文档库 最新最全的文档下载
当前位置:文档库 › 压力机机架设计的有限元分析

压力机机架设计的有限元分析

压力机机架设计的有限元分析
压力机机架设计的有限元分析

第3卷 第2期 2011年3月

精密成形工程

JO U RN A L O F N ET SH A PE FO RM IN G EN GI NEERIN G

39

压力机机架设计的有限元分析

张汝1,2,刘为1,张倩倩1,薛克敏1

(1.合肥工业大学材料科学与工程学院,合肥230009;2.阜阳同力实业有限责任公司,安徽阜阳236000)

摘要:以压力机机架为研究对象,用ANSYS 软件对2种设计方案的机架结构进行静动态分析,获得了机架应力分布和位移分布规律。通过模态分析给出了机架振动的固有频率及相应振型。结果表明,在保证机架强度的条件下,第2种设计方案减少了机架使用材料,机架质量减少了22.6%,降低了生产成本,取得了良好的经济效益。

关键词:机架;有限元;静态分析;模态分析中图分类号:T G315.5 文献标识码:A 文章编号:1674-6457(2011)02-0039-04

收稿日期:2010-08-06

作者简介:张汝(1966-),男,安徽阜阳人,在读工程硕士,工程师,主要研究方向为精密塑性成形新技术新工艺。

FEM Analysis on the Press Frame Design Based on ANSYS

ZH AN G Ru 1,2,L I U Wei 1,ZH A NG Qian -q ian 1,X UE K e -min 1

(1.Scho ol of M ater ials Science and Eng ineering,H efei U niver sity o f T echnolog y,Hefei 230009,China;

2.Fuyang T ong li Industr y Co.,L td.,Fuyang 236000,China)

Abstract:A N SYS F EM softw are w as applied to static analy sis and model ana lysis of the press machine frame wit h tw o de -sign plans.With stat ic analysis,the str ess and the displacement o f the machine frame were obtained,and w ith mo del analysis,nat ur al fr equencies and mode shapes o f the main fr ame w er e presented.It is indicated that the seco nd desig n plan can r educe the material of machine fr ame and the pr oductio n cost under the conditio n of g ua ranteeing the constant int ensity of the machine frame.And the w eig ht of the machine fr ame decreases by 22.6%,w hich achieves a g reat economic benefit.

Key words:machine fr ame;finite element;st at ic analysis;model analy sis

在机械工业中,锻压设备占有极其重要的地位,其发展水平、拥有量和构成比不仅对锻压生产起关键作用,而且在一定程度上反映一个国家的工业水平。当今以至未来的一段时间内曲柄压力机仍是大量生产的体积模锻和板冲车间的主要工艺设备,但在总台数中的相对数量未必会增加。设备的改进、设备的价格决定了有效利用设备的可能性和必要性[1]

。目前压力机的结构设计仍然是传统材料力学简化计算与经验设计相结合的方法,虽然实践证明

具有一定的可靠性,但存在诸多弊端,如设计周期长,机构组件冗余,用材量大,传统设计在材料使用上偏于保守,致使产品比国外同规格产品质量大,成本高,效益低[2-3]。压力机的结构优化设计成为当今一大热点

[4-5]

。有限元法的出现,为大型复杂结

构件的结构分析提供了一种强有力的、精确的分析手段。利用有限元软件对机身进行静态分析,可以校核其强度和刚度。文中以公称压力为160kN 的J23-16.1的压力机机架为研究对象,对2种不同设

精密成形工程 2011年3月

40

计方案的机架在ANSYS 中进行静态和模态分析,找出最优设计方案,为下阶段的机架优化设计提供参考。

1 第1种设计方案机架有限元分析

机架是压力机中的重要部件,不仅承受整个压力机的重量,且能保持整个压力机在工作时的稳定性。对机架进行结构优化能最大限度地发挥机架各处材料的性能,还能减少耗材,降低成本。对压力机机架的结构优化设计具有较高的理论和实用价值。

1.1 几何模型的建立

第1种设计方案,机架主要尺寸见表1。

表1 机架主要尺寸

Tab le 1 M ain siz e s of machine frame

类别长度高度机架宽度底座宽度壁厚数值/mm

940

670

123

18

10

利用U G 创建有限元模型[6],机架的模型如图1

所示。

图1 机架的三维模型Fig.1 3D model of machine frame

1.2 ANSYS 有限元分析

将三维模型以Par asolid 格式导入ANSYS 软件,对其进行有限元仿真分析。确定压力机机架的最大应力值和应变,分析压力机机架结构参数及选用的材料是否满足使用要求,并以此为基础实现压力机机架的优化设计,其分析过程如下。1.2.1 单元类型的选择

确定单元的类型对于有限元分析至关重要,它

不仅影响模型网格的划分,而且对求解的精度也影响很大。综合考虑机架结构的复杂程度,精度要求,以及计算求解时间等因素。采用实体单元SOL -ID45[7]。

1.2.2 定义材料属性

材料属性是与几何模型无关的本构关系,如弹性模量、密度等。由于机架材料为H T 200。根据 机械设计手册

[8]

灰铸铁的弹性模量E 为113~

157GPa,泊松比 为0.23~0.27,文中取E =120GPa, =0.25,密度 =7250kg/m 3

。1.2.3 网格划分

采用智能网格划分工具SmartSize 。SmartSize 是ANSYS 提供的强大的自动网格划分工具,使用SmartSize 有利于在网格生成的过程中生成形状合理的单元,如图2所示。

图2 有限元网格划分模型Fig.2 F inite element meshing model

1.2.4 施加约束

施加约束对于有限元分析也很重要。边界约束条件的准确度直接影响有限元分析的结果。设置约

束边界条件一般遵循2个原则:施加足够多的约束,保证模型不会产生刚性位移;力求简单直观便于计算分析。文中对机架的所有自由度进行约束。1.2.5 施加载荷

对压力机在最恶劣的工作状况下进行分析,即压力机在满载的条件机架的受力与变形情况。经对机架进行受力分析计算可知,机架受力最大的情况出现在受冲击载荷的瞬间,冲击载荷值为1.1G(1.1为冲击系数,G 为压力机重量)。经过力学分析计算

[9]

,如图1所示1处即滑动轴支撑受6.450kN 的

分布力,2处即轴支撑受力4.406kN,同时考虑机架的自身重力。

第3卷 第2期 张汝等:压力机机架设计的有限元分析

41

1.2.6 求解及后处理

ANSYS 提供2种后处理器,文中采用通用后处理器。

1.3 计算结果及分析

求解完成后,应用后处理器可直观地看出应力、变形等结果在模型上的分布情况。这样可以快速地确定所需的结果最大值位置,以便快速地确定所要着重分析的区域,然后通过列表功能获得指定节点,或者是所有的节点的具体的应力、应变、位移等结果值。利用这些数值分析校核其强度。图3a

为机架

图3 机架位移分布云图

Fig.3 Displacement clo ud diagr am of machine f rame

z 方向位移分布云图,图3b 为机架等效位移分布云图。机架的总体变形很小,由于机架左上角区域受到拉力作用,此处区域变形最大,但其值也只有0.510 10

-4

m 。图4a 是机架优化前z 向应力分布

云图,图4b 是机架优化前等效应力分布云图,z 向最大应力为17.5MPa,最大M ises 应力是16.2MPa,最大值都出现在滑动轴支撑与机架壁接触区域,但其值远小于材料的最小抗拉强度(195M Pa)。其他部位应力很小,应力分布基本均匀。

1.4 模态分析

为了避免共振,必须分析机架的固有是否大于

图4 机架应力分布云图

Fig.4 Stress clo ud diagr am of machine frame

工作频率,根据滑块行程次数,得到压力机的工作频率为2.08H z 。在ANSYS 中进行模态分析,得到的固有频率见表2。

表2 压力机机架1~5阶固有振动频率Tab le 2 1st to 5th natural freq uen cies of p re ss frame 阶次

1阶

2阶

3阶

4阶

5阶

计算结果/H z 121.06244.10517.67556.63755.23

模态振型的大小只是一个相对的量值,它表征的是在某一点固有频率上振动量值之间的相对比值,反映该固有频率上振动的传递情况,并不反映实际振动变形数值[10-11]。

由计算结果可知:第1阶频率大于压力机工作频率,没有与工作频率重叠,所以满足频率要求,不会引起共振。

2 第2种设计方案机架有限元分析

根据经验对机架进行改进,第2种设计方案在第1种设计方案基础上使机架的宽度减少10mm,底座的宽度减少10mm ,加强筋高度减少20mm,机架壁厚减少2mm,其余尺寸不变。重新建立实体模型,网格划分后进行有限元分析,分别得到静、

动态的有限元分析结果。如图5-6所示。

表3 2种设计方案机架的质量、体积变化

Tab le 3 Quality an d volu me c han ge of machin e frame with

two d esign plans 状态体积/m 3质量/kg 第1种机架0.01114578.015第2种机架0.0086207

60.345

减少比率

22.

6%

图5 机架位移分布云图

Fig.5 Displacement clo ud diagr am of machine f rame

从图5可知第2种设计方案的机架,最大变形处仍然出现在机架左上角区域,z 向最大位移值比优化前z 向最大位移值0.501 10-4

m 增加了

18.1%,但还是只有0.595 10

-4

m,变形量较小。

图6是机架的应力分布云图,由图5b 和图6b 对比可知,虽机架滑动轴支撑附近区域的总体应力变大。第2种设计方案的机架最大M ises 应力是15.5MPa,比第1种机架的最大Mises 应力16.2M Pa 小,滑动轴支撑附近区域的应力分布均匀性有了一定的提高,这说明此时机架的结构更趋于合理。

模态分析得到了1~5阶固有频率和相应的主

振型,见表4。

图6 机架应力分布云图

Fig.6 Stress clo ud diagr am of machine frame 表4 压力机机架1~5阶固有振动频率Tab le 4 1st to 5th natural freq uen cies of p re ss frame 阶次

1阶

2阶

3阶

4阶

5阶

计算结果/H z 114.42236.19506.66541.12762.46

经模态分析分析结果可以看出,由于减少了机架各部分的厚度和宽度,机架的模态频率在整体上

有一定的降低,但下降得并不多,各阶固有频率仍然高出设备的工作频率,不会引起共振。

第2种设计方案是基于保证压力机机架强度的同时,减轻机架的质量,模拟结果也证实了这一点。压力机机架质量从第1种的78.015kg 降到60.345kg,质量降低了22.6%。由于压力机有左右2个机架,压力机就会减轻35.34kg 。假如一个工厂一个月生产100台压力机,H T200的价格为6.1元/kg,机架的结构优化一个月就会给工厂带来21557.4元的效益,机架结构优化的经济效益比较明显。

3 结语

经上述有限元分析可得到如下的结论。

(下转第72页)

图7 凸凹模设计

Fig.7 T he desig n of cor e and cav ity

4 结语

在模具设计之前对塑料制件进行不同CAE 浇注系统分析比较,这可以有效地预测不同浇注系统的填充情况,对模具设计起到了有效的指导作用。

从填充分析、保压分析、模腔残余应力、气穴及翘曲变化对保险杠的2种浇注系统等进行了对比分析,并结合热流道成本得出了3点进浇方案较好。

当然,有时候2种方案并不能得到最优化的结果,这就需要比较3种、4种乃至更多的方案,譬如点进浇与扇形浇口结合,点进浇采取顺序打开各个热喷嘴等。多种方案比较就会得到某个最佳的方案。参考文献:

[1] 黄虹.塑料成形加工与模具[M ].北京:化学工业出版

社,2004:118-132.

[2] 唐志玉.大型注塑模具设计技术原理与应用[M ].北

京:化学工业出版社,2004:38-61.

[3] 单岩.M oldflow 模具分析技术基础[M ].北京:清华大

学出版社,2004:118-127.

[4] 余卫东.M oldflow 技术在注塑成形中的应用[J].软件

世界,2006(3):57-58.

[5] 花杏华.大型塑件注射模结构设计中的几个要点[J].

模具制造,2004(4):37-38.

(上接第42页)

1)利用三维实体建模软件建立机架模型,并导入有限元分析软件ANSYS 中,根据有限元的分析结果对压力机机架的结构进行改进,提高了设计效率。

2)机架经过静态有限元分析,得到应力分布与位移分布。通过对机架部分结构进行改进,既减轻了机架的质量,又满足其强度要求,可获得比较明显的经济效益。

3)动力学模态分析中计算出机架各阶固有振动频率与振型,改进后机架的固有频率远大于设备的工作频率,不会产生共振。表明设备在动态工作条件下能够安全运行,更好地了解了机架的整体性能。参考文献:

[1] A H C E H.曲柄压力机结构的发展前景与研究

范围[C]//李作有,袁嘉容,周大隽,等译.曲柄压力机译文集.北京:机械工业出版社,1988:1-4.

[2] 刘强,付文智,李明哲,等.三梁四柱式多点成形压力机

机架有限元分析和优化设计[J].塑性工程学报,2003,

10(5):49-52.

[3] 谢峰,雷小宝,林巨广,等.C 型压力机机身的有限元分

析与优化[J].机械工程师,2007(7):25-27.

[4] 严庆光,李明哲,蔡中义.C 型多点成形压力机机架有

限元分析和优化设计[J].锻压机械,2002(3):44-47.[5] 黄宁,黄明辉,湛利华,等.巨型压机C 型机架的结构分

析与改进[J].锻压技术,2009,34(5):93-95.

[6] 付本国,徐岩,许小钧,等.U G N X 4.0机械设计实例

教程[M ].北京:电子工业出版社,2006:1-100.[7] 杨金利.300kN 压力机上横梁的有限元分析[J].机械

设计,2006,23(4):24-26.

[8] 机械设计手册 编写组.机械设计手册[M ].北京:化

学工业出版社,1993:1-80.

[9] 哈尔滨工业大学理论力学教研室.理论力学( )[M ].

北京:高等教育出版社,2002:1-90.

[10]李德军,李培武,管延锦,等.22M N 液压机整体框架

式机身的有限元分析[J].塑性工程学报,1995,2(3):55-62.

[11]叶宏克,周照耀,邵明.粉末液压成形设备框架机身的

有限元分析与结构改进[J].机床与液压,2007,35(3):179-180.

10吨螺杆压力机设计说明书

(1)拉紧螺栓直径: 拉紧螺栓直径决定于机身的预紧力。机身预紧力通常根据压力机的公称压力及其结构形式确定。拉紧螺栓一般采用45号钢制造。 当采用正火处理的45号钢时,对于组合机身的拉紧螺栓直径d 可按以下经验公式计算,然后根据标准直径圆 初步选定。 d =式中 g p ——压力机公称压力(KN)。 对于整体机身,可取预紧力为(0.7~1.0) g p ,但是在目前实际设计时也有人取和机身同样大小的预紧力。 拉紧螺栓两端通常采用45锯齿形螺纹,其牙型与基本尺寸分别见标准,螺母采用圆螺母。当拉紧螺栓的直径确定后,两端螺纹和螺母可以按标准表(见设计手册)选取。 (2)立柱断面尺寸 立柱最小断面积按下面这个公式选取: [] min 2G P F γ= σ; P γ——预压力,通常可取P γ=(1.2~1.5)g p ; G σ——许用应力,可近似取40~60MPa (3)机身高度的确定 机身的高度可按下式确定: H=h+S+L+H1+A+H2+H3+H4; 式中h ——最大装模高度; S ——压力机行程长度; L ——连杆长度;

H1——滑块底面与连杆小头中心线的距离; A+H2——偏心轴心与上横梁顶面的距离; H3——楔形工作台的高度; H4——底座的高度; 封闭高度采用偏心压力销或偏心套调整的压力机,在计算机身高度时,不应计人H3。 (4)底座尺寸和底座与基础接触面积 底座后面尺寸可近似按以下经验公式决定: E=T+2/3D; 式中T——机身中心线至传动轴支座孔中心线的距离; D——飞轮直径(mm)。 机身底座与基础接触面积按下式确定; P=mg/p; 式中 m——压力机质量; g——重力加速度; p——机身底座与基础接触面的单位压力,一般可取0.7~0.8MPa。 4.4 机身机架的选用、受力及强度的校核 本课题选用的机身为三梁四柱式机身,机身结构简图如下图4-1所示 1-横梁 2-移动横梁 3-立柱 4-工作台 图4-1 机身结构简图 整体机身框架力的传递由上图可以看出上下横梁和立柱交界内转角处为危险区域,并为受拉状态,所以在设计的时候应该保证以下几点原则。 (1)应使力的传递距离最短。 (2)结构布置和材料分配应考虑力的传递路线。

小型压力机液压系统设计

小型压力机液压系 统设计

另附CAD系统原理与装配图如有需要发电邮至w 可是不保证及时回信一般3~5天收信一次 目录 一液压系统原理设计 (1) 1 工况分析 (1) 2拟定液压系统原理图 (4) 二液压缸的设计与计算 (6) 1 液压缸主要尺寸的确定 (6) 2 液压缸的设计 (7) 三液压系统计算与选择液压元件 (10) 1 计算在各工作阶段液压缸所需的流量 (10) 2 确定液压泵的流量,压力和选择泵的规格 (10) 3 液压阀的选择 (12) 4 确定管道尺寸 2 液压缸的设计 (12) 5 液压油箱容积的确定 (12) 6 液压系统的验算 (12) 7 系统的温升验算 (15) 8 联接螺栓强度计算 (16) 四设计心得 (17) 五参考文献 (17)

一液压系统原理设计 1 工况分析 设计一台小型液压压力机的液压系统,要求实现:快速空程下行—慢速加压—保压—快速回程—停止工作循环。快速往返速度为3m/min,加压速度为40-250mm/min,压制力为300000N,运动部件总重力为25000N,工作行程400mm,油缸垂直安装,设计压力机的液压传动系统。 液压缸所受外负载F包括五种类型,即: F= F压 + F磨 +F惯+F密+G 式中: F压-工作负载,对于液压机来说,即为压制力; F惯-运动部件速度变化时的惯性负载; F磨-导轨摩擦阻力负载,启动时为静摩擦阻力。液压缸垂直安装,摩擦力相对于运动部件自重,可忽略不计; F密-由于液压缸密封所造成的运动阻力; G- 运动部件自重。 液压缸各种外负载值 1) 工作负载: 液压机压制力F压=300000N 2) 惯性负载:

液压缸课程设计DOC

河南理工大学机械学院 课程设计说明书 题目名称:单柱压力机的液压缸设计 学院:机械与动力工程学院 班级:机电11-1 姓名:邱晓 学号: 311104001017 指导教师:刘俊利

目录 一、课程设计的目的及要求…………………………………… 二、课程设计内容及参数确定………………………………… 三、液压缸主要尺寸的确定……………………………………… 四、液压缸的密封设计………………………………………… 五、支承导向的设计…………………………………………… 六、防尘圈的设计……………………………………………… 七、液压缸材料的选用………………………………………… 八、课程设计总结……………………………………………… 九、参考文献………………………………………………………

说明书 一、课程设计的目的 油缸是液压传动系统中实现往复运动和小于360°回摆运动的液压执行元件。具有结构简单,工作可靠,制造容易以及使用维护方便、低速稳定性好等优点。因此,广泛应用于工业生产各部门,如:工程机械中挖掘机和装载机的铲装机构和提升机构,起重机械中汽车起重机的伸缩臂和支腿机构,矿山机械中的液压支架及采煤机的滚筒调高装置,建筑机械中的打桩机,冶金机械中的压力机,汽车工业中自卸式汽车和高空作业车,智能机械中的模拟驾驶舱、机器人,火箭的发射装置等。它们所用的都是直线往复运动油缸,即推力油缸。所以,研究和改进液压缸的设计制造,提高液压缸的工作寿命及其性能,对于更好的利用液压传动具有十分重要的意义。 设计要求 1、每个参加课程设计的学生,都必须独立按期完成设计任务书所规定的设计任务。 2、设计说明书和设计计算书要层次清楚,文字通顺,书写工整,简明扼要,论据充分。计算公式 不必进行推导,但应注明公式中各符号的意义,代入数据得出结果即可。 3、说明书要有插图,且插图要清晰、工整,并选取适当此例。说明书的最后要附上草图。 4、绘制工作图应遵守机械制图的有关规定,符合国家标准。

热模锻压力机设计说明书

热模锻压力机设计说明书 课程名称:现代设计 学院:机械工程学院 专业:机自 姓名:苏军 学号:1008030355 年级:机自107 班 任课教师:何玲 20013年 11 月20 日 设计任务书 小组成员:丁万飞韦晓光苏军王清鹤指导教师:何玲 一.题目:设计连杆式热模锻压力机。压力机工作平稳,其中热模锻压力机由一般规模厂中小批量生产。

热模锻压力机传动系统简图 二.设计内容: 一)设计计算 1.传动零件的设计; 2.轴的设计; 二)图纸的绘制 热模锻压力机装配图绘制;零件图绘制 三)编写课程设计说明书 内容包括:目录、设计题目、设计内容、终结、参考文献。 三.设计要求 热模锻压力机装配图1张(A1)。 2、零件图一张(A4) 3、详细设计计算说明书1份(含标准封面、正文并装订)。 目录 一、设计说明 (1) 二、轴设计…………………………………………………………

1.偏心轴设计…………………………………………………… 2.细长轴设计…………………………………………………… 三、连杆设计……………………………………………………… 四、齿轮设计……………………………………………………… 五、设计优缺点分析……………………………………………… 六、终结…………………………………………………………… 七、参考文献……………………………………………………… 一、设计说明 热模锻压力机在汽车、拖拉机、内燃机、船舶、航空、矿山机械、石油机械、五金工具等制造业中,用于进行成批大量的黑色和有色金属的模锻和精整锻件,

锻造出的锻件精度高,材料的利用率高,生产率高,易于实现自动化,对工人的操作技术要求低,噪声和振动小等优点。设计一个连杆式两级传动热模锻压力机。 二、轴设计 1.偏心轴 轴总长d=1000mm 偏心轴效果图 2.细长轴 轴总长d=1000mm 细长轴效果图 三、连杆设计

液压传动课程压力机液压系统设计

安徽建筑工业学院 液压传动 设计说明书 设计题目压力机液压系统设计 机电工程学院班 设计者 2010 年 4 月 10 日 液压传动任务书 1. 液压系统用途(包括工作环境和工作条件)及主要参数: 单缸压力机液压系统,工作循环:低压下行→高压下行→保压→低压回程→上限停止。自动化程度为半自动,液压缸垂直安装。 最大压制力:20×106N;最大回程力:4×104N;低压下行速度:25mm/s;高压下行速度:1mm/s;低压回程速度:25mm/s;工作行程:300mm;液压缸机械效率。 2. 执行元件类型:液压缸 3. 液压系统名称:压力机液压系统。 设计内容

1. 拟订液压系统原理图; 2. 选择系统所选用的液压元件及辅件; 3. 设计液压缸; 4. 验算液压系统性能; 5. 编写上述1、2、3和4的计算说明书。 压力机液压系统设计 1 压力机的功能 液压机是一种利用液体静压力来加工金属、塑料、橡胶、木材、粉末等制品的机械。它常用于压制工 艺和压制成形工艺,如:锻压、冲压、冷挤、校直、弯曲、翻边、薄板拉深、粉末冶金、压装等等。 液压机有多种型号规格,其压制力从几十吨到上万吨。用乳化液作介质的液压机,被称作水压机,产生的压制力很大,多用于重型机械厂和造船厂等。用石油型液压油图液压机外形图 1-充液筒;2-上横梁;3-上液压缸;4-上滑块;5-立柱;6-下滑块;7-下液压缸;8-电气操纵箱;9-动力机构

做介质的液压机被称作油压机,产生的压制力较水压机小,在许多工业部门得到广泛应用。 液压机多为立式,其中以四柱式液压机的结构布局最为典型,应用也最广泛。图所示为液压机外形图,它主要由充液筒、上横梁2、上液压缸3、上滑块4、立柱5、下滑块6、下液压缸7等零部件组成。这种液压机有4个立柱,在4个立柱之间安置上、下两个液压缸3和7。上液压缸驱动上滑块4,下液压缸驱动下滑块6。为了满足大多数压制工艺的要求,上滑块应能实现快速下行→慢速加压→保压延时→快速返回→原位停止的自动工作循环。下滑块应能实现向上顶出→停留→向下退回→原位停止的工作循环。上下滑块的运动依次进行,不能同时动作。 2 压力机液压系统设计要求 设计一台压制柴油机曲轴轴瓦的液压机的液压系统。 轴瓦毛坯为:长×宽×厚= 365 mm×92 mm×7.5 mm的钢板,材料为08Al,并涂有轴承合金;压制成内径为Φ220 mm的半圆形轴瓦。 液压机压头的上下运动由主液压缸驱动,顶出液压缸用来顶出工件。其工作循环为:主缸快速空程下行慢速下压快速回程静止顶出缸顶出顶出缸回程。 液压机的结构形式为四柱单缸液压机。

液压缸设计

液压缸设计 指导书 河南理工大学机械与动力工程学院 热能与动力工程系

一、设计目的 油缸是液压传动系统中实现往复运动和小于360°回摆运动的液压执行元件。具有结构简单,工作可靠,制造容易以及使用维护方便、低速稳定性好等优点。因此,广泛应用于工业生产各部门,如:工程机械中挖掘机和装载机的铲装机构和提升机构,起重机械中汽车起重机的伸缩臂和支腿机构,矿山机械中的液压支架及采煤机的滚筒调高装置,建筑机械中的打桩机,冶金机械中的压力机,汽车工业中自卸式汽车和高空作业车,智能机械中的模拟驾驶舱、机器人,火箭的发射装置等。它们所用的都是直线往复运动油缸,即推力油缸。所以,研究和改进液压缸的设计制造,提高液压缸的工作寿命及其性能,对于更好的利用液压传动具有十分重要的意义。 通过学生自己独立地完成指定的液压缸设计任务,提高理论联系实际、分析问题和解决问题的能力,学会查阅参考书和工具书的方法,提高编写技术文件的能力,进一步加强设计计算和制图等基本技能的训练,为毕业后成为一名合格的机械工程师打好基础。 为此,编写了这本“液压缸设计指导书”,供热能专业学生学习液压传动课程及课程设计时参考。 二、设计要求 1、每个参加课程设计的学生,都必须独立按期完成设计任务书所规定的设计任务。 2、设计说明书和设计计算书要层次清楚,文字通顺,书写工整,简明扼要,论据充分。计算公式 不必进行推导,但应注明公式中各符号的意义,代入数据得出结果即可。 3、说明书要有插图,且插图要清晰、工整,并选取适当此例。说明书的最后要附上草图。 4、绘制工作图应遵守机械制图的有关规定,符合国家标准。 5、学生在完成说明书、图纸后,准备进行答辩,最后进行成绩评定。 三、设计任务 设计任务由指导教师根据学生实际情况及所收集资料情况确定。 四、设计依据和设计步骤 油缸是液压传动的执行元件,它与主机及主机的工作结构有着直接的联系。不同的机型和工作机构对油缸则有不同的工作要求。因此在设计油缸之前,首先应了解下列这些作为设计原始依据的主要内容:主机的用途和工作条件,工作机构的结构特点,负载值,速度,行程大小和动作要求,液压系统所选定的工作压力和流量等。 油缸的设计内容和步骤大致如下: 1、液压缸类型和多部分结构的选择。 2、确定基本参数。主要包括工作负载、工作速度(当有速度要求时)、工作行程、导向长度、缸筒 内径及活塞杆直径等。 3、强度和稳定性计算。其中包括缸筒壁厚、外径和缸底厚度的强度计算,活塞杆强度和稳定性验

200t液压压力机设计分析

单缸液压压力机(200t)设计 摘要 液压机是一种利用液体压力能来传递能量,以实现各种压力加工工艺的机器。通过对液压机的特点及分类的分析,确定了本课题的主要设计内容。在确定了液压机初步设计方案后,决定采用传统理论方法对其设计、计算、强度校核,采用AutoCAD设计软件对上横梁、下横梁、活动横梁、液压缸、立柱、机身结构进行了工程绘图,确定其液压系统的设计方案,给出了液压系统的工作说明书,并对其进行了可行性分析,最后对整个设计进行系统分析,得出切实可行的方案。

Abstract Hydraulic-press is a machine which come to manufacture through using hydraulic press . By analyzing the hydraulic-press machine, this main content of the article was determined. After determining the preliminary design plan of the hydraulic-press machine, the traditional methods was used to design and examination the body of hydraulic-press machine .The 2D and 3D graph about the top-beam, lower-beam, active beam, goes against the cylinder, the column, the final assembly drawing were draw by using the software of AutoCAD. At the same time, producing the manual of the hydraulic system, and analyzing the feasibility of it. Finally, a total analysis to the whole design was done, and the result that the whole design was feasible. Keywords Hydraulic press Hydraulic cylinder Body of structure Hydraulic system

压力机液压系统的电气控制设计

湖南工业大学科技学院 机床电气控制技术 课程设计 资料袋 科技学院学院(系、部) 2011 ~ 2012 学年第二学期课程名称机床电气控制技术指导教师孙晓职称副教授 学生姓名周希专业班级机械设计班级 0901 学号 题目压力机液压系统的电气控制设计 成绩起止日期 2012 年月日~ 2012 年月日 目录清单

课程设计任务书 2011—2012学年第二学期 科技学院学院(系、部)机械设计制造及其自动化专业机设0901 班级课程名称:机床电气控制技术 设计题目:压力机液压系统的电气控制设计 完成期限:自 2012 年月日至 2012 年月日共 1 周 指导教师(签字): 2012年 6 月 17 日 系(教研室)主任(签字): 2012年 6 月 17 日

机床电气控制技术 设计说明书 压力机液压系统的电气控制设计起止日期:2012 年月日至2012 年月日学生姓名周希 班级机设0901 学号0912110127 成绩 指导教师(签字) 湖南工业大学科技学院(部) 2012年月日

目录 一、课程设计的内容与要求 (1) 1.1课程设计对象简介 (1) 1.2压力机结构及工作要求 (1) 1.3液压系统工作原理及控制要求 (2) 1.4课程设计的任务 (4) 二、电气控制电路设计 (5) 2.1继电器-接触器电气控制电路的设计 (5) 2.2继电器-接触器电气控制电路图分析及介绍 (5) 2.3选择电气元件 (9) 三、压力机的可编程控制器系统的设计 (10) 3.1可编程控制器控制系统设计的基本原则 (10) 3.2可编程控制器系统的设计 (10) 四、设计体会与总结 (15) 五、参考资料 (16)

液压缸设计与计算

液压缸是液压传动的执行元件,它和主机工作机构有直接的联系,对于不同的机种和机构,液压缸具有不同的用途和工作要求。因此,在设计液压缸之前,必须对整个液压系统进行工况分析,编制负载图,选定系统的工作压力(详见第九章),然后根据使用要求选择结构类型,按负载情况、运动要求、最大行程等确定其主要工作尺寸,进行强度、稳定性和缓冲验算,最后再进行结构设计。 1.液压缸的设计内容和步骤 (1)选择液压缸的类型和各部分结构形式。 (2)确定液压缸的工作参数和结构尺寸。 (3)结构强度、刚度的计算和校核。 (4)导向、密封、防尘、排气和缓冲等装置的设计。 (5)绘制装配图、零件图、编写设计说明书。 下面只着重介绍几项设计工作。 2.计算液压缸的结构尺寸液压缸的结构尺寸主要有三个:缸筒内径D、活塞杆外径d和缸筒长度L。 (1)缸筒内径D。液压缸的缸筒内径D是根据负载的大小来选定工作压力或往返运动速度比,求得液压缸的有效工作面积,从而得到缸筒内径D,再从GB2348—80标准中选取最近的标准值作为所设计的缸筒内径。 根据负载和工作压力的大小确定D: ①以无杆腔作工作腔时 (4-32) ②以有杆腔作工作腔时 (4-33) 式中:pI为缸工作腔的工作压力,可根据机床类型或负载的大小来确定;Fmax 为最大作用负载。 (2)活塞杆外径d。活塞杆外径d通常先从满足速度或速度比的要求来选择,然后再校核其结构强度和稳定性。若速度比为λv,则该处应有一个带根号的式子: (4-34) 也可根据活塞杆受力状况来确定,一般为受拉力作用时,d=0.3~0.5D。 受压力作用时: pI<5MPa时,d=0.5~0.55D 5MPa<pI<7MPa时,d=0.6~0.7D pI>7MPa时,d=0.7D (3)缸筒长度L。缸筒长度L由最大工作行程长度加上各种结构需要来确定,即:L=l+B+A+M+C 式中:l为活塞的最大工作行程;B为活塞宽度,一般为(0.6-1)D;A为活塞杆导

液压压力机设计

毕业设计(论文)开题报告 题目: 35吨液压压力机设计 学生姓名:学号: 专业:机械设计制造及其自动化 指导教师: 2014 年4月8日

1文献综述 1.1液压压力机的发展与研究现状 压力机的发展历史只有100年。压力机是伴随着工业革命的的进行而开始发展的,蒸汽机的出现开创了工业革命的时代,传统的锻造工艺和设备逐渐不能满足当时的要求。因此在1839年,第一台蒸汽锤出现了。此后伴随着机械制造业的迅速发展,锻件的尺寸也越来越越大,锻锤做到百吨以上,即笨重又不方便。在1859-1861年维也纳铁路工厂就有了第一批用于金属加工的7000KN、10000KN和12000KN的液压机,1884年英国罗切斯特首先使用了锻造钢锤用的锻造液压机,它与锻锤相比具有很好的优点,因此发展很快,在1887-1888年制造了一系列锻造液压机,其中包括一台40000KN的大型水压机,1893年建造了当时最大的12000KN的锻造水压机。在第二次世界大战后,为了迅速发展航空业。美国在1955年左右先后制造了两台31500KN和45000KN大型模锻水压机。 近二十年来,世界各国在锻造操作机与锻造液压机联动机组,大型模锻液压机,挤压机等各种液压机方面又有了许多新的发展,自动测量和自动控制的新技术在液压机上得到了广泛的应用,机械化和自动化程度有了很大的提高。再来看一下我国的情况,在解放前,我国属于半殖民地半封建社会的国家,没有独立的工业体系,也根本没有液压机的制造工业,只有一些修配用的小型液压机。解放后我国迅速建立独立自主的完整的工业体系,同时仿造并自行设计各种液压机,同时也建立了一批这方面的科研队伍。到了六十年代,我国先后成套设计并制造了一些重型液压机,其中有300000KN的有色金属模锻水压机,120000KN有色金属挤压水压机等。特别是近十年来,又有了一些新的发展。比如,设计并制造了一批较先进的锻造水压机,并已向国外出口,与此相应的,我国也陆续制造了各种液压机的系列及零部件标准。但是,我们也应清楚地意识到我们与发达国家相比还有很大的差距,还不能满足国民经济和国防建设的需要。许多先进的设备和大型机仍需进口,目前应充分发挥我们的优势,加强我国在这方面的竞争力,这不仅是有助于我们从制造业大国向制造业强国的转变也是国家安全的需要。 1.2 液压压力机的应用 作为现代机械设备实现传动与控制的重要技术手段,液压技术在国民经济各领域得到了广泛的应用[1]。与其他传动控制技术相比,液压技术具有能量密度高﹑配置灵活方便﹑调速范围大﹑工作平稳且快速性好﹑易于控制并过载保护﹑易于实现自动化和机电液一体化整合﹑系统设计制造和使用维护方便等多种显著的技术优势,因而使其成为现代机械工程的基本技术构

液压缸尺寸计算Word版

A、大腿液压缸结构尺寸设计计算 ①、大腿缸的负载组成 1、工作载荷(活塞杆在抬腿过程中始终受压) 2、惯性载荷(由于所选用液压缸尺寸较小,即不计 重量,且执行元件运动速度变化较小,故不考虑惯性载 荷) 3、密封阻力,其中是作用于活塞上的载 荷,且,是外载荷,,其中是 液压缸的机械效率,取 综上可得:外载荷,密封阻力, 总载荷。 ②、初选系统工作压力 1、按载荷选定工作压力,取工作腔压力为 (由于总载荷为61988N大于50000N,故根据手册 选取工作压力为12MPa) 2、选择执行元件液压缸的背压力为(由于回 油路带有调速阀,且回油路的不太复杂,故根据手册 选取被压压力为1MPa) ③、液压缸主要结构尺寸的计算 1、在整个抬腿过程中活塞杆始终受压,故可得下式: 活塞杆受压时:

----------液压缸工作腔压力(Pa) ----------液压缸回油腔压力(Pa) ----------无杆腔活塞有效作用面积,,D为活塞直径(m)----------有杆腔活塞有效作用面积,,d为活塞杆直径(m) 选取d/D=0.7(由于工作压力为12MPa大于5MPa,故根据手册选取d/D=0.7) 综上可得:D=82.8mm,根据手册可查得常用活塞杆直径,可取D=90mm,d=60mm。 校核活塞杆的强度,其中活塞杆的材料为45钢,故。 由于活塞杆在受负载的工作过程中仅收到压力作用,故仅校核其 压缩强度即可。,故满足强度要求。 即d=60mm,则D=90mm。 由此计算得工作压力为: 根据所选取的活塞直径D=90mm,可根据手册选的液压缸的外径为108mm,即可得液压缸壁厚为。 校核液压缸缸壁的强度,其中液压缸的材料为45钢,故

伺服曲柄压力机设计说明书

伺服曲柄压力机设计计算 目录 0引言 1 伺服曲柄压力机技术参数 2伺服曲柄压力机原理与性能设计分析 3 伺服曲柄压力机工艺曲线设计分析 4 伺服曲柄压力机负载曲线设计分析 5 伺服曲柄压力机电机功率设计分析 6 伺服曲柄压力机传动机构设计 7 伺服曲柄压力机工作机构设计 0 引言 金属的锻压加工大量采用曲柄压力机,也称为冲床,据不完全统计,我国在用的曲柄压力机冲床数量高达数百万台。目前,锻压生产所用曲柄压力机由高转差率的电动机驱动,由刚性离合器和摩擦离合器控制,存在安全性差、能耗高、故障率高的缺陷。 高转差率电动机的效率低于GB18613-2012《中小型三相异步电动机能效限定值及能效等级》,从2012年9月1日起被强制淘汰,选用高能效的电动机成为压力机换代升级的首要目标。 “开关磁阻电机系统是一种机电一体化节能型调速电机系统。它由开关磁阻电动机、功率变换器及控制器组成。同传统的直流及交流电机调速系统比较,具有以下优点:电机结构坚固、制造成本低;效率高,不仅在额定输出状态下,而且在宽广的调

速范围内也能保持高效率运行;一般系统效率达80%以上;启动转矩大、启动电流小;制动性能好,能实现再生制动,节约电能效果显著;系统调控性能好,四象限控制灵活;具有无刷结构,适合于在高粉尘、高速、易燃易爆等恶劣环境下运行;可以在各行各业应用。”(摘自《中华人民共和国国家发展和改革委员会中华人民共和国科学技术部国家环境保护总局公告2005年第65号》)采用节能的开关磁阻电机替代高耗能的传统电机成为企业节能的发展方向。 目前,国外的伺服压力机技术采用永磁伺服技术,抗冲击性能不好,可靠性低、成本高,没有形成对传统压力机的全面替代。 1999年以来,由山东科汇电力自动化有限公司研发生产的开关磁阻伺服系统,在压力机领域获得广泛应用。在山东理工大学赵婷婷教授的技术支持下,开关磁阻伺服压力机分别在青岛益友锻压机械有限公司、扬力集团等单位进行了研制,各吨位系列的开关磁阻伺服压力机相继诞生,并开始投入批量生产。实际应用证明,与现有压力机比较,开关磁阻伺服压力机的优势明显、特点突出,特别是高效节能、智能数控自动化与高可靠性的独特优势,受到广大用户的积极响应,并获得一致好评。 淄博市能源监测部门的监测,给出了开关磁阻伺服螺旋压力机比摩擦式螺旋压力机节能67.86%的结果(引自《淄博市能源监测中心检测报告》编号J1010138),由此,当地政府颁布文件,用节能数控压力机强制淘汰摩擦压力机(引自淄经信节字

压力机液压系统.doc

目录 一液压系统原理设计 (1) 1 工况分析 (1) 2拟定液压系统原理图 (4) 二液压缸的设计与计算 (6) 1 液压缸主要尺寸的确定 (6) 2 液压缸的设计 (7) 三液压系统计算与选择液压元件 (10) 1 计算在各工作阶段液压缸所需的流量 (10) 2 确定液压泵的流量,压力和选择泵的规格 (10) 3 液压阀的选择 (12) 4 确定管道尺寸 2 液压缸的设计 (12) 5 液压油箱容积的确定 (12) 6 液压系统的验算 (12) 7 系统的温升验算 (15) 8 联接螺栓强度计算 (16) 四设计心得 (17) 五参考文献 (17)

一 液压系统原理设计 1 工况分析 设计一台小型液压压力机的液压系统,要求实现:快速空程下行—慢速加压—保压—快速回程—停止工作循环。快速往返速度为3m /min ,加压速度为40-250mm /min ,压制力为300000N ,运动部件总重力为25000N ,工作行程400mm ,油缸垂直安装,设计压力机的液压传动系统。 液压缸所受外负载F 包括五种类型,即: F= F 压 + F 磨 +F 惯+F 密+G 式中: F 压-工作负载,对于液压机来说,即为压制力; F 惯-运动部件速度变化时的惯性负载; F 磨-导轨摩擦阻力负载,启动时为静摩擦阻力。液压缸垂直安装,摩擦力 相对于运动部件自重,可忽略不计; F 密-由于液压缸密封所造成的运动阻力; G - 运动部件自重。 液压缸各种外负载值 1) 工作负载: 液压机压制力F 压=300000N 2) 惯性负载: N t g V G F 20.255103 .08.93 25000≈??=??= 惯 3) 运动部件自重: G =25000N 4) 密封阻力 F 密=0.1F (F 为总的负载) 5) 摩擦力 液压缸垂直安装,摩擦力较小,可忽略不计。

液压缸设计说明书

1 设计课题 1.1设计要求 设计一台铣削专用机床液压系统用液压缸,要求液压系统完成的工作循环是:工件夹紧→工作台快进→工作台工进→工作台快退→工件松开。 1.2原始数据 运动部件的重力为25000N,快进、快退速度为5m/min,工进速度为100~1200mm/min,最大行程为400mm,其中工进行程为180mm,最大切削力为20000N,采用平面导轨,夹紧缸的行程为20mm,夹紧力为30000N,夹紧时间为1s。

2 液压系统的发展概况 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。 由于液压技术广泛应用了高技术成果,如自动控制技术、计算机技术、微电子技术、磨擦磨损技术、可靠性技术及新工艺和新材料,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。 液压系统在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题:减少元件和系统的部压力损失,以减少功率损失。主要表现在改进元件部流道的

压力损失,采用集成化回路和铸造流道,可减少管道损失,同时还可减少漏油损失。 减少或消除系统的节流损失,尽量减少非安全需要的溢流量,避免采用节流系统来调节流量和压力。采用静压技术,新型密封材料,减少磨擦损失。发展小型化、轻量化、复合化、广泛发展通径电磁阀以及低功率电磁阀。改善液压系统性能,采用负荷传感系统,二次调节系统和采用蓄能器回路。为及时维护液压系统,防止污染对系统寿命和可靠性造成影响,必须发展新的污染检测方法,对污染进行在线测量,要及时调整,不允许滞后,以免由于处理不及时而造成损失。 液压系统维护已从过去简单的故障拆修,发展到故障预测,即发现故障苗头时,预先进行维修,清除故障隐患,避免设备恶性事故的发展。 要实现主动维护技术必须要加强液压系统故障诊断方法的研究,当前,凭有经验的维修技术人员的感宫和经验,通过看、听、触、测等判断找故障已不适于现代工业向大型化、连续化和现代化方向发展,必须使液压系统故障诊断现代化,加强专家系统的研究,要总结专家的知识,建立完整的、具有学习功能的专家知识库,并利用计算机根据输入的现象和知识库中知识,用推理机中存在的推理方法,推算出引出故障的原因,提高维修方案和预防措施。要进一步引发液压系统故障诊断专家系统通用工具软件,对于不同的液压系统只需修改和增减少量的规则。 另外,还应开发液压系统自补偿系统,包括自调整、自润滑、自校正,在故障发生之前,进市补偿,这是液压行业努力的方向。 电子技术和液压传动技术相结合,使传统的液压传协与控制技术增加了活力,扩大了应用领域。实现机电一体化可以提高工作可靠性,实现液压系统柔性化、智能化,改变液压系统效率低,漏油、维修性差等缺点,充分发挥液压传动出力大、贯性小、响应快等优点,其主要发展动向如下:[1]

J31-250型曲柄压力机设计

毕业设计说明书毕业设计题目: J31-250型曲柄压力机设计

摘要 锻压机械在工业中占有极其重要的地位,广泛应用于几乎所有的工业部门,如机械、电子、国防等。然而,在锻压机械中,又以曲柄压力机最多,占一半以上。 曲柄压力机是以曲柄滑块机构作为运动机构,依靠机械传动将电动机的运动和能量传给工作机构,通过滑块给模具施加力,从而使毛坯产生变形。 本次设计为J31-250型闭式单点压力机,参照国内现有相关型号压力机,进行了2500KN机械压力机主要工作系统设计。设计分三步进行:首先,拟定总传动方案;其次,设计主要零部件;最后,进行经济评估。 本设计中主要包括以下设计部分:曲柄滑块机构的设计计算、传动系统的设计计算、离合器和制动器的设计计算、电动机的选择和飞轮的设计以及支撑附属装置的设计。 本次设计方案均采用同类设计中最新的零件类型及布置方式。通过离合器和制动器进行气动连锁控制。用电动机调节连杆的长度来达到调节装模高度的目的,以适应不同高度的模具。采用四面调节导轨,提高了压力机的精度,并装有过载保护装置、滑块平衡装置等,使机器更加安全、可靠。 关键词:锻压机械;曲柄滑块机构;闭式单点压力机

Abstract Forge and press machine is very important in industry,it is used in almost any induetry department,such as machine,electron,national defense and so on.It is crank forge and press machine that is most important in forge and press machine. Crank press machine uses crank slide block mechanism as working mechanism,machine driving system passes the movement and energy of electromotor to working mechanism, bringing forge to the die by slide block,in order to let roughcast engender transmutation. In this paper,the subject is the J31-250 closed-single punching machine,it is designed in accordance with the related machine now and designed the working system of 2500KN punching machine.The design has been done through three steps: firstly,draw up total transmission; secondly, design each part; at last, economy estimation. In this paper, the design mainly consists of some parts: crank slide mechanism, gear deriving system, clutch and detent, electromotor and flywheel, supporting and appertain equipment. The design program used the new parts type and arrangement. The machine works by the control of the frictional clutch and detent. Electromotor drives the link screw to fit the diffent height of die. Using four-side regulative guider, improves the precision of the punching machine. The machine has installed over loading protector, slide block balance equipment, pledging the machine work safety and dependable. Keyword: forge and press machine ;crank slide block mechanism ;closed-single press machine

四柱液压压力机系统设计

目录1工况分析与计算 1.1工况分析 1.1.1工作循环 1.1.2工作循环图绘制 1.2负载分析与计算 1.2.1负载分析 1.2.2负载计算 (1)负载压力计算 (2)负载流量计算 1.2.3负载图与速度图绘制 2液压系统图的拟定 2.1系统功能分析 2.2系统图的拟定 2.3系统图的绘制 2.4系统功能说明 3液压元件的计算与选择 3.1确定液压泵的型号及电动机功率 3.2阀类元件及辅助元件的选择 3.3元件列表 4液压缸设计 4.1液压缸结构的拟定 4.2液压缸结构的计算 4.3液压缸结构图

4.4液压缸结构校核5设计总结

1工况分析与计算

本系统中的负载压力及执行部件的自重较高,系统所需流量较高,功率损失较大, 发热量大。因此选用双作用单出活塞缸作为执行元件,斜盘式柱塞泵作为动力元件,采用循环水冷却。 1.1.1工作循环 主缸(上液压缸)驱动上滑块实现“快速下行—慢速加压—保压延时—快速返回—原位停止”的动作循环 顶出缸(下液压缸)驱动下滑块实现:“向上顶出—停留—快速返回—原位停止”的动作循环。 1.1.2工作循环图绘制 工作循环图见图1-1。 主缸 快退 顶出缸 图1-1 液压缸工作循环图 1.2负载分析与计算 快进 工进 快退 快进 工进 保压

平衡负载:1000KN 1)启动:0=-=平衡F F F G 2)加速:KN t g v G F a 25.212 .0608.95 .21000=???=??= KN F F F F G 25.21-a =+=平衡 3)快下行程:0-==平衡F F F G 4)减速:KN t g v G F a 55.192 .0608.92.0-5.21000=???=??= ) ( KN F F F F G 55.19-a =+=平衡 5)工进行程:KN F F G 800== 6)制动:KN t g v G F a 7.12 .0608.92 .01000=???=??= 7)保压:0=F 8)快上启动:a G F F F += KN t g v G F a 3.10852 .0608.910 1000=???=??= 9)快退:KN F F G 1000== 10)制动:a G F F F -= KN t g v G F a 7.9142 .0608.910 1000=???=??= 以上式中F-----液压缸载荷 a F -----下行部件所受惯性力 G-----模具下行部分重力 t ?-----活塞速度变化量 t ?-----活塞缸速度变化所用时间。 1.2.2负载计算 确定主液压缸结构尺寸 液压系统最高工作压力32mpa ,在本系统中选用工作压力为20mpa 。 模具下行部分质量取1000KN 。 主液压缸内径D : mm 6.2252256.0102014.3101000446 3 ==????==m P G D π主 根据GB/T2348-1993 主液压缸内径D 值取圆整mm 250=主D 主液压缸活塞杆径d:

液压缸设计计算

第一部分 总体计算 1、 压力 油液作用在单位面积上的压强 A F P = Pa 式中: F ——作用在活塞上的载荷,N A ——活塞的有效工作面积,2 m 从上式可知,压力值的建立是载荷的存在而产生的。在同一个活塞的有效工作面积上,载荷越大,克服载荷所需要的压力就越大。换句话说,如果活塞的有效工作面积一定,油液压力越大,活塞产生的作用力就越大。 额定压力(公称压力) PN,是指液压缸能用以长期工作的压力。 最高允许压力 P max ,也是动态实验压力,是液压缸在瞬间所能承受的极限压力。通常规定为:P P 5.1max ≤ MPa 。 耐压实验压力P r ,是检验液压缸质量时需承受的实验压力,即在此压力下不出现变形、裂缝或破裂。通常规定为:PN P r 5.1≤ MPa 。 液压缸压力等级见表1。 2、 流量 单位时间内油液通过缸筒有效截面的体积: t V Q = L/min 由于310?=At V ν L 则 32104 ?= =νπ νD A Q L/min 对于单活塞杆液压缸: 当活塞杆伸出时 32104 ?= νπ D Q 当活塞杆缩回时 32210)(4 ?-=νπ d D Q 式中: V ——液压缸活塞一次行程中所消耗的油液体积,L ;

t ——液压缸活塞一次行程所需的时间,min ; D ——液压缸缸径,m ; d ——活塞杆直径,m ; ν——活塞运动速度,m/min 。 3、速比 液压缸活塞往复运动时的速度之比: 2 2 2 12d D D v v -==? 式中: 1v ——活塞杆的伸出速度,m/min ; 2v ——活塞杆的缩回速度,m/min ; D ——液压缸缸径,m ; d ——活塞杆直径,m 。 计算速比主要是为了确定活塞杆的直径和是否设置缓冲装置。速比不宜过大或过小,以免产生过大的背压或造成因活塞杆太细导致稳定性不好。 4、液压缸的理论推力和拉力 活塞杆伸出时的理推力: 626 11104 10?= ?=p D p A F π N 活塞杆缩回时的理论拉力: 6226 2210)(4 10?-= ?=p d D p F F π N 式中: 1A ——活塞无杆腔有效面积,2 m ; 2A ——活塞有杆腔有效面积,2m ; P ——工作压力,MPa ; D ——液压缸缸径,m ; d ——活塞杆直径,m 。 5、液压缸的最大允许行程 活塞行程S ,在初步确定时,主要是按实际工作需要的长度来考虑的,但这一工作行程并不一定是油缸的稳定性所允许的行程。为了计算行程,应首先计算出活塞的最大允许计算长度。因为活塞杆一般为细长杆,由欧拉公式推导出: k k F EI L 2π= mm 式中:

曲柄压力机构说明书ls

辽宁工程技术大学 课程设计 题目:曲柄压力机构设计 班级:机械10-5 姓名: 指导教师: 完成日期:2014年1月13日

一、设计题目 曲柄压力机构设计 二、原始资料 (1) 被加工零件的零件图(草图) 1张 (2) 生产类型:中批或大批大量生产 三、上交材料 (1) 被加工工件的零件图 1张 (2) 毛坯图 1张 (3) 机械加工工艺过程综合卡片 1张 (4) 与所设计夹具对应那道工序的工序卡片 1张 (4) 夹具装配图 1张 (5) 夹具体零件图 1张 (6) 课程设计说明书(5000字左右) 1份 四、进度安排(参考) (1) 熟悉零件,画零件图 2天 (2) 选择工艺方案,确定工艺路线,填写工艺过程综合卡片 5天 (3) 工艺装备设计(画夹具装配图及夹具体图) 9天 (4) 编写说明书 3天 (5) 准备及答辩 2天 五、指导教师评语 成绩: 指导教师 日期

摘要 本设计研究的课题是锻压设备的一种:曲柄压力机,这种机械在我国的制造产业中占有重要地位。我的课题是曲柄压力机拐轴机构的设计,从确定压力机的参数开始,选择电动机。首先进行了曲柄压力原理方案设计,知道曲柄压力机的偏心原理是通过在曲拐轴的曲拐颈上加一个偏心套来实现偏心,通过调节套与法兰连接,再与螺钉连接来锁紧偏心装置,对偏心机构进行了运动分析和受力分析,深入理解机构的偏心原理,进行了传动方案设计,并确定为由V带传动和圆柱斜齿轮传动组成的二级传动,传动系统将电动机的旋转运动转化为滑快的直线运动。通过二级传动把机械能传到了偏心机构上的曲拐颈上,从而控制滑快的往复运动使零件冲压成型,得到所需的零件,根据相关经验公式计算拐轴的经验尺寸,并对拐轴进行了校核,以满足运动要求,整个压力机的运动会产生摩擦,造成对零件的磨损,为了提高压力机的寿命,研究了手动稠油泵对机构进行润滑,延长了机械的寿命,达到了毕业设计的目的。 关键词:设计,压力机,曲拐轴,偏心原理,润滑

相关文档
相关文档 最新文档