺序不变,则不 同的放法有种。 26、9个子高低不同的人排队照相,要求中间的最高,两旁依次从高到矮的排法共 有种。 27、书架上放有5本书(1~5册),现在要再插入3本书,保持原有的相对顺序不变, 有种放法。 28、12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调 整到前排,若其他人的相对顺序不变,则不同调整方法的种数是 29、有五项工作,四个人来完成且每人至少做一项,共有种分配方法。

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

(完整版)排列组合练习题3套(含答案)

排列练习 一、选择题 1、将3个不同的小球放入4个盒子中,则不同放法种数有() A、81 B、64 C、12 D、14 2、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于() A、 B、 C、 D、 3、用1,2,3,4四个数字可以组成数字不重复的自然数的个数() A、64 B、60 C、24 D、256 4、3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是() A、2160 B、120 C、240 D、720 5、要排一张有5个独唱和3个合唱的节目表,如果合唱节目不能排在第一个,并且合唱节目不能相邻,则不同排法的种数是() A、 B、 C、 D、 6、5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有() A、 B、 C、 D、 7、用数字1,2,3,4,5组成没有重复数字的五位数,其中小于50000的偶数有() A、24 B、36 C、46 D、60 8、某班委会五人分工,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,乙不能担任学习委员,则不同的分工方案的种数是() A、B、C、D、 二、填空题 1、(1)(4P 84+2P 8 5)÷(P 8 6-P 9 5)×0!=___________(2)若P 2n 3=10P n 3,则n=___________ 2、从a、b、c、d这四个不同元素的排列中,取出三个不同元素的排列为 __________________________________________________________________ 3、4名男生,4名女生排成一排,女生不排两端,则有_________种不同排法 4、有一角的人民币3张,5角的人民币1张,1元的人民币4张,用这些人民币可以组成_________种不同币值。

(完整版)高中数学排列组合习题精选

1、体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有( )种。 2、某公共汽车上有10名乘客,沿途有5个车站,乘客下车的可能方式有( )种 3、(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学争夺跑步、跳高、跳远三项冠军(各项目冠军都只有一人),共有多少种可能的结果? 4、从集合{1,2,…,10}中任选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为() 5、有4位教师在同一年级的四个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有( )种。 A .8 B .9 C .10 D .11 6、3人玩传球游戏,由甲开始并做为第一次传球,经过4次传球后,球仍回到甲手中,有多少种不同的传球方式呢? 7、集合A ={a,b,c,d},B={1,2,3,4,5}。(1)从集合A 到集合B 可以建立多少个不同的映射?(2)从集合A 到集合B 的映射中,要求集合A 中元素的象不同,这样的映射有多少个 8、对一个各边长都不相等的凸五边形的各边进行染色,每条边都可以染红、黄、蓝三种不同的颜色,但是不允许相邻相邻的边染相同的颜色,则不同的染色方法共有( )种。 9、用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有( )种不同的涂色方案。 10、将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,如图是一种填法,则不同的填写方法共有 A .6种 B .12种 C .24种 D .48种 11、如图所示的五个区域中,中心区域是一幅图画,现要求在其余四个区域中涂色,有四种颜色可供选择.要求每个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A .64B .72C.84 D .96 12、(13山东)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A .243 B .252 C .261 D .279 13、(13福建)满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( ) A .14 B .13 C .12 D .10 14、(16全国)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数。若m =4,则不同的“规范01数列”共有(A )18(B )16(C )14 (D )12

排列组合测试题(含答案)

排例组合专题训练 1. 将3个不同的小球放入4个盒子中,则不同放法种数有A .81 B .64 C .12 D .14 2.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有 A .33A B .334A C .523533A A A - D .23113 23233A A A A A + 3.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是 A.20 B .16 C .10 D .6 4.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是 A .男生2人女生6人 B .男生3人女生5人 C .男生5人女生3人 D .男生6人女生2人. 5.在8 2 x ? ?的展开式中的常数项是A.7 B .7- C .28 D .28- 6.5 (12)(2)x x -+的展开式中3 x 的项的系数是A.120 B .120- C .100 D .100- 7.22n x ???展开式中只有第六项二项式系数最大,则展开式中的常数项是 A .180 B .90 C .45 D .360 8.由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有 A .60个 B .48个 C .36个 D . 24个 9.3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是 A .1260 B .120 C .240 D .720 10.n N ∈且55n <,则乘积(55)(56)(69)n n n ---L 等于 A .5569n n A -- B .15 69n A - C .15 55n A - D .14 69n A - 11.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为 A .120 B .240 C .280 D .60 12.把10 )x -把二项式定理展开,展开式的第8项的系数是 A .135 B .135- C .- D . 13.2122n x x ??+ ?? ?的展开式中,2 x 的系数是224,则2 1x 的系数是A.14 B .28C .56 D .112 14.不共面的四个定点到面α的距离都相等,这样的面α共有几个A .3 B .4 C .6 D .7

(完整)高中数学排列组合题型总结,推荐文档

2排列组合题型总结 排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。 一.直接法 1.特殊元素法 例 1 用 1,2,3,4,5,6 这 6 个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字 1 不排在个位和千位 (2)数字 1 不在个位,数字 6 不在千位。 分析:(1)个位和千位有 5 个数字可供选择A2 ,其余 2 位有四个可供选择A2 ,由乘法原理: 5 4 A2 A2 =240 5 4 2.特殊位置法 (2)当 1 在千位时余下三位有A3 =60,1 不在千位时,千位有A1 种选法,个位有A1 种,余下 5 4 4 的有A2 ,共有A1 A1 A2 =192 所以总共有 192+60=252 4 4 4 4 二.间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法A4 - 2 A3 +A2 =252 6 5 4 例 2 有五张卡片,它的正反面分别写 0 与 1,2 与 3,4 与 5,6 与 7,8 与 9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书? 分析:此例正面求解需考虑 0 与 1 卡片用与不用,且用此卡片又分使用 0 与使用 1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数C 3 ? 23 ?A3 个,其中 0 在百位的 5 3 有C 2 ? 22 ?A2 个,这是不合题意的。故共可组成不同的三位数C 3 ? 23 ?A3 - C 2 ? 22 ? 4 2 5 3 4 A2 =432(个) 三.插空法当需排元素中有不能相邻的元素时,宜用插空法。 例 3 在一个含有 8 个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法? 分析:原有的 8 个节目中含有 9 个空档,插入一个节目后,空档变为 10 个,故有A1 ?A1 =100 9 10 中插入方法。 四.捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。 例 4 4 名男生和 3 名女生共坐一排,男生必须排在一起的坐法有多少种?

高考数学专题之排列组合综合练习

高考数学专题之排列组 合综合练习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.从中选个不同数字,从中选个不同数字排成一个五位数,则这些五位数中偶数的个数为() A. B. C. D. 2.五个同学排成一排照相,其中甲、乙两人不排两端,则不同的排法种数为()A.33 B.36 C.40 D.48 3.某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有() A.900种 B.600种 C.300种 D.150种 4.要从甲、乙等8人中选4人在座谈会上发言,若甲、乙都被选中,且他们发言中间恰好间隔一人,那么不同的发言顺序共有__________种(用数字作答). 5.有五名同学站成一排照毕业纪念照,其中甲不能站在最左端,而乙必须站在丙的左侧(不一定相邻),则不同的站法种数为__________.(用数字作答) 6.有个座位连成一排,现有人就坐,则恰有个空位相邻的不同坐法是 __________. 7.现有个大人,个小孩站一排进行合影.若每个小孩旁边不能没有大人,则不同的合影方法有__________种.(用数字作答) 8.(2018年浙江卷)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答) 9.由0,1,2,3,4,5这6个数字共可以组成______.个没有重复数字的四位偶数. 10.将四个编号为1,2,3,4的小球放入四个编号为1,2,3,4的盒子中. (1)有多少种放法

高中数学排列组合专题

实用标准 文档大全排列组合 一.选择题(共5小题) 1.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有() A.36种B.42种C.50种D.72种 2.某城市的街道如图,某人要从A地前往B地,则路程最短的走法有() A.8种B.10种C.12种D.32种 3.某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是() A.72 B.120 C.144 D.168 4.现将甲乙丙丁4个不同的小球放入A、B、C三个盒子中,要求每个盒子至少放1个小球,且小球甲不能放在A盒中,则不同的放法有()A.12种B.24种C.36种D.72种 5.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有()

A.300种B.240种C.144种D.96种 二.填空题(共3小题) 6.某排有10个座位,若4人就坐,每人左右两边都有空位,则不同的坐法有 种. 7.四个不同的小球放入编号为1,2,3的三个盒子中,则恰有一个空盒的放法共有种(用数字作答). 8.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的 实用标准 文档大全插法共有种. 三.解答题(共8小题) 9.一批零件有9个合格品,3个不合格品,组装机器时,从中任取一个零件,若取出不合格品不再放回,求在取得合格品前已取出的不合格品数的分布列 10.已知展开式的前三项系数成等差数列. (1)求n的值; (2)求展开式中二项式系数最大的项; (3)求展开式中系数最大的项. 11.设f(x)=(x2+x﹣1)9(2x+1)6,试求f(x)的展开式中:

排列组合练习题及答案

) 排列组合习题精选 一、纯排列与组合问题: 1.从9人中选派2人参加某一活动,有多少种不同选法 2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法 3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是() A.男同学2人,女同学6人 B.男同学3人,女同学5人 C. 男同学5人,女同学3人 D. 男同学6人,女同学2人 4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有() ] 个个个个 2221322 选C. 二、相邻问题: 1. A、B、C、D、E五个人并排站成一列,若A、B必相邻,则有多少种不同排法 2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( ) 答案:1.24 2448 A A= (2) 选 B 325 3251440 A A A= \ 三、不相邻问题: 1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法

2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个 名男生和4名女生站成一排,若要求男女相间,则不同的排法数有( ) 4.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法 张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种 6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法 . 7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法 8. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮方式是 ( ) 种 种 种 种 答案:1.43451440A A = (2)3434144A A = (3)选B 444421152A A = (4)3424A = (5)4245480A A =(6)333424A C = (7)3334144A A = (8)选A 6828C = 四、定序问题: 1. 有4名男生,3名女生。现将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法 2. 书架上有6本书,现再放入3本书,要求不改变原来6本书前后的相对顺序,有多少种不 同排法 — 答案:1.7733840A A = 2.9 966 504A A = 五、分组分配问题: 1.某校高中二年级有6个班,分派3名教师任教,每名教师任教两个班,不同的安排方法有多 少种

高中数学排列组合难题十一种方法

~ 高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2 步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 … 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 两个位置 . 先排末位共有1 3C 然后排首位共有1 4C / 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 443

、 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不 种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一 个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A 种不同的排法 练习题1.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个 解:把1,5,2,4当作一个小集团与3排队共有22A 种排法, 再排小集团内部共有2222A A 种排法,由分步计数原理共有222 222A A A 种排法. : 2.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那 么共有陈列方式的种数为254 254A A A 3. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255 255A A A 种 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场, 则节目的出场顺序有多少种 ( 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插 入第一步排好的6个元素中间包含首尾两个空位共有种4 6A 不同的方法, 由分步计数原理,节目的不同顺序共有5456A A 种 小集团排列问题中,先整体后局部,再结合其它策略进行处理。

历年高考数学真题精选45 排列组合

历年高考数学真题精选(按考点分类) 专题45 排列组合(学生版) 一.选择题(共20小题) 1.(2009?全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( ) A.150种B.180种C.300种D.345种2.(2010?广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是() A.1205秒B.1200秒C.1195秒D.1190秒3.(2007?全国卷Ⅱ)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有() A.10种B.20种C.25种D.32种4.(2006?湖南)在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是() A.6B.12C.24D.18 5.(2009?陕西)从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为() A.432B.288C.216D.108 6.(2014?辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为() A.144B.120C.72D.24 7.(2012?浙江)若从1,2,3,?,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有() A.60种B.63种C.65种D.66种8.(2012?北京)从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位

(完整版)高中数学排列组合题型总结与易错点提示

排列组合 复习巩固 1. 分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有 mi 种不同的方法,在第 2类办法中有 m 2种不同的方法,…,在第 n 类办法中 有m n 种不同的方法,那么完成这件事共有: N m i mt L m *种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成 n 个步骤,做第i 步有种不同的方法,做第 2步有m 2种不同的方法,…,做第 n 步有m n 种不同 的方法,那么完成这件事共有: N m i 讥 L m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一. 特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置 一 __________________ 先排末位共有C 3 然后排首位共有C : t J J 1 最后排其它位置共有A '1 C 4 ■ 3 A 4 11 C 3 由分步计数原理得 C 4C 3A 4^ 288 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 5 2 2 素内部进行自排。由分步计数原理可得共有 As A 2A 2 480种不同的排法 要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素 一起作排列,同时要注意合并元素内部也必须排列 . 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三. 不相邻问题插空策略 例3. 一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续岀场,则节目的岀场顺序有多少种? 5 解:分两步进行第一步排2个相声和3个独唱共有 A 5种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有 种A 6不同 的方法,由分步计数原理,节目的不同顺序共有 A :A : ____________________ 种 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端 练习题:某班新年联欢会原定的 5个节目已排成节目单, 开演前又增加了两个新节目.如果将这两个新节目插入原节目单中, 且两 个新节目不相邻,那么不同插法的种数为 30 四. 定序问题倍缩空位插入策略 例4. 7 人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题 ,可先把这几个元素与其他元素一起进行排列 ,然后用总排列数除以这几个元素 7 3 之间的全排列数,则共有不同排法种数是: A ;/A ; (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 A ;种方法,其余的三个位置甲乙丙共有 丄种坐法,则共有 A ;种 方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 ___________ 方法 定序问题可以用倍缩法,还可转化为占位插 空模型处理

相关文档
相关文档 最新文档