文档库 最新最全的文档下载
当前位置:文档库 › 氧化铁 三氧化二铁

氧化铁 三氧化二铁

氧化铁  三氧化二铁
氧化铁  三氧化二铁

氧化铁三氧化二铁

化学性质ferric oxid

化学式:Fe2O3

稳定性

稳定,溶于盐酸、稀硫酸生成+3价铁盐。

溶解性

不溶于水,不与水反应。

氧化性

(高温下)被CO、H2、Al、C、Si等还原。

物理性质

式量:160

性状:红棕色粉末

相对密度(水=1):5.24

熔点:1565℃

存在形式:矿物:赤铁矿、赭石

别名:三氧化二铁、铁红、铁丹、赤铁矿、铁锈三氧化二铁是铁锈*(原理见制法)的主要成分。

α型晶胞结构:

标准生成焓

-824.2 kJ/mol

CAS Registry Number:

1309-37-1

制法

4Fe+6H20+3O2=4Fe(OH)3

在空气中灼烧亚铁化合物或氢氧化铁等可得三氧化二铁。

在潮湿的空气中,钢铁表面吸附了一层薄薄的水膜,这层水膜里含有少量的H+和OH-,还溶解了氧气,结果在钢铁表面形成了一层电解质溶液,它跟钢铁里的铁和少量的碳(因钢铁不纯)恰好形成无数微小的原电池。在这些原电池里,铁是负极,碳是正极。铁失去电子而被氧化:

负极:2Fe-4e-=2Fe2+

正极:2H2O+O2+4e-=4OH-

电化学腐蚀是造成钢铁腐蚀的主要原因。

在此之后继续反应:

Fe2+2OH-=Fe(OH)2

4Fe(OH)2+O2+2H2O=4Fe(OH)3

2Fe(OH)3+nH2O=2Fe2O3·nH2O+3H2O

在初中的化学里,可用盐酸(HCl)来除铁锈。

方程式为:Fe2O3+6HCl=2FeCl3+3H2O

用途

1. 其红棕色粉末为一种低级颜料,工业上称氧化铁红,用于油漆、油墨、橡胶等工业中

2. 可做催化剂

3. 玻璃、宝石、金属的抛光剂

4.用于和CO反应炼制生铁(H2也可) Fe2O3+3CO=2Fe+3CO2(高温) Fe2O3+3H2=2Fe+3H2O(高温) 2Fe2O3+3C=4Fe+3CO2(气)(高温) Fe3O 4+8Al==(高温)4Al2O3+3Fe

铁的其它氧化物

氧化亚铁、四氧化三铁(在纯净的氧气中剧烈燃烧生成)化学方程式:3Fe+2O2=点燃=Fe3O4

Fe2O3与Fe3O4的区别

有三种氧化物(氧化铁、氧化亚铁、四氧化三铁)。

氧化铁(Fe2O3)是一种红棕色粉末,俗称铁红,可作油漆的颜料,是金属氧化物,可和酸发生反应。Fe2O3 + 6HCl=2FeCl3+3H2O。

氧化亚铁(FeO)是一种黑色粉末,不稳定,在空气里加热,可被氧化成Fe3O4,和酸(弱氧化性酸)反应。FeO+2HCl==FeCl2+H2O。

四氧化三铁是具有磁性的黑色晶体,俗称磁性氧化铁,是一种复杂的氧化物,其中1/3是Fe2+、2/3是Fe3+,Fe3O4可看作是由FeO、Fe2O3形成的化合物。[实质是Fe(FeO2)2,偏铁酸亚铁盐] 铁的氧化物,有氧化亚铁FeO,三氧化二铁Fe2O3,四氧化三铁F e3O4,氧化亚铁又称一氧化铁,黑色粉末,熔点为1369±1℃,相对密度为5.7,溶于酸,不溶于水和碱溶液。极不稳定,易被氧化成三氧化二铁;在空气中加热会迅速被氧化成四氧化三铁。在隔绝空气的条件下,由草酸亚铁加热来制取。主要用来制造玻璃色料。三氧化二铁是棕红(红)色或黑色粉末,俗称铁红,熔点为1565℃,相对密度为5.24。在自然界以赤铁矿形式存在,具有两性,与酸作用生成Fe(Ⅲ)盐,与强碱作用得[Fe(OH)6]3-。在强碱介质中有一定的还原性,可被强氧化剂所氧化。三氧化二铁不溶于水,也不与水起作用。灼烧硫酸亚铁、草酸铁、氧氧化铁都可制得,它也可通过在空气中煅烧硫铁矿来制取。它常用做颜料、抛光剂、催化剂和红粉等。四氧化三铁为黑色晶体,加热至熔点(1594±5℃)同时分解,相对密度为5.18,具有很好的磁性,故又称为“磁性氧化铁”。它是天然产磁铁矿的主要成分,潮湿状态下在空气中容易氧化成三氧化二铁。不溶于水,溶于酸。近代测试表明,它实际是铁的混合价态化合物,化学式应为Fe

ⅡFeⅢ[FeⅢO4]。在磁铁矿中由于Fe2+与Fe3+在八面体位置上基本上是无序排列的,电子可在铁的两种氧化态间迅速发生转移,所以四氧化三铁固体具有优良的导电性。由铁在蒸汽中加热,或者将三氧化二铁在400℃用氢还原都可制得四氧化三铁。四氧化三铁用来做颜料和抛光剂等。磁性氧化铁能用于制造录音、录相磁带和电讯器材等。

四氧化三铁制备化学实验

实验一:共沉淀法制备具有超顺磁性的纳米四氧化三铁粒子 一、实验背景 有关纳米粒子的制备方法及其性能研究备受多学者的重视,这不仅因为纳米粒子在基础研究方面意义重大,而且在实际应用中前景广阔。在磁记录材料方面,磁性纳米粒子可望取代传统的微米级磁粉,Fe3O4超细粉体由于化学稳定性好,原料易得,价格低廉,已成为无机颜料中较重要的一种,被广泛应用于涂料,油墨等领域;而在电子工业中超细Fe3O4是磁记录材料,用于高密度磁记录材料的制备;它也是气、湿敏材料的重要组成部分。超细Fe3O4粉体还可作为微波吸收材料及催化剂。另外使用超细Fe3O4粉体可制成磁流体。 Fe3O4纳米粒子的制备方法有很多,大体分为两类:一是物理方法,如高能机械球磨法,二是化学方法,如化学共沉淀法、溶胶-凝胶法、水热合成法、热分解法及微乳液法等。但各种方法各有利弊;物理方法无法进一步获得超细而且粒径分布窄的磁粉,并且还会带来研磨介质的污染问题;溶胶-凝胶法、热分解法多采用有机物为原料,成本较高,且有毒害作用;水热合成法虽容易获得纯相的纳米粉体,但是反应过程中温度的高低,升温速度,搅拌速度以及反应时间的长短等因素均会对粒径大小和粉末的磁性能产生影响。 本实验是采用共沉淀法(将沉淀剂加入Fe2+和Fe3+混合溶液中)制备纳米Fe3O4颗粒。该制备方法不仅原料易得且价格低廉,设备要求简单,反应条件温和(在常温常压下以水为溶剂)等优点。 二、实验目的 1、了解用共沉淀法制备纳米四氧化三铁粒子的原理和方法。 2、了解纳米四氧化三铁粒子的超顺磁性性质。 3、掌握无机制备中的部分操作。 三、实验原理 采用化学共沉淀法制备纳米磁性四氧化三铁是将二价铁盐和三价铁盐溶液按一定比例混合,将碱性沉淀剂加入至上述铁盐混合溶液中,搅拌、反应一段时间即可得纳米磁性Fe3O4粒子,其反应式如下: Fe2++2Fe3++8OH-_________Fe3O4+4H2O 四、仪器与试剂 烧杯、FeCl2·4H2O、FeCl3、氢氧化钠、柠檬酸三钠。 五、实验步骤 1、配置50 ml 1 moL 的NaOH溶液。(2g NaOH+50g H2O) 2、称取0.9925g FeCl3和1.194g FeCl2·4H2O(反应当量比为1:1)溶于30 mL 的蒸馏水中。 3、将反应溶液加热至60℃,恒温下磁力搅拌(转速约为1000rpm)。 4、30 min后缓慢滴加配置的NaOH溶液,待溶液完全变黑后,仍继续滴加

三氧化二铁的测定

四川广元高力水泥实业有限公司 三氧化二铁的测定检验规程 目的:规定三氧化二铁的测定检验操作步骤及操作标准化。 范围:适用于原材料、生料、熟料中二氧化硅的检测。 程序: 1、本规程三氧化二铁的测定方法为EDTA直接滴定法。 2、方法提要: 在pH1.8~2.0、温度为60℃~70℃的溶液中,以磺基水杨酸钠为指示剂,用EDTA标准滴定溶液滴定。 3、分析步骤: ),精确至0.0001g,置于银坩埚中,加入6g~7g氢氧称取约0.5g试样(m 1 化钠,盖上坩埚盖(留有缝隙),放入高温炉中,从低温升起,在650℃~700℃的高温炉下熔融20分钟,期间取出摇动一次。取出冷却,将坩埚放入已盛有约100ml沸水的300ml烧杯中,盖上表面皿,在电炉上适当加热,待熔块完全浸出后,取出坩埚,用水冲洗坩埚和盖。在搅拌下一次加入25ml~30ml盐酸,再加入1ml硝酸,用热盐酸(1+5)洗净坩埚和盖。将溶液加热煮沸,冷却至室温后,移入250ml容量瓶中,用水稀释至标线,摇匀。此溶液B供测定二氧化硅、三氧化二铁,三氧化二铝、氧化钙、氧化镁和二氧化钛用。 从溶液A或上述溶液B中吸取25.00ml溶液放入300ml烧杯中,加水稀释至约100ml,用氨水(1+1)和盐酸(1+1)调节溶液pH在1.8~2.0之间(用精密pH试纸或酸度计检验)。将溶液加热至70℃,加入10滴磺基水杨酸钠指示剂溶液(100g/L), 用EDTA标准滴定溶液缓慢滴定至亮黄色(终点时溶液温度应不低于60℃,如终点前溶液温度降至近60℃时,应再加热至65℃~70℃)。保留此溶液供测定三氧化二铝用。 4、结果的计算与表示: 按式下计算: 三氧化二铁的质量分数w Fe2O3 T ×V×10 Fe2O3 = × 100 w Fe2O3 ×1000 m 1 T ×V Fe2O3 = m 1 式中: —三氧化二铁的质量分数,%; w Fe2O3 —EDTA标准滴定溶液对三氧化二铁的滴定度,单位为毫克每毫升(mg T Fe2O3 /ml); V —滴定时消耗EDTA标准滴定溶液的体积,单位为毫升(ml); —试料的质量,单位克(g)。 m 1

α-三氧化二铁制备

硝酸与铁屑反应生成硝酸亚铁,经冷却结晶、脱水干燥,经研磨后在600~700℃煅烧8~10h,在经水洗、干燥、粉碎制得氧化铁红产品。也可以氧化铁黄为原料,经600~700℃煅烧制得氧化铁红。4Fe(NO3)→2Fe2O3+12NO2↑+3O2↑ Fe2O3·nH2O→Fe2O3+nH2O;先制得透明氧化铁黄(制法参见透明氧化铁黄),经煅烧脱水,制得透明氧化铁红。其 2α-FeOOH[△]→2α-FeSO3+H2O;采用中和沉淀法。先制得氧化铁黑,再高温灼烧制得透明氧化铁线。将0.5mol/L浓度的FeCl3·6H2O溶液加热沸腾水解至红棕色胶粒出现为止(溶液1)。取与溶液1等体积的0.25mol/L的FeCl2溶液(由金属铁与盐酸作用制得),用稀氨水调至白色沉淀不再消失为止(溶液2)。将溶液1和溶液2合并,搅拌,并加入适量的羟基羧酸络合剂和缓冲剂,维持恒温80℃。随反应的进行,不断有黑色Fe3O4生成。反应结束,将Fe3O4结晶转移至pH8、含有为Fe3O4质量比为10%~20%的油酸钠溶液中进行表面处理,搅拌悬浊液,恒温80℃,0.5h后将悬浊液用稀盐酸(1:3)调pH=6~6.5,将Fe3o4油酸吸附包覆物(黑色絮凝体)抽滤,热水搅洗数次,50~60℃真空烘干,制得疏松的粉体Fe3O4。将上述油酸包覆的Fe3O4慢速升温至550~600℃焙烧0.5h,得到均匀分散的透明铁红α-Fe2O3微粒子。;由天然黄铁矿制得。由硫酸亚铁或草酸铁经风化得硫酸铁,再经煅烧而得。由氢氧化铁脱水而得。制造硫酸、苯胺、氧化铝等过程中的副产物。由碳酸铁、硝酸铁等经强热而得。硫酸亚铁加热至650℃以上而得。;云母赤铁矿法云母赤铁矿石精选后,经湿球磨机磨成精矿粉,脱水,烘干,冷却,粉碎至325目,过筛,制成云母氧化铁。;硫酸亚铁氧化法将硫酸与铁屑反应制得硫酸亚铁,除砷及重金属,经氧化而得。流程参见氧化铁黄。;制备方法有湿法和干法。湿法制品结晶细小、颗粒柔软、较易研磨,适宜作颜料。干法制品结晶大、颗粒坚硬,适宜作磁性材料、抛光研磨材料。湿法将一定量的5%硫酸亚铁溶液迅速与过量烧碱溶液反应(要求碱过量0.04~0.08 g/ml),在常温下通入空气使之全部变成红棕色的氢氧化铁胶体溶液,作为沉积氧化铁的晶核。以上述晶核为载体,以硫酸亚铁为介质,通入空气,在75~85℃,在金属铁存在的条件下,硫酸亚铁与空气中氧作用,生成三氧化二铁(即铁红)沉积在晶核上,溶液中的硫酸根又与金属铁作用,重新生成硫酸亚铁,硫酸亚铁再被空气氧化成铁红继续沉积,如此循环到整个过程结束,生成氧化铁红。其干法硝酸与铁片反应生成硝酸亚铁,经冷却结晶,脱水干燥,经研磨后在600~700℃煅烧8~10h,再经水洗、干燥、粉碎制得氧化铁红产品。也可以氧化铁黄为原料,经6()0~700℃煅烧制得氧化铁红。其4Fe(NO3)3[△]→2Fe2O3+12NO2↑+3O2↑Fe2O3+n H2O[△]→Fe2O3+nH2O[2]

氧化铁制备的方法

氧化铁制备的方法 制备氧化铁的方法有很多,根据反应物料的状态分别有干法和湿法两种。干法又包括气相法和固相法两种,其中气相法包括热分解法、鲁式法、焙烧法等。其中湿法包括空气氧化法、水解法、沉淀法、溶胶?凝胶法等;此外,还有催化法、包核法、水热法等工艺改进方法。 2.1 干法 气相法通常以羰基铁(Fe(CO)5)或者二茂铁(FeCP2)等为原材料,采用气相沉积、低温等离子化学沉积法(PCVD)、火焰热分解或激光热分解等方法来制备。固相法是把金属盐或金属氧化物按照配方充分混合、研磨以后进行煅烧,固相反应结束后,直接产生纳米粒子或研磨方法得到纳米粒子。 2.1.1 热分解法 热分解法通常以羰基铁(Fe(CO)5)或二茂铁(FeCP2)等为原材料,利用火焰热分解、激光分解或气相分解等技术制备而成。蔺恩惠等采用激光气相反应法,光源采用红外激光脉冲CO2激光器、以(Fe(CO)2)/O2作为反应物质,利用爆炸式反应,同时能够得到晶形和无定形态的三氧化二铁超细粉;该方法具有反应时间较短,工艺简单,产率高,能耗低等优点。余高奇等利用Fe(NO3)3·9H2O在高温加热到一定的温度会分解的特性,利用配制成的Fe(NO3)3·9H2O 的盐液体,经过超临界干燥,直接可得到纳米级氧化铁粉。热分解法具有操作环境好,影响因素少,产品质量高,工艺流程简单,分散性好,粒子超细等特点。但是其技术难度较大,对设备的结构和材质要求较高,一次性投资耗费大。 2.1.2 焙烧法 传统的焙烧法通常指的是绿矾焙烧法,该方法是指硫酸亚铁经过高温煅烧得到氧化铁红。该方法因为产生的SO2和SO3等气体严重污染环境,只应用于小规模生产。此外,还有煅烧铁黄、煅烧铁黑法。孙本良等提出一种利用化工等行业产生废铁泥为原料得到氧化铁红的工艺,该工艺包括筛分、磁选、煅烧等几个过程,其炉尾废气中粉尘通过除尘器收集后一方面可以作为后续产品的原料,另一

四氧化三铁制备化学实验

四氧化三铁制备化学实 验 https://www.wendangku.net/doc/e010929848.html,work Information Technology Company.2020YEAR

实验一:共沉淀法制备具有超顺磁性的纳米四氧化三铁粒子一、实验背景 有关纳米粒子的制备方法及其性能研究备受多学者的重视,这不仅因为纳米粒子在基础研究方面意义重大,而且在实际应用中前景广阔。在磁记录材料方面,磁性纳米粒子可望取代传统的微米级磁粉,Fe3O4超细粉体由于化学稳定性好,原料易得,价格低廉,已成为无机颜料中较重要的一种,被广泛应用于涂料,油墨等领域;而在电子工业中超细Fe3O4是磁记录材料,用于高密度磁记录材料的制备;它也是气、湿敏材料的重要组成部分。超细Fe3O4粉体还可作为微波吸收材料及催化剂。另外使用超细Fe3O4粉体可制成磁流体。 Fe3O4纳米粒子的制备方法有很多,大体分为两类:一是物理方法,如高能机械球磨法,二是化学方法,如化学共沉淀法、溶胶-凝胶法、水热合成法、热分解法及微乳液法等。但各种方法各有利弊;物理方法无法进一步获得超细而且粒径分布窄的磁粉,并且还会带来研磨介质的污染问题;溶胶-凝胶法、热分解法多采用有机物为原料,成本较高,且有毒害作用;水热合成法虽容易获得纯相的纳米粉体,但是反应过程中温度的高低,升温速度,搅拌速度以及反应时间的长短等因素均会对粒径大小和粉末的磁性能产生影响。 本实验是采用共沉淀法(将沉淀剂加入Fe2+和Fe3+混合溶液中)制备纳米Fe3O4颗粒。该制备方法不仅原料易得且价格低廉,设备要求简单,反应条件温和(在常温常压下以水为溶剂)等优点。 二、实验目的 1、了解用共沉淀法制备纳米四氧化三铁粒子的原理和方法。 2、了解纳米四氧化三铁粒子的超顺磁性性质。 3、掌握无机制备中的部分操作。 三、实验原理 采用化学共沉淀法制备纳米磁性四氧化三铁是将二价铁盐和三价铁盐溶液按一定比例混合,将碱性沉淀剂加入至上述铁盐混合溶液中,搅拌、反应一段时间即可得纳米磁性Fe3O4粒子,其反应式如下: Fe2++2Fe3++8OH-_________Fe3O4+4H2O 四、仪器与试剂 烧杯、FeCl2·4H2O、FeCl3、氢氧化钠、柠檬酸三钠。 五、实验步骤 1、配置50 ml 1 moL 的NaOH溶液。(2g NaOH+50g H2O) 2、称取0.9925g FeCl3和1.194g FeCl2·4H2O(反应当量比为1:1)溶于30 mL 的蒸馏水中。 3、将反应溶液加热至60℃,恒温下磁力搅拌(转速约为1000rpm)。

四氧化三铁的制备

四氧化三铁纳米片的制备及其对液体石蜡摩擦学的改性 张锡凤1)刘晓光1)程晓农2)殷恒波1)曹智娟1)郝伟1)严冲2) 1) 江苏大学化学化工学院,江苏镇江212013 2) 江苏大学材料科学与工程学院,江苏镇江212013 摘要:采用液相化学氧化法,在水体系中,以硫酸亚铁为母体,水合肼为氧化剂,加入吐温-80(Tween-80)为修饰剂,合成了厚约20nm、长约152nm的四氧化三铁纳米片。通过X-射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)和高浓度激光粒度仪对四氧化三铁纳米片进行了表征。将四氧化三铁纳米片加到基础油液体石蜡(LP)中,在UNT-Ⅱ摩擦磨损实验机上考察其作为LP添加剂后的摩擦磨损性能,采用SEM分析了磨损表面形貌和表面膜元素组成及含量。结果表明:与不加四氧化三铁纳米片的LP相比,添加后较大程度的降低了摩擦系数,并获得较小的磨痕直径,显著改善了LP的摩擦性能。 关键词:四氧化三铁,纳米片,化学还原法,摩擦学 Preparation of Fe3O4 Nanopiece and Modification Tribological Property of Liquid Paraffin as Its Additive ZHANG Xifeng1, LIU Xiaoguang1, CHENG Xiaonong2, YIN Hengbo1, Cao zhijuan1, HAO Wei1, Y AN Chong2 (1. School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013; 2. School of Material Science and Engineering, Jiangsu University, Zhenjiang, 21201 3. ) Abstract: 20nm thick and 152nm length Fe3O4Nanopieces were synthesized using ferrous sulfate as precursor in water systems, hydrazine hydrate as reductant, polyethylene sorbitan monooleate (Tween-80)as modifier. The as-prepared Fe3O4Nanopieces were characterized by transmission electron micrographs (TEM), powder X-ray diffraction (XRD), scanning electron microscope (SEM), high concentration laser granularity scatter analyzer. The anti-wear and friction reducing performance of Fe3O4nanopieces as liquid paraffin additive was investigated on UNT-Ⅱball-on-plate friction and wear testers. The worn surface morphology and composition of surface film were analyzed by means of scanning electron microscope (SEM). Compared with pure liquid paraffin, the results indicate that the tribological property of liquid paraffin with Fe3O4 nanopieces is improved, the friction coefficients are decreased, and the worn diameter is lesser. key words: ferroso-ferric oxide; nanowires; synthesis (chemical); tribological property granularity scatter 纳米金属材料的晶粒尺寸与形貌、表面状态和微结构直接影响到纳米金属的物化性质与用途。目前纳米金属的形貌控制合成与应用研究尚处于起步阶段,通过形貌控制可选择性地合成出四面体、立方体、棒以及三棱柱等形貌、尺寸和结构可控的纳米金属,以及进行纳米分子结构的重组装是人们的研究热点,具有深远的理论意义及应用价值。 纳米Fe3O4具有与生物组织的相容性以及与尺寸和形貌有关的电学和磁学性能,使它在

三氧化二铁生产方法

生产方法 制备方法有湿法和干法。湿法制品结晶细小、颗粒柔软、较易研磨,易于作颜料。干法制品结晶大、颗粒坚硬,适宜作磁性材料、抛光研磨材料。 湿法。 FeSO4+2NaOH→Fe(OH)2+Na2SO4 4Fe(OH)2+O2+2H2O→4Fe(OH)2↓ 4FeSO4+4H2O+O2→2Fe2O3↓+4H2SO4 Fe+H2SO4→FeSO4+H2↑ 将一定量的5%硫酸亚铁溶液迅速与过量氢氧化钠溶液反应(要求碱过量 0.04~0.08g/ml),在常温下通入空气,使之全部变为红棕色的氢氧化铁胶体溶液,作为沉积氧化铁的晶核。以上述晶核为载体,以硫酸亚铁为介质,通入空气,在75~85℃,在金属铁存以下,硫酸亚铁与空气中氧气作用生成三氧化二铁(即铁红)沉积在晶核上,溶液中的硫酸根又与金属铁作用重新生成硫酸亚铁,硫酸亚铁再被空气氧化成铁红继续沉积,这样循环至整个过程结束,生成氧化铁红。 干法。硝酸与铁屑反应生成硝酸亚铁,经冷却结晶、脱水干燥,经研磨后在600~700℃煅烧8~10h,在经水洗、干燥、粉碎制得氧化铁红产品。也可以氧化铁黄为原料,经600~700℃煅烧制得氧化铁红。 4Fe(NO3)→2Fe2O3+12NO2↑+3O2↑ Fe2O3·nH2O→Fe2O3+nH2O 生产方法 先制得透明氧化铁黄(制法参见透明氧化铁黄),经煅烧脱水,制得透明氧化铁红。其 2α-FeOOH[△]→2α-FeSO3+H2O 生产方法 采用中和沉淀法。先制得氧化铁黑,再高温灼烧制得透明氧化铁线。将 0.5mol/L浓度的FeCl3·6H2O溶液加热沸腾水解至红棕色胶粒出现为止(溶液1)。取与溶液1等体积的0.25mol/L的FeCl2溶液(由金属铁与盐酸作用制得),用稀氨水调至白色沉淀不再消失为止(溶液2)。将溶液1和溶液2合并,搅拌,并加入适量的羟基羧酸络合剂和缓冲剂,维持恒温80℃。随反应的进行,不断有黑色Fe3O4生成。反应结束,将Fe3O4结晶转移至pH8、含有为Fe3O4质量比为10%~20%的油酸钠溶液中进行表面处理,搅拌悬浊液,恒温80℃,0.5h后将悬浊液用稀盐酸(1:3)调pH=6~6.5,将Fe3o4油酸吸附包覆物(黑色絮凝体)抽滤,热水搅洗数次,50~60℃真空烘干,制得疏松的粉体Fe3O4。将上述油酸包覆的Fe3O4慢速升温至550~600℃焙烧0.5h,得到均匀分散的透明铁红α-Fe2O3微粒子。 生产方法 由天然黄铁矿制得。 由硫酸亚铁或草酸铁经风化得硫酸铁,再经煅烧而得。 由氢氧化铁脱水而得。 制造硫酸、苯胺、氧化铝等过程中的副产物。 由碳酸铁、硝酸铁等经强热而得。

三氧化二铁的测定

三氧化二铁的测定 6.2.2 络合滴定法 6.2.2.1 方法提要铁离子在pH为1~3范围内能与EDTA定量络合,借磺基水杨酸为指示剂,以EDTA标准溶液进行滴定,溶液由紫红色突变为亮黄色为终点,根据EDTA标准溶液消耗量计算三氧化二铁含量。 6.2.2.2 分析步骤以移液管吸取溶液A或溶液B20mL于250mL烧杯中,加氯酸钾0.1g,以水稀释至100mL,将烧杯置于电炉上加热,使氯酸钾溶解并继续加热至近沸,取下烧杯以氨水(1+1)中和至pH为6~7, 加1mol/L盐酸3~4mL,搅拌使沉淀溶解,加10%磺基水杨酸溶液2mL,以1 mol/L盐酸调节溶液酸度使pH在1.3~1.5范围内,以0.01mol/L EDTA标准溶液进行滴定,溶液由紫红色突变为亮黄色(含铁较低时为无色)为终点。 6.2.2.3 结果计算 二氧化二铁含量X4(%)按式(12)计算: T?V×10 X4=----------×100 (12) m0×1 000 式中:T——EDTA标准溶液对三氧化二铁的滴定度,mg/mL; V——滴定时消耗EDTA标准溶液体积,mL; m0——试样质量,g。 6.2.2.4 允许误差同一试样两次测定结果允许误差见表1。 6.3 二氧化钛的测定 6.3.1 方法提要钛离子与过氧化氢在酸性介质中生成黄色络合物,以磷酸作掩蔽剂消除Fe[3+]的干扰,以分光光度计于420nm波长处测定溶液吸光度,根据标准曲线查得的毫克数计算二氧化铁含量。 6.3.2 分析步骤 6.3.2.1 标准曲线的绘制以滴定管准确分取0,1,2,3,5,7,10mL二氧化钛标准溶液分别置于100mL容量瓶中,以水稀释至50mL,加硫酸(1+1)10mL、磷酸(1+1)2mL和过氧化氢(1+9)5mL,以水稀释至刻度,摇匀,在分光光度计上于420nm波长处以5cm比色槽测定吸光度并绘制标准曲线。 6.3.2.2 试样分析以移液管吸取溶液A或溶液B20mL于100mL烧杯中,加硫酸(1+1)10mL于通风橱内加热蒸发至冒白烟,取下冷却,以水冲洗杯壁并稀释至40mL,以定性滤纸过滤,以水洗烧杯3次,洗沉淀5~6次,滤液以100mL容量瓶承接。加磷酸(1+1)2mL和过氧化氢(1+9)5mL,以水稀释至刻度,摇匀,在分光光度计上于420nm波长处以5cm比色槽测定吸光度。 注:冒白烟后如无沉淀析出可不进行过滤。 6.3.3 结果计算二氧化钛含量X5(%)按式(13)计算: m×10 X5=------------×100 (13) m0×1 000 式中:m——自标准曲线中查得之二氧化钛毫克数; m0——试样质量,g。 6.3.4 允许误差同一试样两次测定结果允许误差见表2。 表2 _______________________________________________________________________________ 含量允许平均相对误差允许绝对误差 ≥0.10 30 - <0.10 - 0.03 _______________________________________________________________________________

氧化铁工艺

氧化铁工艺的技术情况及发展趋势 1、氧化铁合成主要工艺 氧化铁的制备工艺大致可以分为干法和湿法两类。干法又分为气相法和固相法,其中气相法常以羰基铁(Fe(CO)5)或二茂铁(FeCP2)等为原料,采用火焰热分解、气相沉积、低温等离子化学沉积法(PCVD)或激光热分解等原理,通过焙烧法、热分解法、鲁式法(Ruthner)等方法来制备,由于干法制过程中,不可避免的废气污染和工艺过程难以控制、质量难以保证等缺点,该类方法已逐渐被本行业所摒弃;湿法又名液相法,是目前实验室和工业界广泛采用的制备粉体材料的主要方法,通过-------,其主要包括主要包括溶胶?凝胶法、空气氧化法、水解法、沉淀法等;此外还有水热法、催化法、包核法等工艺改进法。主要优点是组分容易控制、设备简单、生产成本低;不足之处是杂质多,难以获得高性能的粒子粉体,生成的粒子易于形成聚凝体的假颗粒,难以分散。 2、我国氧化铁颜料合成工艺 我国氧化铁颜料主要以氧化铁红、氧化铁黄、氧化铁黑为主,其生产主要采用湿法合成。湿法合成氧化铁红、铁黄是以废铁皮为原料,通过硫酸亚铁为反应介质,铁和氧结合形成不同铁含量和晶体结构的氧化铁颜料,与一般化学反应离子结晶沉淀不同的是,作为颜料的氧化铁系晶型在结构上有一定的要求。它首先要求制成一定数量的晶种,然后再氧化结晶沉淀得到产物,这样得到的晶体才具有颜料的性能。合成氧化铁黑是以硫酸亚铁和烧碱为原料,在一定条件下加成脱水而得。 (1)氧化铁红合成工艺 目前国内生产合成氧化铁红的方法有:沉淀法、绿矾段少发、铁黄煅烧法、铁黑煅烧法和包核法。我国铁红大部分是采用沉淀法生产,以亚铁盐和铁皮为原料,经成核、沉淀、水洗、干燥得产品。而又根据晶种制备和采用亚铁盐不同 , 可分为硫酸法、硝酸法、混酸法。三种方法的工艺相似,以下以硫酸盐法为例。 晶种制备:将氢氧化钠或氨水加入到硫酸亚铁溶液中,控制p H值9- 12 , 鼓入一定量的空气,在20 一30℃氧化制得晶种。化学反应式如下:

四氧化三铁的制备实验报告

竭诚为您提供优质文档/双击可除四氧化三铁的制备实验报告 篇一:四氧化三铁纳米材料的制备 四氧化三铁纳米材料的制备一、原理 化学共沉淀法制备超微粒子的过程是溶液中形成胶体 粒子的凝聚过程,可分为2个阶段:第一个阶段是形成晶核,第二个阶段是晶体(晶核)的成长。而晶核的生成速度vl和晶体(晶核)的成长速度v2可用下列两式表示: 为过饱和浓度,s为其溶解度,故(c-s)为过饱和 度,k1,k2分别为二式的比例常数,D为溶质分子的扩散系数。 当V1>V2时,溶液中生成大量的晶核,晶粒粒度小; 当vl 采用化学共沉淀法制备纳米磁性四氧化三铁 是将二价铁盐和三价铁盐溶液按一定比例混合,将碱性沉淀剂快速加入至上述铁盐混合溶液中,搅拌、反应一段时间即得纳米磁性Fe304粒子,其反应式如下: Fe2++Fe3++oh-→Fe(oh)2/Fe(oh)3(形成共沉淀) Fe(oh)2+Fe(oh)3→Feooh+Fe304(ph≤7.5) Feooh+Fe2+→Fe3o4+h+(ph≥9.2)

Fe2++2Fe3++8oh-→Fe3o4+4h2o 由反应式可知,该反应的理论摩尔比为 Fe2+:Fe3+:oh-=l:2:8,但由于二价铁离子易氧化成三价铁离子,所以实际反应中二价铁离了应适当过量。该法的原理虽然简单,但实际制备中还有许多复杂的中间反应和副产物:Fe3o4+0.25o2+4.5h2o→3Fe(oh)3(4) 2Fe3o4+0.5o2→3Fe2o3(5) 此外,溶液的浓度、nFe2+/nFe3+的比值、反应和熟化温度、溶液的ph值、洗涤方式等,均对磁性微粒的粒径、形态、结构及性能有很大影响。 目前,纳米二氧化硅主要制备方法有:以硅烷卤化物为原料的气相法;以硅酸钠和无机酸为原料的化学沉淀法;以及以硅酸酯等为原料的溶胶凝胶法和微乳液法。在这些方法中,气相法原料昂贵,设备要求高,生产流程长,能耗大;溶胶凝胶法原料昂贵,制备时间长;而微乳液法成本高、有机物难以去除易对环境造成污染。与上述三种方法相比,化学沉淀法具有原料来源广泛、价廉,能耗小,工艺简单,易于工业化等优点,但同时也存在产品粒径大或分布范围较宽的问题,这是由于产品性状在制备过程中受许多可变因素的影响。 以硅酸钠为硅源,氯化铵为沉淀剂,加入表面活性剂十六烷基三甲基溴化铵(cTAb)和乙醇,通过化学沉淀法合成了粒径小且分布窄的纳米二氧化硅。在硅酸钠溶液中,简单的

铁氧化物的测定

氧化亚铁的测定 一:试剂 1、碳酸氢钠:固体 2、氟化钠(氟化钾液体同全铁10%):固体 3、盐酸:浓 4、硫磷混酸:15:15:70 5、二苯胺磺酸钠指示剂:0.5% 6、重铬酸钾标准溶液:0.1N 二: 分析步骤 称取试样0.2克于250锥形瓶中,加NaF10毫升(1-2克),碳酸氢钠(1—2克),盐酸25毫升,立即用瓷坩埚盖于瓶口,在低温电热板上加热溶解,浓缩体积约10毫升,加80—100毫升水,立即用橡皮塞塞紧,冷却后加入SP-混酸15—20毫升,加二苯指示剂4滴,用重铬酸钾标准溶液滴定至紫色为终点。 三 计算 FeO% =(1000 07185.0???m V c )×100% 式中:c —重铬酸钾的浓度 V —消耗重铬酸钾的毫升数 m —试样重量 三氧化二铁的测定 Fe 2O 3=[全铁-金属铁-氧化亚铁

*0.7778]*1.430 铁精粉(球团矿)中磷的测定 一试剂: 1、硫酸:1:1 2、钼酸铵溶液:3% 现用现配 3、抗坏血酸:固体0.1克或液体1%的10毫克 二分析步骤 称取0.1克试样于100毫升烧杯中,加入5毫升(1:1)硫酸,盖上表皿,轻轻摇动于电热板上,加热溶解(约30分钟)冒烟2—3分钟(螺旋烟)取下冷却,冲洗表皿,加水稀释至40毫升左右,用定量中速滤纸过滤于100毫升容量瓶中,加入钼酸铵5毫升,抗坏血酸10毫升(固体0.1克左右),用水稀释至刻度。摇匀。置于电热板上加温显色,使溶液的液面超过容量瓶刻度线一市寸显色完毕,取下冷却。在波长590mm处1厘米比色皿比色。 三计算 C 吸光度 T = N 待测物质的含量C1= TN1×100% 式中: C-标样物质的含量 N-标准物质的消光值 四误差范围

纳米四氧化三铁的制备与表面改性.doc11

纳米四氧化三铁的制备与表面改性 化学与材料科学系09级应用化学1班刘立君李淑媛 摘要:由于纳米Fe3O4在光学、电学、热学、磁学、力学等方面独特的性质,对它的研究越来越多,且在各个领域的应用也越来越广泛,因此本文详细介绍了纳米四氧化三铁的各种制备方法,对其制备工艺的优缺点、应用前景、产品性能进行了详细的比较;并综述了纳米四氧化三铁的表面改性的方法,如有机改性、无机改性、偶联改性、小分子改性、大分子改性等改性手法,以及表面改性后各种纳米Fe3O4的特征与用途前景。 关键词纳米Fe3O4 综述表面改性 1引言 四氧化三铁的性质:四氧化三铁在常温常压状态下是一种具有强磁性的黑色粉末状晶体,潮湿状态的四氧化三铁在空气中容易氧化成三氧化二铁,二价铁离子被氧化成三价铁离子。四氧化三铁具有强磁性,四氧化三铁固体具有优良的导电性。因为在磁铁矿中,由于Fe2 +与Fe3 +在八面体位置上基本上是无序排列的,电子可在铁的两种氧化态间迅速发生转移,所以四氧化三铁固体具有优良的导电性能。X 射线研究表明,四氧化三铁是铁( III) 酸盐,即Fe2 +( Fe3 +O2 -2)2,称为“偏铁酸亚铁”,化学式为Fe( FeO2)2。在四氧化三铁里,铁显两种价态,所以常常将四氧化三铁看成是由FeO 与Fe2O3组成的化合物,也可表示为FeO·Fe2O3,但不能说是FeO 与Fe2O3组成的混合物,它属于纯净物。常见的天然磁铁矿中主要成分是四氧化三铁的晶

体。 磁性纳米粒子的性质:纳米材料指颗粒尺寸在1-100nm间的粒子,及由其聚集而成的纳米固体材料,具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等,使得其与同组成的材料相比,显示独特的光学、电学、热学、磁学、力学及化学性质。当磁性纳米材料的尺寸减小到纳米尺度时,尺寸和形状这两个关键参数强烈影响着其磁性能,使磁性纳米粒子呈现超顺磁性,高矫顽力,低居里温度和高磁化率,同时,磁性纳米粒子具有以下几方面的特性:第一,磁性纳米粒子具有可控性的粒径(从几纳米到几十纳米),小于或相当于细胞(10-100nm),病毒(20-450nm),蛋白质(5-50nm),基因(Znm宽10-100nm 长)的尺度,这表明磁性纳米粒子能够接近我们所感兴趣的生物实体.事实上,它们可以被生物分子修饰后连接到生物实体上,由此提供了一种可控的标一记方法;第二,磁性纳米粒子的磁性遵从库仑定律,能够通过外加磁场加以控制;第三,磁性纳米粒子能够对磁场的周期性变化产生响应,从激励场获得能量,由此微粒能够被加热,从而可用于热疗,传输大量的热能到靶区,如肿瘤;第四,磁性纳米粒子可从尿液及大便中排泄,其中经肾脏排出较多,肠道排出较少。这也使其在工业、电子信息、生物医药等领域都有着特殊的应用。常用的磁性纳米材料有金属合金及其金属氧化物,由于镍、钴等存在毒性,在生物、医药等方面受到严格的限制,而铁的氧化物(Fe3O4,γ一Fe2O3)因其低毒(LD50约2000mg/kg体重,远远高于目前临床应用剂量)、易得等特点被广泛推用。

三氧化二铁纳米粉末

课程名称:纳米科学与技术 课程编号: 10SAU9009 文 献 阅 读 课 论 文 题 目 三氧化二铁纳米粉末 纳米三氧化二铁的研究进展 摘要:三氧化二铁纳米材料因其独特的物理化学性质,在光催化、锂离子电池、超级电容器等方面有着广泛的应用。随着科学技术的不断发展和对合成材料的迫切需求,纳米三氧化二铁的制备方法也不断推陈出新,本文全面总结了制备三氧化二铁纳米粉末的一些常用方法及其优缺点,介绍了三氧化二铁纳米粉末的应用方向。 关键词:三氧化二铁;纳米粉末;制备;性能;应用 Study progress of i ron(III) oxide nanostructure Abstract :Ferric oxide nanomaterials because of its unique physical and chemical properties, in the light catalysis, lithium ion battery and super capacitor has been

widely used.With the continuous development of science and technology and the urgent demand for composite materials, the preparation methods of nano ferric oxide is constantly. This paper comprehensively summarizes the preparation of ferric oxide nano powder of some commonly used methods and their advantages and disadvantages, this paper introduces the application direction of ferric oxide nano powder. Keyword:i ron(III) oxide;synthesis;property;application 1.引言与背景 纳米技术、信息技术及生物技术将成为21世纪经济发展的三大支柱。纳米材料是纳米技术的基础,现在已经广泛地应用于光学、医学、信息通讯、计算机技术、环境与能源、军事、航天和航空领域等,多学科多领域在纳米尺度上的相互交叉展现了巨大的生命力。它代表着今后人类科学和技术发展的趋势,将成为人类在21世纪的主导科学。纳米材料的尺寸介于微观的原子和分子与宏观块体材料之间,它的比表面积大,原子排列、自旋磁结构、电子云结构等与块体材料比有变化,导致其物理化学性质也发生了变化。人们对纳米材料的研究,不仅是因为它们的尺度小,更是因为在小尺度下,会出现许多不一样的性质,比如表面效应,库仑电阻效应,能级分裂等。[1] 1.1铁的氧化物 铁的氧化物作为金属氧化物的一种,是非常重要的无机功能材料,是仅次于钛白粉的第二大无机颜料。广泛应用于各领域,如涂料、橡胶、玻璃、陶瓷、塑料、化妆品等行业。同时,它可以用作抛光剂、催化剂、磁流体、磁记录材料、气敏元件等。铁的氧化物的形貌及其相关性质的研究已成为材料工作者的重要

四氧化三铁纳米材料的制备

四氧化三铁纳米材料的制备 一、原理 化学共沉淀法制备超微粒子的过程是溶液中形成胶体粒子的凝聚过程, 可分为2 个阶段:第一个阶段是形成晶核, 第二个阶段是晶体(晶核) 的成长。而晶核的生成速度vl和晶体(晶核)的成长速度v2可用下列两式表示: 为过饱和浓度,s 为其溶解度, 故(c-s) 为过饱和度,k1,k2分别为二式的比例常数,D 为溶质分子的扩散系数。 当V1>V2时, 溶液中生成大量的晶核, 晶粒粒度小; 当vl

EDTA容量法测定三氧化二铁含量

1 方法提要 试样用碳酸钠和硼酸混合熔剂熔融后,熔化物以稀硝酸浸出,吸取一定量的母液,当溶液的PH值控制在2.0~2.5时,三价的铁离子与磺基水杨酸生成紫红色的络合物,在40~60℃时用EDTA标准溶液滴定至由紫红色变为无色为终点,将滴定铁后的溶液加入过量的EDTA标准溶液,调节PH值为3.5,加热.使铝离子与EDTA络合,以PAN为指示剂,用硫酸铜标准溶液滴定过量的EDTA由黄色变为橙红色为终点。 本规程适用于粘土质、高铝质耐火材料中三氧化二铁的测定。 2 主要试剂 2.1 混合熔剂:碳酸钠与硼酸按1+1比例混合,研细混匀。 2.2 硝酸(18+82)。 2.3 刚果红试纸。 2.4 盐酸(1+1)。 2.5 氨水(1+1)。 2.6 磺基水杨酸溶液(10%)。 2.7 EDTA标准溶液(0.02mol/L)。 2.8 溴甲酚绿指示剂(0.04%):溶解0.1g溴甲酚绿于 1.95mL0.074mol/L的氢氧化钾溶液,以水稀至250mL。 2.9 PAN指示剂:称0.2gl-(2—吡啶基偶氮)—2—萘酚溶解于lOOmL乙醇中。 2.10 冰乙酸(ρ 1.05g/mL)。 2.11 硫酸铜标准溶液[C(CuSO4)=0.02mo1/L]。 3 分析步骤 称取试样0.2000g于盛有混合熔剂约6g的铂坩埚中充分搅拌,上面覆盖一层混合熔剂,放入马弗炉中由300℃升到900℃熔融约

8~lOmin,取出稍冷即放入盛有热的40mL硝酸(18+82)的250mL烧杯中,加热浸取,待完全溶解后,用水洗出坩埚,冷却。倾入250mL 的容量瓶中,用水冲洗烧杯4次,再以水稀至刻度,混匀。 三氧化二铁的测定: 吸取母液25mL,加水25mL于500mL烧杯中,加热至60℃,再用刚果红试纸,以氨水(1+1)调至试纸呈红色,再加盐酸(1+1)调至灰蓝色,并过量1滴,[如无刚果红试纸则溶液加热后,加磺基水杨酸(10%)6滴,用氨水调至紫红色]加磺基水杨酸(10%)1滴管,用EDTA 标准溶液(0.02mol/L)滴至无色为终点。 三氧化二铁的百分含量按下式计算: Fe203(%)=C×V×79.85×100/(1000×0.2000×25/250) 式中;C—EDTA标准溶液的浓度,mol/L; V—消耗EDTA标准溶液的体积,mL。 79.85—Fe203/2的摩尔质量,g/mol。 4 注 4.1 加入冰乙酸后,煮沸时间不得少于3min,因铝与EDTA络合物不能瞬时形成,在过量的EDTA加入后,必须充分煮沸,高铝应煮5min。 4.2 滴定铁时温度以40~60℃为宜,加热时不得煮沸,否则结果偏高。 4.3 用氨水调节时,不可多加,过多则结果偏低,要控制PH值在 2.0~2.5之间,如PH值太低结果易偏低,如PH值偏高,同时温度也较高时,铁的结果也偏高。

三氧化二铁中铁的测定

三氧化二铁中铁的测定 摘要: 实验目的: 掌握三氧化二铁混合物的溶解方法;掌握氧化还原滴定的原理和操作;采用不用汞盐的KMnO4测定铁的原理测定Fe2O3矿中铁的含量。 实验结果: 配制的KMnO4溶液两次标定得到其浓度为0.02213mol/L,两次称量铁矿的质量为0.2009g、0.2203g,相对误差为0.5%,消耗的KMnO4的体积分别为16.34ml、18.02ml,得到铁的含量为%Fe2O3=72.21,%Fe=50.55,相对误差分别为0.29%。 实验背景: 赤铁矿为氧化铁矿石,其化学式为Fe2O3,Fe2O3中理论含铁(Fe)量为70%。这种矿石在自然界中经常形成巨大的矿床,从埋藏和开采量来说,它都是工业生产的主要矿石。而赤铁矿含铁量一般为50%~60%,常含类质同像替代的Ti、Al、Mn 、Ca、Mg及少量的Ga、Co;常含金红石、钛铁矿的微包裹体,以及硅铝酸盐。 实验原理: 采用氧化还原滴定测定铁的含量时,基本上其他物质对于实验结果没有干扰。 三氧化二铁混合物经过浓盐酸沙浴溶解后,铁以Fe3+的形式存在,然后用SnCl2还原成Fe2+,SnCl2过量,需要用HgCl2处理SnCl2,产生了较大的环境污染,所以对原来的重铬酸钾测定法进行改进。 三氧化二铁混合物经过浓盐酸沙浴溶解后,铁以Fe3+的形式存在===》用SnCl2还原成Fe2+,SnCl2不过量(将大部分Fe3+还原)===》滴加TiCl3将剩余的Fe3+还原成Fe2+,此时TiCl3过量===》以Na2WO4为指示剂,在微量Cu2+催化下,利用溶解的氧气将过量的TiCl3氧化===》再利用氧化剂(标准KMnO4溶液)滴定铁的量。 反应方程式: Fe2O3+6HCl==2FeCl3+3H2O 2Fe3+ + SnCl2 +4Cl- =2Fe2+ + [SnCl6]2- Fe3+ +Ti3++2H2O=Fe2++TiO2+4H+ 2Na2WO4+2TiCl3+6HCl=6NaCl+W2O3+2TiCl4+4NaCl+3H2 4TiCl3+O2+4HCl=4TiCl4+2H2O 2W2O3+O2+4H2O=4H2WO4 KMnO4 + 5Fe2+ + 8H+ = 5Fe3+ + Mn2+ + K+ + 4H2O 2MnO4-+5C2O42-+16H+=2 Mn 2++10CO2+ 8 H20 实验方法: 实验仪器和药品: 三氧化二铁样品、0.1mol/LKMnO4溶液、浓盐酸、SnCl2溶液、CuSO4溶液、MnSO4混合液、4%KMnO4溶液、Na2WO4溶液、TiCl3溶液、草酸钠固体

相关文档
相关文档 最新文档