文档库 最新最全的文档下载
当前位置:文档库 › 高考复习——《磁场》典型例题复习汇总

高考复习——《磁场》典型例题复习汇总

高考复习——《磁场》典型例题复习汇总
高考复习——《磁场》典型例题复习汇总

十四、磁 场

1、磁场

(1)磁场的来源

①磁体的周围存在磁场

②电流的周围存在磁场:丹麦物理学家奥斯特首先发现电流周围也存

在着磁场。

把一条导线平行地放在小磁针的上方,给导线中通入电流。当导线中

通入电流,导线下方的小磁针发生转动。

(2)磁体与电流间的相互作用通过磁场来完成

(3)磁场

①磁场:磁体和电流周围,运动电荷周围存在的一种特殊物质,叫磁场。

②磁场的基本性质:对处于其中的磁极或电流有力的作用。

一、知识网络

二、画龙点睛 概念

③磁场的物质性:虽然磁场看不见摸不着,对于我们初学者感到很抽象,其实磁场和电场一样是客观存在的,是物质存在的一种特殊形式。

2、磁场的方向 磁感线

(1)磁场的方向:物理学规定,在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是该点的磁场方向。

(2)磁感线:

①磁感线所谓磁感线,是在磁场中画出的一些有方向的曲线,在这些曲线上,每一点的切线方向都在该点的磁场方向上。 ②磁感线的可以用实验来模拟

(3)几种典型磁体周围的磁感线分布

①条形磁铁磁场的磁感线

②条形磁铁磁场的磁感线

③直线电流磁场的磁感线

直线电流磁场的磁感线是一些以导线上各点为圆心的同心圆,这些同心圆都在跟导线垂直的平面上。

直线电流的方向和磁感线方向之间的关系可用安培定则(也叫右手螺旋定则)来判定:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。

④环形电流磁场的磁感线

环形电流磁场的磁感线是一些围绕环形导线的闭合曲线。在环形导线的中心轴线上,磁感线和环形导线的平面垂直。

环形电流的方向跟中心轴线上的磁感线方向之间的关系也可以用安培定则来判定:让右手弯曲的四指和和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向。

⑤通电螺线管磁场的磁感线

通电螺线管外部的磁感线和条形磁铁外部的磁感线相似,一端相当于南极,一端相当于北极。

通电螺线管内部的磁感线和螺线管的轴线平行,方向由南极指向北极,并和外部的磁感线连接,形成一些环绕电流的闭合曲线。通电螺线管内部的磁场比两极处的磁场更强。

通电螺线管的电流方向和它的磁感线方向之间的关系,也可用安培定则来判定:用右手握住螺线管,让弯曲四指所指的方向和电流的方向一致,大拇指所指的方向就是螺线管内部磁感线的方向。也就是说,大拇指指向通电螺线管的北极。

(4)磁感线的物理意义

①磁感线上任意一点的切线方向表示该位置的磁场方向,亦即小磁针在该位置时N极的受力方向,或小磁针在该位置静止时N极的指向。

②磁感线的疏密程度表示磁场的强弱。磁感线密集处磁场强,稀疏处磁场弱。

(5)磁感线的特点

①磁感线为闭合曲线,无起点和终点。在磁体的外部磁感线由N极发出,回到S极。在磁体的内部磁感线则由S极指向N极。

②在稳定的磁场中,某一点只有惟一确定的磁场方向,所以两条磁感线不能相交。

③磁感线也不相切。若磁感线相切,则切点处的磁场将趋近于无穷大,这是不可能的。

3、地磁场

(1)地磁场:地球本身在地面附近有空间产生的磁场,叫做地磁场。

(2)地磁场的分布特点:地磁场的分布大致就像一个条形磁铁外面的磁场。

4、磁感应强度

(1)定义:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L 的乘积IL的比值叫磁感应强度。

说明:如果各处的磁场强弱不同,仍然可用上述方法研究磁场,只是要用一段特别短的通电导线来研究磁场。如果导线很短很短,B就是导线所在处的磁感应强度。

(2)公式:B=F

IL(量度式)

(3)单位:在国际单位制中,磁感应强度的单位是特斯特,简称特,国际符号是T。

1T =1N A ·m

常见的地磁场磁感应强度大约是0.3×10-4T ~0.7×10-

4T ,永磁铁磁极附近的磁感应强

度大约是10-3T ~1T 。在电机的变压器铁芯中,磁感应强度可达0.8T ~1.4T 。

(4)方向:磁感应强度是矢量,把某点的磁场方向定义为该点的磁感应强度的方向。

(5)物理意义:磁感应强度B 是表示磁场强弱和方向的物理量。

(6)形象表示方法:在磁场中也可以用磁感线的疏密程度大致表示磁感应强度的大小,这样,从磁感线的分布就可以形象地表示磁场的强弱和方向。

在同一磁场的磁感线分布图上,磁感线越密的地方,磁感应强度越大。

(7)磁场的叠加:磁感应强度是矢量,它可以合成,合成同样遵守平形四边形定则。

若空间存在几个磁场,空间的磁场应由这几个磁场叠加而成,某点的磁感应强度为B 。 B =B 1+B 2+B 3……(矢量和)

例题:如图所示,三根通电直导线垂直纸面放置,位于b 、c 、d

通电电流大小相同,方向如图。a 位于

bd 中点。则a 点的磁感应强度方

向是( )

A .垂直纸面指向纸里

B .垂直纸面指向纸外

C .沿纸面由a 指向b

D .沿纸面由a 指向c

解析:根据安培定则:b 、d 两根导线在a 点形成的磁场,磁感应强度大小相等,方向相反,合磁感应强度应为零,故a 点磁场就由通电导线c 来决定,根据安培定则在a 点处的磁场,磁感应强度方向应为沿纸面由a 指向b ,正确选项为C 。

例题:①磁场中放一根与磁场方向垂直的通电导线,它的电流强度是2.5 A ,导线长1 cm ,它受到的安培力为5×10-2 N ,则这个位置的磁感应强度是多大?

②接上题,如果把通电导线中的电流强度增大到5 A 时,这一点的磁感应强度应是多大?

③如果通电导线在磁场中某处不受磁场力,是否肯定这里没有磁场. 解答:①B =F IL

=2T 。 ②磁感应强度B 是由磁场和空间位置(点)决定的,和导线的长度L 、电流I 的大小无关,所以该点的磁感应强度是2 T 。

③如果通电导线在磁场中某处不受磁场力,则可能有两种可能:该处没有磁场;该处有磁场,只不过通电导线与磁场方向平行。

5、匀强磁场

(1)定义:如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫匀强磁场。

(2)产生方法:距离很近的两个异名磁极之间的磁场,通电螺线管内

部的磁场(除边缘部分外)都可认为是匀强磁场。

(3)磁感线的特点:匀强磁场的磁感线是间距相等的平行直线。

6、安培力

(1)安培力:磁场对电流的作用力通常称为安培力。

⑵安培力的大小:F =BILsin θ

θ=900时 F=BIL

在非匀强磁场中,公式F =BILsin θ适用于很短的一段通电导线,这

是因为导线很短时,它所在处各点的磁感应强度的变化很小,可近似认为

磁场是匀强磁场。

θ为通电导线方向与磁场方向有一个夹角,我们可以把磁感应强度B分解为两个分量:一个是跟通电导线方向平行的分量B1=Bcosθ,另一个是跟通电导线方向垂直的分量B2=Bsinθ。B1与通电导线方向平行,对电流没有作用力,电流受到的力是由B2决定的,即F=ILB2。将B2=Bsinθ代入上式,得到F=ILBsinθ。这就是通电导线方向与磁场方向成某一角度时安培力的公式。公式F=BIL是上式θ=90°时的特殊情况。

(3)安培力的方向

安培力的方向既跟磁场方向垂直,又跟电流方向垂直,也就是说,安培力的方向总是垂直于磁感线和通电导线所在的平面。

通电直导线所受安培力的方向和磁场方向、电流方向之间的关系,

可以用左手定则来判定:

伸开左手,使大拇指跟其余四个手指垂直,并且都和手掌在一个平

面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向

电流的方向,那么,大拇指所指的方向就是通电导线在磁场中所受安培

力的方向。

应该注意的是:若电流方向和磁场方向垂直,则磁场力的方向、电流方向、磁场方向三者互相垂直;若电流方向和磁场方向不垂直,则磁场力的方向仍垂直于电流方向,也同时垂直于磁场方向。

(4)安培力F、磁感应强度B、电流I三者的方向关系

通电导线在磁场中所受安培力F,总垂直于电流与磁感线所确定的平面.

①已知电流I、磁感应强度B的方向,可用左手定则唯一确定安培力F的方向.

②已知F和B的方向,当导线的位置确定时,可唯一确定电流I的方向.

③已知F和I的方向时,磁感应强度B的方向不能唯一确定.

(5)用有效长度计算安培力的大小

如图所示,弯曲的导线ACD的有效长度为l,等于两端点A、D所连直线的长度,其所受的安培力为:F = BIl

(6)安培力作用下物体运动方向的判断

①电流元法:即把整段电流等效成多段直线电流元用左手定则判断出每小段电流元所受安培力方向再判断合力的方向,然后再确定运动方向.

②等效法:环形电流和通电螺线管都可以等效成条形磁铁,条形磁铁也可以等效成环形电流或通电螺线管.通电螺线管也可以等效成很多匝的环形电流.

③利用结论法:

a、当两电流相互平行时,无转动趋势;同向电流相互吸引;反向电流相互排斥;

b、两电流不平行时,有转动到相互平行、电流方向相同的趋势.

利用这些结论分析、判断,可以事半功倍.

例题:如图所示,把一重力不计的通电直导线水平放在蹄形磁铁磁极的正上方,导线可以自由移动,当导线通过图示方向电流时,导线的运动情况是(从上往下看)()

A .顺时针方向转动,同时下降

B .顺时针方向转动,同时上升

C .逆时针方向转动,同时下降

D .逆时针方向转动,同时上升

解析:根据蹄形磁铁磁感线分布和左手定则可判断A 端受垂直纸面向里的安培力,B 端受垂直纸面向外的安培力,故导线逆时针转动;假设导线自图示位置转过90°,由左手定则可知,导线AB 受竖直向下安培力作用;导线下降,故导线在逆时针转动的同时向下运动,

所以本题答案应选C 。

例题:如图所示,倾角为 θ的光滑斜面上, 有一长为L ,质量为m 的

通电导线,导线中的电流强度为I ,电流方向垂直纸面向外.在图中加

一匀强磁场,可使导线平衡,试求:最小的磁感应强度B 是多少?方向

如何?

解析:导体棒受重力、支持力和安培力作用而平衡,由力学知识可知,当第三个力(安培力)F 与F '垂直时,F 有最小值,如图,即安培力方向平行于斜面

向上,F =mgsin θ,又因为当导体棒与磁感应强度垂直时,安培力最大,

故本题所求最小磁感应强度 B =mgsin θIL

,方向为垂直斜面向下。 例题:条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会__(增大、减小还是不变?)。水平面对磁铁的摩擦力大小为__。 解:本题有多种分析方法。⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中粗虚线所示),可看出两极受的磁场力的合力竖直向上。磁铁对水平面的压力减小,但不受摩擦力。⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中细虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。

例题:如图在条形磁铁N 极附近悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转?

解:用“同向电流互相吸引,反向电流互相排斥”最简单:条形磁铁的等效螺线管的电流在正面是向下的,与线圈中的电流方向相反,互相排斥,而左边的线圈匝数多所以线圈向右偏转。(本题如果用“同名磁极相斥,异名磁极相吸”将出现判断错误,因为那只适用于线圈位于磁铁外部的情况。)

7、电流表的组成及磁场分

(1)电流表的组成

永久磁铁、铁芯、线圈、螺旋弹簧、指针、刻度盘等六部分组成。

(2)电流表中磁场分布的特点:电流表中磁铁与铁芯之间的磁场是

均匀辐向分布的。不管线圈处于什么位置,线圈平面与磁感线之

间的夹角都是零度,各点的磁感应强度B 的大小是相等的。

8、线框在匀强磁场中的磁力矩

(1)线圈平面与磁场方向平行

例题:如图所示,单匝矩形线圈的边长分别为ab =cd =L 1,

bc =ad =L 2,它可以绕对称轴OO ′转动,线圈中的电流强度为I ,线圈处于磁感应强度B 的匀强磁场中,当线圈平面与磁场平行时,求线圈所受的安培力的总力矩。

解析:线圈平面与磁场平行时,线圈中只有ab 、cd 两边受力。

所受力如图所示,两边安培力的大小为 F =BIL 1 这一对力偶的力偶臂为L 2,所受安培力的总力矩

M =BIL 1L 2=BIS 拓展:如果是n 匝线圈,则线圈所受安培力的力矩为多大? 如果是n 匝线圈,则线圈所受安培力的力矩为M =nBIS

当线圈平面与磁感线平行时,线圈受到的安培力的力矩为最大。

(2)线圈平面与磁场方向成α角:M =nBIScos α=M m cos α

(3)线圈平面与磁场方向垂直:M

=0。

(4)说明①上式只适用于匀强磁场;

②在匀强磁场中,当转轴OO ′⊥B 的时,M 与转轴的位置及线圈的形状无关。

例题:如图所示,一正三角形线圈,放在匀强磁场中,磁场与线圈平面平行,设I =5 A ,磁感应强度B =1.0 T ,三角形边长L =30cm.。求线圈所受磁力矩的大小及转动方向(电流方向为

acba)。 解法一:因为在匀强磁场中,在转轴OO ′和B 相垂直的条件

下,M 与转轴的位置和线圈的形状无关。所以

M =BIS =0.2 N ·m 。

根据左手定则ab 边受的安培力方向垂直于ab 边向下,ac 边受的安培力方向垂直于ac 边向上,所以线圈的转动方向为:从上往下看为顺时针转动。

解法二:bc 边不受安培力;ab 、ac 受力等大反向,可认为安培力作用在它们的中点,磁力矩为

M =2F ×L 2

sin30° F =BILcos30°

由以上二式求出

M =0.2 N ·m

从上往下看转动方向为顺时针方向。

9、电流表的工作原理

(1)电流表的工作原理

线框所受安培力的力矩应为

M 1=NBIS

弹簧产生的弹性力矩M 2与指针的偏转角度θ成正比,即M 2=k θ。

当M 1=M 2时,线圈就停在某一偏角θ上。

由M 1=M 2可得

NBIS =k θ

θ=NBS k

·I 从公式中可以看出:

①对于同一电流表N 、B 、S 和k 为不变量,所以θ∝I ,可见θ与I 一一对应,从而用指针的偏角来测量电流I 的值;

②因θ∝I ,θ随I 的变化是线性的,所以表盘的刻度是均匀的。

(2)磁电式仪表的优缺点

利用充当永久磁铁使通电线圈偏转的仪器叫做磁电式仪表

磁场对电流的作用力和电流成正比,因而线圈中的电流越大,安培力产生的力矩也越大,线圈和指针偏转的角度也越大,因此,根据指针偏转角度的大小,可以知道被测电流的强弱.当线圈中的电流方向改变时,安培力的方向随着改变,指针的偏转方向也随着改变,所以,根据指针的偏转方向,可以知道被测电流的方向。

磁电式仪表的优点是刻度均匀、准确度高、灵敏度高,可以测出很弱的电流;缺点是价格较贵,绕制线圈的导线很细,允许通过的电流很弱(几十微安到几毫安).如果通过的电流超过允许值,很容易把它烧坏。

10、洛伦兹力:

1、概念:运动电荷在磁场中受到的作用力,叫做洛伦兹力。

荷兰物理学家洛伦兹首先提出了运动电荷产生磁场和磁场对运动电荷有作用力的观点,为纪念他,人们称这种力为洛伦兹力。通电导线在磁场中所受安培力是洛伦兹力的宏观表现。

2、洛伦兹力的方向

洛伦兹力方向的判断──左手定则

伸开左手,使大拇指和其余四指垂直,且处于同一平面内,把手放入磁场中,让磁感线垂直穿入手心,四指指向正电荷运动的方向,那么,拇指所指的方向就是正电荷所受洛伦兹力的方向。

运动的负电荷在磁场中所受的洛伦兹力,方向跟正电荷受的力相反。在用左手定则判断时,若四指指向是电荷运动的反方向,那么拇指所指的方向就是负电荷所受洛伦兹力的方向。

3、洛伦兹力的大小

(1)洛伦兹力的推导

若有一段长度为L 的通电导线,横截面积为S ,单位体积中含有的自由电荷数为n ,每个自由电荷的电荷量为q ,定向移动的平均速率为v ,将这段导线垂直于磁场方向放入磁感应强度为B 的匀强磁场中。

这段导体所受的安培力为F 安=BIL

电流强度I 的微观表达式是I =nqSv

这段导体中含有的电荷数为nLS

每个自由电荷所受的洛伦兹力大小为F =F 安nLS =BIL nLS =nqSv BL nLS

=qvB (2)洛伦兹力公式:F =qvB

公式中各量的单位:F 为N ,q 为C ,v 为m/s ,B 为T 。

(3)适用条件

电荷的运动方向与磁场方向垂直,即v ⊥B 。

若v 与B 方向成某一角度θ时,洛沦兹力的分式为:F =qvBsin θ。

说明:①θ角为电荷运动方向和磁场方向的夹角;

②θ=90°时F=qvB;θ=0°时F=0。

③因为B为矢量,Bsinθ为B在垂直于v方向上的分量;Bcosθ为B沿v方向上

的分量。

④因为v为矢量:F=qvBsinθ可写成F=qBvsinθ。vsinθ理解为v在垂直于B

方向上的分量。

例题:电子的速率v=3×106 m/s,垂直射入B=0.10 T的匀强磁场中,它受到的洛伦兹力是多大?

F=qvB=1.60×10-19×3×106×0.10N=4.8×10-14 N。

例题:来自宇宙的质子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些质子在进入地球周围的空间时,将()

A.竖直向下沿直线射向地面B.相对于预定地面向东偏转

C.相对于预定点稍向西偏转D.相对于预定点稍向北偏转

分析:B项正确。地球表面地磁场方向由南向北,质子是氢原子核带正电,根据左手定则可判定,质子自赤道上空竖直下落过程中受洛伦兹力方向向东。

例题:电视机显像管的偏转线圈示意图如右,即时电流方向如图所示。该时刻由里向外射出的电子流将向哪个方向偏转?

解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠电子流的一侧为向外。电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。(本题用其它方法判断也行,但不如这个方法简洁)。

4、洛伦兹力的特点

(1)运动的电荷才在可能受到洛伦兹力,静止的电荷在磁场中不受洛伦兹力。

(2)洛仑兹力的大小和方向都与带电粒子运动状态有关。

(3)洛仑兹力对运动电荷不做功,不会改变电荷运动的速率。

洛伦兹力的方向垂直于v和B组成的平面,即洛伦兹力垂直于速度方向,因此,洛伦兹力只改变速度的方向,不改变速度的大小,所以洛伦兹力对电荷不做功。

5、宇宙射线:运动电荷在磁场中受到洛伦兹力的作用,

运动方向会发生偏转,这一点对于地球上的生命来说有十分

重要的意义.从太阳或其他星体上,时刻都有大量的高能粒子

流放出,称为宇宙射线,这些高能粒子流,如果都到达地球,

将对地球上的生物带来危害.庆幸的是,地球周围存在地磁

场,地磁场改变宇宙射线中带电粒子的运动方向,对宇宙射

线起了一定的阻挡作用。

宇宙射线是穿透力极强的辐射线,它们来自宇宙空间,从各个方向射向地球,20世纪初,我们想要获得一个不受辐射影响的实验环境,总是不能如愿,即使深入矿井内部,仍然摆脱不开宇宙射线穿透性辐射的干扰,1912年,奥地利物理学家海斯乘气球升空去探寻这些辐射的来源,他发现,在气球上升过程中,辐射不是减弱而是增强了,后来又发现,两极地区的辐射更为强大,说明它似乎受地球磁场的影响,表明它含有带电粒子(如质子),宇

宙射线中的带电粒子在穿越地磁场过程中,受到地磁场对它们的洛伦兹力的作用,运动方向会发生偏转,对宇宙射线有一定的阻挡作用,大大减弱了到达地球表面的宇宙射线。

例题:如图所示,一个带正电q 的小带电体处于垂直纸面向里的匀强磁场中,磁感应强度为B ,若小带电体的质量为m ,为了使它对水平绝缘面正好无压力,应该( )

A .使

B 的数值增大

B .使磁场以速率 v =mg qB

,向上移动 C .使磁场以速率v =mg qB

,向右移动 D .使磁场以速率v =mg qB

,向左移动 解析:为使小球对平面无压力,则应使它受到的洛伦兹力刚好平衡重力,磁场不动而只增大B ,静止电荷在磁场里不受洛伦兹力, A 不可能;磁场向上移动相当于电荷向下运动,受洛伦兹力向右,也不可能平衡重力,故B 、C 也不对;磁场以V 向左移动,等同于电荷以速率v 向右运动,此时洛伦兹力向上。当 qvB =mg 时,带电体对绝缘水平面无压力,则v =mg qB

,选项 D 正确。 关于带电小球在匀强磁场中的运动

例题: 单摆摆长L ,摆球质量为m ,带有电荷+q ,在垂直于纸面向里的磁感应强度为B 的匀强磁场中摆动,当其向左、向右通过最低点时,线上拉力大小是否相等?

解析:摆球所带电荷等效于一个点电荷,它在磁场中摆动时受到重力mg ,线的拉力F

与洛伦兹力 ,由于只有重力做功,及机械能守恒,所以摆球向左、向右通过最低点时的速度大小是相同的,设为V ,向在通过最低点时洛仑兹

力 竖直向下,根据牛顿第二定律,如图有

故有

当向右通过最低点时,洛伦兹力 的竖直向上,而大小仍为qvB ,同理可得

显然F 1>F 2

11、带电粒子在匀强磁场中的运动

(1)带电粒子的运动方向与磁场方向平行

当带电粒子的运动方向与磁场方向平行时,粒子不受洛伦兹力。所以,此时粒子做匀速直线运动。

(2)带电粒子的运动方向与磁场方向垂直

①运动轨迹

垂直射入匀强磁场中的带电

粒子,在洛伦兹力F =qvB 的作用

下,将会偏离的运动方向。粒子在

匀强磁场中做匀速圆周运动。

②带电粒子的受力及运动分

洛伦兹力只改变速度的方向,不改变速度的大小,提供电子做匀速园周运动的向心力。

(3)带电粒子的运动方向与磁场方向成θ角

粒子在垂直于磁场方向作匀速圆周运动,在磁场方向作匀速直线运动。叠加后粒子作等距螺旋线运动。

12、轨道半径和周期

(1)轨道半径公式:由qvB =m v 2r

可得 r =mv qB

上式告诉我们,在匀强磁场中做匀速园周运动的带电粒子,它的轨道半径跟粒子的运动速率成正比。运动的速度越大,轨道的半径也越大。

(2)周期公式

将半径r 代入周期公式T =

2πr v 中,得到 T =2πm qB

带电粒子在磁场中做匀速圆周运动的周期跟轨道半径和运动速率无关。

(3)频率公式:12Bq f T m

π== (4)角频率(角速度)公式:v qB R m ω=

= 例题:H 11、H 21、He 4

2它们以下列情况垂直进入同一匀强磁场,求轨道半径之比。

①具有相同速度;

②具有相同动量;

③具有相同动能。

解答:依据qvB =m v 2r ,得r =mv qB

①v 、B 相同,所以r ∝m q

,所以r 1∶r 2∶r 3=1∶2∶2 ②因为mv 、B 相同,所以r ∝1q

,r 1∶r 2∶r 3=2∶2∶1 ③12mv 2相同,v ∝1m ,B 相同,所以r ∝m q ,所以r 1∶r 2∶r 3=1∶2∶1。 例题:如图所示,一质量为m ,电荷量为q 的粒子从容器A 下方小孔S 1飘入电势差为U 的加速电场。然后让粒子垂直进入磁感应强度为B 的磁场中做匀速园周运动,最后打到照相底片D 上,如图所示。求

①粒子进入磁场时的速率;

②粒子在磁场中运动的轨道半径。

解答:①粒子在S 1区做初速度为零的匀加速直线运动。在S 2区做匀速直线运动,在S 3区做匀速圆周运动。

由动能定理可知

12

mv 2=qU 由此可解出

v =2qU m

②粒子在磁场中做匀速圆周运动的轨道半径为 r =mv qB =2mU

qB 2 13、带电粒子在磁场中的偏转

质量为m ,电荷量为q 的粒子,以初速度v 0垂直进入磁感应强度为B 、宽度为L 的匀强磁场区域,如图所示。

(1)带电粒子的运动轨迹及运动性质 作匀速圆周运动;轨迹为圆周的一部分。 (2)带电粒子运动的轨道半径

R =mv 0qB =L sin θ (3)带电粒子离开磁场电的速率

v =v 0 (4)带电粒子离开磁场时的偏转角θ

sin θ=L R =qBL mv 0

(5)带电粒子在磁场中的运动时间t

t =0ab v =R θv 0

(θ弧度为单位) (6)带电粒子离开磁场时偏转的侧位移 y =R -R 2-L 2=R(1-cos

θ)

14、质谱议

(1)质谱仪的结构

质谱仪由静电加速电极、速度选择器、偏转磁场、显示屏等组成。

(2)质谱仪的工作原理

12

mv 2=qU v =2qU m

r =mv qB =2mU

qB

2 r 和进入磁场的速度无关,进入同一磁场时,r ∝

m q ,而且这些个量中,U 、B 、r 可以直接测量,那么,我们可以用装置来测量比荷。如果再已知带电粒子的电荷量q ,就可算出它的质量。

质子数相同而质量数不同的原子互称为同位素。在上图中,如果容器A 中含有电荷量相同而质量有微小差别的粒子,根据例题中的结果可知,它们进入磁场后将沿着不同的半径做圆周运动,打到照相底片不同的地方,在底片上形成若干谱线状的细条,叫质谱线。每一条对应于一定的质量,从谱线的位置可以知道圆周的半径r ,如果再已知带电粒子的电荷量q ,就可算出它的质量。这种仪器叫做质谱议。例题2中的图就是质谱仪的原理示意图。

例题:质子和一价钠离子分别垂直进入同一匀强磁场中做匀速圆周运动,如果它们的圆运动半径恰好相等,这说明它们在刚进入磁场时( B )

A .速率相等

B .动量大小相等

C .动能相等

D .质量相等

问题讨论:带电粒子在磁场和电场中受力有什么区别呢?

①电场对静止或运动的带电粒子都有电场力的作用,磁场只对运动的带电粒子有磁场力(洛伦兹力)的作用(条件是v 与B 不平行)。

②电场力跟电场强度E 的方向相同(正电荷)或相反(负电荷),洛伦兹力跟磁感应强度B 的方向垂直。

③电场力不受粒子运动速度的影响,洛伦兹力则与粒子运动速度有关。

15、使带电粒子加速的方法

利用加速电场给带电粒子加速。

由动能定理W =ΔE k qU =12

mv 2 v =2qU m

为了提高粒子的能量,可以设想让粒子经过多次电场来加速

带电粒子增加的动能ΔE =12mv 2-12

mv 02=q(U 1+U 2+U 3+……+U n ) 16、回旋加速器

(1)基本用途

回旋加速器是利用电场对电荷的加速作用和磁场对运动电荷的偏转作用,在较小的范围内来获得高能粒子的装置。

(2)工作原理

放在A 0处的粒子源发出一个带正电的粒子,它以某一速率v 0垂直进入匀强磁场,在磁场中做匀速圆周运动,经过半个周期,当它沿着半圆弧A 0A 1到达A 1时,在A 1A 1′处造成一个向上的电场,使这个带电粒子在A 1A 1′处受到一次电场的加速,速率由v 0增加到v 1,然后粒子以速率v 1在磁场中做匀速圆周运动。我们知道,粒子的轨道半径跟它的速率成正比,因而粒子将沿着半径增大了的圆周运动,又经过半个周期,当它沿着半圆弧A 1′A 2′到达A 2′时,在A 2′A 2处造成一个向下的电场,使粒子又一次受到电场的加速,速率增加到v 2,如此继续下去,每当粒子运动到A 1A ′、A 3A 3'等处时都使它受到向上电场的加速,每当粒子运动到A 2′A 2、A 4′A 4等处时都使它受到向下电场的加速,粒子将沿着图示的螺线A 0A 1 A 1′A 2′A 2……回旋下去,速率将一步一步地增大。

带电粒子在匀强磁场中做匀速圆周运动的周期T =2πm qB

,跟运动速率和轨道半径无关,对一定的带电粒子和一定的磁场来说,这个周期是恒定的。因此,尽管粒子的速率和半径一次比一次增大,运动周期T 却始终不变,这样,如果在直线AA 、A ′A ′处造成一个交变电场,使它以相同的周期T 往复变化,那就可以保证粒子每经过直线AA 和A ′A ′时都正好赶上适合的电场方向而被加速。

①磁场的作用

带电粒子以某一速度垂直磁场方向进入匀强磁场时,只在洛伦兹力作用下做匀速圆周运动,其中周期和速率与半径无关,使带电粒子每次进入D 形盒中都能运动相等时间(半个周期)后,平行于电场方向进入电场中加速。

②电场的作用

回旋加速器的两个D 形盒之间的窄缝区域存在周期性变化的并垂直于两D 形盒直径的匀强电场,加速就是在这个区域完成的。

③交变电压

为了保证每次带电粒子经过狭缝时均被加速,使之能量不断提高,要在狭缝处加一个与T =2πm qB

相同的交变电压。 (3)回旋加速器的核心

回旋加速器的核心部分是两个D 形的金属扁盒,这两个D 形盒就像是沿着直径把一个圆形的金属扁盒切成的两半。两个D 形盒之间留一个窄缝,在中心附近放有粒子源。D 形盒装在真空容器中,整个装置放在巨大电磁铁的两极之间,磁场方向垂直于D 形盒的底面。把两个D 形盒分别接在高频电源的两极上,如果高频电源的周期与带电粒子在D 形盒中的运动周期相同,带电粒子就可以不断地被加速了。带电粒子在D 形盒内沿螺线轨道逐渐趋于盒的边缘,达到预期的速率后,用特殊装置把它们引出。

D 形金属扁盒的主要作用是起到静电屏蔽作用,使得盒内空间的电场极弱,这样就可以使运动的粒子只受洛伦兹力的作用做匀速圆周运动。

在加速区域中也有磁场,但由于加速区间距离很小,磁场对带电粒子的加速过程的影响很小,因此,可以忽略磁场的影响。

设D 形盒的半径为R ,由qvB =m v 2R

得,粒子可能获得的最大动能 E km =12mv m 2=(qBR)22m

可见:带电粒子获得的最大能量与D 形盒半径有关,由于受D 形盒半径R 的限制,带电粒子在这种加速器中获得的能量也是有限的。为了获得更大的能量,人类又发明各种类型的新型加速器。

(4)回旋加速器的优点与缺点

使人类在获得具有较高能量的粒子方面前进了一步。

用这种经典的回旋加速器加速,要想进一步提高质子的能量就很困难了。按照狭义相对论(以后会介绍),这时粒子的质量将随着速率的增加而显著地增大,粒子在磁场中回旋一周所需的时间要发生变化。交变电场的频率不再跟粒子运动的频率一致,这就破坏了加速器的工作条件,进一步提高粒子的速率就不可能了。

例题:个长度逐渐增大的金属圆筒和一个靶,它们沿

轴线排列成一串,如图所示(图中画出五、六个圆筒,

作为示意图)。各筒和靶相间地连接到频率为ν,最大

电压值为U 的正弦交流电源的两端。整个装置放在高真空容器中,圆筒的两底面中心开有小孔。现有一电荷量为q ,质量为m 的正离子沿轴线射入圆筒,并将在圆筒间及靶间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场),缝隙的宽度很小,离子穿缝隙的时间可以

不计,已知离子进入第一个圆筒左端的速度为v 1,且此时第一、二两个圆筒间的电势差为U 1-U 2=-U 。为使打在靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶子上的离子的能量,

解析:粒子在筒内做匀速直线运动,在缝隙处被加速,因此要求粒子穿过每个圆筒的时

间均为T 2(即12ν

),N 个圆筒至打在靶上被加速N 次,每次电场力做的功均为qU 。 只有当离子在各圆筒内穿过的时间都为t =T 2=12ν

时,离子才有可能每次通过筒间缝隙都被加速,这样第一个圆筒的长度L 1=v 1t =v 12ν

,当离子通过第一、二个圆筒间的缝隙时,两筒间电压为U ,离子进入第二个圆筒时的动能就增加了qU ,所以:

E 2=12mv 22=12

mv 12+qU v 2=2qU m

+v 12 第二个圆筒的长度L 2=v 2t =12ν×2qU m +v 12 如此可知离子进入第三个圆筒时的动能

E 3=E 2=12mv 32=12mv 22+qU =12

mv 12+2qU 速度v 3=4qU m

+v 12 第三个圆筒长度L 3=12ν×4qU m +v 12 离子进入第n 个圆筒时的动能

E N =12mv N 2=12

mv 12+(N -1)qU 速度v N =2(N -1)qU m

+v 12 第N 个圆筒的长度L N =12ν×2(N -1)qU m +v 12 此时打到靶上离子的动能

E k =E N +qU =12

mv 12+NqU 例题:知回旋加速器中D 形盒内匀强磁场的磁感应强度B =1.5T ,D 形盒的半径为R =60 cm ,

两盒间电压U =2×104 V ,今将α粒子从间隙中心某处向D 形盒内近似等于零的初速度,垂

直于半径的方向射入,求粒子在加速器内运行的时间的最大可能值。

解析:带电粒子在做圆周运动时,其周期与速度和半径无关,每一周期被加速两次,每次加速获得能量为qU ,根据D 形盒的半径得到粒子获得的最大能量,即可求出加速次数,可知经历了几个周期,从而求总出总时间。

粒子在D 形盒中运动的最大半径为R

则R =mv m qB

v m =qBR m

则其最大动能为E km =12mv m 2=(qBR)22m

粒子被加速的次数为n =E km qU =q (BR)22mU

则粒子在加速器内运行的总时间为

t =n ·T 2=q (BR)22mU ×πm qB =4.3×10-5

s

1.洛伦兹力与安培力的关系

(1)洛伦兹力是单个运动电荷在磁场中受到的力,而安培力是导体中所有定向移动的自由电荷受到的洛伦兹力的宏观表现.

(2)洛伦兹力永不做功,但安培力却可以做功.

2.在研究带电粒子在匀强磁场中做匀速圆周运动时,关键把握“一找圆心,二找半径mv R Bq

=,三找周期2m T Bq π=或时间t ″的规律. (1)圆心的确定:因洛伦兹力F 指向圆心,根据F ⊥v ,画出粒子轨迹中的任意两点(一般是射入和射出磁场的两点)的F 的方向,沿两个洛伦兹力F 画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,找出圆心位置.

(2)半径的确定和计算

利用平面几何关系或半径公式mv R Bq

=

,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:

①粒子速度的偏向角φ甲等于圆心角α,并等于AB 弦与切线的夹角θ(弦切角)的2倍,如图所示,即2t ?αθω===. 规律

②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ +θ′=180°.

(3)粒子在磁场中运动时间t 的确定:利用圆心角口与弦切角日的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,由公式360t T α=

?可求出粒子在磁场中运动的

时间t .

(4)注意圆周运动中的有关对称规律

如从某一直线边界射入的粒子,从同一边界射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.

3.带电粒子在有界磁场中运动的极值问题

(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.

(2)当速度v 一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.

4.带电粒子在复合场中无约束情况下的运动性质

(1)当带电粒子所受合外力为零时,将做匀速直线运动或处于静止状态.合外力恒定且与初速同向时做匀变速直线运动,常见的情况有:

①洛伦兹力为零(即v ∥B),重力与电场力平衡,做匀速直线运动;或重力与电场力的合力恒定,做匀变速运动.

②洛伦兹力F 与重力和电场力的合力平衡,做匀速直线运动.

(2)带电粒子所受合外力做向心力,带电粒子做匀速圆周运动时.由于通常情况下,重力和电场力为恒力,故不能充当向心力,所以一般情况下是重力恰好与电场力相平衡,洛伦兹力是以上力的合力.

例题1:如图所示,光滑导轨与水平面成α角,导轨宽L 。匀强磁场磁感应强度为B 。金属杆长也为L ,质量为m ,水平放在导轨上。当回路总电流为I 1时,金属杆正好能静止。求:⑴B 至少多大?这时B 的方向如何?⑵若保持B 的大小不变而将B 的方向改为竖直向上,应把回路总电流I 2调到多大才能使金属杆保持静止?

解:画出金属杆的截面图。由三角形定则可知,只有当安培力方向沿导轨平面向上时安培力才最小,B 也最小。根据左手定则,这时B 应垂直于导轨平面向上,大小满足:BI 1L =mg sin α, B =mg sin α/I 1L 。

当B 的方向改为竖直向上时,这时安培力的方向变为水平向右,沿导轨方向合力为零,得BI 2L cos α=mg sin α,I 2=I 1/cos α。(在解这类题时必须画出截面图,只有在截面图上才能正确表示各力的准确方向,从而弄清各矢量方向间的关系)。

例题2:如图所示,质量为m 的铜棒搭在U 形导线框右端,棒长和框宽均为L ,磁感应强度为B 的匀强磁场方向竖直向下。电键闭合后,在磁场力作用下铜棒被平抛出去,下落h 后落在水平面上,水平位移为s 。求闭合电键后通过铜棒的电荷量Q 。

解:闭合电键后的极短时间内,铜棒受安培力向右的冲量F Δt =mv 0而被平抛出去,其中F =BIL ,而瞬时电流和时间的乘积等于电荷量Q =I Δt ,由平抛规律可算铜棒离开导线框时的初速度h g s t s v 20==,最终可得h

g BL ms Q 2=。

例题3:磁流体发电机原理图如右。等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。该发电机哪个极板为正极?两板间最大电压为多少?

解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。所以上极板为正。正、负极板间会产生电场。当刚进入的正负离子受的洛伦兹力与电场力等值反向时,达到最大电压:U=Bdv 。当外电路断开时,这也就是电动势E 。当外电路接通时,极板上的电荷量减小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子又将发生偏转。这时电动势仍是E=Bdv ,但路端电压将小于Bdv 。

在定性分析时特别需要注意的是:

⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反。

⑵外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于Bdv ,但电动势不变(和所有电源一样,电动势是电源本身的性质。)

⑶注意在带电粒子偏转聚集在极板上以后新产生的电场的分析。在外电路断开时最终将达到平衡态。

例题4:半导体靠自由电子(带负电)和空穴(相当于带正电)导电,分为p 型和n 型两种。p 型半导体中空穴为多数载流子;n 型半导体中自由电子为多数载流子。用以下实验可以判定一块半导体材料是p 型还是n 型:将材料放在匀强磁场中,通以图示方向的电流I ,用电压表比较上下两个表面的电势高低,若上极板电势高,就是p 型半导体;若下极板电势高,就是n 型半导体。试分析原因。

解:分别判定空穴和自由电子所受的洛伦兹力的方向,由于四指指电流方向,都向右,所以洛伦兹力方向都向上,它们都将向上偏转。p 型半导体中空穴多,上极板的电势高;n 型半导体中自由电子多,上极板电势低。 注意:当电流方向相同时,正、负离子在同一个磁场中的所受的洛伦兹力方向相同,所以偏转方向相同。

例题5:如图直线MN 上方有磁感应强度为B 的匀强磁场。正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?

解:正负电子的半径和周期是相同的。只是偏转方向相反。先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角形。所以两个射出点相距2r ,由图还看出经历

时间相差2T /3。答案为射出点相距Be

mv s 2=,时间差为Bq m t 34π=?。关键是找圆心、找半径和用对称。

例题6:一个质量为m 电荷量为q 的带电粒子从x 轴上的P (a ,0)点以速度v ,沿与x 正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y 轴射出第一象限。求匀强磁场的磁感应强度B 和射出点的坐标。

解:由射入、射出点的半径可找到圆心O /,并得出半径为aq mv B Bq

mv a r 23,32===得;射出点坐标为(0,a 3)。

例题7: 某带电粒子从图中速度选择器左端由中点O 以速度v 0向右射去,从右端中心a 下方的b 点以速度v 1射出;若增大磁感应强度B ,该粒子将打到a 点上方的c 点,且有ac =ab ,则该粒子带___电;第二次射出时的速度为_____。

解:B 增大后向上偏,说明洛伦兹力向上,所以为带正电。由于洛伦兹力总不做功,所以两次都是只有电场力做功,第一次为正功,第二次为负功,但功的绝对值相同。21202222020212,2

1212121v v v mv mv mv mv -=∴-=-

初中物理-压强典型例题

压强 (1)压力方向:与受力物体的支承面相垂直.由于受力物体的受力支承面可能是水平面,也可能是竖直面,还可能是角度不同的倾斜面,因此,压力的方向没有固定的指向,它可能指向任何方面,但始终和受力物体的受力面相垂直. (2)单位:如重力、摩擦力等其他力的国际单位一样,是牛顿. (3)压力作用效果:压力的作用效果与压力的大小和受力面积大小有关. 当受力面积一定时,压力越大,则压力的作用效果越显著;当压力一定时,受力面积越小,压力的作用效果越显著. 2.压强:物体单位面积上受到的压力叫压强。它是表示压力作用效果的物理量。 3.压强公式:P=F/s,式中p单位是:帕斯卡,1帕=1 N/m2,表示是物理意义是1m2的面积上受到的压力为1N。 4. F= Ps; 5.增大压强方法:(1)S不变,F 增大;(2)F不变,S 减小;(3)同时把F↑,S↓。而减小压强方法则相反。例如:在生产和生活中,如果要减小压强,可减小压力或增大受力面积;如果

要增大压强,则可以增大压力或减小受力面积,但从实际出发,压力大小往往是不可改变的,则减小压强应增大受力面积,增大压强应采用减小受力面积的方法 6.应用:菜刀用久了要磨一磨是为了增大压强,书包的背带要用而宽是为了减小压强铁路的钢轨不是直接铺在路基上而是铺在在枕木上是为了减小压强,钢丝钳的钳口有螺纹是为了增大摩擦。 7.液体压强产生的原因:是由于液体受到重力作用,而且液体具有流动性,所以液体对容器底和容器侧壁有压强,液体内部向各个方向都有压强。 8.液体压强特点: (1)液体对容器底部和侧壁都有压强; (2)液体内部向各个方向都有压强; (3)液体的压强随深度增加而增加,在同一深度,液体向各个方向的压强相等; (4)不同液体的压强还跟液体密度有关系。流速和压强的关系:在液体中流速越大的地方,压强越小。 (1)计算 液体压强的计算公式是 p=gh 式中为液体密度,单位用千克/米3;g=9.8牛/千克;h是液体内某处的深度,单位用米;p为液体压强,单位用帕. ⑴推导过程:液柱体积V=Sh ;质量m=ρV=ρSh。液片受到的压力:F=G=mg=ρShg。液片受到的压强:p=F/S=ρgh。 由公式p=gh可知,液体的压强大小只跟液体的密度、深度h有关,跟液体重、体积、容器形状、底面积大小等其他因素都无关.

小学数学总复习经典习题解析

小学数学总复习经典好题解析 提前练习一道:分数的加减法单元习题 李林喝了一杯牛奶的1/6,然后加满水,又喝了一杯的1/3,再倒满水后又喝了半杯,又加满了水,最后把一杯都喝了。李林喝的牛奶多,还是水多? 解答题 1、甲、乙两个修路队同时合修一条1875米的公路,用25天。完工时乙队比甲队少修125米,乙队平均每天修35米,甲队平均每天修多少米? 2、快车从甲站到达乙站需要8小时,慢车从乙站到达甲站需要12小时,如果快、慢两车同时从甲、乙两站相对开出,相遇是快车比慢车多行180千米,甲、乙两站相遇多少千米? 3、电影门票20元一张,降价后观众增加一倍,收入增加五分之一,那么一张门票降价多少元? 4、甲、乙两列火车同时从A、B两城相对开出,行了3.2小时后,两列还相距全程的5/8, 两车还需要几小时才能相遇? 5、加工一批零件,甲独做30小时完成,乙独做20小时完成,现在两人同时加工,完成任务时,乙给甲87个,两人零件个数就相等,这批零件共多少个?

6、修一条路3天修完。第一天修全长的37%,第二天和第三天修的米数的比是4:5,第二天修了64米,这条路全长多少米? 7、红星鞋厂生产一批儿童鞋准备装箱。如果每箱装70双,5箱装不满,如果每箱装44双,7箱又装不完,最后决定每箱装A双,这是恰好装满A箱而没有剩余,这批儿童鞋共有多少双? 8、有两桶油,第一桶用去1/4后,余下的与第二桶的质量比是3:5,第一桶原来有油18千克,第二桶原来有油多少千克? 9、客车从甲地,货车从乙地同时相对开出。一段时间后,客车行了全程的7/8,货车行的超过中点54千米,已知客车比货车多行了90千米,甲、乙两地相距多少千米? 10、甲、乙两车分别从A、B两地同时出发,当甲车行到全程的7/11时与乙车相遇,乙车继续以每小时40千米的速度前进,又行驶了154千米到达A地。甲车出发到相遇用了多少小时? 11、生产一批零件,甲每小时可以生产70个,乙单独做要10小时完成,现在由甲、乙两个人同时合做完成,甲、乙生产零件数量的比是4:3,甲一共生产理解多少个? 12、一个商店以每双6.5双的价格购进一批布鞋,以每双8.7元的价格售出,当卖出这批布鞋的3/4时,不仅收回原来的成本,而且还盈利20元,购进这批布鞋是多少双?

(完整版)压强计算经典题(含答案)

压强计算题专题 1一只大象重为6×104牛,每只脚掌与地的接触面积为600厘米2,则这只大象四脚着地站在地面时,对地面压强多大?抬起两只脚时,大象对地面的压强又多大? 2,一个正方体铁块质量是7.9㎏,铁的密度是7.9×103kg/m3放在桌面上,桌子面积1㎡ 求桌面上受到压强是多少? 3小王同学双脚与地面的接触面积为 4×10-2m2,请根据图13中某些情况下的压强数值估算: (1)小王同学的重力; (2)小王同学平躺时与床面的接触面积; (3)小王同学背着重力为40N的书包行走时对水平地面的压强。 4如图12所示,重为20N的容器放在水平桌面上.容器的底面积S=2×10-2m2,高h=O.4m.当容器装满水时,容器对水平桌面的压强为4×103Pa,(g=10N/kg,ρ水=1.0×103kg/m3)求容器中水的 重力是多少N?容器底部受到压力是多少N? 5如图14,平底茶壶的质量是400g,底面积是40cm2,内盛0.6kg的开水,放置在面积为1m2的水平桌面中央。试求:⑴水对茶壶底部的压力;⑵茶壶对桌面的压强。

6在研究液体内部压强时,把装有砂的小玻璃管竖直放在酒精中,该管底面积为10厘米2,管与砂的总质量为100克,已知 酒精 =0.8×103千克/米3。求: (1)管底所受的压力是多少牛顿?(2)管底处的压强是多少帕斯卡?(3)管底的深度是多少厘米? 1\F=G=6×10^4N 当四脚着地站在地面时,S=600c㎡×4=2400c㎡=0.24㎡p=F/s=6×10^4N /0.24㎡=2.5×10^5Pa 当两脚着地站在地面时,S=600c㎡×2=1200c㎡=0.12㎡p=F/s=6×10^4N /0.12㎡=5×10^5Pa 2\(1)铁块对桌面的压力: F=G=mg=7.9kg×10N/kg=79N; (2)由ρ= m V 可得,正方体铁块的体积: V= m ρ = 7.9kg 7.9×103kg/m3 =10-3m3, 由V=L3可得,正方体的边长: L= 3 V = 3 10-3m3 =0.1m, 受力面积: S=L2=(0.1m)2=0.01m2, 铁块对桌面的压强: p= F S = 79N 0.01m2 =7.9×103Pa. 故答案为:79;7.9×103. 3\解: (1)G人=p人S人=1.5×104Pa ×4×l0-2m2= 600N

七年级数学上册期末复习典型例题讲析(人教版)

七年级数学上册典型例题 例1. 已知方程2x m-3+3x=5是一元一次方程,则m= . 解:由一元一次方程的定义可知m-3=1,解得m=4.或m-3=0,解得m=3 所以m=4或m=3 警示:很多同学做到这种题型时就想到指数是1,从而写成m=1,这里一定要注意x的指数是(m-3). 例2. 已知2 x=-是方程ax2-(2a-3)x+5=0的解,求a的值. 解:∵x=-2是方程ax2-(2a-3)x+5=0的解 ∴将x=-2代入方程, 得a·(-2)2-(2a-3)·(-2)+5=0 化简,得4a+4a-6+5=0 ∴ a=8 1 点拨:要想解决这道题目,应该从方程的解的定义入手,方程的解就是使方程左右两边值相等的未知数的值,这样把x=-2代入方程,然后再解关于a的一元一次方程就可以了. 例3. 解方程2(x+1)-3(4x-3)=9(1-x). 解:去括号,得2x+2-12x+9=9-9x, 移项,得2+9-9=12x-2x-9x. 合并同类项,得2=x,即x=2. 点拨:此题的一般解法是去括号后将所有的未知项移到方程的左边,已知项移到方程的右边,其实,我们在去括号后发现所有的未知项移到方程的左边合并同类项后系数不为正,为了减少计算的难度,我们可以根据等式的对称性,把所有的未知项移到右边去,已知项移到方程的左边,最后再写成x=a的形式. 例4. 解方程 1 7 5 3 2 1 4 1 6 1 8 1 = ? ? ? ? ? ? + ? ? ? ? ? ? + ? ? ? ? ? + - x . 解析:方程两边乘以8,再移项合并同类项,得111 351 642 x ?-? ?? ++= ? ?? ?? ?? 同样,方程两边乘以6,再移项合并同类项,得11 31 42 x- ?? += ? ??

初中物理压强经典例题

初中物理压强经典例题 1、如图所示,平底茶壶的质量是300克,底面积是40平方厘米,内盛0.6千克 的水,放在面积为1平方米的水平桌面中央。 ⑴水对茶壶底部的压力多大? ⑵当小明将100克的玻璃球放入茶壶内,水面上升了1厘米,但水并未溢出。此 时茶壶对桌面的压强为多少? 2、如图8所示,水平桌面上放置的容器容积为1.5×10-3米3,底面积为1.0×10-2米2,高为20厘米,容器重1牛,当它盛满水时求: (1)水对器底的压力和压强; (2)容器对桌面的压力. 3、随着电热水器的不断改进,图l4所示的电热水壶深受人们的喜爱。它的容积 为2L,壶身和底座的总质最是l.2kg,底座与水平桌面的 =1.0×l03kg/m3)求: 接触面积为250cm2,装满水后水深l6cm。(ρ 水 (1)装满水后水的质量; (2)装满水后水对电热水壶底部的压强; (3)装满水后桌面受到的压强。

4、两只容积相等、高度和底面积都不相等的圆柱形容器A和B的平面图如图所 示,容器A的底面积为400厘米2,高为10厘米。两个容器都盛满水且放在水平桌面上。不考虑两个容器本身的重力和体积大小。求: (1) 容器A中水的质量。 (2) 容器A中水对容器底部的压强。 (3) 容器B中水对容器底部的压力。 5、如图重为120N、底面积为0.1m2的物体在20N的水平拉力F作用下沿水平地面向右匀速运动了10m,用时20s.求: (1)物体对地面的压强; (2)物体所受摩擦力的大小; 6、质量是20t的坦克,每条履带与地面的接触面积是2,每条履带的宽度是0.4m, 求: (1)坦克所受的重力是多大?(g取10N/) (2)坦克在平路上行驶时对地面的压强是多大? (3)如果坦克垂直路过一条宽度是0.5m的壕沟,当坦克位于壕沟的正上方时,坦克对地面的压强是多大?

2021年新人教版七年级数学下期末复习资料 知识归纳与典型例题

七年级数学 下学期期末复习知识归纳总结与典型例题 【本讲教育信息】 一. 教学内容: 期末几何复习 二. 知识归纳总结(知识清单) 知识点(1)同一平面两直线的位置关系 知识点(2)三角形的性质 三角形的分类 <1>按边分 <2>按角分 ???? ???三角形 三角形锐角三角形)9()8(

知识点(3)平面直角坐标系 <1>有序实数对 有顺序的两个实数a和b组成的实数对叫做有序实数对,利用有序实数对可以很准确地表示(18) 的位置。 <2>平面直角坐标系 在平面内两条互相垂直且有公共原点的数轴,组成平面直角坐标系,水平的数轴叫做x 轴或横轴,取向右为正方向;竖直的数轴叫做y轴或纵轴,取向上为正方向,两坐标轴的交点O为平面直角坐标系的(19) 三、中考考点分析 平面图形及其位置关系是初中平面几何的基础知识,相交点与平行线更是历年中考常见的考点,通常以填空题和选择题的形式考查,其中角平分线的定义及其性质,平行线的性质与判定,利用“垂线段最短”解决实际问题是重点;平面直角坐标系的考查重点是在直角坐标系中表示点及直角坐标系中点的特征,分值为3分左右,考查难度不大;三角形是最基本的几何图形,三角形的有关知识是学习其它图形的工具和基础,是中考重点,考查题型主要集中在选择题和解答题。 【典型例题】 相交线与平行线 例一、如图:直线a∥b,直线AC分别交a、b于点B、C,直线AD交a于点D 若∠1=20°,∠2=65°

则∠3=___ 解析:∵a∥b(已知) ∴∠2=∠DBC=65°(两直线平行,内错角相等) ∵∠DBC=∠1+∠3(三角形的一个外角等于与它不相邻的两个内角之和) ∴∠3=∠DBC-∠1 =65°-20° =45° 本题考查平行线性质和三角形的外角性质的应用 例二.将一副三角板如图放置,已知AE∥BC,则∠AFD的度数是【】A.45°B.50°C.60°D.75° 解析:∵AE∥BC(已知) ∴∠C=∠CAE=30°(两直线平行,内错角相等) ∵∠AFD=∠E+∠CAE(三角形的一个外角等于与它不相邻的两个内角之和) =45°+30°=75°故选D 本题解答时应抓住一副三角板各个角的度数 例三.如图,∠1+∠3=180°,CD⊥AD,CM平分∠DCE,求∠4的度数 解析:∵∠3=∠5(对顶角相等)∠1+∠3=180°(已知) ∴∠1+∠5=180°(等量代换) ∴AD∥BE(同旁内角互补,两直线平行) ∵CD⊥AD(已知) ∴∠6=90°(垂直定义) 又∵AD∥BE(已证) ∴∠6+∠DCE=180°(两直线平行,同旁内角互补) ∴∠DCE=90° 又∵CM平分∠DCE(已知)

反函数例题讲解

反函数例题讲解 例1.下列函数中,没有反函数的是 ( ) (A) y = x 2-1(x <2 1-) (B) y = x 3+1(x ∈R ) (C) 1 -= x x y (x ∈R ,x ≠1) (D) ? ? ?<-≥-=).1(4)2(22x x x x y , 分析:一个函数是否具有反函数,完全由这个函数的性质决定. 判断一个函数有没有反函数的依据是反函数的概念.从代数角度入手,可试解以y 表示x 的式子;从几何角度入手,可画出原函数图像,再作观察、分析.作为选择题还可用特例指出不存在反函数. 本题应选(D ). 因为若y = 4,则由 ? ? ?≥=-2422x x , 得 x = 3. 由 ? ? ?<=-144x x , 得 x = -1. ∴ (D )中函数没有反函数. 如果作出 ? ? ?<-≥-=).1(4)2(22x x x x y , 的图像(如图),依图 更易判断它没有反函数. 例2.求函数 211x y --=(-1≤x ≤0)的反函数. 解:由 211x y --=,得:y x -=-112 . ∴ 1-x 2 = (1-y )2, x 2 = 1-(1-y )2 = 2y -y 2 . ∵ -1≤x ≤0,故 22y y x --=. 又 当 -1≤x ≤0 时, 0≤1-x 2≤1, ∴ 0≤21x -≤1,0≤1-21x -≤1, 即 0≤y ≤1 . ∴ 所求的反函数为 22x x y --=(0≤x ≤1).

由此可见,对于用解析式表示的函数,求其反函数的主要步骤是: ① 把给出解析式中的自变量x 当作未知数,因变量y 当作系数,求出x = φ ( y ). ② 求给出函数的值域,并作为所得函数的定义域; ③ 依习惯,把自变量以x 表示,因变量为y 表示,改换x = φ ( y )为y = φ ( x ). 例3.已知函数 f ( x ) = x 2 + 2x + 2(x <-1),那么 f -1 (2 )的值为__________________. 分析:依据f -1 (2 )这一符号的意义,本题可由f ( x )先求得f -1 ( x ),再求f -1 (2 )的值(略). 依据函数与反函数的联系,设f -1 (2 ) = m ,则有f ( m ) = 2.据此求f - 1 (2 )的值会简捷些. 令 x 2 + 2x + 2 = 2,则得:x 2 + 2x = 0 . ∴ x = 0 或 x =-2 . 又x <-1,于是舍去x = 0,得x =-2,即 f -1 (2 ) = -2 . 例4.已知函数 241)(x x f +=(x ≤0),那么 f ( x )的反函数f -1 ( x ) 的图像是 ( ) (A ((B (C

初中物理竞赛浮力、压强经典题目大全

提高内容 一、 基本概念 1、 流体静压强:静止流体作用在单位面积上的力。p 设微小面积A ?上的总压力为P ?,则 平均静压强:A P p ??= 点静压强: A P p A ??=→?lim 0 即流体单位面积上所受的垂直于该表面上的力。 单位:N/m 2 (Pa) 2、 总压力:作用于某一面上的总的静压力。P 单位:N (牛) 3、流体静压强单位: 国际单位:N/m 2=Pa 物理单位:dyn/cm 2 1N=105dyn ,1Pa=10 dyn/cm 2 工程单位:kgf/m 2 混合单位:1kgf/cm 2 = 1at (工程大气压) ≠ 1atm (标准大气压) 1 at=1 kgf/cm 2 =9.8×104Pa=10m 水柱 1atm =1.013×105Pa =10.3 m 水柱 二、 流体静压强特性 1、 静压强作用方向永远垂直并指向作用面——方向特性。 2、 静止流体中任何一点上各个方向的静压强大小相等,而与作用面的方位无关,即p 只是位置的函数 ——大小特性。(各向相等) 3、静止流体中任一点的压强p 由两部分组成,即液面压强p 0与该点到液面间单位面积上的液柱重量h γ。 推广:已知某点压强求任一点压强 h p p ?+=γ12 4、静止流体中,压强随深度呈线性变化 用几何图形表示受压面上压强随深度而变化的图,称为压强分布图。 大小:静力学基本方程式 方向:垂直并且指向作用面(特性一) 例题: ΔA ΔP

5、 同种连续静止流体中,深度相同的点压力相同。连通器: 三、测压计 1、分类:根据适用范围、适用条件的不同,分为液式、金属式、电测式。 2、液式测压计 原理:h p p γ+=0 (p 、p 0的标准必须一致,用表压) 方法:找等压面 (性质5:两种互不相混的静止流体的分界面必为等压面) 特点:结构简单、使用方便、制造简单,常用于实验室中。 a. 液面计 b. 测压管

管理统计学期末复习典型例题

统计学是一门收集、整理和分析数据的方法科学,其目的是探索数据的内在数量规律性,以达到对客观事物的科学认识。包括:1.数据搜集:例如,调查与试验;2.数据整理:例如,分组;3.数据展示:例如,图和表;4.数据分析:例如,回归分析。 统计学的分科:按内容分为描述统计学(描述数据特征;找出数据的基本规律)和推断统计学(对总体特征作出推断);按性质分为理论统计学(统计学的一般理论和数学原理)和应用统计学(在各领域的具体应用)。 一、描述统计学的典型例题 【例3.3】某生产车间50名工人日加工零件数如下(单位:个) 117 122 124 129 139 107 117 130 122 125 108 131 125 117 122 133 126 122 118 108 110 118 123 126 133 134 127 123 118 112 112 134 127 123 119 113 120 123 127 135 137 114 120 128 124 115 139 128 124 121 要求:请对上述数据进行分组,编制频数分布表;绘制直方图,并对该情况进行简要的分析说明 可以按Sturges 提出的经验公式来确定组数K=1+lgn/lg2 确定各组的组距:组距=( 最大值- 最小值)÷组数 等距分组表(上下组限重叠——不重不漏:左闭右开)(上下组限间断)

面积来表示各组的频数分布;在直角坐标中,用横轴表示数据分组,纵轴表示频数或频率,各组与相应的频数就形成了一个矩形,即直方图(Histogram);直方图下的总面积等于1。 分组数据—直方图(直方图的绘制) 对该情况进行简要的分析说明(略) 【例3.4】在某地区调查120名刚毕业参加工作的研究生月工资收入,进行分组

中考物理压强解题技巧及经典题型及练习题(含答案)

中考物理压强解题技巧及经典题型及练习题(含答案) 一、压强 1.下列与压强有关的事例的解释中正确的是 A.书包的背带较宽,是为了增大压强 B.用吸管喝饮料,利用了大气压强 C.拦河大坝修成上窄下宽,利用了连通器原理 D.起风时,常看见屋内的窗帘飘向窗外,这是因为窗外空气流速大,压强大 【答案】B 【解析】书包的背带较宽,是为了压力一定时,通过增大受力面积来减小压强,故A错误;当用吸管吸饮料时,首先是把吸管内的空气吸走,然后在外界大气压的作用下,饮料就被压进吸管里,所以,用吸管喝饮料是利用大气压强,故B正确;液体内部压强随着深度的增加而增大,所以水坝下部比上部建造的宽,是由于液体压强随着深度的增加而增大,故C错误;由于流体流速越大的位置压强越小,所以起风时,常看见屋内的窗帘飘向窗外,这是因为窗外空气流速大、压强小,故D错误,故选B。 2.在铁桶内放少量的水,用火加热,水沸腾之后把桶口堵住,然后浇上冷水,铁桶变扁,如图所示,关于铁桶变扁的原因,下列说法正确的是() A.冷水的压力使铁桶变扁 B.大气压使铁桶变扁 C.铁桶内空气膨胀使铁桶变扁 D.铁桶变扁与压力无关 【答案】B 【解析】 试题分析:在铁桶内放少量的水,用火加热,水吸热汽化,液态水变为气态水蒸气,水蒸气将铁桶中的空气派出到铁桶外。水沸腾之后把桶口堵住,然后浇上冷水,水蒸气遇冷放热,发生液化现象,铁桶内的气压降低,而铁通外是大气压保持不变,铁通外的大气压大于铁桶内的大气压,所以铁桶变扁,故选B。 【考点定位】大气压强 3.如图所示,放在水平地面上的均匀正方体甲、乙对地面的压力相等,若在两物体上部沿水平方向切去一定的厚度,使剩余部分的高度相等,则剩余部分对地面的压力F甲'和F乙'、压强p甲'和p乙'的关系是()

反函数_典型例题精析

2.4 反函数·例题解析 【例1】求下列函数的反函数: (1)y (x )(2)y x 2x 3x (0]2= ≠-.=-+,∈-∞,.352112x x -+ (3)y (x 0)(4)y x +1(1x 0) (0x 1) =≤.=-≤≤-<≤11 2x x +????? 解 (1)y (x )y y (2y 3)x y 5x y (x )∵= ≠-,∴≠,由=得-=--,∴=所求反函数为=≠.352112323521 53253232 x x x x y y y y -+-++-+- 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域为y ∈[2,+∞), 由=-+≤,得-=-,即=-∴反函数为=-,≥.y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----22 2 解 (3)y (x 0)0y 1y x f (x)(0x 1)1∵= ≤,它的值域为<≤,由=得=-,∴反函数为=-<≤.11 111122x x y y x x ++--- 解 (4)y (1x 0)0y 1f (x)x 1(0x 1)y (0x 1)12由=-≤≤, 得值域≤≤,反函数=-≤≤.由=-<≤, x x +-1 得值域-≤<,反函数=-≤<, 故所求反函数为=-≤≤-≤<.1y 0f (x)(1x 0)y x 1(0x 1) x (1x 0)1222-?????x

【例2】求出下列函数的反函数,并画出原函数和其反函数的图像. (1)y 1(2)y 3x 2(x 0)2=-=--≤x -1 解 (1)∵已知函数的定义域是x ≥1,∴值域为y ≥-1, 由=-,得反函数=++≥-. 函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11 解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2, 反函数=-≤-.f (x)(x 2)1--+x 23 它们的图像如图2.4-2所示. 【例3】已知函数=≠-,≠.f(x)(x a a )3113 x x a ++ (1)求它的反函数;(2)求使f -1(x)=f(x)的实数a 的值. 解(1)y x a y(x a)3x 1(y 3)x 1ay y 3设=,∴≠-,∵+=+,-=-,这里≠, 31x x a ++ 若=,则=这与已知≠矛盾,∴=,,即反函数=.y 3a a x f (x)113131313 -----ay y ax x (2)f(x)f (x)x 1若=,即 =对定义域内一切的值恒成立,-++--3113 x x a ax x 令x =0,∴a =-3.

压强经典习题含答案

压强经典习题 一、选择题(每题3分,共48分) 1、如图所示,在探究液体压强特点的过程中,将微小压强计的金属盒放在水中,下列做法能够使压强计U形管两边液面的高度差减小的是() A.将压强计的金属盒向下移动一段距离 B.将压强计的金属盒向上移动一段距离 C.将压强计的金属盒在原位置转动180° D.将压强计的金属盒放在同样深度的食盐水中 2、在甲、乙两个试管中分别装有相同高度的水和酒精(ρ水>ρ酒精),试管底部受到的液体的压强p甲和p乙的关系是() A.P甲>P乙 B.P甲=P乙 C.P甲<P乙 D.无法确定 3、如图所示,装满水的密闭容器置于水平桌面上,其上下底面积之比为 4:1,此时水对容器底部的压力为F,压强为p。当把容器倒置后放到水 平桌面上,水对容器底部的压力和压强分别为() A.F,P B.4F,P C.1/4F,P D.F,4p 4、如图所示,桌面上放有甲、乙两个鱼缸,同学们观察、比较后提出下列说法,其中正确的是() A.鱼缸甲对桌面的压力小,缸中鱼受到水的压强大 B.鱼缸甲对桌面的压力大,缸中鱼受到水的压强小 C.鱼缸乙对桌面的压力小,缸中鱼受到水的压强小 D.鱼缸乙对桌面的压力大.缸中鱼受到水的压强大 5、将未装满水且密闭的矿泉水瓶,先正立放置在水平桌面上,再倒立放置, 如图所示。两次放置时,水对瓶底和瓶盖的压强分别为p A和p B, 水对瓶底 和瓶盖的压力分别为F A和F B,则() A. p A>p B ,F A>F B B. p A<p B , F A=F B C. p A=p B, F A<F B D. p A<p B ,F A >F B 6、如图所示,水平桌面上放着甲、乙、丙三个底面积相同的容器,若在三个容器中装入 质量相等的水,三个容器底部所受水的压力()

外研英语七年级下学期期末复习题典型例题

初一英语Revision 2外研社(初中起点) 【本讲教育信息】 一. 教学内容: Revision 2 二. 教学重点 1. 重点的词汇和语法 2. 考点例题 三. 内容的讲解与分析 1. like的句型有如下的两种. (1)Would you like sth. 此句型表示委婉地征求对方的意见。意为“你想要某物吗” 肯定回答为:Yes, please . / /否定回答为 :No, thanks . 如: Would you like some apples to eat Yes, please . 你想要些苹果吗好的,来点吧。 Would you like some fish No ,thanks . 你想要些鱼肉吗不,谢谢。 (2)Would you like to do sth. 此句表示委婉地提出邀请,意为:你愿意做某事吗 肯定回答为:I would like/love to. / I’d like to .(缩写形式) 否定回答为:Sorry, I am afraid not./ Sorry, I can’t. But … Would you like to come to my party Yes ,I’d like to. 你想来我的晚会吗是的,很愿意。 Would you like to fly kites with me Yes, I’d like to. 你想和我一起去放风筝吗很愿意。 Would you like to wear white shirtSorry, I am afraid not. 你想穿白上衣吗不想。 2. 我们来具体看看 can的用法. (1)表示某种能力时,意为“能,会”如: This boy can speak English. 这个男孩会说英语。 (2)表示允许或请求许可时,意为“可以,允许”,相当于may。若要表示更委婉,客气,可用 could来代替。如: You can /may go home now. 你现在可以回家了。 Can /Could I borrow two books at a time 我可以一次借两本书吗 Yes, you can .可以。 (3)表示可能性时,意为“可能”,具有怀疑或不肯定的意味,仅用于否定句或疑问句中. can的否定式can’t 的意思是“不可能”。如: I think you are a good student, you can’t do that thing. 我认为你是好学生,不可能做那样的事。 Can he be a bad man 他可能是坏人吗 3. must 是情态动词,它的用法如下: (1)表示命令,义务或要求时,意为“必须,应该”,其否定式mustn’t意为“不应

反函数典型例题精析.doc

学习必备 欢迎下载 2. 4 反函數·例題解析 【例 1】求下列函數的反函數: (1)y = 3x 5 (x ≠- 1 ) . 2x 1 2 (2)y = x 2 - 2x + 3, x ∈ ( -∞, 0] . 1 (3)y = x 2 1 (x ≤ 0) . x +1 ( -1≤x ≤ 0) (4)y = - x (0<x ≤1) 解 (1) ∵ y = 3x 5 (x ≠- 1 ),∴ y ≠ 3 , 2x 1 2 2 由 y = 3x 5 得 (2y - 3)x =- y - 5, 2x 1 ∴ x = y 5 所求反函数为 y = y 5 (x ≠ 3 ). 3 2y 3 2y 2 解 (2)∵ y =(x -1) 2 + 2, x ∈ (-∞, 0]其值域為 y ∈ [2,+∞ ), 由 y = (x - 1) 2 + 2(x ≤ 0) ,得 x -1=- y 2,即 x = 1- y 2 ∴反函数为 f 1 (x) = 1- x 2, (x ≥ 2) . 解 (3)∵y = 1 ,它的值域为 0<y ≤1, x 2 (x ≤ 0) 1 由 y = 2 1 得 x =- 1 y , x 1 y ∴反函数为 f 1 (x) =- 1 x (0 <x ≤1) . x 解 (4)由y = x 1(-1≤ x ≤ 0), 得值域 0≤y ≤1,反函数 f 1 (x) = x 2 -1(0≤x ≤1). 由 y =- x (0<x ≤1), 得值域- 1≤ y < 0,反函数 f 1 (x) =x 2 ( -1≤x < 0), x 2 -1 (0≤ x ≤ 1) 故所求反函数为 y = 2 ( - ≤ < . x 1 x 0)

初中物理 压强经典练习题(含答案)

初中物理压强经典练习题 一.选择题(共19小题) 1.(2014?泉州模拟)高度、材料相同的实心长方体A和B放在水平桌面上,它们的大小如图所示.它们对桌面的压力分别为F A、F B,压强分别为P A、P B.关于它们的大小关系,正确的是() 去相同的厚度,并将切去部分叠放至对方剩余部分上表面的中央,如图(b)所示.若此时甲′、乙′对地面的压力、压强分别为F甲′、F乙′、p甲′、p乙′,则() 3.(2014?龙江县二模)如图所示,放在水平地面上的两个实心长方体A、B,已知体积V A<V B,高度h A<h B,与地面的接触面积S A>S B,对地面的压强p A=p B.下列判断正确的是() 4.(2014?闸北区一模)如图所示,甲、乙两个正方体物块放置在水平地面上,甲的边长小于乙的边长.甲对地面的压强为p1,乙对地面的压强为p2() 5.(2014?长沙模拟)如图所示,底面积相同的甲、乙两容器,装有质量相同的不同液体,则它们对容器底部压强的大小关系正确的是()

6.(2014?清流县一模)在重相同、底面积相等、外形不一样的甲、乙、丙三个容器中,装入同样高h的同一种液体,如图所示,则() 7.(2014?福州二模)如图为装满液体的封闭容器.设液体对容器底的压强为p1,压力为F1,容器对桌面的压强为p2,压力为F2,如果不计容器自重,则() 8.(2014?路南区二模)水平桌面上有甲、乙、丙三个完全相同的容器,装有不同的液体,将三个长方体A、B、C分别放入容器的液体中,静止时的位置如图所示,三个容器的液面相平.已知三个长方体的质量和体积都相同.则下列判断正确的是() 9.(2014?东营二模)一位初三同学站在操场上时对地面的压强大约为1.2×10Pa.某校初三有甲、乙、丙三个班,每班人数分别为38人、40人、42人,以班为单位站在操场上.关于每个班对地面的压强,下列估算中正确的是() 两桶质量相同,上口面积相同,装相同质量的水放在水平地面上.关于水桶对地面的压强和水桶底受到水的压力的说法正确的是()

人教版数学七年级下册期末复习典型例题解析

1.(2020?岐山县二模)将直角三角板ABC 按如图所示的方式放置,直线a 经过点A ,且直线a ∥BC ,若∠1=60°,则∠2的度数为( ) A .35° B .30° C .60° D .50° 【考点】平行线的性质. 【专题】线段、角、相交线与平行线;推理能力. 【分析】先根据平行线的性质求出∠3的度数,再根据平角的定义求出∠2的度数. 【解答】解:如图. ∵直线a ∥BC , ∴∠3=∠1=60°, ∵∠CAB=90°, ∴∠2=180°-∠CAB-∠3=30°, 故选:B . 【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,内错角相等.

2.(2020?邢台一模)若a表示正整数,且 a,则a << 的值是() A.3 B.4 C.15 D.16 【考点】实数与数轴;估算无理数的大小. 【专题】二次根式;数感. 【分析】直接利用a的取值范围得出符合题意的答案. 【解答】解:∵<< a << ∴正整数a=4, 故选:B. 【点评】此题主要考查了估算无理数的大小,正确得出接近无理数的整数是解题关键.

≤≤≤,则的3.(2020?鼓楼区一模)已知57,4 整数部分可以是() A.9 B.10 C.11 D.12 【考点】估算无理数的大小.无理数的整数部分与小数部分【专题】实数;运算能力. 【分析】根据估算无理数的大小的方法即可得 分. ≤≤≤, 【解答】解:∵57,4 ∴25≤a≤49,16≤b≤36, ∴41≤a+b≤85, 则 的整数部分可以是6,7,8,9. 故选:A. 【点评】本题考查了估算无理数的大小,解决本题的关键是掌握估算的方法.

反函数·典型例题精析

2.4 反函數·例題解析 【例1】求下列函數得反函數: 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域為y ∈[2,+∞), 由=-+≤,得-=-,即=-∴反函数为 =-,≥. y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----222 【例2】求出下列函數得反函數,並畫出原函數与其反函數得圖像. 解 (1)∵已知函數得定義域就是x ≥1,∴值域為y ≥-1, 由=-,得反函数=++≥-. 函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11 解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2, 它們得圖像如圖2.4-2所示. (1)求它得反函數;(2)求使f -1(x)=f(x)得實數a 得值. (2)f(x)f (x)x 1若=,即 =对定义域内一切的值恒成立,-++--3113 x x a ax x 令x =0,∴a =-3. 或解 由f(x)=f -1(x),那麼函數f(x)與f -1(x)得定義域与值域相同,定義域就是{x|x ≠a,x ∈R },值域y ∈{y|y ≠3,y ∈R },∴-a =3即a =-3. 【例4】已知函数==中,、、、均不为零,y f(x)a b c d ax b cx d ++ 試求a 、b 、c 、d 滿足什麼條件時,它得反函數仍就是自身. 令x =0,得-a =d,即a +d =0. 事實上,當a +d =0時,必有f -1(x)=f(x),

因此所求得條件就是bc -ad ≠0,且a +d =0. 【例5】設點M(1,2)既在函數f(x)=ax 2+b(x ≥0)得圖像上,又在它得反函數圖像上,(1)求f -1(x),(2)證明f -1(x)在其定義域內就是減函數. 解证(1)2a b 14a b a b f(x)x (x 0)(2)y x (x 0)f (x)(x )221由=+=+得=-=,∴=-+≥由=-+≥得反函数=≤.???????? ??--1373137313737373 x 【例6】解法一若函数=,求的值.先求函数=的反函数=,于是==--.f(x)f (2)()f(x)f (x)f (2)532x x x x x x -+-++-+----12 1212112212 111 解法(二) 由函數y =f(x)與其反函數y =f -1(x)之間得一一對應關 系,求的值,就是求=时对应的的值,∴令=,得=--,即=--.f (2)f(x)2x 2x 532f (2)53211---+x x 12 【例7】已知∈,且≠,≠.设函数=∈且≠,证明=的图像关于直线=对称.a a 0a 1f(x)(x x )y f(x)y x R R x ax a --1 1 1 因為原函數得圖像與其反函數得圖像關於直線y =x 對稱, ∴函數y =f(x)得圖像關於直線y =x 對稱.

初三数学上学期期末复习知识点总结加经典例题讲解

初三数学上册期末复习资料加经典例题 第一章、图形与证明(二) (一)、知识框架 (二)知识详解 2.1、等腰三角形的判定、性质及推论 性质:等腰三角形的两个底角相等(等边对等角) 判定:有两个角相等的三角形是等腰三角形(等角对等边) 推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”) 2.2、等边三角形的性质及判定定理 性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三 2.直角三角形全等的判定:HL 4.等腰梯形的性质和判定 5.中位线 三角形的中位线 梯形的中位线 注意:若等边三角形的边长为a ,则:其高为: ,面积为: 。 1.等腰三角形 等边三角形的性质和判定 等腰三角形的性质和判定 线段的垂直平分线的性质和判定 角的平分线的性质和判定 3.平行四边形 平行四边形的性质和判定:4个判定定理 矩形的性质和判定 菱形的性质和判定:3个判定定理 正方形的性质和判定:2个判定定理 注注意:(1)中点四边形 ①顺次连接任意四边形各边中点,所得的新四边形是 ; ②顺次连接对角线相等的四边形各边中点,所得的新四边形是 ; ③顺次连接对角线互相垂直的四边形各边中点,所得的新四边形是 ; ④顺次连接对角线互相垂直且相等的四边形各边中点,所得的新四边形是 。 ab S 2 1=注意:(1)解决梯形问题的基本思路:通过分割和拼接转化成三角形和平行四边形进行解决。 即需要掌握常作的辅助线。 (2)梯形的面积公式:()lh h b a S =+=2 1 (l -中位线长)

线合一”的性质;等边三角形是轴对称图形,有3条对称轴。 判定定理:有一个角是60度的等腰三角形是等边三角形。或者三个角都相等的三角形是等边三角形。 2.3、线段的垂直平分线 (1)线段垂直平分线的性质及判定 性质:线段垂直平分线上的点到这条线段两个端点的距离相等。 判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。 (2)三角形三边的垂直平分线的性质 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。 (3)如何用尺规作图法作线段的垂直平分线 分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。 2.4、角平分线 (1)角平分线的性质及判定定理 性质:角平分线上的点到这个角的两边的距离相等; 判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。 (2)三角形三条角平分线的性质定理 性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。 (3)如何用尺规作图法作出角平分线 2.5、直角三角形 (1)勾股定理及其逆定理 定理:直角三角形的两条直角边的平方和等于斜边的平方。 逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。 (2)直角三角形全等的判定定理 定理:斜边和一条直角边对应相等的两个直角三角形全等(HL) 2.6、几种特殊四边形的性质

反三角函数典型例题

反三角函数典型例题 例1:在下列四个式子中,有意义的为__________: 解:(4)有意义。 (1)(2)arcsin 4 π ;(3)sin(arcsin 2);(4)arcsin(sin 2)。 点评:arcsin x ——x [1,1]∈-。 例2:求下列反正弦函数值 (1)= 解:3 π (2)arcsin0= 解:0 (3)1arcsin()2-= 解:6π- (4)arcsin1= 解:2 π 点评:熟练记忆:0,1 2 ±、,,1±的反正弦值。 思考:1sin(arcsin )24 π +该如何求? 例3:用反正弦函数值的形式表示下列各式中的x (1)sin x 5= ,x [,]22ππ ∈- 解:x =arcsin 5 变式:x [,]2 π ∈π? 解:x [,]2π ∈π时,π-x [0,]2 π∈,sin(π-x)=sinx =5 ∴π-x =,则x =π- 变式:x [0,]∈π? 解:x =或x =π- (2)1 sin x 4 =-,x [,]22ππ∈- 解:1x arcsin 4=- 变式:1 sin x 4=-,3x [,2]2π∈π 解:3x [,2]2π∈π时,2π-x [0,]2π∈,sin(2π-x)=-sinx =1 4 ∴2π-x =arcsin 14,则x =2π-arcsin 1 4 点评:当x [,]22ππ ∈-时,x arcsina =;而当x [,]22ππ?-,可以将角转化到区间[,]22 ππ-上,再用诱导公式 处理对应角之三角比值即可。 练习: (1)sin x = ,x [,]22ππ ∈- 解:x 3π= (2)sin x =,x [0,]∈π 解:x =x =π- (3)3sin x 5=-,3x [,]22ππ∈ 解:3 x arcsin 5 =π+

相关文档
相关文档 最新文档