文档库 最新最全的文档下载
当前位置:文档库 › 压电陶瓷的性能参数解析

压电陶瓷的性能参数解析

压电陶瓷的性能参数解析
压电陶瓷的性能参数解析

新型陶瓷材料论文陶瓷装饰材料论文:电子陶瓷材料的发展现状与趋势

新型陶瓷材料论文陶瓷装饰材料论文:电子陶瓷材料的发 展现状与趋势 电子陶瓷材料的发展现状与趋势 材料学院 080201班李金霖 摘要本文对电子陶瓷系统中的绝缘质、介电质、压电质与离子导体的现状进行了综合评述。指出了电子陶瓷材料及其生产工艺的研究动向和发展趋势。 关键词电子陶瓷,材料,研究和开发 1引言 电子陶瓷材料主要指具有电磁功能的一类功能陶瓷,它具有较大的禁带宽度,可以在很宽的范围内调节其介电性能和导电性能。它以电、磁、光、热和力学等性能及其相互转换为 [1]主要特征,广泛应用于电子、通讯、自动控制等众多高科技领域。 近年来,电子陶瓷的研究和开发十分引入注目,其新材料、新工艺和新器件已在诸多方面取得了成果。 2电子陶瓷材料研究现状及其应用前景 2.1 高导热、电绝缘陶瓷 2.1.1高导热、电绝缘陶瓷的研究现状 绝缘陶瓷又称装置瓷,它具有高电绝缘性、优异的高频特性、良好的导热性以及高化学稳定性和机械强度等特性。 [2] AlN于1862年首次合成,20世纪50年代后期,随着非氧化物陶瓷受到重视,人们开始将AlN陶瓷作为一种新材料进行研究,侧重于将其作为结构材料应用。近10年来,AlN陶瓷的研究热点是提高热传导性能,应用对象是电路基板和

封装材料。最新研究通过采用有效的烧结助剂如CaO和Y0生产出了高纯度、高热导率的AlN。 23 BeO陶瓷是一种高导热率、电绝缘性能良好的材料,它对微电子集成电路的发展作出 [3]了巨大的贡献,但因其有剧毒,已逐渐被停止使用。 近30年来,由于人们的重视和工业应用的需要,高导热电绝缘陶瓷逐渐发展壮大,研究方向也有了一些变化,主要表现在: (1) 新材料的开发。一方面,在原有材料的基础上开发新的材料,如在SiC中添加 [4]2%BeO,获得SiC-BeO高导热电绝缘材料,性能优于BeO;另一方面,独立开发新材料, ,[56]正在开发中的有氮氧化硅(SiON)、SiC纤维、氮化硅系列纤维等。 22 (2) 除原料配方外,成形和烧成工艺研究也取得了较大的进展。1966年Bergmann和Barrington提出了陶瓷粉末的冲击波活化烧结新工艺的概念。在成形工艺上,20世纪90年代开发出两种泥浆原位凝固的成形工艺:凝胶浇注和直接凝聚浇注工艺。在国外的一些实验室已成功地利用这两种工艺制备出形状复杂的氧化铝、氮化硅、碳化硅等制品。 (3) 近年来,针对高导热电绝缘陶瓷制备成本高的问题,一些科技工作者着重研究如何降低制造成本,以期改变应用落后的现状。 2.1.2高导热、电绝缘陶瓷的应用前景 高导热、电绝缘陶瓷具备优良的综合性能,在多方面都有着广泛的应用前景,如高温结构材料、金属熔液的浴槽、电解槽衬里、熔融盐类容器、金属基复合材料增强体和主动装甲材料等。尤其是其导热性良好、电导率低、介电常数和介电损耗

陶瓷材料论文

湖南科技大学专业课程论文 论文题目:对介电功能陶瓷性能的研究 学生姓名:付国良 学院:机电工程学院 专业班级:09级金属材料工程二班 学号:0903050201 指导教师:徐红梅 2011年12月20日

对介电功能陶瓷性能的研究 付国良 (09级金属材料工程二班学号:093050201) 【摘要】随着材料科学技术的飞速发展,电功能陶瓷材料的低位变得日益重要,其特性方面发挥的优越性是其他材料不可代替的。电功能材料作为一种精细陶瓷,采用高度精选的原料,通过精密调配的化学组成和严格控制的制造工艺合成的陶瓷材料。近年来,电子元件随科技发展和市场需求不断向片式化、小型化、多功能化等趋势发展,其中,片式化是小型化、多功能化发展的基础。因此,片式化材料和器件的研究成为热点。在片式化多层结构中,为了使用银、铜内电极,降低元件制作成本,低温共烧陶瓷技术成为近年来兴起的一种令人瞩目的多学科交叉的整合组件技术。从介电材料的低温烧结和掺杂改性入手,通过调节成型压力,成型方式,叠层结构,以及采用零收缩技术,零收缩差技术,加入中间层等工艺技术和结构的改变,来研究层状共烧体的收缩率匹配,界面反应,界面扩散和介电性能,最终解决两种材料之间的共烧兼容问题,获得可低温烧结的无翘曲变形,无开裂等缺陷且界面结合良好的叠层共烧体。介电陶瓷和绝缘陶瓷在本质上属于同一类陶瓷,但是与绝缘陶瓷不同的是,主要利用介电性能的陶瓷称为介电陶瓷或者说,介电陶瓷是通过控制陶瓷的介电性质,使之具有较高的介电常数、较低的介质损耗和适当的介电常数温度系数的一类陶瓷。 【关键词】陶瓷功能系数介电 【引言】介电陶瓷对人类的生活影响涉及方方面面,但是人类对功能陶瓷的利用在一些方面的利用还是个空白,我设想如果我们把介电陶瓷用在谐振器、耦合器、滤波器、电容器、半导体、变压器等生活电器中时,这些电器将在工作效率和工作寿命上有很大的提高。为了加强对介电功能陶瓷的功能的广泛利用,我对介电功能陶瓷材料的介电特性做了深入研究。通过对材料性质的分析,我采用实验分析法,设计了周密的实验方案,同时我对介电功能陶瓷的理论基础做了研究设想,设计了研究方法和实验设计。如果电功能陶瓷得到很好的利用,我们的电器和各种电子设备间的工作效率将大大提高,设备制造成本也将大大降低。所以,研究介电功能陶瓷有很深远的意义。 【正文】 一、节电功能陶瓷的定义。 陶瓷材料特有的高强度、耐热性、稳定性等特点,被人们普遍看好用作集成电路板的制造材料。目前作为集成电路基板的陶瓷材料主要有氧化铝、氧化铍、碳化硅及氮化铝等,其中以氧化铝应用最为普遍。

关于材料导论的论文范文

篇一:关于材料导论的论文范文 虽然我已经进大材料专业两个多月,却由于种种原因,不能对材料这门基础学科有清楚的认识,甚至对于别人问我材料是干什么的,我也是尴尬地不能回答。在这10来次的课程中,我终于进一步认识到了材料学科的优势和发展前景,对于自己的未来也有了更多自信和期许。 材料共分为金属材料,无机非金属材料和高分子材料三大类。在这些课程中,教授们着重强调了无机非金属材料中的陶瓷材料。以前,我总认为陶瓷无非就是瓷碗,花瓶之类,却没想到它还会有那么多的化学特性和功能。实际上,陶瓷是瓷器和陶器的统称,它采用天然原料如长石、粘土和石英等烧结而成,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟。这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等。大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压的绝缘器件。陶瓷材料在高温下不易氧化,并对酸、碱、盐具有良好的抗腐蚀能力。此外,它在防辐射方面也发挥着至关重要的作用在所有的材料中,最令我感兴趣的是功能材料。功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,有着十分广阔的市场前景和极为重要的战略意义。 其中,太阳能电池材料是新能源材料研究开发的热点。随着能源日益紧缺和环保压力的不断增大,石油的枯竭几乎像一个咒语,给人类带来了不安。各国都开始力推可再生能源,其中开发和利用太阳能已成为可再生能源中最炙热的“新宠”,太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能资源丰富,而且免费使用,又无需运输,对环境无任何污染。正是因为这些优点,太阳能光伏产业才蓬勃发展起来。相信在未来,太阳能电池会发挥越来越重要的作用。 尽管我国非常重视功能材料的发展取得了一批接近或达到国际先进水平的研究成果,在国际上占有了一席之地,却依旧和发达国家存在着、较大的差距。因此发达国家企图通过功能材料领域形成技术垄断,并试图占领中国广阔的市场。例如,高铁的一些关键材料还需从国外进口,每年都得花高达千亿的资金去购买这些材料,还必须满足他们各种要求,这对拥有万千专家学者的中国来说,这不能不说是一种悲哀。特别是我国国防用关键特种功能材料是不可能依靠进口来解决的,必须要走独立自主、自力更生的道路。如军事通信、航空、航天、激光武器等,都离不开功能材料的支撑。 如何在毕业后成为一位优秀的材料人,这是我们每个人都需要思考的问题,未来充满着未知,这一切都有待于我们的努力。首先,我们要有勤勉、认真、踏实的学习作风,我们所学的基础课程都是很朴实无华的内容,这就要求我们能静下心来,从一砖一瓦打基础做起,不可心浮气躁。其次,我们需要动手实验的实 践能力,任何的成果都要依靠理论和实验,用实验来验证理论,这就要求我们要有一定的动手能力,对于实验的操作、各种仪器的使用要有相当的了解。而且我们一定要有举一反三的创新能力,我们的目标就是在于如何研发出不同于前人的材料,制作新工艺和新方法,这样人类才能更好地利用科学来造福众生,才能使我们的世界越来越丰富多彩。另外,我们还要学习一定的软件知识。课上,老师教我们如何用软件来模拟物质结构,引起了我们极大的兴趣,如果我们将想要在材料方面大展身手,软件将是我们研究学习不可或缺的帮手。

新型陶瓷材料论文陶瓷装饰材料论文:电子陶瓷材料的发展现状与趋势

电子陶瓷材料的发展现状与趋势 材料学院080201班李金霖 摘要本文对电子陶瓷系统中的绝缘质、介电质、压电质与离子导体的现状进行了综合评述。指出了电子陶瓷材料及其生产工艺的研究动向和发展趋势。 关键词电子陶瓷,材料,研究和开发 1引言 电子陶瓷材料主要指具有电磁功能的一类功能陶瓷,它具有较大的禁带宽度,可以在很宽的范围内调节其介电性能和导电性能。它以电、磁、光、热和力学等性能及其相互转换为主要特征,广泛应用于电子、通讯、自动控制等众多高科技领域[1]。 近年来,电子陶瓷的研究和开发十分引入注目,其新材料、新工艺和新器件已在诸多方面取得了成果。 2电子陶瓷材料研究现状及其应用前景 2.1 高导热、电绝缘陶瓷 2.1.1高导热、电绝缘陶瓷的研究现状 绝缘陶瓷又称装置瓷,它具有高电绝缘性、优异的高频特性、良好的导热性以及高化学稳定性和机械强度等特性。 AlN于1862年首次合成[2],20世纪50年代后期,随着非氧化物陶瓷受到重视,人们开始将AlN陶瓷作为一种新材料进行研究,侧重于将其作为结构材料应用。近10年来,AlN 陶瓷的研究热点是提高热传导性能,应用对象是电路基板和封装材料。最新研究通过采用有效的烧结助剂如CaO和Y203生产出了高纯度、高热导率的AlN。 BeO陶瓷是一种高导热率、电绝缘性能良好的材料,它对微电子集成电路的发展作出了巨大的贡献,但因其有剧毒,已逐渐被停止使用[3]。 近30年来,由于人们的重视和工业应用的需要,高导热电绝缘陶瓷逐渐发展壮大,研究方向也有了一些变化,主要表现在: (1) 新材料的开发。一方面,在原有材料的基础上开发新的材料,如在SiC中添加 2%BeO,获得SiC-BeO高导热电绝缘材料,性能优于BeO[4];另一方面,独立开发新材料,正在开发中的有氮氧化硅(Si2ON2)、SiC纤维、氮化硅系列纤维等[5~6]。 (2)除原料配方外,成形和烧成工艺研究也取得了较大的进展。1966年Bergmann 和Barrington提出了陶瓷粉末的冲击波活化烧结新工艺的概念。在成形工艺上,20世纪90年代开发出两种泥浆原位凝固的成形工艺:凝胶浇注和直接凝聚浇注工艺。在国外的一些实验室已成功地利用这两种工艺制备出形状复杂的氧化铝、氮化硅、碳化硅等制品。 (3) 近年来,针对高导热电绝缘陶瓷制备成本高的问题,一些科技工作者着重研究如何降低制造成本,以期改变应用落后的现状。 2.1.2高导热、电绝缘陶瓷的应用前景 高导热、电绝缘陶瓷具备优良的综合性能,在多方面都有着广泛的应用前景,如高温结构材料、金属熔液的浴槽、电解槽衬里、熔融盐类容器、金属基复合材料增强体和主动装甲材料等。尤其是其导热性良好、电导率低、介电常数和介电损耗低等特性,使其成为高密度集成电路基板和封装的理想材料。同时也可用作电子器件的封装材料、散热片以及高温炉的发热件等。

陶瓷材料论文压电陶瓷

智能陶瓷材料 ——压电陶瓷 段涛2009107204 摘要:陶瓷材料分为普通陶瓷和特殊陶瓷两大类。特殊材料中的智能材料是指能够接受外部环境的信息而自动改变自身状态的一种新型陶瓷,主要有压电陶瓷、形状记忆陶瓷和电流变陶瓷。 前言:陶瓷材料是国民经济和人民生活中不可缺少的重要组成部分。随着科学技术的不断发展,对材料的性能提出了越来越高的要求。陶瓷材料分为普通陶瓷和特殊陶瓷两大类。由于陶瓷具有优良的耐热性、耐磨性、耐腐蚀性、以及高强度和高硬度等优点,因此在国防、机械、冶金、化工、建筑、电子、生物等领域得到了广泛的应用。智能陶瓷是指能够接受外部环境的信息而自动改变自身状态的一种新型陶瓷,主要有压电陶瓷、形状记忆陶瓷和电流变陶瓷。这里我想研究的是压电陶瓷的情况。 正文:所谓压电效应是指某些介质在力的作用下,产生形变,引起介质表面带电,这是正压电效应。反之,施加激励电场,介质将产生机械变形,称逆压电效应。这种奇妙的效应已经被科学家应用在与人们生活密切相关的许多领域,以实现能量转换、传感、驱动、频率控等功能。在能量转换方面,利用压电陶瓷将机械能转换成电能的特性,可以制造出压电点火器、移动X光电源、炮弹引爆装置。电子打火机中就有压电陶瓷制作的火石,打火次数可在100万次以上。用压电陶瓷把电能转换成超声振动,可以用来探寻水下鱼群的位置和形状,对

金属进行无损探伤,以及超声清洗、超声医疗,还可以做成各种超声切割器、焊接装置及烙铁,对塑料甚至金属进行加工。 压电陶瓷材料的发现:某些材料在机械应力作用下,引起内部正负电荷中心相对位移而发生极化,导致材料两端表面出现符号相反的束缚电荷的现象,称为压电效应。具有这种性能的陶瓷称为压电陶瓷,它的表面电荷的密度与所受的机械应力成正比。反之,当这类材料在外电场作用下,其内部正负电荷中心移位,又可导致材料发生机械变形,形变的大小与电场强度成正比。1946年美国麻省理工学院绝缘研究室发现,去电场后仍能保持一定的剩余极化,使它具有压电效应,从此诞了压电陶瓷。在钛酸钡铁电陶瓷上施加直流高压电场,使其自发极化沿电场方向择优取向,除 常用的压电陶瓷有钛酸钡系、钛酸铅-锆酸铅二元系及在二元系中添加第三种ABO3(A表示二价金属离子,B表示四价金属离子或几种离子总和为正四价)型化合物,如:Pb(Mn1/3)Nb2/3)O3和Pb(CO1/3Nb2/3)O3等组成的三元系。如果在三元系统上再加入第四种或更多的化合物,可组成四元系或多元系压电陶瓷。此外,还有一种铌酸盐系压电陶瓷,如氧化钠(钾)·氧化铌(Na0.5·K0.5·NbO3)和氧化钡(锶)·氯化铌(Bax·Sr1-x·Nb2O5)等,它们不含有毒的铅,对环境保护有利。 压电陶瓷的制造特点:是在直流电场下对铁电陶瓷进行极化处理,使之具有压电效应。一般极化电场为3~5kV/mm,温度100~150°C,时间5~20min。这三者是影响极化效果的主要因素。性能较好的压电陶瓷,如锆钛酸铅系陶瓷,其机电偶合系数可高达0.313~0.694。 压电陶瓷主要用于制造超声换能器、水声换能器、电声换能器、陶瓷滤波器、陶瓷变压器、陶瓷鉴频器、高压发生器、红外探测器、声表面波器件、电光器件、引燃引爆装置和压电陀螺等。 压电陶瓷的特性:压电陶瓷具有敏感的特性,可以将极其微弱的机械振动转换成电信号,可用于声纳系统、气象探测、遥测环境保护、家用电器等。地震是毁灭性的灾害,而且震源始于地壳深处,以前很难预测,使人类陷入了无计可施的尴尬境地。压电陶瓷对外力的敏感使它甚至可以感应到十几米外飞虫拍打翅膀对空气的扰动,用它来制作压电地震仪,能精确地测出地震强度,指示出地震的方位和距离。这不能不说是压电陶瓷的一大奇功。 压电陶瓷在电场作用下产生的形变量很小,最多不超过本身尺寸的千万分之一,别小看这微小的变化,基于这个原理制做的精确控制机构--压电驱动器,对于精密仪器和机械的控制、微电子技术、生物工程等领域都是一大福音。 谐振器、滤波器等频率控制装置,是决定通信设备性能的关键器件,压电陶瓷在这方面具有明显的优越性。它频率稳定性好,精度高及适用频率范围宽,而且体积小、不吸潮、寿命长,特别是在多路通信设备中能提高抗干扰性,使以往的电磁设备无法望其项背而面临着被替代的命运。 压电陶瓷的发展前景:在航天领域,压电陶瓷制作的压电陀螺,是在太空中飞行的航天器、人造卫星的"舵"。依靠"舵",航天器和人造卫星,才能保证其既定的方位和航线。传统的机械陀螺,寿命短,精度差,灵敏度也低,不能很好满足航天器和卫星系统的要求。而小巧玲珑的压电陀螺灵敏度高,可靠性好。 在医学上,医生将压电陶瓷探头放在人体的检查部位,通电后发出超声波,

压电陶瓷测量原理..

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为 CR I I C R ωδ1 tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: π2 的机械能 谐振时振子每周所损失能谐振时振子储存的机械?=m Q 机械品质因数可根据等效电路计算而得 11 1 11 R L C R Q s s m ωω= = 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m 2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。

陶瓷材料论文:电子陶瓷材料的发展现状与趋势

陶瓷材料论文:电子陶瓷材料的发展现状与趋势 摘要本文对电子陶瓷系统中的绝缘质、介电质、压电质与离子导体的现状进行了综合评述。指出了电子陶瓷材料及其生产工艺的研究动向和发展趋势。 关键词电子陶瓷,材料,研究和开发 1引言 电子陶瓷材料主要指具有电磁功能的一类功能陶瓷,它具有较大的禁带宽度,可以在很宽的范围内调节其介电性能和导电性能。它以电、磁、光、热和力学等性能及其相互转换为主要特征,广泛应用于电子、通讯、自动控制等众多高科技领域[1]。 近年来,电子陶瓷的研究和开发十分引入注目,其新材料、新工艺和新器件已在诸多方面取得了成果。 2电子陶瓷材料研究现状及其应用前景 2.1 高导热、电绝缘陶瓷 绝缘陶瓷又称装置瓷,它具有高电绝缘性、优异的高频特性、良好的导热性以及高化学稳定性和机械强度等特性。 AlN于1862年首次合成[2],20世纪50年代后期,随着非氧化物陶瓷受到重视,人们开始将AlN陶瓷作为一种新材料进行研究,侧重于将其作为结构材料应用。近10年来,AlN 陶瓷的研究热点是提高热传导性能,应用对象是电路基板和封装材料。最新研究通过采用有效的烧结助剂如CaO和Y203生产出了高纯度、高热导率的AlN。 BeO陶瓷是一种高导热率、电绝缘性能良好的材料,它对微电子集成电路的发展作出了巨大的贡献,但因其有剧毒,已逐渐被停止使用[3]。 近30年来,由于人们的重视和工业应用的需要,高导热电绝缘陶瓷逐渐发展壮大,研究方向也有了一些变化,主要表现在: (1) 新材料的开发。一方面,在原有材料的基础上开发新的材料,如在SiC中添加 2%BeO,获得SiC-BeO高导热电绝缘材料,性能优于BeO[4];另一方面,独立开发新材料,正在开发中的有氮氧化硅(Si2ON2)、SiC纤维、氮化硅系列纤维等[5~6]。 (2)除原料配方外,成形和烧成工艺研究也取得了较大的进展。1966年Bergmann 和Barrington提出了陶瓷粉末的冲击波活化烧结新工艺的概念。在成形工艺上,20世纪90年代开发出两种泥浆原位凝固的成形工艺:凝胶浇注和直接凝聚浇注工艺。在国外的一些实验室已成功地利用这两种工艺制备出形状复杂的氧化铝、氮化硅、碳化硅等制品。 (3) 近年来,针对高导热电绝缘陶瓷制备成本高的问题,一些科技工作者着重研究如何降低制造成本,以期改变应用落后的现状。 高导热、电绝缘陶瓷具备优良的综合性能,在多方面都有着广泛的应用前景,如高温结构材料、金属熔液的浴槽、电解槽衬里、熔融盐类容器、金属基复合材料增强体和主动装甲材料等。尤其是其导热性良好、电导率低、介电常数和介电损耗低等特性,使其成为高密度集成电路基板和封装的理想材料。同时也可用作电子器件的封装材料、散热片以及高温炉的发热件等。 2.2 介电陶瓷 钛酸钡陶瓷由于具有高介电常数、良好的铁电、介电及绝缘性能,主要用于制备电容器、多层基片、各种传感器等。钛酸钡粉体的制备方法很多,其中液相合成法因具有高纯、超细、均匀等优点而倍受青睐。美国主要以草酸盐法和其它化学合成法为主[8~10];日本则主要采用350℃以下的水热法来合成[11];朱启安用氢氧化钡和偏钛酸为原料,制备了纯度高、粒径小的钛酸钡粉体,能满足电子工业对高质量钛酸钡粉体的需求。此外,以偏钛酸、氯化钡、碳

压电陶瓷性能参数解析

压电陶瓷性能参数解析 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

在机械自由条件下,测得的介电常数称为自由介电常数,在εT表示,上角标T表示机械自由条件。在机械夹持条件下,测得的介电常数称为夹持介电常数,以εS表示,上角标S表示机械夹持条件。由于在机械自由条件下存在由形变而产生的附加电场,而在机械受夹条件下则没有这种效应,因而在两种条件下测得的介电常数数值是不同的。 根据上面所述,沿3方向极化的压电陶瓷具有四个介电常数,即ε11T,ε33T,ε11S,ε11S。 (2)介质损耗 介质损耗是包括压电陶瓷在内的任何介质材料所 具有的重要品质指标之一。在交变电场下,介质 所积蓄的电荷有两部分:一种为有功部分(同 相),由电导过程所引起的;一种为无功部分 (异相),是由介质弛豫过程所引起的。介质损 耗的异相分量与同相分量的比值如图1-1所示, Ic为同相分量,IR为异相分量,Ic与总电流I 的夹角为δ,其正切值为 (1-4) 式中,ω为交变电场的角频率,R为损耗电阻,C为介质电容。由式(1-4)可以看出,I R大时,tanδ也大;I R小时tanδ也小。通常用 tanδ来表示的介质损耗,称为介质损耗正切值或损耗因子,或者就叫做介质损耗。 处于静电场中的介质损耗来源于介质中的电导过程。处于交变电场中的介质损耗,来源于电导过程和极化驰豫所引起的介质损耗。此外,具有铁电性的压电陶瓷的介质损耗,还与畴壁的运动过程有关,但情况比较复杂,因此,在此不予详述。 (3)弹性常数 压电陶瓷是一种弹性体,它服从胡克定律:“在弹性限度范围内,应力与应变成正比”。设应力为T,加于截面积A的压电陶瓷片上,其所产生的

陶瓷基复合材料论文 (1)

陶瓷基复合材料在航天领域的应用 概念:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。 一、陶瓷基复合材料增强体 用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种 纤维类增强体 纤维类增强体有连续长纤维和短纤维。连续长纤维的连续长度均超过数百。纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。 颗粒类增强体 颗粒类增强体主要是一些具有高强度、高模量。耐热、耐磨。耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。细金刚石、高岭土、滑石、碳酸钙等。主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末 晶须类增强体

晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。 金属丝 用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。 片状物增强体 用于复合材料的片状增强物主要是陶瓷薄片。将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。 二、陶瓷基的界面及强韧化理论 陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。界面作为陶瓷基复合材料重要的组成相,其细观结构、力学性能和失效规律直接影响到复合材料的整体力学性能,因此研究界面特性对陶瓷基复合材料力学性能 的影响具有重要的意义。 界面的粘结形式 (1)机械结合(2)化学结合 陶瓷基复合材料往往在高温下制备,由于增强体与基体的原子扩散,在界面上更易形成固溶体和化合物。此时其界面是具有一定厚度的反应区,它与基体和增强体都能较好的

压电陶瓷

学业设计(论文) 压电陶瓷 系别:应用化学与环境工程系专业(班级):14级应用化学(升本)班作者(学号):陈云飞(51432221018)指导教师:李宗群(硕士) 完成日期: 2015年5月4日 蚌埠学院教务处

1 引言 ............................................................................................................... - 1 - 1.1 概况................................................................................................................. - 1 - 1.2 压电效应......................................................................................................... - 1 - 1.3压电性能.......................................................................................................... - 2 - 1.4 压电陶瓷材料主要参数的确定..................................................................... - 4 - 1.5 压电陶瓷的极化工艺..................................................................................... - 4 - 1.6 压电陶瓷材料................................................................................................. - 5 - 参考文献................................................................................................................ - 12 -

电子工程师必备知识

电子工程师的设计经验笔记(经典) 关键字:电子工程师设计经验 电子工程师必备基础知识(一) 运算放大器通过简单的外围元件,在模拟电路和数字电路中得到非常广泛的应用。运算放大器有好些个型号,在详细的性能参数上有几个差别,但原理和应用方法一样。 运算放大器通常有两个输入端,即正向输入端和反向输入端,有且只有一个输出端。部分运算放大器除了两个输入和一个输出外,还有几个改善性能的补偿引脚。 光敏电阻的阻值随着光线强弱的变化而明显的变化。所以,能够用来制作智能窗帘、路灯自动开关、照相机快门时间自动调节器等。 干簧管是能够通过磁场来控制电路通断的电子元件。干簧管内部由软磁金属簧片组成,在有磁场的情况,金属簧片能够聚集磁力线并使受到力的作用,从而达到接通或断开的作用。 更多阅读:电容性负载的稳定性—具有双通道反馈的RISO(1) 电子工程师必备基础知识(二) 电容的作用用三个字来说:“充放电。”不要小看这三个字,就因为这三个字,电容能够通过交流电,隔断直流电;通高频交流电,阻碍低频交流电。 电容的作用如果用八个字来说那就:“隔直通交,通高阻低。”这八个字是根据“充放电”三个字得出来的,不理解没关系,先死记硬背住。 能够根据直流电源输出电流的大小和后级(电路或产品)对电源的要求来先择滤波电容,通常情况下,每1安培电流对应1000UF-4700UF是比较合适的。 电子工程师必备基础知识(三) 电感的作用用四个字来说:“电磁转换。”不要小看这四个字,就因为这四个字,电感能够隔断交流电,通过直流电;通低频交流电,阻碍高频交流电。电感的作用再用八个字来说那就:“隔交通直,通低阻高。”这八个字是根据“电磁转换”三个字得出来的。

特种陶瓷压电陶瓷的性能与结构

结课论文开题报告 2014 年 4 月 13日 特种陶瓷的力学性能与压电陶瓷的结构原理和性能参数 引言: 随着新技术革命的,功能陶瓷愈来愈受到世界各国的重视,品种日益增多,应用也愈来愈普遍。几乎在工业、宇航、军工等所有的领域都可以找到特种题 目: 特种陶瓷的力学性能与压电陶瓷的结构原理和性能参数 学 院: 化学工程学院 专业班级: 材料化学112班 学生姓名: 顾鹏 学 号: 2011121272 指导教师:

陶瓷的应用。应该指出,许多陶瓷都具有十分优异的综合性能。 摘要:特种陶瓷是发展高新技术的物质基础,也是改造传统产业的必备条件,因 此材料科学被列为对世纪六大高科技领域之一。特种陶瓷是新材料的一个组成部分,由于它具有其他材料所没有的各种优良性能,耐高温、高强度、重量轻、耐磨、耐腐蚀、优异的电、磁、声、光等物理特点,它在国民中的能源、电子、航空航天、机械、汽车、冶金和生物等各方面都有广阔的应用前景,成为各工业技术特别是尖端技术中不可缺少的关键材料,在国防现代化建设中,武器装备的发展也离不开特种陶瓷材料。除此之外,在当今世界各国把环境保护作为重要的问题来考虑时,以环境保护、生活优化为背景的环境净化功能陶瓷的研究与开发也必然对改善人类生存环境,实施可持续发展战略起到积极的推动作用。 Abstract: special ceramics is the material basis for the development of high technology, is the transformation of traditional industries essential condition, so the materials science is listed as the six major high-tech fields. Special ceramics is a part of the new material, because it has excellent resistance to various other materials do not have, high temperature resistance, high strength, light weight, corrosion resistance, wear resistance, excellent electrical, magnetic, acoustic, optical and other physical characteristics, it is in the national energy, electronics, aerospace, machinery, automobile, metallurgy and biological aspects have broad application prospects, has become the industry technology is the key technology in the essential material, in the modernization of national defense construction, the development of weapons and equipment also cannot do without special ceramic materials. In addition, the environmental protection as an important consideration in the world, with environmental protection, life optimization as the background of the environmental research and development of functional ceramics are bound to improve human living environment, implementing the strategy of sustainable development plays a positive role in promoting. 关键词:特种陶瓷、压电陶瓷、性能 1特种陶瓷定义 特种陶瓷又称精细陶瓷,按其应用功能分类,大体可分为高强度、耐高温和复合结构陶瓷及电工电子功能陶瓷两大 ... 在陶瓷坯料中加入特别配方的无机材料,经过1360度左右高温烧结成型,从而获得稳定可靠的防静电性能,成为一种新型特种陶瓷,通常具有一种或多种功能。如:电、磁、光、热、声、化学、生物等功能,以及耦合功能。如压电、热电、电光、声光、磁光等功能。

压电陶瓷测量基本知识

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1 、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,I C为同相分量,I R为异相分量,I C与总电流I的夹角为,其正切值为

2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时, 材料内部能量消耗程度的一个参数, 它也是衡 量压电陶瓷材料性能的一个重要参数。 机械品质因数越大, 能量的损耗越小。产生能量损耗 的原因在于材料的内部摩擦。机械品质因数 Q m 的定义为: 谐振时振子储存的机械能 c Qm 谐振时振子每周所 损失的机械能 2 兀 机械品质因数可根据等效电路计算而得 式中 R 1为等效电阻 (Q ) , s 为串联谐振角频率(Hz ), C 1为振子谐振时的等效电容 (F ),L 1为振子谐振时的等效电感。 Q m 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的 Q m 值的要求不同,在大多数的场合下(包括声波 测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的 Q m 值要高。 3、压电常数 压电陶瓷具有压电性, 即在其外部施加应力时能产生额外的电荷。 其产生的电荷与施加 tan 1 CR 其中3为交变电场的角频率, R 为损耗电阻,C 为介质电容。 s R 1C 1 s L 1 图1交流电路中电压-电流矢量图(有损耗时)

lv功能陶瓷材料论文

功能陶瓷材料研究论文 苏州科技学院 化学生物与材料工程学院 材料学专业 题目:锰锌铁氧体材料的性能研究与制备 姓名:吕岩 学号: 1411093004 指导老师:钱君超

锰锌铁氧体材料的性能研究与制备 摘要:铁氧体材料是当今一种重要的磁性材料。二十世纪三十年代以来,由于该种材料固有的特性,人们对这种材料产生了浓厚的兴趣,并开展了广泛的研究。本文主要从锰锌铁氧体入手,介绍了高磁导率锰锌铁氧体的研究历史及其在信息产业发展过程中的意义和作用,同时从配方优化、烧结工艺、测试方法等方面综述了国内外的研究与发展现状。 关键词:锰锌铁氧体;高磁导率;配方;烧结工艺 Abstract:Ferrite materials is a very important magnetic materials at present.For the inherent characteristics of this materials,people had a strong interesting in it and extensive research carried out since the 1930s.This article is mainly about MnZn ferrite,introducing the background,the significance and current state of manufacturing high permeability MnZn ferrite was summed up and at the same time the investigation status about composition,sintering process and methods of analysis was reviewed. Key words:MnZn ferrite;high permeability;composition;sintering process

几种材料压电陶瓷的特性

1. 大功率发射材料YT-8型压电陶瓷: 该压电陶瓷材料具有良好压电性,机械强度高、矫顽场高,强场介电损耗低。它主要用于超声清洗、强力超声钻孔、超声焊接、洁牙机探头、美容仪探头、超声手术刀探头、心血管治疗仪探头等。 2. 高灵敏度接收材料YT-5型压电陶瓷: 该压电陶瓷材料具有高机电耦合系数,适宜的介电常数、较高的灵敏度。它主要用于高灵敏度换能器、流量计换能器、液位计换能器、加速度计换能器、超声检测换能器等。 3. 收发两用材料YT-4型压电陶瓷: 该压电陶瓷材料介于YT-8与YT-5之间,兼顾二者特点,具有较高的灵敏度,又具有较低介电损耗,对于发射功率不大而且可同时做接收用的收发两用换能器,选用本材料最合适。目前用该压电陶瓷材料生产的超声雾化换能器已批量投产。 4. PZT压电陶瓷是将二氧化铅、锆酸铅、钛酸铅在1200度高温下烧结而成的多晶体。具有正压电效应和负压电效应。 PZT压电陶瓷(锆钛酸铅):其中P是铅元素Pb的缩写,Z是锆元素Zr的缩写,T是钛元素Ti的缩写 PZT是反铁电相PbZrO3和铁电相PbTiO3的二元固溶体,具有钙钛矿型结构。PbTiO3和PbZrO3是铁电体和反铁电体的典型代表,因为Zr和Ti属于同一副族, PbTiO3和PbZrO3具有相似的空间点阵形式,但两者的宏观特性却有很大的差异,钛酸铅为铁电体,其居里温度为492℃,而锆酸铅却是反铁电体,居里温度为232℃,如此大的差异引起了人们的广泛关注。 研究PbTiO3和PbZrO3的固溶体后发现PZT具有比其它铁电体更优良的压电和介电性能,PZT以及掺杂的PZT系列铁电陶瓷成为近些年研究的焦点.

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷得研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济与尖端技术得各个方面中,成为不可或缺得现代化工业材料之一。由于压电材料得各向异性,每一项性能参数在不同得方向所表现出得数值不同,这就使得压电陶瓷材料得性能参数比一般各向同性得介质材料多得多。同时,压电陶瓷得众多得性能参数也就是它广泛应用得重要基础。 (一)压电陶瓷得主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心得晶体上施加压力、张力或切向力时,则发生与应力成比例得介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例得变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体就是否出现压电效应由构成晶体得原子与离子得排列方式,即晶体得对称性所决定。在声波测井仪器中,发射探头利用得就是正压电效应,接收探头利用得就是逆压电效应。 (2)压电陶瓷得主要参数 1、介质损耗 介质损耗就是包括压电陶瓷在内得任何电介质得重要品质指标之一。在交变电场下,电介质所积蓄得电荷有两种分量:一种就是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗就是异相分量与同相分量得比值,如图1 所示,为同相分量,为异相分量,与总电流I 得夹角为,其正切值为其中ω为交变电场得角频率,R 为损耗电阻,C 为介质电容。

图1 交流电路中电压电流矢量图(有损耗时) 2、机械品质因数 机械品质因数就是描述压电陶瓷在机械振动时,材料内部能量消耗程度得一个参数,它也就是衡量压电陶瓷材料性能得一个重要参数。机械品质因数越大,能量得损耗越小。产生能量损耗得原因在于材料得内部摩擦。机械品质因数得定义为: 机械品质因数可根据等效电路计算而得 式中为等效电阻(Ω), 为串联谐振角频率(Hz), 为振子谐振时得等效电容(F),为振子谐振时得等效电感。与其它参数之间得关系将在后续详细推导。 不同得压电器件对压电陶瓷材料得值得要求不同,在大多数得场合下(包括声波测井得压电陶瓷探头),压电陶瓷器件要求压电陶瓷得值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外得电荷。其产生得电荷与施加得应力成比例,对于压力与张力来说,其符号就是相反得,电位移D(单位面积得电荷)与应力得关系表达式为: 式中Q 为产生得电荷(C),A 为电极得面积(m2),d 为压电应变常数(C/N)。在逆压电效应中,施加电场 E 时将成比例地产生应变S,所产生得应变S 就是膨胀还就是收缩,取决于样品得极化方向。 S=dE 两式中得压电应变常数d 在数值上就是相同得,即 另一个常用得压电常数就是压电电压常数g,它表示应力与所产生得电场得关系,或应变与所引起得电位移得关系。常数g 与 d 之间有如下关系: 式中为介电系数。在声波测井仪器中,压电换能器希望具有较高得压电应变常数与压电电压常数,以便能发射较大能量得声波并且具有较高得接受灵敏度。 4、机电耦合系数 当用机械能加压或者充电得方法把能量加到压电材料上时,由于压电效应与逆压电效应,机械能(或电能)中得一部分要转换成电能(或机械能)。这种转换得强弱用机电耦合系数k 来表示,它就是一个量纲为一得量。机电耦合系数就是综合反映压电材料性能得参数,它表示压

相关文档