文档库 最新最全的文档下载
当前位置:文档库 › 2009 美国数学建模竞赛B题特等奖论文(2)

2009 美国数学建模竞赛B题特等奖论文(2)

2009 美国数学建模竞赛B题特等奖论文(2)
2009 美国数学建模竞赛B题特等奖论文(2)

Wireless Networks:An Easy Cell385

Wireless Networks:An Easy Cell

Jeff Bosco

Zachary Ulissi

Bob Liu

University of Delaware

Newark,DE

Advisor:Louis Rossi

Summary

The number of cellphones worldwide raises concerns about their en-ergy usage,even though individual usage is low(<10kWh/yr).We?rst model the change in population and population density until2050,with an emphasis on trends in the urbanization of America.We analyze the current cellular infrastructure and distribution of cell site locations in the U.S.By relating infrastructure back to population density,we identify the number and distribution of cell sites through2050.We then calculate the energy usage of individual cellphones calculated based on average usage patterns.

Phone-charging behavior greatly affects power consumption.The power usage of phones consumes a large part of the overall idle energy consump-tion of electronic devices in the U.S.

Finally,we calculate the power usage of the U.S.cellular network to the year2050.If poor phone usage continues,the system will require 400MW/yr,or5.6million bbl/yr of oil;if ideal charging behavior is adopted,this number will fall to200MW/yr,or2.8million bbl/yr of oil. Introduction

As energy becomes a growing issue,we are evaluating current infras-tructure to locate inef?ciencies in power consumption.The increase in cellphone usage in the past decade raises concern about greater energy consumption compared to landline phone networks.

By modeling subscriber growth and trends,we can get a clearer picture of the energy consequences of our mobile network.By correlating the The UMAP Journal30(3)(2009)385–402.c Copyright2009by COMAP,Inc.All rights reserved. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for pro?t or commercial advantage and that copies bear this notice.Abstracting with credit is permitted,but copyrights for components of this work owned by others than COMAP must be honored.To copy otherwise, to republish,to post on servers,or to redistribute to lists requires prior permission from COMAP.

386The UMAP Journal30.3(2009)

growth of mobile subscribers with changes in our mobile infrastructure, we can strategically develop our current communications network to meet energy-ef?cient guidelines.

Current Cellular Network Model Assumptions

?The FCC database contains all relevant and major cell sites in the U.S.?Cell sites serve areas of homogeneous population density,characterized by the population density at the exact location of the site.

?All cell sites can communicate to50km(approximately the limit of mod-ern technologies).

?The strength of a cell tower depends primarily on the number of antennas (we lack information about transmission power).

Communication Standards

CDMA and GSM,the two primary standards for mobile phones in the U.S.,require different antennas,so different cell sites exist for each standard. However,to simplify our models,we assume that all mobile phones use one generic standard.

Network Model and Component Power Usage

A simpli?ed cellular network model and corresponding energy usage requirements are shown in Figure1.Cellphones connect directly to cell sites,which may or may not be mounted on antenna towers.We consider each antenna mounted on a tower as a separate cell site.A tower can handle a range of calls at once(about200–500users,using600–1000W [Ericsson2007])and pass them along to Mobile Switching Stations(MSCs). Communication between MSCs and cell sites can be accomplished through ?ber-optic networks or microwave connections.Each MSC can handle approximately1.5million subscribers and consumes about200kW.MSCs connect directly into the communications backbone of the country.Since a ?ber-optic backbone is necessary in any scenario(or in any Pseudo U.S.), we do not consider it in energy estimates.

Cell Site Registration Databases

All cellular radio transmitters greater than200m in height are required to be registered in the FCC Universal Licensing System Database[Fed-

Wireless Networks:An Easy Cell 387

wireless

~0.9W

Cell Tower ~600-1000W

~0.9W

~0.9W

~0.9W

Cell Tower ~600-1000W

Mobile Switching Center 200kW/1.5M Users

wired Fiber Optic Backbone

(cell sites and MSCs)is assumed to be identical for all carriers and geographies.

eral Communications Commision 2009],ensuring that a majority (but not all)cell sites are included.The database contains approximately 20,000cell site locations comprising about 130,000individual cell sites.

Tower Location

We show cell-site location and population density in Figure 2.Interest-ingly,several cell towers seem to be in the Gulf of Mexico and in the Atlantic Ocean (either due to errors in registrations or to the use of ships and/or oil rigs).Also interesting is the single tower at the center of Dallas (northern Texas),which contains 25antennas and suggests a series of smaller sites spread throughout the city.

Antennas per Cell Site

Many cell sites in urban areas use more antennas and higher transmis-sion power.Although some Effective Radial Power (ERP)data is included in the FCC database,many sites have no published information and sev-eral have a negative ERP (impossible).Many sites have similar transmission power,likely due to FCC regulations.To quantify the power of a cell site,we use the number of antennas.While most sites have only a single antenna,many have several,and a few have as many as nine (Figure 3).

388The UMAP Journal30.3

(2009)

Figure3.Distribution of the number of antennas per tower.

Tower-Antenna-Population Density Relations

To calculate how many cell sites are used on average in regions of varying population density,we use the site locations to interpolate densities from the maps.Binning the data for population density,we get in Figure4the relationship between antenna density and population density.The initial portion of the graph approximately shows a steady increase in the number of towers,with one antenna per tower.However,above150people/km2, the number of towers levels off and the number of antennas per tower rises to compensate for the increased population.

Coverage Overlap

We investigated overlapping coverage by determining the number of nearby cell sites at a range of locations;the method is illustrated in Figure5.

Wireless Networks:An Easy Cell389

Figure4.Antenna density vs.population density.

Figure5.Illustration of algorithm to determine number of overlapping cell sites.The?gure does not represent the eccentricities of the grid due to changing longitudinal lengths.

For each cell in the population density grid,we construct a trial list of all towers within a reasonable range(towers within1?latitude,3?longitude, or approximately100–200km in each direction).For each candidate tower, we calculate the great-circle distance(in km)between the location(latitude δ1,longitudeλ1)and the tower(latitudeδ1,longitudeλ1)[Weisstein n.d.]:

d=6378cos?1[cosδ1cosδ2cos(λ1?λ2)+sinδ1sinδ2].

If the great circle distance is less than the maximum range of a tower (approximately50km),the region is considered to be in the tower’s plau-sible range.We thus calculate for each location the number of cell sites within range(Figure6).While some cities have a large degree of overlap, others accomplish full connectivity by using many smaller rooftop sites or higher-power antennas.Also noticeable are several regions in the Western U.S.with no current connectivity.

390The UMAP Journal30.3(2009)

Figure6.Results of overlap calculations for the known grid of cellsites as reported by the FCC. Most urban regions have higher overlap of cell towers to cope with an increased population load. Model for Cellphone Usage

Basic Assumptions

Our investigations uncover three main components of electricity con-sumption by cellphones:

?powering the phone during talking and standby,?powering the charger with a phone attached,and ?powering the charger without a phone attached.

Therefore,we model the cellphone usage of an average person as a function of three different characteristics:

?At what remaining battery level(0–100%)does the user recharge the cellphone?

?How long does the cellphone remain connected to the charger after the battery is completely charged?

?Does the user unplug the charger from the outlet upon completion of battery charging?

The possible power consumption states of a phone adapter are displayed in Table1.

Cellphone Information and Usage Behavior

Battery Capacity

Table2displays the average battery capacity,power consumption dur-ing talking,and standby power consumption for batteries of the nine largest

Wireless Networks:An Easy Cell391

Table1.

Cellphone charger states and energy consumption.

State Consumption(W)

Unplugged0

Plugged in,no phone0.5

Phone attached,not charging0.9

Phone attached,charging 4.0

mobile phone manufacturers in the U.S.We determined averages using manufacturer information about more than150popular cellphones,ap-proximately15phones per provider[IDC2008].Power consumption is calculated using battery capacity and estimates of talk time and standby time for individual phones,assuming each phone has a3.7V lithium-ion battery.The last line shows an overall average weighted by2008U.S.mar-ket share.

Table2.

Average capacity and energy consumption for popular U.S.cellphones.

Rank Manufacturer Market Battery Talk power,Standby power,

share(%)capacity(mAh)(W)(W) 1Samsung22.0980±2280.0138±0.00510.875±0.293 2Motorola21.6826±1220.0108±0.00230.655±0.292 3LG20.7890±1060.0116±0.00360.923±0.242 4RIM9.01216±2760.0145±0.0060 1.065±0.348 5Nokia8.51066±1920.0122±0.00320.735±0.334 6Sony Ericsson7.01015±2140.0085±0.00390.431±0.110 7Kyocera 5.0900±0000.0200±0.00300.970±0.080 8Sanyo 4.0810±890.0161±0.00370.908±0.152 9Palm 2.21500±3460.0167±0.0042 1.402±0.353 Weighted average960±1660.0127±0.00390.829±0.263

Cellphones Per Person

The average number of cellphones owned per person is determined using historical population and mobile phone data and extrapolated to the year2050[Federal Communications Commission2008;U.S.Census Bureau2008].Figure7a displays the total number of cellphone subscribers normalized by the population of the U.S.The historical data?t a sigmoidal curve,assuming that the ratio will eventually reach a value of1cellphone per person(complete saturation).Figure7b compares the yearly increase in U.S.population to that of cellphone users.By2015,the predicted number of cellphone owners reaches the total number of people and continues to grow with the population.

392The UMAP Journal 30.3(2009)

Year

% P o p u l a t i o n o w n i n g c e l l u l a r p h o n e

Figure 7a.Sigmoidal ?t for the average number of cellphones per person in the U.S.

8

Year

P o p u l a t i o n , N u m b e r o f P e o p l e

Figure 7b.Predicted growth and satura-tion of cellphone owners in the U.S.

Average Talk-Time per Person

The average talk time of an individual user between 1991and 2050is determined in a fashion similar to the average number of cellphones per owner.Figure 8displays the trends in landline and cellphone usage in terms of total minutes used per year between 1991and 2007[CTIA 2008;Federal Communications Commission 2008],together with our extrapo-lation.We assume that average usage will eventually saturate to some value,and a ?rst-order exponential growth function is employed to model this behavior.Figure 9displays the predicted growth of cellphone usage assuming saturation at 15,20,25,and 30minutes per person per day.

11

Year

T o t a l t a l k ?t i m e p e r y e a r , m i n

Figure 8.Historical behavior of landline and cellphone usage in the U.S.

Wireless Networks:An Easy Cell

393

Years

A v e r a g e M i n u t e s U s e d , m i n p e r s o n ?1 d a y ?1

Figure 9.Predicted saturation behavior of average daily mobile

cellphone usage.

Recharge Probability and Duration

We model the battery level at which a person is likely to charge their phone as a Gaussian distribution (Figure 10),based on cellphone behavior data [Banerjee et al.2007].Users tend to recharge their phone batteries at between 25%and 75%of full capacity .

020

4060

80100

Remaining Battery Charge, %

R e c h a r g e P r o b a b i l i t y

Figure 10.Fitted Gaussian distribution for recharging behavior of users.

The time to charge a lithium-ion battery is typically not proportional to the remaining charge to be added.Therefore,we assume that the battery charge increases exponentially as a function of charge time,as depicted in Figure 11.

394The UMAP Journal 30.3(2009)

Time, min

R e m a i n i n g B a t t e r y C h a r g e , %

Figure 11.Typical charge pro?le for lithium-ion battery .

Calculation of Average Energy Consumption

We calculate the energy consumed by the average cellphone user over the course of a year by employing the battery and usage behavior extrap-olations discussed earlier.We assume that the full range of remaining battery charge (0–100%)can occur before charging is initiated,depending on the type of user (“regular”or “ideal”).The total energy consumption is calculated from battery capacity and different power states of a charge-adapter.The duration that the adapter stays in a particular power state is determined by the frequency of charging (number of charge cycles per year),which is approximated by the power consumption during periods of cellphone talking and standby .Furthermore,the power consumption during talking/standby is weighted by the average number of minutes a person talks on the phone per day (see Figure 8).Finally ,the average energy consumption across the entire population of cellphone users is determined using a weighted sum of energy at each remaining battery level and the probability distribution that charging starts at that battery level.We assume that there are only two types of users:

?the “regular”user,who charges for 8hr at a time (at the probability given by the ?tted Gaussian distribution)and always leaves the charge-adapter plugged in;and

?the “ideal”user,who charges for only the time to reach 100%charge (at the probability distribution centered at 15–20%battery levels)and never leaves the charger plugged in when not charging.

Wireless Networks:An Easy Cell 395

Energy Usage of Cellphones

The yearly energy consumed by cellphone charging between 1991and 2050for the “regular”user and for the “ideal”user is displayed in Figure 12.The yearly consumption of the “ideal”user is less than one-?fth that of the “regular”user.This drastic difference is primarily a consequence of unplugging the charger after charge completion.As a result of the increased energy savings of the “ideal”behavior,we see an increased sensitivity to the cellular usage saturation at different values of minutes per person per day.These trends are more dif?cult to see with the regular behavior since the majority of energy consumption is wasted by the charger.

Year

E n e r g y U s a g e ? r e g u l a r p h o n e s u s e r s , T W h /y e a r

a.“Regular”

user.Year

E n e r g y U s a g e ? i d e a l p h o n e u s e r s , T W h /y e a r

b.“Ideal”user.

Figure 12.Yearly energy consumption of “regular”user and “ideal”user,assuming different user saturation times (15,20,25,and 30min/person/d).

Pseudo-U.S.Model

Assumptions

?A communication infrastructure is entirely nonexistent.?A power grid already exists.

?Each household must have television and Internet service.

?Each household has either one landline phone per person or one cell-phone per person.

Comparison of Fiber-optics to Wireless Networks

We compare the energy usage per person for an entirely wireless net-work to the cost of running a competitive ?ber-optic network.Since the

396The UMAP Journal30.3(2009)

choice of wireless vs.?ber optic affects the energy usage of TVs,computers, and phones in a household,we consider all three of these communication methods.The estimated power usage for each system is summarized in Table3.Based on current estimates for each electronic device[Rosen and Meier1999],a completely wireless approach could be energy competitive against a?ber-optic solution,due to the energy inef?cient link necessary in every household.

Table3.

Electricity usage for?ber-optic and wireless approaches,per household of2.5members with one

computer,one TV,and one phone per person.

Category Fiber-optic usage Wireless usage

General Fiber-optic link(16W)

TV DTV converter(5W)

Internet 2.5×WIMAX card(1W)

2.5×transmission(0.75W)

Phone 2.5×cellphone(0.75W)

2.5×transmission(0.75W)

Total16W13W

Energy to Oil Conversion

We determine the amount of electrical energy available per barrel of oil using historical data[Energy Information Administration2008;Taylor et al.2008].Figure13a shows the heat content per barrel of oil from1949to 2007with linear extrapolation to2050.Heat content is decreasing,possibly due to a decreasing proportion of energy-rich oil in the global market.The thermoelectric ef?ciency(i.e.,the ef?ciency of converting heat created by burning fuel into electricity)is displayed in Figure13b with extrapolation. Using the heat content and thermoelectric ef?ciency data,the total electric-ity produced per barrel of oil is obtained and displayed in Figure14.From the extrapolation,we?nd that one barrel of oil will produce approximately 628kWh of electricity in2050.

While a considerable amount oil is needed to create1TWh or more of electricity,it is very unlikely that oil would be used to create this electricity. In Figure15,we see that oil at its peak use(1977)accounted for only17% of the electricity produced in the U.S.Today,oil accounts for less than4% of electricity and this value appears to be decreasing slowly.

Wireless Networks:An Easy Cell

397

6

Year

O i l h e a t c o n t e n t , B T U /b a r r e l

a.Heat content.

?5

Year

T h e r m o e l e c t r i c e f f i c i e n c y , k W h /B T U

b.Thermoelectric ef?ciency .

Figure 13.Heat content and thermoelectric ef?ciency

data for oil,with extrapolations.

Year

O i l e l e c t r i c i t y c

o n v e r s i o n , k W h /B a r r e l

Figure 14.Electricity per barrel of oil,over time.

Year

% e l e c t r i c i t y p r o d u c e d u s i n g o i l

Figure 15.Trends in U.S.electricity production from oil.

398The UMAP Journal 30.3(2009)

Overall Charger Power Usage

To gauge the inef?ciency of cellphones compared to other electronics,we compare results of our analysis with Rosen and Meier [1999].With updating to re?ect 2008cellphone usage,the results are shown in Figure 16.Although the energy usage of cellphones chargers is signi?cant (2TWh/yr),it is only a small portion of the overall energy wasted by idle electronics (34TWh/yr),or 54million barrels per year using the conversions established above.

Television 12.7 TWh/yr

Audio 6.9 TWh/yr

Receivers 5.3 TWh/yr

Landline 2.9 TWh/yr

Mobile Phone 1.5 TWh/yr

Computers 3.2 TWh/yr

Figure https://www.wendangku.net/doc/ea10845212.html,age of various electronics according to Rosen and Meier [1999],with cellphone energy usage updated to 2008per our model.

Cellular Network Growth Through 2050

Assumptions

?No new (radically disruptive)technologies will be introduced past 3G (third generation of cellphones).Current technology will improve until a minimum necessary energy usage is achieved.

?Population density growth will follow similar trends to 2050.

?The number of towers necessary for a given population density will remain constant through 2050.

Technology Improvements

The power requirements of cellular networks has fallen drastically since the 1980s.Until 2050,similar reductions in power usage will be likely ,either through improvements in the electronics of cell sites (computers and such)or more-ef?cient communication strategies (antenna transmissions).To characterize this reduction in energy,we use information on energy usage

Wireless Networks:An Easy Cell399 of past technologies[Ericsson2007],as shown in Figure17.Technologies following the primary upgrade path(1G to2G and beyond)are leveling out in their minimum energy usage.Although the introduction of3G initially caused a large increase in power consumption,it seems to have a greater potential for reducing energy consumption.Since future technologies can-not be accurately quanti?ed,we assume that all future networks will be based on a variation of3G architecture.Calculated from Figure17,the relevant ef?ciencies for each decade are shown in Table4.

Figure17.Characterization of technological improvements in cellular infrastructures on en-ergy usage,for two different sets of technology, with corresponding exponential?ts of the form a exp(?bx)+c projecting to2050[Ericsson2007].

Table4.

Network technology ef?ciency. Year Relative power usage 20051

2010.85

2020.66

2030.63

2040.62

2050.62

Infrastructure Improvements

As the population grows and the use of cellphones increases,more cell sites and related infrastructure will be necessary.To model the increasing number of towers,we combine tower density/population density relations with population density predictions.The resulting increase in towers is seen in Figure18.These predictions assume that tower capacity will not grow directly but instead improve through energy ef?ciency.

Overall Energy Usage

We calculate total energy usage of the U.S.cellular network using the predicted increase in cell sites,observed trends in technology,predicted usage patterns,and recent energy statistics.Final predictions are shown for two usage scenarios in Figure19.If chargers are used inef?ciently power consumption will grow to approximately400MW,or5.6million

400The UMAP Journal30.3(2009)

Figure18.Predicted number of cellphone towers from2007to2050.

bbl/yr.However,if consumers utilize chargers ef?ciently,consumption by 2050will be approximately200MW/yr(2.8million bbl/yr of oil). Conclusion

We estimate power consumption of the U.S.cellular network,based on ?models of usage trends,

?current infrastructure,

?population projections,and

?technology improvements.

a.Inef?cient charger usage.

b.Ideal charger usage.

Figure19.Predictions for the energy usage of the U.S.cellphone network for two different charge scenarios.

Wireless Networks:An Easy Cell401 Technological developments will cause energy usage to decrease until 2015,after which increasing population will demand more power usage.

We assess the optimal communications network for a country similar to the U.S.A wireless network(to houses)comprising voice,data,and TV service would draw less electricity than a?ber-optic approach and hence be optimal,as long as wireless communication can provide suf?cient band-width(likely).

We compare energy consumption for“regular”users and“ideal”users in terms of charging practices.A“regular”user today wastes4.8kWh/yr through inef?cient charging.

We model energy wasted by various idle household electronics,includ-ing cellular network usage.A person today wastes125kWh/yr through idle electronics.

We model energy needs for phone service through2050and calculate the number of new cell towers and other infrastructure necessary.

If inef?cient charging strategies are used,cellular networks in2050will require400MW/yr of electricity(5.6million bbl/yr of oil).If more-ef?cient chargers are introduced or people change their habits,only200MW of power(2.8million bbl/yr of oil)will be required.

References

Banerjee,Nilanjan,Ahmad Rahmati,Mark D.Corner,Sami Rollins,and Lin https://www.wendangku.net/doc/ea10845212.html,ers and batteries:Interactions and adaptive power management in mobile systems.In UbiComp2007:Ubiquitous Computing, edited by J.Krumm et al.,217–234.Lecture Notes in Computer Sci-ence,vol.4717/2007.Berlin/Heidelberg,Germany:Springer.http: //https://www.wendangku.net/doc/ea10845212.html,/content/t2m30643713220k6/.

Center for International Earth Science Information Network(CIESIN),So-cioeconomic Data and Applications Center,Columbia University.2005. Gridded population of the world,version3(GPWv3):Population density grids.https://www.wendangku.net/doc/ea10845212.html,/gpw/global.jsp. CTIA:The Wireless Association.2008.2008CTIA semi-annual wireless industry survey.https://www.wendangku.net/doc/ea10845212.html,/pdf/CTIA_Survey_Mid_ Year_2008_Graphics.pdf.

Energy Information Administration.2008.Annual energy review(AER) 2007.Technical Report DOE/EIA-0384(2007).http://www.eia.doe. gov/aer/.

Ericsson.2007.Sustainable energy use in mobile communications. White paper,August2007.https://www.wendangku.net/doc/ea10845212.html,/campaign/ sustainable_mobile_communications/downloads/sustainable_ energy.pdf.

402The UMAP Journal30.3(2009)

Federal Communications Commi s sion,Industry Analysis and Technol-ogy Division,Wireline Competition Bureau.2008.Trends in tele-phone service.URL https://www.wendangku.net/doc/ea10845212.html,/edocs_public/ attachmatch/DOC-284932A1.pdf.

.Database downloads:Antenna structure registration:Cellular—47CFR Part22:Licenses.URL https://www.wendangku.net/doc/ea10845212.html,/antenna/ index.htm?job=uls_transaction&page=weekly.

Interactive Data Corp.2008.Worldwide quarterly mobile phone tracker. April2008.URL https://www.wendangku.net/doc/ea10845212.html,/getdoc.jsp?containerId= IDC_P8397.

Rosen,Karen,and Alan Meier.1999.Energy use of U.S.consumer electron-ics at the end of the20th century.Technical report,Lawrence Berkeley National Laboratory.https://www.wendangku.net/doc/ea10845212.html,/EA/Reports/46212/. Taylor,Peter,with Olivier Lavagne d’Ortigue,Nathalie Trudeau,and Michel Francoeur.2008.Energy ef?ciency indicators for public electricity production from fossil fuels.International Energy Agency.http://www. https://www.wendangku.net/doc/ea10845212.html,/textbase/papers/2008/En_Efficiency_Indicators.pdf. U.S.Census Bureau.2004.Tble HH-6.Average population per household and family:1940to https://www.wendangku.net/doc/ea10845212.html,/population/socdemo/ hh-fam/tabHH-6.pdf.

.2008.Population projections:U.S.interim projections by age, sex,race,and Hispanic origin:2000to2050.https://www.wendangku.net/doc/ea10845212.html,/ population/www/projections/usinterimproj/.

Weisstein,Eric W.n.d.Great circle.From MathWorld—A Wolfram Web Resource.https://www.wendangku.net/doc/ea10845212.html,/GreatCircle.html.

Advisor Louis Rossi with team members Bob Liu,Jeff Bosco,and Zachary Ulissi.

美国数学建模大赛比赛规则

数学中国MCM/ICM参赛指南翻译(2014版) MCM:The Mathematical Contest in Modeling MCM:数学建模竞赛 ICM:The InterdisciplinaryContest in Modeling ICM:交叉学科建模竞赛ContestRules, Registration and Instructions 比赛规则,比赛注册方式和参赛指南 (All rules and instructions apply to both ICM and MCMcontests, except where otherwisenoted.)(所有MCM的说明和规则除特别说明以外都适用于 ICM) 每个MCM的参赛队需有一名所在单位的指导教师负责。 指导老师:请认真阅读这些说明,确保完成了所有相关的步骤。每位指导教师的责任包括确保每个参赛队正确注册并正确完成参加MCM/ ICM所要求的相关步骤。请在比赛前做一份《参赛指南》的拷贝,以便在竞赛时和结束后作为参考。 组委会很高兴宣布一个新的补充赛事(针对MCM/ICM 比赛的视频录制比赛)。点击这里阅读详情! 1.竞赛前

A.注册 B.选好参赛队成员 2.竞赛开始之后 A.通过竞赛的网址查看题目 B.选题 C.参赛队准备解决方案 D.打印摘要和控制页面 3.竞赛结束之前 A.发送电子版论文。 4.竞赛结束的时候, A. 准备论文邮包 B.邮寄论文 5.竞赛结束之后 A. 确认论文收到 B.核实竞赛结果 C.发证书 D.颁奖 I. BEFORE THE CONTEST BEGINS:(竞赛前)A.注册 所有的参赛队必须在美国东部时间2014年2月6号(星期四)下午2点前完成注册。届时,注册系统将会自动关闭,不再接受新的注册。任何未在规定时间

美国大学生数学建模竞赛组队和比赛流程

数学模型的组队非常重要,三个人的团队一定要有分工明确而且互有合作,三个人都有其各自的特长,这样在某方面的问题的处理上才会保持高效率。 三个人的分工可以分为这几个方面: 数学员:学习过很多数模相关的方法、知识,无论是对实际问题还是数学理论都有着比较敏感的思维能力,知道一个问题该怎样一步步经过化简而变为数学问题,而在数学上又有哪些相关的方法能够求解,他可以不能熟练地编程,但是要精通算法,能够一定程度上帮助程序员想算法,总之,数学员要做到的是能够把一个问题清晰地用数学关系定义,然后给出求解的方向; 程序员:负责实现数学员的想法,因为作为数学员,要完成大部分的模型建立工作,因此调试程序这类工作就必须交给程序员来分担了,一些程序细节程序员必须非常明白,需要出图,出数据的地方必须能够非常迅速地给出;ACM的参赛选手是个不错的选择,他们的程序调试能力能够节约大量的时间,提高在有限时间内工作的工作效率; 写手:在全文的写作中,数学员负责搭建模型的框架结构,程序员负责计算结果并与数学员讨论,进而形成模型部分的全部内容,而写手要做的。就是在此基础之上,将所有的图表,文字以一定的结构形式予以表达,注意写手时刻要从评委,也就是论文阅读者的角度考虑问题,在全文中形成一个完整地逻辑框架。同时要做好排版的工作,最终能够把数学员建立的模型和程序员算出的结果以最清晰的方式体现在论文中。一个好的写手能够清晰地分辨出模型中重要和次要的部分,这样对成文是有非常大的意义的。因为论文是评委能够唯一看到的成果,所以写手的水平直接决定了获奖的高低,重要性也不言而喻了。 三个人至少都能够擅长一方面的工作,同时相互之间也有交叉,这样,不至于在任何一个环节卡壳而没有人能够解决。因为每一项工作的工作量都比较庞大,因此,在准备的过程中就应该按照这个分工去准备而不要想着通吃。这样才真正达到了团队协作的效果。 比赛流程:对于比赛流程,在三天的国赛里,我们应该用这样一种安排方式:第一天:定题+资

3分钟完整了解·HiMCM美国高中生数学建模竞赛

眼看一年一度的美国高中生数学建模竞赛就要到来了,聪明机智的你准备好了吗? 今年和码趣学院一起去参加吧! 什么是HiMCM HiMCM(High School Mathematical Contest in Modeling)美国高中生数学建模竞赛,是美国数学及其应用联合会(COMAP)主办的活动,面向全球高中生开放。 竞赛始于1999年,大赛组委将现实生活中的各种问题作为赛题,通过比赛来考验学生的综合素质。

HiMCM不仅需要选手具备编程技巧,更强调数学,逻辑思维和论文写作能力。这项竞赛是借鉴了美国大学生数学建模竞赛的模式,结合中学生的特点进行设计的。 为什么要参加HiMCM 数学逻辑思维是众多学科的基础,在申请高中或大学专业的时候(如数学,经济学,计算机等),参加了优质的数学竞赛的经历都会大大提升申请者的学术背景。除了AMC这种书面数学竞赛,在某种程度上数学建模更能体现学生用数学知识解决各种问题的能力。

比赛形式 注意:HiMCM比赛可远程参加,无规定的比赛地点,无需提交纸质版论文。重要的是参赛者应注重解决方案的设计性,表述的清晰性。 1.参赛队伍在指定17天中,选择连续的36小时参加比赛。 2.比赛开始后,指导教师可登陆相应的网址查看赛题,从A题或B题中任选其一。 3.在选定的36小时之内,可以使用书本、计算机和网络,但不能和团队以外的任何人 员交流(包括本队指导老师) 比赛题目 1.比赛题目来自现实生活中的两个真实的问题,参赛队伍从两个选题中任选一个。比赛 题目为开放性的,没有唯一的解决方案。 2.赛事组委会的评审感兴趣的是参赛队伍解决问题的方法,所以不太完整的解决方案也 能提交。 3.参赛队伍必须将问题的解决方案整理成31页内的学术论文(包括一页摘要),学术 论文中可以用图表,数据等形式,支撑问题的解决方案 4.赛后,参赛队伍向COMPA递交学术论文,最终成果以英文报告的方式,通过电子 邮件上传。 表彰及奖励 参赛队伍的解决方案由COMPA组织专家评阅,最后评出: 特等奖(National Outstanding) 特等奖提名奖(National Finalist or Finalist) 一等奖(Meritorious)

美国数学建模比赛题目及翻译

PROBLEM A: The Ultimate Brownie Pan When baking in a rectangular pan heat is concentrated in the 4 corners and the product gets overcooked at the corners (and to a lesser extent at the edges). In a round pan the heat is distributed evenly over the entire outer edge and the product is not overcooked at the edges. However, since most ovens are rectangular in shape using round pans is not efficient with respect to using the space in an oven. Develop a model to show the distribution of heat across the outer edge of a pan for pans of different shapes - rectangular to circular and other shapes in between. Assume 1. A width to length ratio of W/L for the oven which is rectangular in shape. 2. Each pan must have an area of A. 3. Initially two racks in the oven, evenly spaced. Develop a model that can be used to select the best type of pan (shape) under the following conditions: 1. Maximize number of pans that can fit in the oven (N)

美国数学建模竞赛要求

2.竞赛开始之后 A.通过竞赛的网址查看题目 B.选题 C.参赛队准备解决方案 D.打印摘要和控制页面 3.竞赛结束之前 A.发送电子版论文。 4.竞赛结束的时候, A. 准备论文邮包 B.邮寄论文 5.竞赛结束之后 A. 确认论文收到 B.核实竞赛结果 C.发证书 D.颁奖 1.您必须在在美国东部时间2014年2月6日(星期四)晚上8点大赛开始以前选择好您的参赛队的队员。一旦比赛开始,您将不能增加或是改变任何一个参赛队队员(但是如果参赛队员本人决定不参加比赛,您可以把他/她从队员名单中删除)。 2.每个参赛队最多都只能由3名学生组成。 3.一个学生最多只能参加一个参赛队。 4.在比赛时间段内,参赛队成员必须是在校学生,但可以不是全日制学生。参赛队成员和指导教师必须来自同一所学校。 2.竞赛开始之后 A.通过网站的得到赛题 ! 美国东部时间2014年2月6日(星期四)晚上8点竞赛开始时,可以通过竞赛网站得到题目。 1.赛题会于美国东部时间2014年2月6日(星期四)晚上8点公布:所有的参赛队员可以通过访问https://www.wendangku.net/doc/ea10845212.html,/undergraduate/contests/mcm.得到赛题。无须任何密码,仅通过网页链接就可以得到赛题。 2、美国东部时间2014年2月6日晚7点50分,比赛题目也会同步发布于一下镜像网站:

https://www.wendangku.net/doc/ea10845212.html,/mcm/index.html https://www.wendangku.net/doc/ea10845212.html,/mcm/index.html https://www.wendangku.net/doc/ea10845212.html,/mcm/index.html https://www.wendangku.net/doc/ea10845212.html,/mcm/index.html B.选题 每个参赛队可以从三个题目中任选一个题目作答: MCM的参赛队可以选择赛题 A 或 B; MCM的参赛队只要提交两个问题之一的解决方案就可以。MCM参赛队不得选择赛题C。 ICM的参赛队可以选择赛题C。ICM参赛队除了赛题C别无其它选择,不能选择赛题A或者B。C.参赛队准备解决方案: 1. 参赛队可以利用任何非生命提供的数据和资料——包括计算机,软件,参考书目,网站,书籍等,但是所有引用的资料必须注明出处,如有参赛队未注明引用的内容的出处,将被取消参赛资格。 3.部分解决方案是可接受的。大赛不存在通过或是不通过的分数分界点,也不会有一个数字形式的分数。MCM /ICM的评判主要是依据参赛队的解决方法和步骤。 4.摘要 摘要是 MCM 参赛论文的一个非常重要的部分。在评卷过程中,摘要占据了相当大的比重,以至于有的时候获奖论文之所以能在众多论文中脱颖而出是因为其高质量的摘要。 好的摘要可以使读者通过摘要就能判断自己是否要通读论文的正文部分。如此一来,摘要就必须清楚的描述解决问题的方法,显著的表达论文中最重要的结论。摘要应该能够激发出读者阅读论文详细内容的兴趣。那些简单重复比赛题目和复制粘贴引言中的样板文件的摘要一般将被认为是没有竞争力的。 Besides the summary sheet as described each paper shouldcontain the following sections: 除了摘要页以外每篇论文还需要包括以下的一些部分: l Restatement and clarification of theproblem: State in your own words what youare going to do. 再次重述或者概括问题——用你自己的话重述你将要解决的问题。

如何准备美国大学生数学建模比赛

如何准备美赛 数学模型:数学模型的功能大致有三种:评价、优化、预测。几乎所有模型都是围绕这三种功能来做的。比如,2012年美赛A题树叶分类属于评价模型,B题漂流露营安排则属于优化模型。 对于不同功能的模型有不同的方法,例如 评价模型方法有层次分析、模糊综合评价、熵值法等; 优化模型方法有启发式算法(模拟退火、遗传算法等)、仿真方法(蒙特卡洛、元胞自动机等); 预测模型方法有灰色预测、神经网络、马尔科夫链等。 在数学中国、数学建模网站上有许多关于这些方法的相关介绍与文献。 软件与书籍: 软件一般三款足够:Matlab、SPSS、Lingo,学好一个即可。 书籍方面,推荐三本,一本入门,一本进级,一本参考,这三本足够: 《数学模型》姜启源谢金星叶俊高等教育出版社 《数学建模方法与分析》Mark M. Meerschaert 机械工业出版社 《数学建模算法与程序》司守奎国防工业出版社 入门的《数学模型》看一遍即可,对数学模型有一个初步的认识与把握,国赛前看完这本再练习几篇文章就差不多了。另外,关于入门,韩中庚的《数学建模方法及其应用》也是不错的,两本书选一本阅读即可。如果参加美赛的话,进级的《数学建模方法与分析》要仔细研究,这本书写的非常好,可以算是所有数模书籍中最好的了,没有之一,建议大家去买一本。这本书中开篇指出的最优化模型五步方法非常不错,后面的方法介绍的动态模型与概率模型也非常到位。参考书目《数学建模算法与程序》详细的介绍了多种建模方法,适合用来理解模型思想,参考自学。 分工合作:数模团队三个人,一般是分别负责建模、编程、写作。当然编程的可以建模,建模的也可以写作。这个要视具体情况来定,但这三样必须要有人擅长,这样才能保证团队最大发挥出潜能。 这三个人中负责建模的人是核心,要起主导作用,因为建模的人决定了整篇论文的思路与结构,尤其是模型的选择直接关系到了论文的结果与质量。 对于建模的人,首先要去大量的阅读文献,要见识尽可能多的模型,这样拿到一道题就能迅速反应到是哪一方面的模型,确定题目的整体思路。 其次是接口的制作,这是体现建模人水平的地方。所谓接口的制作就是把死的方法应用到具体问题上的过程,即用怎样的表达完成程序设计来实现模型。比如说遗传算法的方法步骤大家都知道,但是应用到具体问题上,编码、交换、变异等等怎么去做就是接口的制作。往往对于一道题目大家都能想到某种方法,可就是做不出来,这其实是因为接口不对导致的。做接口的技巧只能从不断地实践中习得,所以说建模的人任重道远。 另外,在平时训练时,团队讨论可以激烈一些,甚至可以吵架,但比赛时,一定要保持心平气和,不必激烈争论,大家各让3分,用最平和的方法讨论问题,往往能取得效果并且不耽误时间。经常有队伍在比赛期间发生不愉快,导致最后的失败,这是不应该发生的,毕竟大家为了一个共同的目标而奋斗,这种经历是很难得的。所以一定要协调好队员们之间的关系,这样才能保证正常发挥,顺利进行比赛。 美赛特点:一般人都认为美赛比国赛要难,这种难在思维上,美赛题目往往很新颖,一时间想不出用什么模型来解。这些题目发散性很强,需要查找大量文献来确定题目的真正意图,美赛更为注重思想,对结果的要求却不是很严格,如果你能做出一个很优秀的模型,也许结果并不理想也可能获得高奖。另外,美赛还难在它的实现,很多东西想到了,但实现起来非常困难,这需要较高的编程水平。 除了以上的差异,在实践过程中,美赛和国赛最大的区别有两点: 第一点区别当然是美赛要用英文写作,而且要阅读很多英文文献。对于文献阅读,可以安装有道词典,

美国大学生数学建模竞赛赛题翻译

2015年美国大学生数学建模竞赛赛题翻译 2015年美国大学生数学竞赛正在进行,比赛时间为北京时间:2015年2月6日(星期五)上午9点—2月10日上午9点.竞赛以三人(本科生)为一组,在四天时间内,就指定的问题,完成该实际问题的数学建模的全过程,并就问题的重述、简化和假设及其合理性的论述、数学模型的建立和求解(及软件)、检验和改进、模型的优缺点及其可能的应用范围的自我评述等内容写出论文。 2015 MCM/ICM Problems 总计4题,参赛者可从MCM Problem A, MCM Problem B,ICM Problem C orICM Problem D等四道赛题中自由选择。 2015Contest Problems MCM PROBLEMS PROBLEM A: Eradicating Ebola The worldmedical association has announced that theirnewmedicationcould stop Ebola andcurepatients whose disease is not advanced. Build a realistic, sensible, andusefulmodel thatconsiders not onlythespread of the disease,thequantity of themedicine needed,possible feasible delivery systems(sending the medicine to where itis needed), (geographical)locations of delivery,speed of manufacturing of the va ccine ordrug, but also any othercritical factors your team considers necessaryas partof themodel to optimize theeradicationofEbola,orat least its current strain. Inadd ition to your modeling approach for thecontest, prepare a1—2 page non-technical letter for the world medicalassociation touse intheir announcement. 中文翻译: 问题一:根除埃博拉病毒 世界医学协会已经宣布他们的新药物能阻止埃博拉病毒并且可以治愈一些处于非晚期疾病患者。建立一个现实的,合理的并且有用的模型,该模型不仅考虑了疾病的蔓延,需要药物的量,可能可行的输送系统,输送的位置,疫苗或药物的生产速度,而且也要考虑其他重要的因素,诸如你的团队认为有必要作为模型的一部分来进行优化而使埃博拉病毒根除的一些因素,或者至少考虑当前的状态。除了你的用于比赛的建模方法外,为世界医学协会准备一份1-2页的非技术性的信,方便其在公告中使用。 PROBLEMB: Searchingforalost plane Recall the lostMalaysian flight MH370.Build agenericmathematicalmodel that could assist "searchers" in planninga useful search for a lost planefeared to have crashed in open water suchas the Atlantic, Pacific,Indian, Southern,or Arctic Ocean whil eflyingfrom PointA to Point B. Assume that there are no signals fromthe downed plane。Your model should recognize thattherearemany different types of planes forw

美国大学生数学建模竞赛优秀论文翻译

优化和评价的收费亭的数量 景区简介 由於公路出来的第一千九百三十,至今发展十分迅速在全世界逐渐成为骨架的运输系统,以其高速度,承载能力大,运输成本低,具有吸引力的旅游方便,减少交通堵塞。以下的快速传播的公路,相应的管理收费站设置支付和公路条件的改善公路和收费广场。 然而,随着越来越多的人口密度和产业基地,公路如花园州公园大道的经验严重交通挤塞收费广场在高峰时间。事实上,这是共同经历长时间的延误甚至在非赶这两小时收费广场。 在进入收费广场的车流量,球迷的较大的收费亭的数量,而当离开收费广场,川流不息的车辆需挤缩到的车道数的数量相等的车道收费广场前。因此,当交通繁忙时,拥堵现象发生在从收费广场。当交通非常拥挤,阻塞也会在进入收费广场因为所需要的时间为每个车辆付通行费。 因此,这是可取的,以尽量减少车辆烦恼限制数额收费广场引起的交通混乱。良好的设计,这些系统可以产生重大影响的有效利用的基础设施,并有助于提高居民的生活水平。通常,一个更大的收费亭的数量提供的数量比进入收费广场的道路。 事实上,高速公路收费广场和停车场出入口广场构成了一个独特的类型的运输系统,需要具体分析时,试图了解他们的工作和他们之间的互动与其他巷道组成部分。一方面,这些设施是一个最有效的手段收集用户收费或者停车服务或对道路,桥梁,隧道。另一方面,收费广场产生不利影响的吞吐量或设施的服务能力。收费广场的不利影响是特别明显时,通常是重交通。 其目标模式是保证收费广场可以处理交通流没有任何问题。车辆安全通行费广场也是一个重要的问题,如无障碍的收费广场。封锁交通流应尽量避免。 模型的目标是确定最优的收费亭的数量的基础上进行合理的优化准则。 主要原因是拥挤的

美国大学生数学建模竞赛打分评审标准

美国大学生数学建模竞赛等级评审标准 评审要点 ?是否对赛题给出了满意的解读方式,并对赛题中可能出现的概念给予了必要的澄清; ?是否明确列出了建模用到的所有条件及假设,并对其合理性给出了解释或论证; ?是否通过对赛题的分析给出了建模的动机或论证了建模的合理性; ?是否设计出了能有效地解答赛题的模型; ?是否对模型给出了稳定性测试; ?是否讨论了模型的优缺点,并给出了清晰的结论; ?是否给出了圆满的摘要。 没有全部完成解答的论文不但是可接受的,而且如果在某些方面有创新并有独到之处,仍然可能获得较好的评审结果。 等级划分 参赛论文如果没有按要求讨论赛题,或违反了竞赛规则,则会被定为不合格论(Unsuccessful Participants) 。其余参赛论文根据评审标准按质量分为5 个级别,由低到高分别为合格论文(Successful Participants)、乙级论文(Honorable Mention)、甲级论文(Meritorious)、特级提名论文(Finalist)、特级论文(Outstanding Winner) (也称为优胜论文)。任何论文只要对赛题进行了适当的讨论,没有违反竞赛规则,就是合格论文。只有建模和写作都最优秀的论文才可能评为特级论文。每个级别的论文所占的百分比如下:?合格论文,大约50% 的论文属于这个级别。 ?乙级论文,大约30% 的论文属于这个级别。 ?甲级论文,大约10% 到15% 的论文属于这个级别。 ?特级提名论文,大约1% 的论文属于这个级别。 ?特级论文,大约1% 的论文属于这个级别。 除了给论文评级外,MCM/ICM 竞赛还设有INFORMS 奖、SIAM 奖、MAA 奖及Ben Fusaro 奖等4 个奖项,奖励优秀论文。 INFORMS 奖是由美国运筹及管理学协会(the Institute for Operations Research and the Management Sciences) 设立的。评审委员会在解答A 题、B 题及C 题的特级论文中各选一篇(或者不选) 授予INFORMS 奖。 SIAM 奖是由美国工业与应用数学学会会(the Society for Industrial and Applied Mathematics) 设立的。评审委员会在解答A 题、B 题及C 题的特级论文中各选一篇(或者不选) 授予SIAM 奖。 MAA 奖是由美国数学会(the Mathematical Association of America) 设立的。评审委员会在解答A 题及B 题的特级论文中各选一篇论文授予MAA 奖。 Ben Fusaro 奖是由COMAP 设立的。评审委员会通常在特级提名论文中选出一篇具有特殊创意和独特见解的论文授予Ben Fusaro 奖。 评审流程 论文评审的方式是盲评,通常在竞赛结束三个星期后的第一个周末进行。所有参赛论文均用唯一给定的编号统一识别,这个编号称为控制编号(Control Number)。论文的作者姓

美国大学生数学建模竞赛赛前培训心得体会

美国大学生数学建模竞赛赛前培训心得体会 数学建模(Mathematical Modeding)是对现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,作出一些必要的简化假设,运用适当的数学工具,得到一个数学结构的过程[1].美国大学生数学建模竞赛(MCM/ICM),是一项国际级的竞赛项目,为现今各类数学建模竞赛之鼻祖。 MCM/ICM 是Mathematical Contest in Modeling 和InterdisciplinaryContest in Modeling 的缩写,即数学建模竞赛和交叉学科建模竞赛[2].MCM始于1985年,ICM始于2000年,由美国自然基金协会和美国数学应用协会共同主办,美国运筹学学会、工业与应用数学学会、数学学会等多家机构协办,比赛每年举办一次。MCM/ICM着重强调研究问题、解决方案的原创性团队合作、交流以及结果的合理性。竞赛形式为三名学生组成一队在四天内任选一题,完成该实际问题的数学建模的全过程,并就问题的重述、简化和假设及其合理性的论述、数学模型的建立和求解(及软件)、检验和改进、模型的优缺点及其可能的应用范围的自我评述等内容写出英文论文。 沈阳工业大学从2007年开始参加美国大学生数学建模竞赛,截至到2015年共参加了9届。2015年共有16组美赛队伍,是我校参加美赛队伍最多一届。前八届竞赛中,共获得一等奖 6 次,二等奖12 次,三等奖22 次。2015 年获得一等奖2 组,二等奖3 组,

三等奖6 组。总结我校9 年来参加美国大学生数学建模竞赛的经验,笔者从美国大学生数学建模竞赛的赛前培训工作出发,总结几点心得体会,供同行们参考与讨论。 1 选拔优秀学生组队培训是美国大学生数学建模竞赛赛前培训的前提 数学建模竞赛的主角是参赛队员,选拔参赛队员的成功与否直接影响到参赛成绩。我们首先在参加全国大学生数学建模竞赛并获奖的同学中进行动员报名,经过一个阶段的培训后选拔出参加寒假集训队员,暑期集训结束后通过模拟最终确定参赛队员。主要围绕以下几个方面选择参赛队员:首先,要选拔那些对美国大学生数学建模活动有浓厚兴趣的同学;其次,选拔那些有创造力、勤于思考、数学功底强,有一定的编程能力或数学软件使用能力,英语较好的参赛队员;还有,注意参赛队员能力搭配和团结协作。 2 优秀的指导教师组是美国大学生数学建模竞赛赛前培训的基础 在美国大学生数学建模赛前培训中,指导教师是核心。指导教师也是保证培训效果和竞赛成功的关键因素。9年来,指导教师组始终保持业务素质高、乐于奉献、具有团结协作的精神。每年11月份开始周末集训,寒假期间开始全天集中培训,大家都放弃了周六、周日休息进行培训。尤其寒假的三周集训,大家放弃了假期与家人的团聚,每天和参赛同学在实验室里,讨论论文,编写程序,研究英文论文的写作。另外",传帮带"已在指导教师队伍中形成,现

2016年美国大学生数学建模竞赛题目

2016年美国大学生数学建模竞赛题目 第5卷第2期 2016年6月 、?....? ‘.¨...‘-.....’...Ⅲ’¨....‘......‘...¨.!数学建模及其应用MathematicaIMOde¨ngandltsAppIiCatiOnsVOI.5No.2Jun.2016 {竞赛论坛} ^¨I?。?-..哪?...岫?...嘶?..-‘?‘?...Ⅵ? ‘‘“??I 2016年美国大学生数学建模竞赛题目 韩中庚译 (解放军信息工程大学四院,河南郑州450001) 问题A:热水澡 人们经常会通过用一个水龙头将浴缸注满热水,然后坐在浴缸里清洗和放松。这个浴缸不是带有二次加热系统和循环喷流的温泉式浴缸,而是一个简单的水容器。过一会儿,洗澡水就会明显变凉,所以洗澡的人需要不停地从水龙头注入热水,以加热洗浴的水。该浴缸的设计是这样一种方式,即当浴缸里的水达到容量极限时,多余的水就会通过溢水口流出。考虑空间和时间等因素,建立一个浴缸的水温控制模型,以确定最佳策略,使浴缸里的人可以利用这个策略让整个浴缸中的水保持或尽可能接近初始的温度,而且不浪费太多的水。 利用你们的模型来确定这个策略对浴缸的形状和体积,以及对浴缸中人的形状、体积、温度和活动等因素的依赖程度。如果这个人一开始用了一种泡泡浴剂加入浴缸中以助清洗,这会对你们的模型结果有怎样的影响?

除了要求提交1页的MCM摘要之外,你们的报告必须包括1页为浴缸用户准备的非技术性的说明书,来阐述你们的策略,同时解释为什么保持洗澡水的恒温如此之难。 问题B:太空垃圾 地球轨道上的小碎片数量已引起人们越来越多的关注。据估计,目前有超过500000块的空间碎片,也被称为轨道碎片,由于被认为对空间飞行器是潜在的威胁而正在被跟踪。2009年2月10日,俄罗斯卫星Kosmos一2251和美国卫星Iridium一33相撞之后,该问题受到了新闻媒体更广泛的讨论。 目前提出了一些清除碎片的方法,这些方法包括使用微型的基于太空的喷水飞机和高能量的激光来针对一些特定的碎片,以及设计大型卫星来清扫碎片。碎片按照大小和质量的不同,从刷了油漆的薄片到废弃的卫星都有,碎片的高速运行轨道使得捕捉它十分困难。 试建立一个随时间变化的模型,确定最佳的方法或组合方法,为一个私营企业提供解决空间碎片问题的商机。你们的模型应该包括定量和/或定性地对成本、风险、收益的估计,并考虑其他相关的一些主要因素。你们的模型应该能够评估一种方法,以及组合方法,并能够解释各种重要情形。 利用你们的模型,试讨论这个商机是否存在。如果存在可行的解决方案,试比较不同的去除碎片的方案,并给出具体的方案是如何清除碎片的。如果没有这种可能的商机,请你们提供一个创新性的方案来避免碰撞。 除了MCM要求提交的1页摘要外,你们还应提交1份2页纸的执行报告,要介绍你们所考虑的所有方案和主要的建模结果,并且利用你们的研究提供一个合理的行动建议,可以是单一的具体行动、联合行动,或不采取行动。这个执行报告是写给那些没有技术背景的高层政策制定者和新闻媒体分析者看的。 问题C:Goodgrant的挑战 Goodgrant基金会是一个慈善组织,其目的是提高美国高校就读的本科生的教育绩效。为此,基金

数学建模美国赛历年试题

历年美国大学生数学建模赛题 目录 MCM85问题-A 动物群体的管理 (3) MCM85问题-B 战购物资储备的管理 (3) MCM86问题-A 水道测量数据 (4) MCM86问题-B 应急设施的位置 (4) MCM87问题-A 盐的存贮 (4) MCM87问题-B 停车场 (5) MCM88问题-A 确定毒品走私船的位置 (5) MCM88问题-B 两辆铁路平板车的装货问题 (5) MCM89问题-A 蠓的分类 (5) MCM89问题-B 飞机排队 (6) MCM90-A 药物在脑内的分布 (6) MCM90问题-B 扫雪问题 (6) MCM91问题-B 通讯网络的极小生成树 (6) MCM 91问题-A 估计水塔的水流量 (7) MCM92问题-A 空中交通控制雷达的功率问题 (7) MCM 92问题-B 应急电力修复系统的修复计划 (7) MCM93问题-A 加速餐厅剩菜堆肥的生成 (7) MCM93问题-B 倒煤台的操作方案 (8) MCM94问题-A 住宅的保温 (8) MCM 94问题-B 计算机网络的最短传输时间 (9) MCM-95问题-A 单一螺旋线 (9) MCM95题-B A1uacha Balaclava学院 (10) MCM96问题-A 噪音场中潜艇的探测 (10) MCM96问题-B 竞赛评判问题 (10) MCM97问题-A Velociraptor(疾走龙属)问题 (11) MCM97问题-B为取得富有成果的讨论怎样搭配与会成员 (11) MCM98问题-A 磁共振成像扫描仪 (12) MCM98问题-B 成绩给分的通胀 (13) MCM99问题-A 大碰撞 (13) MCM99问题-B “非法”聚会 (13) MCM2000问题-A空间交通管制 (13) MCM2000问题-B: 无线电信道分配 (14) MCM2001问题- A: 选择自行车车轮 (14) MCM2001问题-B 逃避飓风怒吼(一场恶风...) .. (15) MCM2001问题-C我们的水系-不确定的前景 (15) MCM2002问题-A风和喷水池 (15) MCM2002问题-B航空公司超员订票 (16) MCM2002问题-C (16) MCM2003问题-A: 特技演员 (17) MCM2003问题-B: Gamma刀治疗方案 (18) MCM2003问题-C航空行李的扫描对策 (18)

美国数学建模竞赛优秀论文阅读报告

2.优秀论文一具体要求:1月28日上午汇报 1)论文主要内容、具体模型和求解算法(针对摘要和全文进行概括); In the part1, we will design a schedule with fixed trip dates and types and also routes. In the part2, we design a schedule with fixed trip dates and types but unrestrained routes. In the part3, we design a schedule with fixed trip dates but unrestrained types and routes. In part 1, passengers have to travel along the rigid route set by river agency, so the problem should be to come up with the schedule to arrange for the maximum number of trips without occurrence of two different trips occupying the same campsite on the same day. In part 2, passengers have the freedom to choose which campsites to stop at, therefore the mathematical description of their actions inevitably involve randomness and probability, and we actually use a probability model. The next campsite passengers choose at a current given campsite is subject to a certain distribution, and we describe events of two trips occupying the same campsite y probability. Note in probability model it is no longer appropriate to say that two trips do not meet at a campsite with certainty; instead, we regard events as impossible if their probabilities are below an adequately small number. Then we try to find the optimal schedule. In part 3, passengers have the freedom to choose both the type and route of the trip; therefore a probability model is also necessary. We continue to adopt the probability description as in part 2 and then try to find the optimal schedule. In part 1, we find the schedule of trips with fixed dates, types (propulsion and duration) and routes (which campsites the trip stops at), and to achieve this we use a rather novel method. The key idea is to divide campsites into different “orbits”that only allows some certain trip types to travel in, therefore the problem turns into several separate small problem to allocate fewer trip types, and the discussion of orbits allowing one, two, three trip types lead to general result which can deal with any value of Y. Particularly, we let Y=150, a rather realistic number of campsites, to demonstrate a concrete schedule and the carrying capacity of the river is 2340 trips. In part 2, we find the schedule of trips with fixed dates, types but unrestrained routes. To better describe the behavior of tourists, we need to use a stochastic model(随机模型). We assume a classical probability model and also use the upper limit value of small probability to define an event as not happening. Then we use Greedy algorithm to choose the trips added and recursive algorithm together with Jordan Formula to calculate the probability of two trips simultaneously occupying the same campsites. The carrying capacity of the river by this method is 500 trips. This method can easily find the optimal schedule with X given trips, no matter these X trips are with fixed routes or not. In part 3, we find the optimal schedule of trips with fixed dates and unrestrained types and routes. This is based on the probability model developed in part 2 and we assign the choice of trip types of the tourists with a uniform distribution to describe their freedom

美国数学建模比赛规则翻译

比赛规则,注册与指导 (所有的规则与指导适用于ICM和MCM比赛,不包括附加的通知与说明) 每组参加比赛的队伍必须有一个该学院的指导老师进行指导。 指导教师:请仔细阅读以下说明。你的责任是确保参赛队伍正确注册并且顺利完成所有参加比赛的各项要求。 在参赛过程中请打印一份参赛指导以作参考。 1.开始参赛前: A. 注册 B. 组建队伍 2. 比赛开始后 A. 通过比赛网站了解比赛试题 B. 选择问题 C. 团队准备解决方案 D. 打印出 3.比赛结束前 A. 通过邮件发送一份电子版的报告。 4. 比赛结束时 A. 将报告压缩打包 B. 邮寄包裹 5.比赛结束后 A. 确认你的队伍的报告接收成功 B. 查看比赛结果 C. 证书 D. 奖励 重要说明: 1、COMAP对规则与政策有最终解释权,并且可以根据自己的判断取消没有按照比赛规程和要求的队伍的注册资格。 2、如果参赛队伍被发现违规,那么该队的指导教师将被取消一年的指导资格,并且该指导教师所在学校将被取消参加下一届比赛的资格。 3、如果同一所院校的队伍被发现违反比赛规则两次,那么这个学校将至少一年不允许参加比赛。 4、所有的时间以美国东部时间为准。 一、在比赛开始之前: A 注册 所有的队伍必须在美国东部时间2011年2月10日下午两点之前完成注册。 我们建议所有队伍能够提前完成所有的注册过程,因为注册系统在截至时间后不会接受任何新的注册队伍。COMAP在任何情况下都不会接受任何迟到的MCM/ICM注册队伍。不会有任何的特例。 ●通过网站注册队伍:网址https://www.wendangku.net/doc/ea10845212.html,/undergraduate/contests/mcm. a.如果你是为今年的比赛注册第一支队伍,那么点击位于屏幕左手边的Register for 2011 Contest键。输入全部要求的信息,包括你的email地址以及联系信息。

2013美国大学生数学建模竞赛题目和翻译和A题图解

2013 Contest Problems MCM PROBLEMS PROBLEM A: The Ultimate Brownie Pan When baking in a rectangular pan heat is concentrated in the 4 corne rs and the product gets overcooked at the corners(and to a lesser ext ent at the edges).In a round panthe heat is distributed evenly over t he entire outer edge andthe product is not overcooked at the edges.However,since most ovens are rectangular in shape using round pans is not efficient with respect to using the space in an oven. Develop a model to show the distribution of heat across theouter edge of a pan for pans of different shapes - rectangular to circular and other shapes in between.Assume 1.A width to length ratio of W/L for the oven which isrectangular in shape. 2.Each pan must have an area of A. 3.Initially two racks in the oven, evenly spaced. Develop a model that can be used to select the best type of pan ( shape) under the following conditions: 1. Maximize number of pans that can fit in the oven (N) 2. Maximize even distribution of heat (H) for the pan 3. Optimize a combination of conditions (1) and (2) where weights p a nd (1- p) are assigned to illustrate how the results vary with differ ent values of W/L and p. In addition to your MCM formatted solution, prepare a one to two pa ge advertising sheet for the new Brownie Gourmet Magazine highlightin g your 当用方形的烤盘烤饼时,热量会集中在四角,食物就在四角(四条边的热量略小于四角)烤焦了。而用一个圆形的烤盘热量会均匀分布在整个外缘,食物就不会被边缘烤焦。但是,因为大多数烤箱是矩形的,使用圆形的烤盘不那么有效地使用空间。建立一个模型来表现热量在不同形状的烤盘的外缘的分布——包括从矩形到圆形以及介于矩形与圆形的过渡形状。

相关文档
相关文档 最新文档