文档库 最新最全的文档下载
当前位置:文档库 › 辉石角闪石三价铁及晶体化学式计算材料

辉石角闪石三价铁及晶体化学式计算材料

辉石角闪石三价铁及晶体化学式计算材料
辉石角闪石三价铁及晶体化学式计算材料

1、辉石等矿物的电子探针分析值中及晶体化学式计算

①电价差值法

于矿物中阳离子正电价总数与阴离子负电价总数应平衡,而电子探针得出的FeO*值把Fe3+也当成了Fe2+,因此分子式中的阳离子总电价必然低于理论电价。据此差值则可求出Fe3+含量,即:

Fe3+ =理论电价-计算电价

Fe2+=FeO*-Fe3+

计算步骤:

A、按阳离子法计算出矿物各阳离子系数;

B、算出阳离子总电价,该电价与理论电价之差即为的Fe3+阳离子系数;

C、据分子式由Fe3+求出Fe2O3含量(重量%)

D、由Fe2+=FeO*-Fe3+求出Fe2+的阳离子系数并求出FeO含量。

下面以辉石为例,计算电子探针数据中的Fe2+和Fe3+:

2+3+

Fe3+=理论电价-计算电价=12-11.7858=0.2142

Fe2+=Fe总-Fe3+=0.3880-0.2142=0.1738

Fe2O3=0.2142÷(4/1.7941)÷2×159.7=7.67% FeO=0.1738 ÷(4/1.7941)×71.85=5.60%

②剩余氧计算法:

对于含变价Fe的矿物,电子探针分析值以FeO*形式给出全铁含量。把Fe2O3换算成FeO 的关系式为:Fe2O3=2FeO+Ox

可见由于Fe3+和Fe2+的价态差异,在换算过程中损失了部分氧(剩余氧,用Ox表示),即FeO*中未包含剩余氧Ox。

对于阳阴离子总数有固定比值的矿物,如辉石为4:6,石榴石为8:12,钛铁矿为2:3等,可由电子探针分子值分别算出阳、阴离子总数,又可据其理论比值算出理论阴离子总数。理论阴离子总数与计算阴离子总数之差则为剩余氧Ox。

由于Fe2O3=2FeO+Ox,所以Fe2O3的分子数与Ox原子数相同,将其乘以Fe2O3的分子量就得出的Fe2O3含量。

2+3+

计算阳离子总数=1.7941≈理论阳离子总数计算阴离子总数=2.6432

理论比值:理论阳离子总数/理论阴离子总数=4/6 理论阴离子总数=6/4×1.7941=2.6912 剩余氧Ox =理论阴离子总数-计算阴离子总数=2.6912-2.6432=0.048

因为Fe2O3的分子数与Ox原子数相同,所以Fe2O3=0.048×159.70(Fe2O3的分子量)=7.67%

因为2Fe/(Fe2O3):(Fe/FeO)=0.8998(Fe2O3与中FeO含Fe量之比)

即FeO=0.8998×Fe2O3(等量Fe由Fe2O3形式换算成FeO形式)

所以FeO=FeO*-0.9 Fe2O3 =12.5-0.9×7.67%=5.60%

③通用公式计算法(Droop,1987)

原理:如果Fe是矿物中唯一的变价元素,则单位分子式中Fe3+的系数可以依据如下原理计算出来(1)若氧是唯一的阴离子,则阳离子正电价之和是氧原子数的2倍;(2)单位分子式中阳离子的总数符合理论化学计量系数;按照晶体化学原理,Fe3+与其他元素的含量具有确定的函数关系。

Droop(1987)根据上述原理,推导出计算铁镁硅酸盐和氧化物Fe3+的通用公式为:F=2X(1-T/S);其中X为分子式中的氧原子数;T为阳离子的理论数目;S为将Fe均作为Fe2+时的阳离子数;F为分子式中Fe3+的系数。

该式适用的矿物包括:铝榴石、钙榴石、铝酸盐尖晶石、磁铁矿、辉石、硬绿泥石和钛铁矿。

部分矿物的X和T值

计算步骤:

(1)由电子探针结果(wt%),计算以X个O为基准,全Fe作为Fe2+的离子系数。

(2)计算S值(将Fe均作为Fe2+时的阳离子数(各阳离子系数之和));如果S>T,进入下一步计算,否则所有的Fe均应为Fe2+。

(3)由F=2X(1-T/S)计算的Fe3+系数(X为分子式中的氧原子数,T为分子式中阳离子的理论数目)。

(4)各阳离子系数×T/S,将离子系数标定为T个阳离子的分子式单位。

(5)如果F<经标定的全Fe离子数,则按Fe3+=F,剩余的Fe作为Fe2+,写出分子式。否则,所有的Fe均应为Fe3+。

(6)计算wt(FeO)(%)=wt(FeO*)×Fe2+/(Fe2++Fe3+)

wt(Fe2O3)(%)= 1.1111×wt(FeO*)×Fe3+/(Fe2++Fe3+)

F=2X(1-T/S)=2×6×(1-4/4.072)=2.122

若F小于标定的全Fe离子数,按Fe3+=F,剩余的Fe作为Fe2+,写出分子式。否则,所有的Fe均应为Fe3+。

Fe3+=0.2122;

Fe2+=0.388-0.2122 =0.1756

wt(FeO)(%)=wt(FeO*)×Fe2+/(Fe2++Fe3+)=12.5×0.1756/0.388=5.66%

Wt(Fe2O3)(%)= 1.1113×wt(FeO*)×Fe3+/(Fe2++Fe3+)=7.6%

2、角闪石族矿物的Fe3+和晶体化学式计算

角闪石的化学通式:

(A)X2(M4)Y5(M1M2M3)[T4O11]2(OH)2

A

A:Na K

X:Na Ca Mn2+ Fe2+ Mg2+

Y:Al3+ Fe3+ Ti4+ Mn2+ Mg2+ Fe2+

T: Si4+ Al3+

由于角闪石没有固定的阳离子数,因此用于计算辉石族Fe3+含量的电价差值法、剩余氧计算法都不适用。目前常按照理想配比,分别计算Fe3+最大值和最小值,Fe3+的真实值被限定在此范围内。A=1(即A位被K Na充满)时,反映处于最强还原状态,Fe3+为最小值。即迫使K Na进入A位,则Ca以上的阳离子总数应等于15,此时计算的Fe3+为最小值。A=0时,反映处于最强氧化状态,Fe3+为最大值。即A位空缺,K Na进入M4位,则全部阳离子总数应该为15,据此计算的Fe3+为最大值。

角闪石Fe3+的计算步骤:

如果所有Fe最小值计算的标准化因子(8Si,16CAT,全部Fe,15eNK)都大于Fe3+最大值计算的标准化因子(8SiAl ,15eK,10∑Fe3+,13eCNK)的话,那么Fe3+的最小值和最大值可以计算出来,否则,不能进行Fe3+的最小值、最大值的计算。

2、计算角闪石Fe3+最小值时的标定系数α

在四个标准化因子(8Si,16CAT,全部Fe2+,15eNK)中选最小值进行Fe3+最小值的计算。如果这四个参数都大于1.0000,那么下限为Fe3+=0.0000。在本例中,15eNK值最小,用于Fe3+最小值的计算。

3、计算角闪石Fe3+最大值时的标定系数β

四个标准化因子(8SiAl ,15eK,10∑Fe3+,13eCNK)中的最大值被用于计算Fe3+最大值。如果8SiAl、15eK、13eCNK都小于全部Fe3+的值,那么全部Fe3+则用于计算Fe3+最大值。在本例中,15eK为四个参数中的最大值,被用于计算Fe3+最大值。

4、在估算角闪石电子探针分析值中的三价铁含量时,通常取中间值,中间值的估算方法是:

取估算最大值和最小值时的标定系数的平均值,重新计算表中第8列的值。该例中为(0.99714+0.98621)/2=0.99167

角闪石Fe3+最小值的计算

α=15/15.043=0.99714 Fe3+=(23-22.9337)×2=0.1326 Fe2+=Fe-0.133=0.8854-0.1326=0.7528

角闪石Fe3+最大值的计算

初三化学有关化学式计算

专题二有关化学式的计算 一、化学式 1.概念: 用元素符号来表示物质组成的式子叫做化学式。如H2O、CO2、KClO3等。 2.意义:(以H2O为例) (1)宏观意义: ①表示一种物质:水; ②表示该物质的元素组成:水是由氢、氧两种元素组成。 (2)微观意义: ①表示物质的一个分子:一个水分子; ②表示物质的分子构成:一个水分子由两个氢原子和一个氧原子构成 (3)可依据化学式计算: ①表示分子中各原子的个数比:水分子中氢、氧原子个数比为2∶1; ②表示组成物质的各元素的质量比:水中氢、氧元素的质量比为1∶8。 二、化学式的书写 1、单质化学式的书写 ①由原子构成的单质,用元素符号直接来表示,如:金属铁(Fe)、稀有气体如氦气(He)、氖气(Ne)。 ②由多原子组成的单质,用元素符号加相应的脚标来表示。如氧气分子由两个氧原子构成,则氧气的化学式为O2;又如氮气的化学式为N2;臭氧的化学式为O3等。 2、化合物的化学式的书写 ①氧化物的化学式的书写: 一般把氧的元素符号写在后面,另一种元素的元素符号写在左面,如二氧化碳的化学式为CO2;二氧化锰的化学式为MnO2;三氧化二铁的化学式为Fe2O3;氧化汞的化学式为HgO。当原子个数1时,“1”可以省略。 ②由两种元素组成的化合物化学式的书写: 如果是由金属元素与非金属元素组成的化合物,一般把金属的元素符号写在左面,非金属元素符号写在右面。如:氯化钠的化学式为NaCl;硫化锌的化学式为ZnS;氯化钾的化学式为KCl。 3、注意: 脚标中的数字与元素符号前的数字所代表的意义不同。如“2H”表示两个氢原子;“H2”表示一个氢分子,且由两个氢原子构成;“3O2”则只表示三个氧分子。 三、有关化学式的计算 要点1:计算物质的相对分子质量(式量) 相对分子质量是化学式中各原子的相对原子质量的总和。 即:相对分子质量=(相对原子质量×原子个数)之和 求: CaCO相对分子质量________________________ 3

【必背】初中化学方程式及计算公式(图文双版)

初中化学方程式及计算公式(文字版) 初中化学方程式汇总 26.煤炉的底层:C+O2点燃CO2 一、氧气的性质: 27.煤炉的中层:CO2+C高温2CO (1)单质与氧气的反应:(化合反应)28.煤炉的上部蓝色火焰的产生:2CO+O2点燃 1.镁在空气中燃烧:2Mg+O2点燃2MgO2CO2 2.铁在氧气中燃烧:3Fe+2O2点燃Fe3O4(3)二氧化碳的制法与性质: 3.铜在空气中受热:2Cu+O2加热2CuO29.大理石与稀盐酸反应(实验室制二氧化碳): 4.铝在空气中燃烧:4Al+3O2点燃2Al2O3CaCO3+2HCl==CaCl2+H2O+CO2↑ 5.氢气中空气中燃烧:2H2+O2点燃2H2O30.碳酸不稳定而分解:H2CO3==H2O+CO↑2 6.红磷在空气中燃烧(研究空气组成的实验):4P31.二氧化碳可溶于水:H2O+CO2==H2CO3 +5O2点燃2P2O532.高温煅烧石灰石(工业制二氧化碳):CaCO3高 7.硫粉在空气中燃烧:S+O2点燃SO2温CaO+CO2↑ 8.碳在氧气中充分燃烧:C+O2点燃CO233.石灰水与二氧化碳反应(鉴别二氧化碳): 9.碳在氧气中不充分燃烧:2C+O2点燃2COCa(OH)2+CO2===CaCO3↓+H2O (2)化合物与氧气的反应:(4)一氧化碳的性质: 10.一氧化碳在氧气中燃烧:2CO+O2点燃2CO234.一氧化碳还原氧化铜:CO+CuO加热Cu+CO2 11.甲烷在空气中燃烧:CH4+2O2点燃CO2+35.一氧化碳的可燃性:2CO+O2点燃2CO2 2H2O 其它反应: 12.酒精在空气中燃烧:C2H5OH+3O2点燃2CO236.碳酸钠与稀盐酸反应(灭火器的原理): +3H2ONa2CO3+2HCl==2NaCl+H2O+CO2↑ (3)氧气的来源: 五、燃料及其利用: 13.玻义耳研究空气的成分实验2HgO加热Hg+37.甲烷在空气中燃烧:CH4+2O2点燃CO2+2H2O O2↑38.酒精在空气中燃烧:C2H5OH+3O2点燃2CO214.加热高锰酸钾:2KMnO4加热K2MnO4+MnO2++3H2O O2↑(实验室制氧气原理1)39.氢气中空气中燃烧:2H2+O2点燃2H2O 15.过氧化氢在二氧化锰作催化剂条件下分解反 六、金属 应:H2O2MnO22H2O+O2↑(实验室制氧气原理(1)金属与氧气反应: 2)40.镁在空气中燃烧:2Mg+O2点燃2MgO 二、自然界中的水: 41.铁在氧气中燃烧:3Fe+2O2点燃Fe3O4 16.水在直流电的作用下分解(研究水的组成实42.铜在空气中受热:2Cu+O2加热2CuO 验):2H2O通电2H2↑+O2↑43.铝在空气中形成氧化膜:4Al+3O2=2Al2O3 17.生石灰溶于水:CaO+H2O==Ca(OH)2(2)金属单质+酸--------盐+氢气(置换 18.二氧化碳可溶于水:H2O+CO2==H2CO3 反应) 三、质量守恒定律: 44.锌和稀硫酸Zn+H2SO4=ZnSO4+H2↑19.镁在空气中燃烧:2Mg+O2点燃2MgO45.铁和稀硫酸Fe+H2SO4=FeSO4+H2↑ 20.铁和硫酸铜溶液反应:Fe+CuSO4===FeSO446.镁和稀硫酸Mg+H2SO4=MgSO4+H2↑ +Cu47.铝和稀硫酸2Al+3H2SO4=Al2(SO4)3+3H2 21.氢气还原氧化铜:H2+CuO加热Cu+H2O ↑ 22.镁还原氧化铜:Mg+CuO加热Cu+MgO48.锌和稀盐酸Zn+2HCl==ZnCl2+H2↑ 四、碳和碳的氧化物: 49.铁和稀盐酸Fe+2HCl==FeCl2+H2↑(1)碳的化学性质50.镁和稀盐酸Mg+2HCl==MgCl2+H2↑ 23.碳在氧气中充分燃烧:C+O2点燃CO251.铝和稀盐酸2Al+6HCl==2AlCl3+3H2↑ 24.24.木炭还原氧化铜:C+2CuO高温2Cu+CO2(3)金属单质+盐(溶液)-------新金属+新↑盐

化学方程式计算方法总结

化学式有关计算的方法总结: 一、质量守恒法 例一、在A+B=C+2D中,已知2.9gA跟4.9gB完全反应,生成6gC,又知道D的相对分子质量为18,则A的相对分子质量为多少? 【思路点拨】本题可以利用质量守恒法解,质量守恒法是利用变化前后物质质量保持不变这一原理进行求解。 【解析】由题意得知2.9gA和4.9gB是完全反应的。根据质量守恒定律可知,产物C和D的质量之和应等于反应物的总质量,因此生成D的质量为:(2.9g +4.9g)-6g=1.8g。然后再根据AD反应的质量比等于其相对分子质量×分子个数之比,然后求出A的相对分子质量。【答案】 解:设A的相对分子质量为x,由题意得生成D的质量为: (2.9g+4.9g)-6g=1.8g A+B=C+2D x 2×18 2.9g 1.8g x=58 答:A的相对分子质量为58。 【总结升华】运用守恒法的解题关键在于找出等量关系,往往从物质质量守恒或元素质量守恒着手。举一反三: 【变式3】将含有15gA,10gB,9gC的粉末状混合物充分加热,发生化学反应后,A剩余3g,B增加到25g,C已消耗完,并有气体D放出,反应过程中,各物质质量变化的比值A∶B∶C∶D为() A.5∶4∶3∶2 B.4∶5∶3∶2 C.3∶2∶4∶5 D.2∶3∶5∶4 【变式4】A、B、C三种物质各15g,它们相互化合时,只生成30g新物质D,若再增加10gC,A与C正好完全反应,则A与B参加化学反应的质量比是_________________。 二、利用差量法计算 例二、将若干克锌粒投入到50.6g稀硫酸中,称得反应完成后溶液的质量为 63.2g。求反应生成氢气多少克? 【思路点拨】本题可以利用差量法来解决。差量法是根据题中相关量或对应量的差值求解的方法,它把化学变化过程中引起的一些物理量的增加或减少的量放在化学方程式的右端,作为已知量或未知量,利用对应量的比例关系求解。差量法解题关键是弄清这个“差”是谁与谁之间的差,如何与化学方程式联系起来。 【解析】从反应的化学方程式可知,若有65g的锌参加反应,可以生成2g 氢气,那么反应后溶液的质量就增加了(65-2)g。现已知反应前后溶液的质量增加了(63.2-50.6)g。若生成的氢气的质量为x,列比例式,x即可求出。 【答案】 解:设反应生成氢气的质量为x。 Zn+H2SO4==ZnSO4+H2↑质量差

矿物晶体化学式计算方法

矿物晶体化学式计算方法 一、有关晶体化学式的几个基本问题 1.化学通式与晶体化学式 化学通式(chemical formula)是指简单意义上的、用以表达矿物化学成分的分子式,又可简单地称为矿物化学式、矿物分子式。 晶体化学式(crystal-chemical formula)是指能够反映矿物中各元素结构位置的化学分子式,即能反映矿物的晶体化学特征。 举例:(1)钾长石的化学通式为:KAlSi3O8或K2O?Al2O3?6SiO2,而其晶体化学式则必须表示为K[AlSi3O8]; (2)磁铁矿的化学式可以写为:Fe3O4,但其晶体化学式为:FeO?Fe2O3。 (3)具Al2SiO5化学式的三种同质多像矿物:红柱石、蓝晶石和夕线石具有不同的晶体化学式: 2. 矿物中的水 自然界中的矿物很多是含水的,这些水在矿物中可以三种不同的形式存在:吸附水、结晶水和结构水。 吸附水:吸附水以机械吸附方式成中性水分子状态存在于矿物表面或其部。吸附水不参加矿物晶格,可以是薄膜水、毛细管水、胶体水等。当温度高于110?C时则逸散,它可以呈气态、液态和固态存在于矿物中。吸附水不写入矿物分子式。 结晶水:结晶是成中性水分子参加矿物晶格并占据一定构造位置。常作为配位体围绕某一离子形成络阴离子。结晶水的数量与矿物的其它组份呈简单比例。如石膏:Ca[SO4] ?2H2O。 结构水(或称化合水):常以H2O+表示,结构水呈H+、OH-、H3O+等离子形式参加矿物晶格。占据一定构造位置,具有一定比例。通常以OH-最常见。H3O+离子少见,也最不稳定,易分解:H3O+→H++ H2O。结构水如沸石水、层间水等。由于H3O+与K+大小相近,白云母KAl2[AlSi3O10](OH)2在风化过程中K+易被H3O+置换形成水云母(K, H3O+)Al2[AlSi3O10](OH)2。 由于结晶水和结构水要占据一定的矿物晶格位置,所以在计算矿物晶体化学式要考虑它们的数量。

老师用晶体化学式

晶体化学式的计算晶胞:晶体结构中的最小重复单元 晶胞中微粒数的计算方法——均摊法:如某个粒子为N 个晶胞所共有,则该粒子有 1 N 属于这个晶胞。中学中常见的晶胞为立方晶胞,立方晶胞中微粒数的计算方法如下: 例题:1、偏钛酸钡晶体中晶胞的结构如图所示,它的化学式是__________。BaTiO3。 例题2、利用“卤化硼法”可合成含B和N两种元素的功能陶瓷,右图为其晶胞结构示意图,则每个晶胞中含有B原子的个数为,该功能陶瓷的化学式为。2、BN 练习:1、据报道,某种含有镁、镍和碳三种元素的晶体具有超导性,该新型超导晶体的一个晶胞的结构如右图所示,则该晶体的化学式为。(4)MgNi3C 2、立方(磷化硼)的晶胞结构如右图所示,晶胞中含B原子数目为。磷化硼的化学式为 4 BP

3、科学家把C60和K掺杂在一起制造出的化合物具有超导性能,其晶胞如右图所示。该化合物中的K原子和C60分子的个数比为。3:1 4、(1)Zn(a)与S(b)所形成化合物晶体的晶胞如图所示。在1个晶胞中,a离子的数目为。该化合物的化学式为。ZnS (2) 以四氯化钛、碳化钙、叠氮酸盐作原料,可以生成碳氮化钛化合物。其结构是用碳原子取代氮化钛晶胞(结构如图1)顶点的氮原子,这种碳氮化钛化合物的化学式为。(3) 图2是由Q、Cu、O三种元素组成的一种高温超导体的晶胞结构,其中Cu为+2价,O为-2价。Q的化合价为价。+3 5、氯化铯型晶体的晶胞如图1,该晶体的化学式为 6、铜的氢化物的晶体结构如图2所示,写出此氢化物在氯气中燃烧的化学方程式:。 7、铁铝合金的一种晶体属于面心立方结构,其晶胞可看成由8个小体心立方结构堆砌而成。已知小立方体如下图所示,该合金的化学式为。 8、硼化镁晶体在39 K时呈超导性。在硼化镁晶体中,镁原子和硼原子是分层排布的,图1是该晶体微观结构的透视图,图中的硼原子和镁原子投影在同一平面上。则硼化镁的化学式为。MgB2 9、氮化铝(其晶胞如图所示)可由氯化铝与氨经气相反应制得。氮化铝的化学式为。

通过能力计算

计算题 1.已知某地铁线路车辆定员每节240人,列车为6节编组,高峰小时满载率为120%,且单向最大断面旅客数量为29376人,试求该小时内单向应开行的列车数。 2、已知某地铁线路采用三显示带防护区段的固定闭塞列车运行控制方式,假设各闭塞分区长度相等,均为1000米,已知列车长 度为420米,列车制动距离为100米,列车运行速度为70km/h,制动减速度为2米/秒2,列车启动加速度为1.8米/秒2,列车最大停站时间为40秒。试求该线路的通过能力是多少? 若该线路改成四显示自动闭塞,每个闭塞分区长度为600米,则此时线路的通过能力是多少? 3.已知某地铁线路采用移动闭塞列车运行控制方式,已知列车长度为420米,车站闭塞分区为750米,安全防护距离为 200米,列车进站规定速度为60km/h,制动空驶时间为1.6秒,制动减速度为2米/秒2,列车启动加速度为1.8米/秒2,列车最大停站时间为40秒。试求该线路的通过能力是多少? 4.已知某地铁线路为双线线路,列车采用非自动闭塞的连发方式运行,已知列车在各区间的运行时分和停站时分如下表,线路的连发间隔时间为12秒。试求该线路的通过能力是多少?

5.已知地铁列车在某车站采用站后折返,相关时间如下:前一列车离去时间1.5分钟,办理进路作业时间0.5分钟,确认信号时间0.5分钟,列车出折返线时间1.5分钟,停站时间1分钟。试计算该折返站通过能力。 6.已知某终点折返站采用站前交替折返,已知列车直到时间 为40秒,列车侧到时间为1分10秒,列车直发时间为40秒,列车侧发时间为1分20秒,列车反应时间为10秒, 办理接车进路的时间为15秒,办理发车进路的时间为15秒。试分别计算考虑发车时间均衡时和不考虑发车时间均衡时,该折返站的折返能力是多少? 7.已知线路上有大小交路两种列车,小交路列车在某中间折返 站采用站前折返(直到侧发),已知小交路列车侧发时间为1分20秒,办理接车进路的时间为15秒,办理发车进路的时间为15秒,列车反应时间为10秒,列车直到时间为25 秒,列车停站时间为40秒;长交路列车进站时间为25秒。试分别计算该中间折返站的最小折返能力和最大折返能力分别是多少? 8.已知线路上有大小交路两种列车,小交路列车在某中间折返站采用站后折返,已知小交路列车的相关时分为:列车驶出车站 闭塞分区时间为1分15秒,办理出折返线调车进路的时间 为20秒,列车从折返线至车站出发正线时间为40秒,列车反应时间为10秒,列车停站时间为40秒。

有关化学式的计算教案

专项复习化学计算 (一)有关化学式的计算 【教学目标】 1.知识与技能 了解相对分子质量的涵义,能根据提供的相对原子质量进行有关化学式的计算。 2.过程与方法 1)引导学生运用科学方法来学习化学知识培养学生分析问题、归纳整理、寻找规律的学习能力,并掌握科学的记忆方法。 2)培养学生的思维能力和对知识形成规律性认识的能力,在课堂练习中培养巩固学生应用所学知识解决实际的能力。 3.情感态度价值观 通过讨论交流,对学生进行实事求是,尊重科学,依靠科学的教育,发展学生勤于思考、勇于实践的精神。 【教学重点】 加强化学式的相关计算。 【教学难点】 通过对化学式的相关计算,培养学生分析问题、归纳整理、寻找规律的学习能力。 【教学方法】讲练结合、归纳整理 【课时分配】2课时 【教学设计】 整体思路:本专项复习内容为化学式的有关计算,化学式的计算是初中化学的重要组成部分,是化学方程式相关计算的基础,在化学教学中有着非常重要的意义。本次的专项复习主要分为两个板块,一是单项复习,对有关计算的点逐一进行梳理并加以强化;二是综合练习,在单项复习的基础上进行综合练习和运用,具体设计见如下学案: 专项复习化学计算 (一)有关化学式的计算 相对原子质量: H:1 C:12 N:14 O:16 S:32 Cl:35.5 Na:23 Mg:24 Al:27 P:31 K:39 Ca:40 Mn:55 Fe:56 Cu:64 Ba:137 1、根据物质的化学式(或名称)计算相对分子质量(或式量) 【相对分子质量=分子中各原子的相对原子质量(原子个数×相对原子质量)之和】

1)SO2(NH4)2CO3CaCO3BaSO4 设计意图:练习根据化学式计算相对分子质量,加强对相对分子质量概念的理解。 2)二氧化碳硫酸铝 碳酸钠氢氧化铁 硝酸铜高锰酸钾 设计意图:根据物质名称写化学式,了解化学式的读法与写法的关系,并进行计算。 2、求化合物中各元素的质量比 【元素质量比=原子个数比×相对原子质量比(=元素的质量分数比)】 1)过氧化氢中氢、氧元素的质量比为。 设计意图:由简单的计算开始,提高学生的信心和参与度。 2)(NH4)2SO4中氮、氢、硫、氧的元素质量比为。 设计意图:难度逐渐加大,要求学生更细心。 3)醋酸(CH3COOH)中各元素的质量比为。 设计意图:强化答案的规范性和有效性:若没有先对元素进行排序就直接填比值,答案是无效的。 3、求化合物中某元素的质量分数 【元素的质量分数=该元素原子的相对原子质量×原子个数÷相对分子质量】 1)求Al2O3中铝元素的质量分数。 设计意图:根据化学式计算某元素的质量分数,难度较低,学生参与度高。 2)求氢氧化镁中氧元素的质量分数。 设计意图:难度加大,先根据名称写出正确的化学式,再计算某元素的质量分数,体现化学式书写的重要性。 4、根据物质质量求其中某元素的质量 【元素质量=物质质量×元素的质量分数】 1) 9g水中氧元素有g。 设计意图:常规简单计算。 设计意图:要求学生更细心,强调答案填写的完整性(此处答案必须带单位)。 3)等质量的CO与CO2所含碳元素的质量比为。 设计意图:难度逐渐加大,一题多解,提高学生的分析能力和归纳能力。 5、根据物质中某元素的质量求物质质量 【物质质量=元素质量÷元素的质量分数】 1)g二氧化硫含20g硫元素。 设计意图:由简单的计算开始,提高学生的信心和参与度。

矿物晶体化学式计算方法汇总

------------------------------------------------------------精品文档-------------------------------------------------------- 成岩成矿矿物学––矿物晶体化学式计算方法 矿物晶体化学式计算方法 一、有关晶体化学式的几个基本问题 1.化学通式与晶体化学式 化学通式(chemical formula)是指简单意义上的、用以表达矿物化学成分的分子式,又可简单地称为矿物化学式、矿物分子式。 晶体化学式(crystal-chemical formula)是指能够反映矿物中各元素结构位置的化学分子式,即能反映矿物的晶体化学特征。 举例:(1)钾长石的化学通式为:KAlSiO或KO?AlO?6SiO,而其晶体化学式则282332必 须表示为K[AlSiO];83(2)磁铁矿的化学式可以写为:FeO,但其晶体化学式为:FeO?FeO。3432(3)具AlSiO化学式的三种同质多像矿物:红柱石、蓝晶石和夕线石具有不同的晶52 体化学式: 2. 矿物中的水 自然界中的矿物很多是含水的,这些水在矿物中可以三种不同的形式存在:吸附水、结晶水和结构水。 吸附水:吸附水以机械吸附方式成中性水分子状态存在于矿物表面或其内部。吸附水不参加矿物晶格,可以是薄膜水、毛细管水、胶体水等。当温度高于110?C 时则逸散,它可以呈气态、液态和固态存在于矿物中。吸附水不写入矿物分子式。 结晶水:结晶是成中性水分子参加矿物晶格并占据一定构造位置。常作为配位体围绕某一离子形成络阴离子。结晶水的数量与矿物的其它组份呈简单比例。如石膏:Ca[SO] ?2HO。24++-+等离子形式参加H、OHH(或称化合水):常以OO表示,结构水呈H、结构水32-+离子少见,O最常见。H矿物晶格。占 据一定构造位置,具有一定比例。通常以OH3+++与HO + HO。结构水如沸石水、层间 水等。由于O也最不稳定,易分解:H H ?332+++(K, 置换形成水云母K在风化过程中](OH)O[AlSi白云母K大小相近,KAl易被HO321032. 成岩成矿矿物学––矿物晶体化学式计算方法 +)Al[AlSiO](OH)OH。232310由于结晶水和结构水要占据一定的矿物晶格位置,所以在计算矿物晶体化学式要考虑它们的数量。 3. 定比原理 定比是指组成矿物化学成分中的原子、离子、分子之间的重量百分比是整数比,即恒定值。 举例: (1) 某产地的磁铁矿的化学分析结果为:FeO=31.25%,FeO=68.75%,已知它们32的分 子量分别为:71.85和159.70。因此,FeO和FeO的分子比为: 32FeO:FeO=(31.25/71.85):68.75/159.70)=1.01:1

车站通过能力计算

车站通过能力 车站通过能力是在车站现有设备条件下,采用合理的技术作业过程,一昼夜能接发和方向的货物(旅客)列车数和运行图规定的旅客(货物)列车数。 车站通过能力包括咽喉通过能力和到发线通过能力。 咽喉通过能力是指车站某咽喉区各衔接方向接、发车进路咽喉道岔组通过能力之和,咽喉道岔通过能力是指在合理固定到发线使用方案及作业进路条件下,某衔接方向接、发车进路上最繁忙的道岔组一昼夜能够接、发该方向的货物(旅客)列车数和运行图规定的旅客(货物)列车数。 到发线通过能力是指到达场、出发场、通过场或到发场内办理列车到发作业的线路,采用合理的技术作业过程和线路固定使用方案,一昼夜能够接、发各衔接方向的货物(旅客)列车数和运行图规定的旅客(货物)列车数。 车站咽喉通过能力计算 咽喉占用时间标准 表咽喉道岔占用时间表 顺序作业名称时间标准 (min) 顺序作业名称 时间标准 (min) 1 货物列车接车占用6~8 4 旅客列车出发占用4~6 2 旅客列车接车占用5~7 5 单机占用2~4 3 货物列车出发占用5~7 6 调车作业占用4~6 道岔组占用时间计算 表到发线固定使用方案 线路编号固定用途 一昼夜 接发列车数 线路 编号 固定用途 一昼夜 接发列车数 1 接甲到乙、丙旅客列车8 7 接乙到甲直通、区段货物列车9 4 接乙到甲旅客列车 5 8 接甲、乙到丙直通、区段货物列车10 接丙到甲旅客列车 3 9 接丙到甲、乙直通、区段货物列车10 5 接甲到乙直通、区段货物列车11 10 接发甲、乙、丙摘挂货物列车10 表甲端咽喉区占用时间计算表 编号作业进路名称 占用 次数 每次 占用时间 总占用 时间 咽喉区道岔组占用时间 1 3 5 7 9 固定作业 1 1道接甲-乙,丙旅客列车8 7 56 56 2 4道发乙-甲旅客列车 5 6 30 30 30 3 4道发丙-甲旅客列车 3 6 18 30 30 5 往机务段送车 3 6 18 18 6 从机务段取车 2 6 12 12

八年级科学有关化学式的计算

八年级科学有关化学式的计算 1.计算相对分子质量; 2.计算和化学式中各元素质量比; 3.计算各元素质量分数; 4.计算物质中某元素的质量; 5.化学式的确定; 6.其他. 1.计算相对分子质量 相对分子质量就是化学式中各原子的相对原子质量的总和。 点拨:①计算物质的相对分子质量时,同种元素的相对原子质量与其原子个数是相乘的关系,不同种元素相对质量是相加的关系。 ②计算结晶水合物的相对分子质量时,化学式中的“·”表示相加,而不表示相乘。 ③化学式中原子团(或根)右下角的数字表示的是原子团(或根)的个数。计算时先求一个原子团或根的总相对原子质量,再乘以原子团(或根)的个数,即得出几个原子团的总相对原子质量。 ⑴Ca(OH)2= ;②3H2O= ;③CuSO4·5H2O= ⑵化合物Ca(ClOx)2的相对分子质量为207,则x是() A、1 B、2 C、3 D、4 2.计算和化学式中各元素质量比 组成化合物的各元素的质量比,等于化合物中各元素的相对原子质量总和(即相对原子质量与原子个数乘积)之比。 点拨:①计算时一定要写清楚各元素质量比顺序,因顺序不同,比值也不同。 ②计算时的结果约成最简整数比。 ⑴已知明矾的化学式为KAl(SO4)2·12H2O,它的相对分子质量为其中所含K、Al、S、O、H各元素的质量比为, ⑵(NH4)2SO4中:N、H、S、O元素的质量比= ; ⑶NH4HCO3中:N、H、C、O元素的质量比= ; 3.计算各元素质量分数; ×100% 计算公式:化合物中某元素的质量分数= 点拨:①利用上述公式计算时,某元素的原子个数应写在该元素符号前面,不能写在右下角。 ②化合物中某元素的质量分数可以用“分数”表示,也可用“百分数”表示;习惯上常用百 分数表示。 ⑴NH4NO3中N元素的质量分数为N%= ; ⑵某化合物的化学式为RX2,相对分子质量为46。在化合物中R占30.4%,则元素X的相对原子质量是。 4.计算物质中某元素的质量 化合物里某元素的质量=化合物的质量×化合物中某元素的质量分数 化合物的质量=化合物中已知元素的质量÷化合物中已知元素的质量分数 ⑴40克NH4NO3含N元素的质量为m N= ⑵质量相等的CO和CO2中,碳元素的质量比为() A、14:11 B、1:1 C、11:7 D、7:11

根据有机物的化学式计算不饱和度

根据有机物的化学式计算不饱和度 (1)若有机物的化学式为CxHy则Ω=(2x+2-y)/2 (2)若有机物为含氧化合物,因为氧为二价,C=O与C=C“等效”,所以在进行不饱和度的计算时可不考虑氧原子,如CH2=CH2、C2H4O、C2H4O2的Ω为1。氧原子“视而不见” 推导:设化学式为CxHyOz-------------CxHy-z(OH)z ,由于H、OH都是一价在与碳原子连接,故分子式等效为CxHy。 (3)若有机物为含氮化合物,设化学式为CxHyNz-------------CxHy-2z(NH2)z,由于—H、—NH2都是一价在与碳原子连接,故分子式等效为CxHy-z (4)按照该法可以推得其它有机物分子的不饱和度 (5)有机物分子中的卤素原子取代基,可视作氢原子计算Ω。如:C2H3Cl的不饱和度为1,其他基团如-NO2、-NH2、-SO3H等都视为氢原子。 (6)碳的同素异形体,可将它视作Ω=0的烃。 如C60 (7)烷烃和烷基的不饱和度Ω=0 2.非立体平面有机物分子,可以根据结构计算,Ω=双键数+叁键数×2+环数 如苯:Ω=3+0×2+1=4 即苯可看成三个双键和一个环的结构形式。 注意环数等于将环状分子剪成开链分子时,剪开碳碳键的次数。 3.立体封闭有机物分子(多面体或笼状结构)不饱和度的计算,其成环的不饱和度比面数少数1。 如立方烷面数为6,Ω=6-1=5 61 |评论 U=1+n4 +1/2*(n3-n1), n4表示4价原子数,一般是C原子,n3表示3价原子数,一般是N 原子,n1表示一价原子数,一般是H原子,2价的O不需考虑。

不饱和度,又称缺氢指数,是有机物分子不饱和程度的量化标志,通常用希腊字母Ω表示。此概念在推断有机化合物结构时很有用。从有机物结构计算不饱和度的方法:单键对不饱和度不产生影响,因此烷烃的不饱和度是0(所有原子均已饱和)。一个双键(烯烃亚胺、羰基化合物等)贡献一个不饱和度。一个叁键(炔烃、腈等)贡献两个不饱和度。一个环(如环烷烃)贡献一个不饱和度。环烯烃贡献2个不饱和度。 从有机物分子结构计算不饱和度的方法 根据有机物分子结构计算,Ω=双键数+叁键数×2+环数如苯: Ω=3+0×2+1=4 即苯可看成三个双键和一个环的结构形式。补充理解说明:单键对不饱和度不产生影响,因此烷烃的不饱和度是0(所有原子均已饱和)。一个双键(烯烃、亚胺、羰基化合物等)贡献1个不饱和度。一个叁键(炔烃、腈等)贡献2个不饱和度。一个环(如环烷烃)贡献1个不饱和度。环烯烃贡献2个不饱和度。一个苯环贡献4个不饱和度。一个碳氧双键贡献1个不饱和度。一个-NO2贡献1个不饱和度。例子:丙烯的不饱和度为1,乙炔的不饱和度为2,环己酮的不饱和度也为2。 从分子式计算不饱和度的方法 第一种方法为通用公式:Ω=1+1/2∑Ni(Vi-2) 其中,Vi 代表某元素的化合价,Ni 代表该种元素原子的数目,∑ 代表总和。这种方法适用于复杂的化合物。第二种方法为只含碳、氢、氧、氮以及单价卤素的计算公式:Ω=C+1-(H-N)/2 其中,C 代表碳原子的数目,H 代表氢和卤素原子的总数,N 代表氮原子的数目,氧和其他二价原子对不饱和度计算没有贡献,故不需要考虑氧原子数。这种方法只适用于含碳、氢、单价卤素、氮和氧的化合物。第三种方法简化为只含有碳C和氢H或者氧的化合物的计算公式:Ω =(2C+2-H)/2 其中C 和H 分别是碳原子和氢原子的数目。这种方法适用于只含碳和氢或者氧的化合物。补充理解说明:(1)若有机物为含氧化合物,因为氧为二价,C=O与C=C“等效”,所以在进行不饱和度计算时可不考虑氧原子。如CH2=CH2(乙烯)、CH3CHO(乙醛)、CH3COOH(乙酸)的不饱和度Ω为1。(2)有机物分子中的卤素原子取代基,可视作氢原子计算不饱和度Ω。如:C2H3Cl的Ω为1,其他基团如-NH2、-SO3H等都视为氢原子。(3)碳的同素异形体,可将其视作氢原子数为0的烃。如C60(足

辉石角闪石三价铁及晶体化学式计算材料.

1、辉石等矿物的电子探针分析值中Fe3+含量的估算及晶体化学式 计算 ①电价差值法 由于矿物中阳离子正电价总数与阴离子负电价总数应平衡,而电子探针得出的FeO*值把Fe3+也当成了Fe2+,因此分子式中的阳离子总电价必然低于理论电价。据此差值则可求出Fe3+含量,即: Fe3+ =理论电价-计算电价 Fe2+=FeO*-Fe3+ 计算步骤: A、按阳离子法计算出矿物各阳离子系数; B、算出阳离子总电价,该电价与理论电价之差即为的Fe3+阳离子系数; C、据分子式由Fe3+求出Fe2O3含量(重量%) D、由Fe2+=FeO*-Fe3+求出Fe2+的阳离子系数并求出FeO含量。 下面以辉石为例,计算电子探针数据中的Fe2+和Fe3+: 2+3+ Fe3+=理论电价-计算电价=12-11.7858=0.2142 Fe2+=Fe总-Fe3+=0.3880-0.2142=0.1738 Fe2O3=0.2142÷(4/1.7941)÷2×159.7=7.67% FeO=0.1738 ÷(4/1.7941)×71.85=5.60%

②剩余氧计算法: 对于含变价Fe的矿物,电子探针分析值以FeO*形式给出全铁含量。把Fe2O3换算成FeO的关系式为:Fe2O3=2FeO+Ox(Ox表示剩余氧) 可见由于Fe3+和Fe2+的价态差异,在换算过程中损失了部分氧(剩余氧,用Ox表示),即FeO*中未包含剩余氧Ox。 对于阳阴离子总数有固定比值的矿物,如辉石为4:6,石榴石为8:12,钛铁矿为2:3等,可由电子探针分子值分别算出阳、阴离子总数,又可据其理论比值算出理论阴离子总数。理论阴离子总数与计算阴离子总数之差则为剩余氧Ox。 由于Fe2O3=2FeO+Ox,所以Fe2O3的分子数与Ox原子数相同,将其乘以Fe2O3的分子量就得出的Fe2O3百含分量。 2+3+ 计算阳离子总数=1.7941≈理论阳离子总数计算阴离子总数=2.6432 理论比值:理论阳离子总数/理论阴离子总数=4/6 理论阴离子总数=6/4×1.7941=2.6912 剩余氧Ox =理论阴离子总数-计算阴离子总数=2.6912-2.6432=0.048 因为Fe2O3的分子数与Ox原子数相同,所以Fe2O3=0.048×159.70(Fe2O3的分子量)=7.67% 因为2Fe/(Fe2O3):(Fe/FeO)=0.8998(Fe2O3与中FeO含Fe量之比) 即FeO=0.8998×Fe2O3(等量Fe由Fe2O3形式换算成FeO形式) 所以FeO=FeO*-0.9 Fe2O3 =12.5-0.9×7.67%=5.60%

路段通行能力计算方法

根据交叉口的现场交通调查数据,通过各流向流量的构成关系,可推得各路段流量,从而得到饱和度V/C 比。路段通行能力的确定采用建设部《城市道路设计规范》(CJJ 37-90)的方法,该方法的计算公式为:单条机动车道设计通行能力n C N N a ????=ηγ0,其中N a 为车道可能通行能力,该值由设计车速来确定,如表2.2所示。 表2.13 一条车道的理论通行能力 其中γ为自行车修正系数,有机非隔离时取1,无机非隔离时取0.8。η为车道宽度影响系数,C 为交叉口影响修正系数,取决于交叉口控制方式及交叉口间距。修正系数由下式计算: s 为交叉口间距(m),C 0为交叉口有效通行时间比。 车道修正系数采用表 2.3所示 表2.3 车道数修正系数采用值 路段服务水平评价标准采用美国《道路通行能力手册》,如表2.4所示 表2.4 路段服务水平评价标准

由路段流量的调查结果,并且根据交叉口的间距、路段等级、车道数等对路段的通行能力进行了修正。在此基础上对路段的交通负荷进行了分析。 路段机动车车道设计通行能力的计算如下: δ m c p m k a N N = (1) 式中: m N —— 路段机动车单向车道的设计通行能力(pcu/h ) p N —— 一条机动车车道的路段可能通行能力(pcu/h ) c a —— 机动车通行能力的分类系数,快速路分类系数为0.75;主干道分类 系数为0.80;次干路分类系数为0.85;支路分类系数为0.90。 m k —— 车道折减系数,第一条车道折减系数为 1.0;第二条车道折减系数 为0.85;第三条车道折减系数为0.75;第四条车道折减系数为0.65.经过累加,可取单向二车道 m k =1.85;单向三车道 m k =2.6;单向四车道 m k =3.25; δ—— 交叉口影响通行能力的折减系数,不受交叉口影响的道路(如高架 道路和地面快速路)δ=1;该系数与两交叉口之间的距离、行车速度、绿信比和车辆起动、制动时的平均加、减速度有关,其计算公式如下: ?+++= b v a v v l v l 2/2///δ (2) l —— 两交叉口之间的距离(m ); a —— 车辆起动时的平均加速度,此处取为小汽车0.82/s m ; b —— 车辆制动时的平均加速度,此处取为小汽车1.662/s m ; ?—— 车辆在交叉口处平均停车时间,取红灯时间的一半。 Np 为车道可能通行能力,其值由路段车速来确定: 表4.1 Np 的确定

有关化学式的简单计算[1]

有关化学式的简单计算 一、计算相对分子质量 根据化学式,计算相对分子质量 H2O CO2 Ca(OH)2(NH4)2SO4Cu2(OH)2CO3 二、计算物质组成中各元素的质量比 1、求H2O 中H O元素质量比 2、求MgO Mg O元素质量比 3、求CaCO3中Ca C O元素质量比 4、求CO(NH2)2中C O N H元素质量比 5、求CH3COOH中C H O元素质量比 三、根据化学式计算某元素的质量分数 1、求H2O 中H的质量分数 2、求MgO中Mg的质量分数 3、求CaCO3中Ca 的质量分数 4、求CO(NH2)2中N的质量分数 5、求NH4NO3中N的质量分数 四、计算某元素的质量 某元素质量=物质质量*物质中某元素质量分数 计算:1、80克氧化镁中氧元素的质量 3、多少克氧化镁中氧元素的质量与64克二氧化硫中氧元素质量相等

有关化学式的计算 练习1、计算四氧化三铁的相对分子质量 2、计算四氧化三铁中铁、氧元素质量比 3、计算四氧化三铁中铁元素的质量分数 4、计算10克四氧化三铁中铁元素的质量 五、有关混合物的计算 1、计算200克纯度为90%的碳酸钙样品中钙元素的质量 2、16克含NH4NO380%的化肥中含多少克氮元素? 3、100克某碳酸钙样品中钙元素的质量分数为36%,求样品中碳酸钙的质量分数 4、某硝酸铵样品中混有一其它化肥,经分析样品中含有氮元素36%,那么该样品混有的物可能质是 A、NH4HCO3 B、(NH4)2SO4 C、NH4CI D、CO(NH2)2 六、已知元素质量比或某元素的质量分数求化学式 1、已知某物质有氮氧元素组成,其氮、氧元素质量比为7:12,求该化合物的化学式 2、3.2克某铁的氧化物中含有铁2.24克求该铁的氧化物的化学式 3、核糖的相对分子质量为150,其中含C40%、H 6.7%,其余为O,请确定化学式 七、根据有关条件求相对分子质量或相对原子质量 1、X2O3相对分子质量为102,则X的相对原子质量为多少? 2、MO中O的质量分数为20%,则M 的相对原子质量为多少? 八、最近发生的奶粉事件是因为不法分子像牛奶中添加蛋白精(主要成分三聚氰胺),以增加氮元素的质量分数,造成蛋白质含量正常的假象,从而导致婴儿产生尿结石而发生生命危险,其中三聚氰胺的化学式为 C3N3(NH2)3,它是由元素(填元素符号)组成,属于(填“混合物”“化合物”或“氧化物”)其中氮元素的质量分数达 到。如:原某100g不合格牛奶中氮元素质量分数为10%,向其中加入10g三聚氰胺,则可以使氮元素质量分数变为多少?

分析化学公式和计算

页脚内容 1、准确度:指测量值与真值之间相互接近的程度,用“误差”来表示。 (1)、绝对误差:测量值x 与真值μ的差值,δ=x -μ (2)、相对误差:指绝对误差在真值中所占的比值,以百分率表示: %100%?=μ δ % 2、精密度:指对同一样品多次平行测量所得结果相互吻合的程度,用“偏差”来表示。 (1)、绝对偏差:d=x i -x (x i 表示单次测量值,x 表示多次测量结果的算术平均值) 平均偏差:d =n d d d d n ++++......321=n x x n i i ∑=-1 (2)、相对偏差: x d ×100% 相对平均偏差: x d ×100% 3、标准偏差:样本标准偏差S= 1 )(2 1 --∑=n x x n i i 相对标准偏差(RSD)%= x s ×100% 例:测定铁矿石中铁的质量分数(以%表示),5次结果分别为:67.48%,67.37%,67.47%,67.43%和67.40%。计算:⑴平均偏差⑵相对平均偏差⑶标准偏差⑷相对标准偏差⑸极差 解:套以上公式 4、平均值的精密度:用平均值的标准偏差来表示n s s x x = 平均值的置信区间:n ts x ± =μ 5、异常值的取舍:Q 检验:Q= 最小 最大紧邻可疑x x x x -- G 检验:s x x G q -= 6、t 检验和F 检验 ⑴题目提供的数据与具体数值μ(权威数据)比较,t 检验: t= n s x μ -,如计算出来的值小于查表值,说明无显著性差异。 ⑵题目提供两组数据比较,问两组数据是否有显著性差异时,F 检验+t 检验: F 检验:判断精密度是否存在显著性差异。 F= 22 21s s (1s 是大方差,2s 是小方差,即1s 〉2s ),计算值小于,说明 两组数据的精密度不存在显著性差异,反之就有。 两组数据F 检验无显著性差异后,进行两个样本平均 值的比较:2 12 121n n n n s x x t R +?-= , ) 1()1() 1()1(2122 2121-+--+-= n n n s n s s R , 如果计算出来值小于查表值,表示两测量平均值之间无显著性差异。 7、t f ,α,例,t 8,05.0表示置信度为95%,自由度为8的t 值。 ▲两组数据有无显著性差异的计算步骤: ①利用以上公式求出各组数据的平均值x 、标准差s == 1 )(2 1 --∑=n x x n i i 、 及各组数据的个数n ②F 检验的公式套进去,注意大小分差分别是放在分子和分母上,计 算F 值 ③与题目提供的F 值比较大小,如果计算出来的F 值小于的话就给出 个结论:F 计算<F ,所以两组数据的精密度无显著性差异 ④利用上面的公式求) 1()1()1()1(2122 2121-+--+-=n n n s n s s R , 代入2 1212 1n n n n s x x t R +?-= ⑤把计算出来的t 值与题目提供的比较,如果是小于的话就给出个结论:无显著性差异. 具体步骤看书上第25页的例题. 8、滴定终点误差:TE(%) = %1001010?-X ?-X ?t p p ck 强酸强碱滴定:K t =1/K w =10 14 (25℃), c=c 2 sp 强酸(碱)滴定弱碱(酸): K t =K a / K w (或K b / K w ), c=c sp 配位滴定:K t =K MY ′, c=c )(sp M 。 例:0.1000mol/L 的NaOH 滴定20.00ml 的0.1000mol/L 的HCl ,以酚 酞为指示剂(pHep=9.00),计算滴定误差。 解:根据已知条件计算 (1) c sp =n/V=(20.00mlx0.1000mol/L)/(20.00mlx2) =0.05000mol/ml (2)pHep=9.00,强酸强碱的pHsp=7.00, ΔpH =2.00 1410=t K ,c=c 2sp (3)带入公式,求得:TE(%) 9、滴定度(T B T V m T B = /),例: Fe O Cr K T /7 22=0.05321g/ml ,表示每

有关化学式计算的几种典型例题

1.计算CuSO4·5H2O的相对分子质量 分析:CuSO4·5H2O组成中,是由CuSO4和5个H2O分子组成的,因此是二者相对质量之和。 解答:CuSO4·5H2O的相对分子质量=64+32+16×4+(1×2+16)×5=250 2.计算NH4NO3中所含各元素的质量比 分析:从NH4NO3的化学式知:组成硝酸铵的三种元素是N、H、O,在一个NH4NO3中分别计算各元素的相对质量比即硝酸铵中各元素的质量比。 解答: ∵m N :m H:m O=(14×2):(1×4):(16×3) =28 : 4 : 48 =7 : 1 : 12 ∴N、H、O三种元素的质量比为7:1:12 3.某黄铁矿中含FeS2为72%,计算该黄铁矿中硫元素的质量分数是() A.36% B.38.4% C.42.6% D.48% 分析1:黄铁矿中含FeS2为72%,其余为杂质,再根据化学式算出FeS2中硫的质量分数。 设取黄铁矿100克,则其中FeS2的质量为:100×72%=72克,在72克FeS2中所含硫的质量为: 分析2:也可以根据对应关系计算:设100克黄铁矿中含硫的质量为x。 对应关系:黄铁矿~含FeS2~含2S 100克100×72%=72克x克 120 32×2 列出比例式:x=38.4克 解:本题的正确答案应选B. 4.有气肥(化学式为NH4HCO3)样品50克,其中含NH4HCO3为96%,则该气肥样品中所含氮元素的质量为()

A.17克 B.8.5克 C.6.5克 D.4克 分析1:样品中含NH4HCO3 96%,说明样品为不纯净的物质。利用纯度可以计算出50克样品中纯NH4HCO3的质量,再根据气肥的化学式算出所含氮元素的质量分数,利用氮元素质量分数便可计算氮元素的质量。 50克气肥样品中所含纯NH4HCO3的质量:50×96%=48克 NH4HCO3中氮元素的质量分数: ∴50克样品中所含氮元素的质量:48×17.7%=8.5克 分析2:也可以根据对应关系计算,设50克气肥样品中含氮元素的质量为x。 对应关系:气肥样品~含NH4HCO3~含N 79 14 50克50×96%=48克x克 列出比例式:x=8.5克 解答:本题的正确答案应选B。 某元素R的单质跟氧气化合生成的氧化物中,R元素跟氧元素的质量比为21:8,原子个数5. 比为3:4,又知氧元素的相对原子质量为16,则元素R的相对原子质量为() A.24 B.27 C.56 D.65 分析:由于已知氧化物中R原子与氧原子的个数比,可以写出氧化物的化学式;又知R元素和氧元素的质量比,根据化学式可以求算出元素R的相对原子质量。 设元素R的相对原子质量为x ∵在氧化物中R原子与氧原子的个数比为3:4 ∴R元素所形成的氧化物的化学式为:R3O4 又∵氧元素的相对原子质量为16,且二者之间的质量比为21:8 ,x=56 解答:本题的正确答案应选C。 6.某化合物由Na、S、O三种元素组成的,其钠元素在化合物中的质量分数为32.4%,硫元素在化合物中的质量分数为22.5%,且该化合物的式量为142,那么该化合物的化学式为____ ______。

相关文档
相关文档 最新文档