文档库 最新最全的文档下载
当前位置:文档库 › Alzheimer’s Disease Peptide Epitope Vaccine Reduces Insoluble But Not soluble-Oligomeric

Alzheimer’s Disease Peptide Epitope Vaccine Reduces Insoluble But Not soluble-Oligomeric

Alzheimer’s Disease Peptide Epitope Vaccine Reduces Insoluble But Not soluble-Oligomeric
Alzheimer’s Disease Peptide Epitope Vaccine Reduces Insoluble But Not soluble-Oligomeric

Neurobiology of Disease

Alzheimer’s Disease Peptide Epitope Vaccine Reduces Insoluble But Not Soluble/Oligomeric A?Species in Amyloid Precursor Protein Transgenic Mice

Irina Petrushina,1*Anahit Ghochikyan,3*Mikayel Mktrichyan,3Gregory Mamikonyan,3Nina Movsesyan,1

Hayk Davtyan,3Archita Patel,1Elizabeth Head,1,2David H.Cribbs,1,2?and Michael G.Agadjanyan1,3?

1The Institute for Brain Aging and Dementia and2Department of Neurology,University of California,Irvine,Irvine,California92697-4540,and3The Institute for Molecular Medicine,Department of Immunology,Huntington Beach,California92647

Active vaccination of elderly Alzheimer’s disease(AD)patients with fibrillar amyloid-?peptide(A?42),even in the presence of a potent Th1adjuvant,induced generally low titers of antibodies in a small fraction(?20%responders)of those that received the AN-1792 vaccine.To improve the immunogenicity and reduce the likelihood of inducing adverse autoreactive T-cells specific for A?42,we previously tested in wild-type mice an alternative approach for active immunization:an epitope vaccine that selectively initiate B cell responses toward an immunogenic self-epitope of A?in the absence of anti-A?T cell responses.Here,we describe a second generation epitope vaccine composed of two copies of A?1–11fused with the promiscuous nonself T cell epitope,PADRE(pan human leukocyte antigen DR-binding peptide)that completely eliminates the autoreactive T cell responses and induces humoral immune responses in amyloid precursor protein transgenic2576mice with pre-existing AD-like pathology.Based on the titers of anti-A?1–11antibody exper-imental mice were divided into low,moderate and high responders,and for the first time we report a positive correlation between the concentration of anti-A?1–11antibody and a reduction of insoluble,cerebral A?plaques.The reduction of insoluble A?deposition was not associated with adverse events,such as CNS T cell or macrophage infiltration or microhemorrhages.Surprisingly,vaccination did not alter the levels of soluble A?.Alternatively,early protective immunization before substantial neuropathology,neuronal loss and cogni-tive deficits have become firmly established may be more beneficial and safer for potential patients,especially if they can be identified in a preclinical stage by the development of antecedent biomarkers of AD.

Key words:immunotherapy;Alzheimer’s disease;epitope vaccine;antibody;PADRE;?-amyloid

Introduction

The age-related accumulation of amyloid-?(A?)in the CNS has been hypothesized to play a central role in a cascade of events that eventually induces neuronal loss in affected brain regions in Alz-heimer’s disease(AD)(Selkoe,1991,1994;Hardy and Higgins, 1992;Price and Sisodia,1994;Esler and Wolfe,2001;Hardy and Selkoe,2002).Previously,major support for the amyloid cascade hypothesis emerged from A?-immunotherapy studies demon-strated that anti-A?antibodies were capable of reducing AD-like pathology(Schenk et al.,1999)and improving behavior in amy-loid precursor protein(APP)transgenic(Tg)mice(Chen et al., 2000;Janus et al.,2000;Morgan et al.,2000).First,immunother-apy clinical trial in AD patients using the AN-1792vaccine con-taining B and T cell“self epitopes”of A?42was halted during Phase IIa,when?6%of the participants developed aseptic me-ningoencephalitis(Schenk,2002;Weiner and Selkoe,2002;Hock et al.,2003;Nicoll et al.,2003;Orgogozo et al.,2003;Ferrer et al., 2004;Bayer et al.,2005;Fox et al.,2005;Gilman et al.,2005; Masliah et al.,2005;Patton et al.,2006).Importantly,only vacci-nated participants(n?18)developed meningoencephalitis, whereas none of the control patients(n?72)injected with pla-cebo developed adverse events(Orgogozo et al.,2003).Data from these trials suggest that the aseptic meningoencephalitis may have been caused by a T cell-mediated autoimmune response(Nicoll et al.,2003;Ferrer et al.,2004),and that anti-A?antibodies were not responsible for the observed adverse effects after active vac-cination.In fact,low/moderate titers of anti-A?antibodies gen-erated in a small subset of immunized patients(19.7%)were capable of reducing parenchymal amyloid pathology(Nicoll et al.,2003,2006;Ferrer et al.,2004;Masliah et al.,2005;Patton et al.,2006;Boche et al.,2007;Nitsch and Hock,2007)and dimin-ishing progressive cognitive decline associated with the disease (Hock et al.,2003;Gilman et al.,2005).However,?80%of the immunized subjects failed to develop anti-A?antibody titers (“nonresponders”),indicating that the A?self-antigen in the

Received July13,2007;revised Oct.1,2007;accepted Oct.7,2007.

This work was supported by National Institutes of Health Grants AG20241and NS50895(D.H.C.)and Alzheimer’s

Association Grant IIRG-03-6279(M.G.A.).Additional support for mice and the production of peptides was provided

by University of California,Irvive Alzheimer’s Disease Research Center Grant P50AG16573.Dr.Nina Movsesyan was

supported by National Institute on Aging training Grant AG00096.We thank Adrine Karapetyan for technical help

and valuable comments.

*I.P.and A.G.contributed equally to this work.

?D.H.C.and M.G.A.contributed equally to this work as senior authors.

Correspondence should be addressed to Dr.Michael G.Agadjanyan,The Institute for Molecular Medicine,16371

Gothard Street,H,Huntington Beach,CA92647-3652.E-mail:magadjanyan@https://www.wendangku.net/doc/e511097271.html,.

DOI:10.1523/JNEUROSCI.3201-07.2007

Copyright?2007Society for Neuroscience0270-6474/07/2712721-11$15.00/0

The Journal of Neuroscience,November14,2007?27(46):12721–12731?12721

AN-1792vaccine was not a strong immunogen,thus suggesting that alternative immunotherapeutic strategies should be pursued.

Based on the results generated in mouse models of AD(Bard et al.,2000;DeMattos et al.,2001;Dodart et al.,2002),a new clinical trial,AAB-001(Elan and Wyeth Pharmaceuticals,http:// https://www.wendangku.net/doc/e511097271.html,/investorrelations/events/elanwyethsymposium_adpd. asp),has been initiated by using passive transfer of a humanized monoclonal anti-A?antibody(bapineuzumab)in an attempt to avoid the problems associated with active immunization of el-derly AD patients.However,the design of this new trial is associ-ated with additional challenges such as multiple injections of high concentrations of anti-A?antibody every13weeks,the high cost of this monoclonal humanized antibody as well as possible side effects of passive vaccination,including microhemorrhages ob-served in passively immunized very old APP Tg mice(Pfeifer et al.,2002;Wilcock et al.,2004;Racke et al.,2005).This suggests that development of safe active immunotherapeutic strategies may still be desirable.

Previously,we engineered and tested a first generation epitope vaccine in wild-type mice(Agadjanyan et al.,2005),and here we report the development and testing the safety and efficacy of therapeutic vaccination of APP Tg2576mice with pre-existing AD-like pathology with a second generation epitope vaccine composed of two copies of the B cell epitope,A?1–11in tandem with pan human leukocyte antigen DR-binding peptide(PA-DRE),a synthetic,foreign promiscuous T cell epitope[pre-existing AD-like pathology implies the accumulation of soluble oligomeric forms of amyloid-beta peptide leading to the impair-ment of cognitive functions in?6-month-old APP Tg2576mice (Lesne et al.,2006)].

Materials and Methods

Mice,epitope vaccine,peptide immunogens,and experimental protocol. Aged(?9.4months old)female APP Tg2576mice were bred and pro-vided by the animal facility associated with the University of California at Irvine(UCI)Alzheimer’s Disease Research Center.All animals were housed in a temperature and light-cycle controlled facility,and their care was under the guidelines of the National Institutes of Health and an approved Institutional Animal Care and Use Committee protocol at University of California at Irvine.

To engineer an epitope AD vaccine,we synthesized the N terminus of an immunodominant B cell epitope of A?1–11(McLaurin et al.,2002; Bard et al.,2003;Cribbs et al.,2003)in tandem with a promiscuous foreign T cell epitope,so called pan-DR epitope,PADRE(Alexander et al.,1994).The peptide2A?1–11-PADRE was synthesized as a multiple antigenic peptide(MAP),containing a core matrix of4branching lysines (Tam,1988;Chai et al.,1992)to generate2A?1–11-PADRE-MAP(In-vitrogen,Carlsbad,CA).A?42peptide was synthesized at the Peptide Core Facility at the Institute for Brain Aging and Dementia at UCI by solid-phase Fmoc amino acid substitution and purified by reverse-phase high-pressure liquid chromatography.

Mice were immunized with2A?1–11-PADRE-MAP or fA?42as de-scribed previously(Cribbs et al.,2003;Petrushina et al.,2003;Agadjan-yan et al.,2005).Briefly,2A?1–11-PADRE-MAP(500?g/ml)or the fibril-lar(Schenk et al.,1999;Cribbs et al.,2003)A?42peptide(500?g/ml) were mixed with Quil A,a Th1-type conventional adjuvant,and mice were injected with50?g of antigen subcutaneously.Experimental mice at age9.4?0.9months old were immunized with2A?1–11-PADRE-MAP(n?21)or fA?42(n?12),whereas the control group of APP Tg 2576mice(n?11)was injected with an adjuvant only.All mice were boosted at monthly intervals.Cellular immune responses were analyzed in five mice from each group killed at9d after the fourth immunization. We continued to boost the remaining mice at monthly intervals and sera was collected at8–10d after the third,fourth,sixth and10th immuniza-tions and used for detection of anti-A?antibodies.At the end of the study,after10vaccinations when animals were19.4?0.9months old, neuropathological changes were compared across groups in response to treatment.In these animals,cellular immune responses also were analyzed.

T cell proliferation.The analysis of T cell proliferation was performed in splenocyte cultures from individual animals,as described previously (Cribbs et al.,2003;Agadjanyan et al.,2005).In addition,CD4?T cell proliferation was assessed using FACS assay according to the manufac-turer’s instructions(BD Biosciences,San Jose,CA).Briefly,to detect antigen-specific proliferation of CD4?T cells,we stained splenocyte cul-tures by1?M succinimidyl ester of carboxyfluorescein diacetate(CFSE; Invitrogen)for10min at37°C.After washing,the cells were incubated for3d in culture media alone or with PADRE(5?M).After incubation, the cultures were stained with phycoerythrin(PE)-labeled rat anti-mouse CD4monoclonal antibodies(BD Biosciences).Because dead cells might fluoresce nonspecifically,these cells were excluded from the assay using a nucleic acid dye(7-amino actinomycin D from BD PharMingen, San Diego,CA),and proliferation of viable cells was analyzed by FACS-can flow cytometer(BD Biosciences)as described by the manufacturer. CD4?population was separately analyzed using CellQuest software(BD Biosciences).

Production of cytokines by immune splenocytes.The same splenocytes used to assess T cell proliferation were used for detection of Th1(IFN?) or Th2(IL4)lymphokines by ELISPOT(BD PharMingen)as described previously(Cribbs et al.,2003;Agadjanyan et al.,2005).In addition,the FACS method was used for detection of specific cytokines by CD4?T cells(Pala et al.,2000).Briefly,the cultures of splenocytes from experi-mental and control animals were restimulated for3–4d with PADRE peptide(5?M),and then for4–6h with PMA(phorbol12-myristate 12-acetate)and ionophore(ionomycin)(both from Sigma,St.Louis, MO).In addition,we used Brefeldin A(BD Biosciences)to block cyto-kine secretion,which increases intracellular accumulation.Surface stain-ing was performed using FITC-labeled anti-mouse CD4monoclonal an-tibodies(MoAb;BD PharMingen).Cells were washed,fixed, permeabilized,and CD4?T cell subset producing IL-4or IFN?was de-tected using the appropriate PE-labeled anti-mouse cytokine antibodies (BD PharMingen).

Detection of anti-A?antibodies by ELISA.Total anti-A?42antibodies were detected as described previously(Cribbs et al.,2003;Petrushina et al.,2003)with small modifications:to develop the color reaction we used the3,3?,5,5?tetramethylbenzidine(TMB)peroxidase substrate(Pierce, Rockford,IL),and plates were analyzed spectrophotometrically at450 nm.The standard curve for determination of anti-A?antibody concen-trations in the sera was based on different known concentrations of monoclonal antibody20.1kindly provided by Dr.Van Nostrand(Stony Brook University,Stony Brook,NY).The concentrations of antibody were recorded in micrograms per milliliter.To determine the specific isotypes,pooled sera from mice were diluted1:2500and tested in dupli-cate.As we reported previously,mice of H2bxs immune haplotype(APP Tg2576)do not express IgG2a,producing IgG2c anti-A?antibodies instead(Petrushina et al.,2003).Therefore,in our experiments we used anti-IgG2a b-specific antibodies(BD PharMingen)along with anti-IgG1-,IgG2b-and IgM-specific antibodies(Zymed,San Francisco,CA). Detection of A?plaques in human brain tissues.Sera from immunized mice were also screened for the ability to bind to A?plaques in the human brain as we described previously,using immunohistochemistry (Ghochikyan et al.,2003;Agadjanyan et al.,2005).A digital camera (Olympus,Tokyo,Japan)was used to capture images of the plaques at 20?magnification.The binding of antisera(dilution1:1000)to the ?-amyloid plaques was blocked by preabsorption of the sera with5?M A?1–15peptide(1h,37°C).

Immunohistochemistry.To analyze the effect of active immunization with the epitope vaccine on neuropathological changes in APP Tg2576 mice(19.4?0.9months old),the brains were processed for immuno-histochemistry and histochemistry by previously published methods (Ghochikyan et al.,2003;Agadjanyan et al.,2005).Animals were killed under deep Nembutal sodium solution(150mg/kg,i.p.)anesthesia.To ensure proper fixation and immunostaining of brain tissues,mice were exsanguinated by transcardial perfusion with normal saline.Then brains

12722?J.Neurosci.,November14,2007?27(46):12721–12731Petrushina et al.?Testing the Epitope Vaccine in APP Tg2576Mice

were removed and bisected in midsagittal plane.The right hemisphere

was snap frozen for biochemical analysis,whereas the left hemisphere

was fixed in4%paraformaldehyde for immunohistochemical analysis.

Forty-micrometer-thick free-floating coronal sections of fixed hemi-

brains were collected using a vibratome.To assess the extent of neuropa-

thology and neuroinflammation that occurs in the brains of mice,the

following primary antibodies were used.A?deposits were detected with anti-A?42(dilution,1:2000;Invitrogen)and anti-A?40(1:10000;Invitro-gen).Activated microglia were detected with the anti-I-A/I-E[marker of

major histocompatibility complex(MHC)II alloantigens;1:200;BD

PharMingen]and anti-CD45(1:300;Serotec,Raleigh,NC)antibodies.

Astrocytes were labeled with anti-glial fibrillary acidic protein(GFAP;

1:3000)antibodies(Eng et al.,2000).Infiltration of T cells and macro-

phages were analyzed using anti-CD3-?(1:50;Santa Cruz Biotechnol-

ogy,Santa Cruz,CA),anti-CD4,anti-CD8(1:250;Novocastra Laborato-

ries,Newcastle,UK),and anti-F4/80(1:50;Serotec)antibodies,

respectively.The tissues from all animals within a given experimental

group were processed in parallel.Sections to be immunostained with

anti-A?antibodies were pretreated in90%formic acid for4min to enhance A?staining(Kitamoto et al.,1987).Sections for the staining with anti-CD45and anti-I-A/I-E(anti-MHC II)were pretreated with

proteinase K(0.03mg/ml)for5–7min at room temperature.Hydrogen

peroxide-quenched and blocked sections were incubated with primary

antibody overnight at4°C.Sections were then washed and incubated

with appropriate biotinylated secondary antibodies(1h at room temper-

ature).After multiple washes,the tissues were incubated in ABC for1h,

and color development was performed using DAB(3,3?-

diaminobenzidine)substrate kit(Vector Laboratories,Burlingame,CA).

Sections were mounted on Vectabond-coated slides(Vector Laborato-

ries),dehydrated,and covered using DPX(BDH Laboratory Supplies,

Poole,UK).Fibrillar A?deposits were visualized using Thioflavin S (ThS)as described by(Schmidt et al.,1995).Briefly,mouse brain sections

were washed with Tris buffer and stained for10min with a solution of

0.5%ThS in50%ethanol.Finally,sections were washed in50%ethanol

and Tris buffer,then dried and covered using Vectashield(Vector

Laboratories).

Quantitative image analysis.NIH imaging was used to analyze the area

occupied by?-amyloid and glial reactivity as described previously(Head et al.,2001).Immunostaining was captured using a Sony(Tokyo,Japan)

high-resolution CCD video camera(XC-77)and NIH image1.59b5soft-

ware.For every animal,12images(525?410?m each)of the frontal parietal region in the cortex at approximately the same plane(0.74to ?2.9mm with respect to bregma)of two adjacent sections were captured with a20?or40?objective.The samples included six images from the

superficial layer and the remaining six from the deep layer.NIH imaging

was used to analyze the area occupied by?-amyloid(A?load)relative to the background,and expressed as the percentage of area occupied.The threshold for detection of immunoreactivity was established and then held constant throughout the image analysis.ThS-positive plaques were counted by visual inspection of cortical region of all stained sections although blind with respect to treatment condition;a mean semiquanti-tative score was independently determined for each slide by two observers.

Prussian blue staining for microhemorrhage.Staining for hemosiderin

deposits was performed on duplicate adjacent coronal sections of the

mice brains containing similar regions located at approximately?1.5

bregma point,50?m thick,collected from immunized and naive,age-matched APP Tg2576mice.The sections were stained with Prussian blue working solution(equal parts of freshly made5%potassium ferrocianide and5%hydrochloric acid)for30min at room temperature,washed in deionized water,and counterstained with Nuclear fast red.Possible hem-orrhage events in the form of the number of Prussian blue-positive pro-files were counted in the brains of each mouse on all sections by two independent observers,and the average number of hemosiderin deposits was calculated per each brain hemisphere.

Biochemical analysis.Biochemical analysis of the brain tissue was pro-

cessed as described previously(Kawarabayashi et al.,2001),except that

cortices of right hemispheres of brains were used.Briefly,frozen cortices

were thawed,minced and then homogenized in50m M Tris-HCl buffer containing2%SDS,pH8.0,and a mixture of protease inhibitors(MP Biomedicals,Solon,OH).Homogenates were centrifuged(100,000?g, 1h,4°C)and supernatants were stored at?70°C for additional analysis of soluble?-amyloid.Seventy percent formic acid was added to the pel-lets for extraction of SDS-insoluble?-amyloid.After sonication samples were centrifuged(100,000?g,1h,4°C)and supernatants were stored for analysis of insoluble?-amyloid.After neutralization of formic acid with 1.0M Tris-base/0.5M NaH2P04,concentrations of insoluble and soluble A?40and A?42were analyzed using?-amyloid ELISA kits(Invitrogen) according to the manufacturer’s recommendations.Plates were analyzed spectrophotometrically at450nm via a microplate reader,and the con-centrations of A?40and A?42were calculated using standard curves for A?40and A?42peptide by comparing the sample’s absorbance with the absorbance of known concentrations of a https://www.wendangku.net/doc/e511097271.html,ing the wet weight of cortex region in the original homogenate,the final values of A?were expressed as micrograms per gram wet weight of cortex.

Dot blot assay and combination of IP and WB.Soluble fractions from cortical homogenates of experimental and control mice used in ELISA were also used for dot blot assay and for both immunoprecipitation(IP) and Western blot(WB).Total protein concentration in the homogenates was determined using bicinchoninic acid assay(Pierce)and adjusted to4 mg/ml with PBS.

Dot blot.Two microliters of sequential dilutions of homogenates were applied to nitrocellulose membrane(GE Healthcare,Piscataway,NJ), air-dried,and blocked with5%fat-free dry milk in TBST(10m M Tris-HCl,pH8.0,150m M NaCl,0.05%Tween20).Oligomers were detected by using HRP-conjugated A11polyclonal antibody(kindly provided by Dr.C.Glabe,University of California,Irvine,Irvine,CA).Blots were developed with ECL detection system(Santa Cruz Biotechnology).Au-toradiograms were scanned,and densitometry of A?oligomer spots was performed with NIH Image J software,version1.36b.The relative optical density was calculated and presented as average value?SD for each group.

IP and WB.Aliquots of homogenates were pooled into four groups (based on low,moderate,high anti-A?antibody responders and control nonimmunized mice,200?g of total protein in each pooled aliquot), diluted to500?l with PBS and incubated(overnight at4°C)with anti-A?20.1monoclonal antibody immobilized on protein G-sepharose.The beads were washed three times in PBS,and proteins were eluted in20?l of SDS-PAGE loading buffer by boiling.Samples were subjected to elec-trophoresis on12.5%SDS-Tris polyacrylamide gel and proteins were electrotransferred to polyvinylidene difluoride membrane(GE Health-care).The membrane was boiled for2min and blocked with5%fat-free dry milk followed by detection of A?oligomers using anti-A?biotinyl-ated20.1monoclonal antibody.Three experiments with the same ho-mogenates were performed and Western blots were scanned and con-verted into digital files.Densitometry of A?oligomer bands were performed using NIH Image J software,version1.36b and data(aver-age?SD)were presented from three experiments.

Statistical analysis.All statistical parameters(mean,SD,significant difference,etc.)used in experiments were calculated using Prism3.03 software(GraphPad Software,San Diego,CA).Statistically significant differences were examined using an ANOVA and post hoc comparisons were done using Tukey’s test(p?0.05was considered as statistically different).

Results

The second generation epitope vaccine stimulates

CD4?IFN??T cells specific to PADRE without activation of autoreactive anti-A?T helper cells

To circumvent the side effects of the AN-1792vaccine against AD,we engineered a vaccine in which a foreign T helper cell epitope was incorporated with two copies of the B cell epitope of A?42.APP Tg2576mice vaccinated with2A?1–11-PADRE-MAP induced T cell responses directed against the foreign antigenic determinant,PADRE,but not against self A?antigen.More spe-cifically,splenocytes isolated from vaccinated animals prolifer-ated after re-stimulation with PADRE,but not A?40(Fig.1A).In

Petrushina et al.?Testing the Epitope Vaccine in APP Tg2576Mice J.Neurosci.,November14,2007?27(46):12721–12731?12723

contrast,control APP Tg2576mice vacci-nated with fibrillar A?42antigen(fA?42) that has self B and T cell antigenic deter-minants induced only autoreactive T cells activated after restimulation with A?40 (Fig.1A).

Direct measurement of activation of PADRE-specific CD4?T helper cells in vaccinated APP Tg2576mice by a FACS assay confirmed these results.CD4?T cells from mice vaccinated with the pep-tide epitope vaccine induced strong prolif-eration of this subset of T cells after re-stimulation with nonself PADRE peptide, but not A?40(Fig.1B).In contrast,vacci-nation with fA?42formulated in QuilA ad-juvant induced proliferation of CD4?T cells activated after re-stimulation with self-antigen A?40,but not with nonself T cell epitope PADRE.Of note,CD4?T cells from mice injected with adjuvant did not proliferate after restimulation either with PADRE or A?40peptides(Fig.1B).

To further investigate T cell responses to vaccination,we analyzed Th1(IFN?) and Th2(IL-4)cytokine production by splenocytes and CD4?T cells from im-munized and control APP Tg2576mice

using ELISPOT and FACS assays,respec-

tively(Fig.1C,D).In these experiments,splenocytes from mice vaccinated with epitope vaccine were restimulated with PADRE, whereas splenocytes isolated from animals immunized with fA?42were restimulated with A?40.Groups of APP Tg2576mice injected with the epitope vaccine induced a strong IFN?(Th1) response based on the number of splenocytes producing this lym-phokine,whereas mice immunized with fA?42had low re-sponses.Because we used a Th1adjuvant in both the epitope and fA?42vaccinations,it was not surprising that both groups of mice generated less IL-4(Th2)than IFN?(Th1),whereas splenocytes from naive mice did not generate either IL4or IFN?cytokines (Fig.1C).We confirmed these results by measuring the produc-tion of IL-4or IFN?cytokines in CD4?T helper cells.We found that the number of PADRE-specific CD4?IFN??T helper cells in mice immunized with the epitope vaccine was higher than the number of anti-A?CD4?IFN??T cells in mice immunized with fA?42(Fig.1D).The same was true for IL-4-producing anti-PADRE and anti-A?CD4?T cells,although both groups had significantly lower number of CD4?T cells producing IL-4than IFN?(Fig.1D).Thus,CD4?T cells and splenocytes isolated from both vaccinated groups predominantly produced a Th1-type cytokine,IFN?,consistent with antigens being formulated in a Th1-type adjuvant,Quil A.Cellular immune responses ana-lyzed after4(Fig.1)and10(data not shown)immunizations showed the same specificity and profile.Collectively,the analyses of T cells demonstrated that the epitope vaccine did not activate autoreactive T cells,but stimulated nonself PADRE-specific CD4?IFN??T lymphocytes.

Anti-PADRE-specific CD4?IFN??T lymphocytes help B cells to produce therapeutically potent anti-A?1–11specific antibody in vaccinated APP Tg2576

To determine the ability of activated PADRE-specific T cells to stimulate anti-A?B cells,we measured antibody concentrations in the sera pooled from each group of animals after three,four, six,and10immunizations.After three injections of the epitope vaccine the concentrations of anti-A?antibodies in the sera were higher than that in mice immunized with fA?42.However,after the sixth immunization this difference in anti-A?antibody titers steadily diminished,becoming equal after the last two boosts in both groups(Fig.2A).Of note,mice immunized with the Quil A adjuvant alone did not induce anti-A?antibodies(data not shown).

As mentioned above,these data were generated with sera pooled from each of the group;however,in individual animals we found significant variability in anti-A?antibody responses(Fig. 2B).Concentrations of anti-A?1–11antibodies after10immuni-zations were high in four mice immunized with the epitope vac-cine(176.8?163.56?g/ml),whereas an additional eight and four vaccinated animals induced moderate(22.2?14.16?g/ml) and low levels(1.2?1.5?g/ml)of anti-A?1–11antibodies,re-spectively(Fig.2C–E).This individual variability in humoral im-mune responses was also detected in the group of mice immu-nized with fA?42antigen(Fig.2C–E):four mice generated high (82.65?22.68?g/ml),one mouse had moderate(23.3?g/ml), and two animals had low concentrations(0.9?0.7?g/ml)of anti-A?42antibodies.Thus,the epitope vaccine was at least as effective as fA?42in induction of antibodies after10immuniza-tions,but was significantly more effective at initiating the anti-body immune responses(Fig.2A).

To characterize the types of humoral immune responses from each vaccination group,we measured the production of IgG1, IgG2a b,IgG2b,and IgM anti-A?antibodies in the sera collected from individual animals after a total of10injections of the epitope vaccine or fA?42.All mice vaccinated with the epitope vaccine generated comparable amounts of IgG1,IgG2a b,and as a result,the average of IgG1/IgG2a b ratio was close to1(Fig.2F). This ratio implied that the epitope vaccine formulated in Th1

Figure1.The second generation peptide epitope vaccine induces T cell response specific to promiscuous and nonself epitope, PADRE.Splenocyteswereisolatedfromindividualmice(n?5)afterfourthimmunizationandrestimulated invitro withPADREor

A?

40peptides.A,Proliferationofsplenocyteswasdetectedby3[H]thymidineincorporation.B,D,ProliferationofCD4?Tcells(B)

and production of cytokines by this T cell subset(D)were detected by flow cytometry in pooled splenocyte cultures.Production of

IFN?and IL4cytokines by pooled immune splenocytes was detected by ELISPOT assay(C).The experiment was repeated after the

10th immunization with similar results.***p?0.001.

12724?J.Neurosci.,November14,2007?27(46):12721–12731Petrushina et al.?Testing the Epitope Vaccine in APP Tg2576Mice

adjuvant induced a Th1type humoral response.Similar results

were observed in mice immunized with fA ?42;immunization in

these animals induced anti-A ?42antibodies of all IgG isotypes

tested,and IgG1/IgG2a b ratio was ?1(Fig.2F ).Antibodies gen-erated by the epitope vaccine recognized human A ?deposits

when used in immunohistochemical experiments in an AD case,

and this binding was blocked by preabsorption of sera with A ?42,

A ?1–11,or 2A ?1–11peptides equally well (data not shown).Thus,

as was expected,the epitope vaccine induced antibodies specific

to the A ?1–11sequence of A ?42.

The link between anti-A ?1–11antibody concentrations and

clearance/reduction of AD-like neuropathology in the brains

of APP Tg 2576mouse model of AD

To demonstrate the therapeutic efficacy of anti-A ?antibodies

generated in response to the peptide epitope vaccine,we analyzed

neuropathological changes in aged (19.4?0.9months old)ex-perimental and control APP Tg 2576mice (after 10injections).

Figure 3shows a significant decrease in cortical plaque burden in

APP Tg 2576mice immunized with both the epitope vaccine and

the fA ?42antigen,compared with the control adjuvant-only in-jected group.More specifically,in brains of mice immunized

with the epitope vaccine or fA ?42,we de-tected significantly less A ?42or A ?40load (diffuse and cored plaques)than in brains of control animals (Fig.3A ,B ).Addition-ally,we demonstrated significant reduc-tion of ThS-positive A ?deposits (cored plaques)in the brains of experimental mice versus controls (Fig.3C ).Collec-tively,these results demonstrate that im-munization with epitope vaccine is effec-tive in reducing cerebral A ?burden in APP Tg 2576mice,which were ?9months old at the start of the study.

As described previously,data from the first human clinical trial indicated that AD patients responding to the AN-1792vac-cine and producing anti-A ?antibody titers over 1:2200showed some slowing of cognitive decline and localized reduction of plaques (Hock et al.,2003;Gilman et al.,2005;Masliah et al.,2005;Nicoll et al.,2006).To address this question in our preclin-ical trials,we grouped all mice vaccinated with the epitope vac-cine based on the concentrations of generated anti-A ?antibodies (Fig.2C–E ),and analyzed the levels of soluble and insoluble A ?in the brains of experimental and control animals.The rationale for using A ?as an outcome measure reflecting possible func-tional improvements was based on previous work showing that A ?is correlated with behavior in APP Tg 2576mice (Hsiao et al.,1996;Westerman et al.,2002)and that vaccination of APP Tg mice with fA ?42leads to behavioral improvements and reduced A ?(Chen et al.,2000;Janus et al.,2000;Morgan et al.,2000;Das et al.,2001,2003).We observed a positive correlation between the concentration of anti-A ?1–11antibodies and reduction of cortical A ?42load in the brains of vaccinated APP Tg 2576mice (coeffi-cient of correlation is ?0.83,p ?0.05).As shown in Figure 4A ,there are no differences in A ?42load between the group of mice with low concentrations of anti-A ?1–11antibodies and control mice.Although A ?42load is noticeably reduced in the brains

of Figure 2.The second generation epitope vaccine selectively initiates B cell responses toward an immunogenic epitope of A ?1–11,whereas T cell help is provided by a genetically linked nonself T cell epitope,PADRE.A ,B ,Concentration of anti-A ?antibody detected in the pooled sera after three,four,six,and 10immunizations (A )or in individual animals after 10immunizations (B ).C–E ,APP Tg 2576mice immunized with epitope or fA ?42vaccines generated low (C ),moderate (D ),or high (E )concentrations of anti-A ?antibody.F ,Detection of IgG1,IgG2a b ,IgG2b,and IgM isotypes of anti-A ?antibody.

Figure 3.A–C ,The second generation epitope vaccine inhibits A ?deposition in the brains of 19.4?0.9-month-old APP Tg 2576mice.Image analysis of A ?42(A ),A ?40(B ),and Thioflavin S (C )staining in cortex of mice vaccinated with epitope vaccine,fA ?42,or control mice.Vaccinated mice showed a significant reduction in A ?42/40load (cored and diffuse)and in the number of ThS-positive (cored)plaques (*p ?0.05)compared with the control animals.Error bars represent the average ?SE for n ?6in the group of control mice,and n ?16and n ?7in the groups of mice vaccinated with epitope and fA ?42vaccines,respectively.Petrushina et al.?Testing the Epitope Vaccine in APP Tg 2576Mice J.Neurosci.,November 14,2007?27(46):12721–12731?12725

mice with moderate concentration,this reduction was not signif-icant,whereas in the mice with a high concentration of serum anti-A ?1–11antibodies A ?42load was reduced significantly (p ?0.018).Immunostaining of adjacent brain sections with anti-A ?40-specific antibodies revealed a marked reduction of A ?40load in all groups of experimental mice versus the controls,inde-pendent of serum antibody concentrations (Fig.4B ).However,ThS staining also showed positive correlation between the con-centrations of anti-A ?1–11antibodies and reduction of cortical cored plaques (Fig.4C ),which in APP Tg 2576mice contain both A ?40/42peptides (Kawarabayashi et al.,2001).Similar effects were observed in the hippocampal regions of vaccinated APP Tg 2576mice stained with anti-A ?42.Representative images of hip-pocampal regions stained with anti A ?42-specific monoclonal antibodies (D-G)or ThS (H-K)are shown in Figure 4D–K .To further confirm an association between serum antibody concentrations and differential effects on reducing A ?40or A ?42,we measured insoluble A ?40and A ?42in cortical homogenates of experimental and control mice by sandwich ELISA.Insoluble A ?40and A ?42concentrations were significantly lower in the cortex of mice vaccinated with the epitope vaccine or fA ?42,com-pared with control animals (Fig.5A ,B )(p ?0.001and p ?0.05,respectively).However,when we compared A ?levels in groups with low,moderate,and high titers of antibodies,we found a significant reduction of A ?40and A ?42only in mice with anti-A ?1–11antibody levels ?50?g/ml (Fig.5C ,D )(p ?0.05and p ?0.001,respectively).Collectively,these results demonstrate that high concentrations of anti-A ?antibody are critical for effective reduction of insoluble A ?in APP Tg 2576mice with pre-existing AD-like pathology.

A potential problem of immunotherapy is that reduction of insoluble A ?may lead to increased levels of soluble forms of this peptide (Patton et al.,2006),possibly oligomers,which are known to be more neurotoxic and can impair cognitive function (Klein et al.,2001;Gong et al.,2003;Cleary et al.,2005;Klyubin et al.,2005;Lesne et al.,2006).Accordingly,we measured soluble A ?40and A ?42levels in detergent-extracted samples of cortical homogenates of control mice and animals vaccinated with epitope vaccine or fA ?42by capture ELISA (Fig.5A ,

B ).There were no statistically significant differences between experimental and control mice.In addition,we evaluated the levels of A ?oli-gomers in the cortical homogenate by dot blot using A11anti-oligomeric antibodies (Kayed et al.,2003).All available homog-enates from low (n ?3),moderate (n ?7),and high (n ?3)responders as well as control (n ?5)mice were used in these experiments.No differences were found between all three groups of immunized mice as well as between vaccinated and control animals (Fig.5E ,F ).Of note,no oligomers were detected in brain homogenates from wild-type mice (data not shown).To confirm these results and to measure the relative levels of high molecular weight (?5-to 6-mers)oligomers,the cortical homogenates were subjected to IP followed by WB.The levels of A ?5-mers,9-mer,and 12-mer oligomers in detergent-extracted samples of cortical homogenates obtained from experimental and control mice did not significantly differ,and wild-type mice did not de-posit A ?-reactive oligomers (Fig.5G ,H ).Therefore,the level

of

Figure 4.A–C ,The anti-A ?antibody concentration positively correlates with the reduction of A ?42and Thioflavin S,but not A ?40load in the cortex areas of APP Tg 2576mice immunized with epitopevaccine.Errorbarsrepresenttheaverage ?SEforcontrolmice(n ?6)andmicewithlow(n ?4),moderate(n ?8),andhigh(n ?4)anti-A ?antibodyconcentrations.*p ?0.05;**p ?0.01).D–K ,Thesameresultswereobtainedafterstainingofhippocampalregionswithanti-A ?42-specificmonoclonalantibody(D–G )orThioflavinS(H–K ).Representativeimagesofhippocampal regions of control mice (D ,H )and mice with low (E ,I ),moderate (F ,J ),and high (G ,K )anti-A ?antibody concentrations.Original magnifications,4?.Scale bar,500?m.

12726?J.Neurosci.,November 14,2007?27(46):12721–12731Petrushina et al.?Testing the Epitope Vaccine in APP Tg 2576Mice

oligomeric,toxic forms of A?is not reduced in the brain of APP Tg2576mice at least when vaccination was initiated in mice with pre-existing AD-like pathology.These differences between re-ducing insoluble and soluble A?42in vivo are not connected to the differences in binding affinity of anti-A?1–11antibodies to these forms of?-amyloid as we previously demonstrated (Mamikonyan et al.,2007).

The effect of vaccination on microglial activation,lymphocyte infiltration,and microhemorrhages

To detect inflammation-related pathology in the brains of ani-mals immunized with the epitope vaccine,the same brain regions

used for A?burden studies were evaluated

for microglial activation(MHC class II,

CD45),astrocyte hypertrophy(GFAP),

and microhemorrhages in blood vessels

(Prussian blue).Quantitative image anal-

ysis of MHC class II(I-A b/I-E b)positive

cells demonstrated significantly decreased

microglial activation in APP Tg2576mice

vaccinated with the epitope vaccine,and

this decrease was comparable with that

seen in the cerebral cortex of mice immu-

nized with fA?42(Fig.6A).Representative

MHC class II immunoreactivity is shown

for mice vaccinated with the epitope vac-

cine for comparison with control animals

(Fig.6B–E).These data are similar to the

results obtained after immunostaining of

the brain tissues with anti-CD45antibod-

ies(Fig.6F–I).Thus,immunization with

the epitope vaccine decreased microglial

activation in the brains of aged APP Tg

2576mice.

Astrocytes in both experimental and

control mice were detected using the

astrocyte-specific marker(GFAP)and a

quantitative image analysis indicated that

vaccinated mice had a lesser degree of as-

trocytosis compared with the control

group.However,immunization with

epitope vaccine led to a14%reduction,

whereas immunization with fA?42re-

sulted in?53%reduction in GFAP im-

munoreactivity(Fig.6J).Importantly,im-

munization with the epitope vaccine

reduced astrocytosis to?50%of the mice

with high sera concentrations of antibod-

ies and this decrease is statistically signifi-

cant(Fig.6K).

Previously,it was reported that very

old APP Tg mice receiving passive transfer

of anti-A?monoclonal antibodies devel-

oped cerebral microhemorrhages(Pfeifer

et al.,2002;Wilcock et al.,2004).More

recently,it was shown that cerebral amy-

loid angiopathy-associated microhemor-

rhages are increased in?20-month-old

APP?presenilin1(PS1)transgenic mice

immunized eight times with fA?42formu-

lated in complete Freunds adjuvant

(CFA)/incomplete Freunds adjuvant

(IFA)(Wilcock et al.,2007).To assess

this potential adverse side effect of epitope vaccine,we selected adjacent coronal sections of mouse brains located at?1.5bregma and visualized microhe-morrhages by detecting hemosiderin(byproduct of degrada-tion of hemoglobin,occurring at the sites of previous micro-hemorrhages)deposits using Prussian blue staining. Characteristic blue hemosiderin-positive profiles were ob-served primarily in the neocortical,leptomeningeal,hip-pocampal and thalamic areas of the brain.These microhem-orrhages were detected at a rate of2.8?0.8per hemibrain in control nonimmunized mice and2.6?1.33in animals immu-nized with the epitope vaccine.However,vaccination of a

Figure5.The reduction of insoluble,but not soluble A?

40and A?

42

levels are positively correlated with the concentrations of

anti-A?

1–11antibody.A,B,A significant decrease in the total(parenchymal and vascular)levels of insoluble A?

40

and A?

42

in

cortical homogenates was observed after epitope vaccine and fA?

42immunization.C,D,The significant reductions in insoluble

A?

40and A?

42

levels were observed only in groups with high titers of antibodies.*p?0.05and***p?0.001.However,the

levels of soluble A?

40and A?

42

in cortical homogenates did not differ between experimental and control groups(A,B).E–H,The

level of oligomeric forms of A?detected in cortical homogenates using dot blot(E,F)or by combination of IP with WB(G,H)also

was not changed after vaccination.In dot blot assay,homogenates from individual animals were diluted and analyzed using A11

oligomer-specific antibody(E),and relative optical density(F)was presented as the average?SD.Pooled homogenates of each

group of mice were analyzed by IP/WB(G),and no significant difference between the density and thickness of oligomeric bands

(H)was detected(with the average?SD calculated from three independent experiments).Lanes in WB:a,wild-type;b,control;

c,low,?5?g/ml;d,moderate,5–50?g/ml;e,high,?50?g/ml.

Petrushina et al.?Testing the Epitope Vaccine in APP Tg2576Mice J.Neurosci.,November14,2007?27(46):12721–12731?12727

group of APP Tg 2576mice with fA ?42had resulted in 3.97?1.24hemosiderin-positive profiles.Although not statistically significant,there was nonetheless approximately a 41%in-crease compared with the control group,and these data re-semble the results generated by (Wilcock et al.,2007)with APP ?PS1aged mice.Thus,immunization with the second generation epitope vaccine did not increase the incidence of cerebral microhemorrhages in ?19-month-old APP Tg 2576mice (Fig.6L ).Although there is only one unconfirmed report about lymphocyte infiltration detected in the brains of wild-type mice immunized with A ?42formulated in CFA/IFA fol-lowed by injection with pertussis toxin (Furlan et al.,2003),we also investigated whether immunization with the epitope vac-cine formulated in Th1adjuvant might also induce T cell in-filtration into the brain.Our standard methodology for de-tecting T cells in brain vessels of mice (Ghochikyan et al.,2003)did not identify CD3-,CD4-,and CD8-positive T cells or F4/80-positive macrophages in the brains of mice immu-nized with our second generation epitope vaccine (data not shown).Thus,reduction of insoluble A ?deposition in immu-nized APP Tg mice was not associated with deleterious side effects,including cerebral inflammation and microhemorrhages.

Discussion

Published results from the recently halted AN-1792clinical trial in patients with AD suggested that aseptic meningoencephalitis was linked to an adverse T cell-mediated autoimmune response (Nicoll et al.,2003;Ferrer et al.,2004).Presence of anti-A ?anti-bodies correlated with effective reduction of A ?pathology in patients that came to autopsy (Nicoll et al.,2003;Ferrer et al.,

2004;Masliah et al.,2005),suggesting a possible therapeutic ben-efit of vaccination (Bayer et al.,2005;Fox et al.,2005;Gilman et al.,2005).We analyzed the effect of different concentrations of anti-A ?antibodies in serum on neuropathological changes in the brains of actively immunized APP Tg 2576mice in the absence of an autoreactive anti-A ?T cell response.We have obtained results somewhat similar to data described in the AN-1792clinical trial:(1)the higher the concentrations of anti-A ?antibody specific to the N terminus of A ?42,the larger the therapeutic effect.The NTB composite z -scores were regressed on the geometric mean anti-body titers,although this correlation was not significant (Gilman et al.,2005).(2)AN-1792vaccine reduced the number of A ?plaques,but not the level of soluble A ?in the brains (Patton et al.,2006).To circumvent the side effects of the AN-1792vaccine and to reduce the potential for cell-mediated autoimmune toxicity in AD patients,we engineered the first (Agadjanyan et al.,2005)generation of epitope vaccine and tested it in wild-type mice.Here,we report on design and testing of the second generation peptide epitope vaccine in APP Tg 2576mouse model (Hsiao et al.,1996;Kawarabayashi et al.,2001;Westerman et al.,2002),and demonstrated that this prototype AD vaccine induced strong anti-PADRE cellular and anti-A ?humoral responses (Figs.1,2).If this proves to be predictive for human trials and vaccinated individuals induce strong anti-A ?antibody responses without generating potentially harmful autoreactive T helper cells,our epitope vaccine approach may represent a reasonable alternative to a passive vaccination strategy with humanized anti-A ?antibody.

The AN-1792clinical trial data demonstrated significant in-dividual variability in anti-A ?antibody responses in

vaccinated

Figure 6.The second generation epitope vaccine reduces glial activation without increasing brain microhemorrhages.A ,Image analysis of cortex areas from vaccinated or control mice was performed after staining with anti-I-A/I-E antibody.Vaccination either with the epitope vaccine,or fA ?42decreased microglial activation in cortical region of immune mice (*p ?0.05)compared with that in control mice.B–I ,Representative pictures of brain sections stained with anti-I-A/I-E (B–E )and anti-CD45(F–I )antibodies showing a decreased immunoreactivity also in the hippocampal brain regions in mice immunized with the epitope vaccine (C ,E ,G ,I )compared with control animals (B ,D ,F ,H ).Original magnifications:B ,C ,F ,G ,5?;D ,E ,H ,I ,40?.J ,K ,Image analysis of cortical regions from vaccinated or control mice was performed after staining with anti-GFAP antibody.Astrocytosis was significantly (*p ?0.05)decreased in mice immunized with fA ?42.A reduction in GFAP load was slightly reduced in all mice vaccinated with the epitope vaccine,but it was significant only in mice with high concentration anti-A ?antibody.L ,The number of Prussian blue-positive profiles in the brain hemispheres of experimental and control mice did not differ significantly.

12728?J.Neurosci.,November 14,2007?27(46):12721–12731Petrushina et al.?Testing the Epitope Vaccine in APP Tg 2576Mice

AD patients(Bayer et al.,2005;Gilman et al.,2005).As men-tioned by Patton et al.(2006),only59individuals in the immu-nized cohort induced desirable antibody titers to immunization with fA?42.Importantly,some of these AD patients showed a trend toward slowing of cognitive decline associated with the disease(Hock et al.,2003),improvement in the memory domain of the NTB and the decreased CSF tau levels(Gilman et al.,2005). Collectively,these data suggested that higher titers of antibodies might be beneficial for AD patients.Because the concentrations of anti-A?antibodies in individual APP Tg2576mice vaccinated with our epitope vaccine were not uniform either(Fig.2B)we were able to analyze the association between the neuropatholog-ical changes in vaccinated APP Tg2576mice with the concentra-tion of anti-A?antibodies in the sera of these animals.We ob-served that the concentration of anti-A?antibodies was associated with a therapeutic effect in APP Tg2576mice(Fig.4). Our data also indicated that high concentrations of anti-A?an-tibodies are critical,selectively for the reduction of A?42deposits, whereas A?40deposits and cored plaques are more responsive to A?immunotherapy overall and can be cleared even with low lev-els of anti-A?antibodies(Fig.4).Previous data with APP Tg mice have demonstrated that although A?plaques were reduced,the total level of soluble and insoluble A?did not differ between immunized and control mice(Janus et al.,2000).Clinical studies demonstrated that immunizations with AN-1792vaccine mobi-lize parenchymal plaques and reduce the level of insoluble A?, but increase the level of vascular and soluble?-amyloid(Masliah et al.,2005;Nicoll et al.,2006;Patton et al.,2006).These data suggest that the increased level of soluble A?may produce con-ditions that favor formation of toxic oligomeric species of A?.To address this issue,we analyzed the levels of soluble and insoluble A?40and A?42in cortex homogenates obtained from immunized and control APP Tg2576mice and demonstrated that vaccina-tion significantly decreased the levels of insoluble A?40and A?42. Importantly,vaccination did not increase the levels of the more toxic soluble A?in mouse model of AD(Fig.5A,B)in contrast to data reported with the AN-1792vaccine(Patton et al.,2006). Additionally,we demonstrated that only the high concentrations of anti-A?antibodies significantly decrease both insoluble A?40 and A?42in cortical tissues of experimental mice(Fig.5C,D). Thus,our vaccine did not affect the levels of soluble A?40and A?42in the brains of mice with pre-existing AD-like pathology. Previously it was demonstrated that A?neurotoxicity requires insoluble fibril formation(Loo et al.,1993;Lorenzo and Yankner, 1994).However,emphasis has shifted to soluble oligomers as pathological species of A?42(Gong et al.,2003;Cleary et al.,2005; Klyubin et al.,2005;Lesne et al.,2006),although aggregation-related toxicity was reported almost a decade earlier(Pike et al., 1991).In APP Tg2576mice,memory deficits are first detected in 6-month-old mice accumulating12-mer oligomers(Lesne et al., 2006)and before overt plaque deposition.Accordingly,we ana-lyzed the levels of oligomers in the brains of APP Tg2576mice using an anti-oligomeric antibody(A11),and have demonstrated that immunization with the epitope vaccine did not induce a reduction in immunized compared with control animals(Fig. 5E,F).We further confirmed these by dot blot experiments using A?fractions immunoprecipitated from cortical homogenates and then detecting oligomers by Western blotting.Of note,in these experiments we used12.5%SDS-Tris polyacrylamide gel that allowed the detection of oligomers?20kDA.The levels of A?oligomers in the brains of experimental and control mice were not significantly different and no oligomers were detected in wild-type mice(Fig.5G,lane a).These results suggest that either higher concentration of anti-A?antibodies are needed to signif-icantly reduce oligomeric A?in brains of immunized mice,or more likely that immunization should be initiated at an earlier age,in mice either without pre-existing A?pathology or with early-stage AD-like pathology.Whereas our ongoing prevention immunization studies with the DNA epitope vaccine may allow us to address these hypotheses,we need to mention that multiple transcutaneous immunizations of young PSAPP mice without pre-existing AD-like pathology with fA?42and cholera toxin gen-erated high titers of anti-A?antibodies(?250?g/ml)that re-duced the levels of both insoluble and soluble cerebral A?de-tected in aged mice(Nikolic et al.,2007).Interestingly,analysis from two cases from the AN-1792clinical trial report also suggest that“anti-amyloid immunization may be most effective not as therapeutic or mitigating measures,but as a prophylactic mea-sure when A?deposition is still minimal”(Patton et al.,2006).

It is difficult to predict the effects of frequent passive delivery of high concentrations of humanized anti-A?antibodies in on-going passive immunotherapy trials with AD patients because this treatment approach may still induce undesirable side effects, for example microhemorrhages.Although these clinical studies are important for the future of A?immunotherapy,an effective active immunization approach is still feasible providing that the AD vaccine is safe,induces an adequate antibody response to important B cell epitope of A?,and is free of harmful autoreactive T cell responses.The second generation epitope vaccine de-scribed in this study induced peripheral anti-PADRE-specific Th1-type proinflammatory responses without infiltration of T cells or macrophages in the brains of vaccinated APP Tg2576 mice.It is known that AN-1792vaccine caused an increase in cerebral vasculature deposition of A?(Masliah et al.,2005;Nicoll et al.,2006;Patton et al.,2006).Previously it was also shown that active A?42vaccination of double transgenic(APP?PS1)mice resulted in significantly increased cerebral amyloid angiopathy and associated microhemorrhages(Wilcock et al.,2007).Al-though we did not directly investigate the effect of epitope vac-cine on A?deposition in cerebral vasculature,we demonstrated that anti-A?1–11antibodies did not increase the incidence of ce-rebral microhemorrhages in the brains of immunized mice(Fig. 6L).Thus,we suggest that an epitope vaccine could be used as a safe and effective measure for the treatment of people with early preclinical stage AD especially if they can be diagnosed by mea-suring Tau/A?and pTau/A?ratio in CSF(de Jong et al.,2006; Fagan et al.,2007a,b)and/or detecting of accumulation of A?in the brains using Pittsburgh Compound-B positron emission to-mography scan(Klunk et al.,2004).

References

Agadjanyan MG,Ghochikyan A,Petrushina I,Vasilevko V,Movsesyan N, Mkrtichyan M,Saing T,Cribbs DH(2005)Prototype Alzheimer’s dis-ease vaccine using the immunodominant B cell epitope from beta-amyloid and promiscuous T cell epitope pan HLA DR-binding peptide.

J Immunol174:1580–1586.

Alexander J,Sidney J,Southwood S,Ruppert J,Oseroff C,Maewal A,Snoke K, Serra HM,Kubo RT,Sette A,Grey HM(1994)Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides.Immunity1:751–761.

Bard F,Cannon C,Barbour R,Burke RL,Games D,Grajeda H,Guido T,Hu K,Huang J,Johnson-Wood K,Khan K,Kholodenko D,Lee M,Lieber-burg I,Motter R,Nguyen M,Soriano F,Vasquez N,Weiss K,Welch B,et al.(2000)Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease.Nat Med6:916–919.

Bard F,Barbour R,Cannon C,Carretto R,Fox M,Games D,Guido T,Hoe-now K,Hu K,Johnson-Wood K,Khan K,Kholodenko D,Lee C,Lee M,

Petrushina et al.?Testing the Epitope Vaccine in APP Tg2576Mice J.Neurosci.,November14,2007?27(46):12721–12731?12729

Motter R,Nguyen M,Reed A,Schenk D,Tang P,Vasquez N,et al.(2003) Epitope and isotype specificities of antibodies to beta-amyloid peptide for protection against Alzheimer’s disease-like neuropathology.Proc Natl Acad Sci USA100:2023–2028.

Bayer AJ,Bullock R,Jones RW,Wilkinson D,Paterson KR,Jenkins L,Millais SB,Donoghue S(2005)Evaluation of the safety and immunogenicity of synthetic Abeta42(AN1792)in patients with AD.Neurology64:94–101. Boche D,DeBeer S,Cox A,Wilkinson D,Holmes C,Neal J,Love S,Esiri M, Bridges L,Weller R,Nicoll JA(2007)Evidence of a transient increase in cerebral amyloid angiopathy after Abeta42immunization in human Alz-heimer’s disease.In:Eighth International Conference Alzheimer’s and Parkinson’s Disease:Progress and New Perspectives.Salzburg,Austria: Kenes.

Chai SK,Clavijo P,Tam JP,Zavala F(1992)Immunogenic properties of multiple antigen peptide systems containing defined T and B epitopes.

J Immunol149:2385–2390.

Chen G,Chen KS,Knox J,Inglis J,Bernard A,Martin SJ,Justice A,McCon-logue L,Games D,Freedman SB,Morris RGM(2000)A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s disease.Nature408:975–979.

Cleary JP,Walsh DM,Hofmeister JJ,Shankar GM,Kuskowski MA,Selkoe DJ, Ashe KH(2005)Natural oligomers of the amyloid-beta protein specifi-cally disrupt cognitive function.Nat Neurosci8:79–84.

Cribbs DH,Ghochikyan A,Tran M,Vasilevko V,Petrushina I,Sadzikava N, Kesslak P,Kieber-Emmons T,Cotman CW,Agadjanyan MG(2003) Adjuvant-dependent modulation of Th1and Th2responses to immuni-zation with beta-amyloid.Int Immunol15:505–514.

Das P,Murphy MP,Younkin LH,Younkin SG,Golde TE(2001)Reduced effectiveness of Abeta1–42immunization in APP transgenic mice with significant amyloid deposition.Neurobiol Aging22:721–727.

Das P,Howard V,Loosbrock N,Dickson D,Murphy MP,Golde TE(2003) Amyloid-?immunization effectively reduces amyloid deposition in FcR??/?knock-out mice.J Neurosci23:8532–8538.

de Jong D,Jansen RW,Kremer BP,Verbeek MM(2006)Cerebrospinal fluid amyloid beta42/phosphorylated tau ratio discriminates between Alzhei-mer’s disease and vascular dementia.J Gerontol A Biol Sci Med Sci 61:755–758.

DeMattos RB,Bales KR,Cummins DJ,Dodart JC,Paul SM,Holtzman DM (2001)Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzhei-mer’s disease.Proc Natl Acad Sci USA98:8850–8855.

Dodart JC,Bales KR,Gannon KS,Greene SJ,DeMattos RB,Mathis C,De-Long CA,Wu S,Wu X,Holtzman DM,Paul SM(2002)Immunization reverses memory deficits without reducing brain A?burden in Alzhei-mer’s disease model.Nat Neurosci5:452–457.

Eng LF,Ghirnikar RS,Lee YL(2000)Glial fibrillary acidic protein:GFAP-thirty-one years(1969–2000).Neurochem Res25:1439–1451.

Esler WP,Wolfe MS(2001)A portrait of Alzheimer secretases-new features and familiar faces.Science293:1449–1454.

Fagan AM,Roe CM,Xiong C,Mintun MA,Morris JC,Holtzman DM (2007a)Cerebrospinal fluid biomarkers of early stage Alzheimer disease.

In:Eighth International Conference Alzheimer’s and Parkinson’s Disease: Progress and New Perspectives.Salzburg,Austria:Kenes.

Fagan AM,Roe CM,Xiong C,Mintun MA,Morris JC,Holtzman DM (2007b)Cerebrospinal fluid tau/beta-amyloid(42)ratio as a prediction of cognitive decline in nondemented older adults.Arch Neurol 64:343–349.

Ferrer I,Rovira MB,Guerra ML,Rey MJ,Costa-Jussa F(2004)Neuropa-thology and pathogenesis of encephalitis following amyloid-beta immu-nization in Alzheimer’s disease.Brain Pathol14:11–20.

Fox NC,Black RS,Gilman S,Rossor MN,Griffith SG,Jenkins L,Koller M (2005)Effects of Abeta immunization(AN1792)on MRI measures of cerebral volume in Alzheimer disease.Neurology64:1563–1572. Furlan R,Brambilla E,Sanvito F,Roccatagliata L,Olivieri S,Bergami A, Pluchino S,Uccelli A,Comi G,Martino G(2003)Vaccination with amyloid-beta peptide induces autoimmune encephalomyelitis in C57/ BL6mice.Brain126:285–291.

Ghochikyan A,Vasilevko V,Petrushina I,Tran M,Sadzikava N,Babikyan D, Movsesyan N,Tian W,Ross TM,Cribbs DH,Agadjanyan MG(2003) Generation and chracterization of the humoral immune response to DNA immunization with a chimeric?-amyloid-interleukin-4minigene.Eur J Immunol33:3232–3241.Gilman S,Koller M,Black RS,Jenkins L,Griffith SG,Fox NC,Eisner L,Kirby L,Rovira MB,Forette F,Orgogozo JM(2005)Clinical effects of A?immunization(AN1792)in patients with AD in an interrupted trial.Neu-rology64:1553–1562.

Gong Y,Chang L,Viola KL,Lacor PN,Lambert MP,Finch CE,Krafft GA, Klein WL(2003)Alzheimer’s disease-affected brain:presence of oligo-meric A beta ligands(ADDLs)suggests a molecular basis for reversible memory loss.Proc Natl Acad Sci USA100:10417–10422.

Hardy J,Selkoe DJ(2002)The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics.Science297:353–356. Hardy JA,Higgins GA(1992)Alzheimer’s disease:the amyloid cascade hy-pothesis.Science256:184–185.

Head E,Garzon-Rodriguez W,Johnson JK,Lott IT,Cotman CW,Glabe C (2001)Oxidation of A?and plaque biogenesis in Alzheimer’s disease and Down syndrome.Neurobiol Dis8:792–806.

Hock C,Konietzko U,Streffer JR,Tracy J,Signorell A,Muller-Tillmanns B, Lemke U,Henke K,Moritz E,Garcia E,Wollmer MA,Umbricht D,de Quervain DJ,Hofmann M,Maddalena A,Papassotiropoulos A,Nitsch RM(2003)Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease.Neuron38:547–554.

Hsiao K,Chapman P,Nilsen S,Eckman C,Harigaya Y,Younkin S,Yang F, Cole G(1996)Correlative memory deficits,A?elevation,and amyloid plaques in transgenic mice.Science274:99–102.

Janus C,Pearson J,McLaurin J,Mathews PM,Jiang Y,Schmidt SD,Chishti MA,Horne P,Heslin D,French J,Mount HT,Nixon RA,Mercken M, Bergeron C,Fraser PE,St George-Hyslop P,Westaway D(2000)A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease.Nature408:979–982.

Kawarabayashi T,Younkin LH,Saido TC,Shoji M,Ashe KH,Younkin SG (2001)Age-dependent changes in brain,CSF,and plasma amyloid?protein in the Tg2576transgenic mouse model of Alzheimer’s disease.

J Neurosci21:372–381.

Kayed R,Head E,Thompson JL,McIntire TM,Milton SC,Cotman CW, Glabe CG(2003)Common structure of soluble amyloid oligomers im-plies common mechanism of pathogenesis.Science300:486–489. Kitamoto T,Ogomori K,Tateishi J,Prusiner SB(1987)Formic acid pre-treatment enhances immunostaining of cerebral and systemic amyloids.

Lab Invest57:230–236.

Klein WL,Krafft GA,Finch CE(2001)Targeting small Abeta oligomers:the solution to an Alzheimer’s disease conundrum?Trends Neurosci 24:219–224.

Klunk WE,Engler H,Nordberg A,Wang Y,Blomqvist G,Holt DP,Bergstrom M,Savitcheva I,Huang GF,Estrada S,Ausen B,Debnath ML,Barletta J, Price JC,Sandell J,Lopresti BJ,Wall A,Koivisto P,Antoni G,Mathis CA, Langstrom B(2004)Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B.Ann Neurol55:306–319.

Klyubin I,Walsh DM,Lemere CA,Cullen WK,Shankar GM,Betts V, Spooner ET,Jiang L,Anwyl R,Selkoe DJ,Rowan MJ(2005)Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo.Nat Med11:556–561.

Lesne S,Koh MT,Kotilinek L,Kayed R,Glabe CG,Yang A,Gallagher M,Ashe KH(2006)A specific amyloid-beta protein assembly in the brain im-pairs memory.Nature440:352–357.

Loo DT,Copani A,Pike CJ,Whittemore ER,Walencewicz AJ,Cotman CW (1993)Apoptosis is induced by beta-amyloid in cultured central nervous system neurons.Proc Natl Acad Sci USA90:7951–7955.

Lorenzo A,Yankner BA(1994)Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red.Proc Natl Acad Sci USA 91:12243–12247.

Mamikonyan G,Necula M,Mkrtichyan M,Ghochikyan A,Petrushina I, Movsesyan N,Mina E,Kiyatkin A,Glabe C,Cribbs DH,Agadjanyan MG (2007)Anti-Abeta1–11antibody binds to different beta-amyloid spe-cies,inhibits fibril formation,and disaggregates preformed fibrils,but not the most toxic oligomers.J Biol Chem282:22376–22386.

Masliah E,Hansen L,Adame A,Crews L,Bard F,Lee C,Seubert P,Games D, Kirby L,Schenk D(2005)Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease.Neurology 64:129–131.

McLaurin J,Cecal R,Kierstead ME,Tian X,Phinney AL,Manea M,French JE, Lambermon MH,Darabie AA,Brown ME,Janus C,Chishti MA,Horne P, Westaway D,Fraser PE,Mount HT,Przybylski M,St George-Hyslop P (2002)Therapeutically effective antibodies against amyloid-beta peptide

12730?J.Neurosci.,November14,2007?27(46):12721–12731Petrushina et al.?Testing the Epitope Vaccine in APP Tg2576Mice

target amyloid-beta residues4–10and inhibit cytotoxicity and fibrillo-genesis.Nat Med8:1263–1269.

Morgan D,Diamond DM,Gottschall PE,Ugen KE,Dickey C,Hardy J,Duff K,Jantzen P,DiCarlo G,Wilcock D,Connor K,Hatcher J,Hope C, Gordon M,Arendash GW(2000)A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease.Nature 408:982–985.

Nikolic WV,Bai Y,Obregon D,Hou H,Mori T,Zeng J,Ehrhart J,Shytle RD, Giunta B,Morgan D,Town T,Tan T(2007)Transcutaneous?-amyloid peptide immunization of transgenic Alzheimer’s mice results in reduced cerebral b-amyloid deposits in the absence of T cell infiltration and mi-crohemorrhage.Proc Natl Acad Sci USA.104:2507–2512.

Nicoll JA,Wilkinson D,Holmes C,Steart P,Markham H,Weller RO(2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide:a case report.Nat Med9:448–452.

Nicoll JA,Barton E,Boche D,Neal JW,Ferrer I,Thompson P,Vlachouli C, Wilkinson D,Bayer A,Games D,Seubert P,Schenk D,Holmes C(2006) Abeta species removal after abeta42immunization.J Neuropathol Exp Neurol65:1040–1048.

Nitsch RM,Hock C(2007)Immunotherapy against beta-amyloid in Alz-heimer’s disease.In:Eighth International Conference Alzheimer’s and Parkinson’s Disease:Progress and New Perspectives.Salzburg,Austria: Kenes.

Orgogozo JM,Gilman S,Dartigues JM,Laurent B,Puel M,Kirby LC,Jouanny P,Dubois B,Eisner L,Flitman S,Michel BF,Boada M,Frank A,Hock C (2003)Subacute meningoencephalitis in a subset of patients with AD after Abeta42immunization.Neurology61:46–54.

Pala P,Hussell T,Openshaw PJ(2000)Flow cytometric measurement of intracellular cytokines.J Immunol Methods243:107–124.

Patton RL,Kalback WM,Esh CL,Kokjohn TA,Van Vickle GD,Luehrs DC, Kuo YM,Lopez J,Brune D,Ferrer I,Masliah E,Newel AJ,Beach TG, Castano EM,Roher AE(2006)Amyloid-beta peptide remnants in AN-1792-immunized Alzheimer’s disease patients:a biochemical analysis.

Am J Pathol169:1048–1063.

Petrushina I,Tran M,Sadzikava N,Ghochikyan A,Vasilevko V,Agadjanyan MG,Cribbs DH(2003)Importance of IgG2c isotype in the immune response to b-amyloid in APP Tg mice.Neurosci Lett338:5–8.

Pfeifer M,Boncristiano S,Bondolfi L,Stalder A,Deller T,Staufenbiel M, Mathews PM,Jucker M(2002)Cerebral hemorrhage after passive anti-Abeta immunotherapy.Science298:1379.

Pike CJ,Walencewicz AJ,Glabe CG,Cotman CW(1991)Aggregation-related toxicity of synthetic?-amyloid protein in hippocampal cultures.

Euro J Pharm207:367–368.Price DL,Sisodia SS(1994)Cellular and molecular biology of Alzheimer’s disease and animal models.Annu Rev Med45:435–446.

Racke MM,Boone LI,Hepburn DL,Parsadainian M,Bryan MT,Ness DK, Piroozi KS,Jordan WH,Brown DD,Hoffman WP,Holtzman DM,Bales KR,Gitter BD,May PC,Paul SM,DeMattos RB(2005)Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid?.J Neurosci 25:629–636.

Schenk D(2002)Opinion:amyloid-beta immunotherapy for Alzheimer’s disease:the end of the beginning.Nat Rev Neurosci3:824–828. Schenk D,Barbour R,Dunn W,Gordon G,Grajeda H,Guido T,Hu K,Huang J,Johnson-Wood K,Khan K,Kholodenko D,Lee M,Liao Z,Lieberburg I, Motter R,Mutter L,Soriano F,Shopp G,Vasquez N,Vandevert C,et al.

(1999)Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse[see comments].Nature 400:173–177.

Schmidt ML,Robinson KA,Lee VM,Trojanowski JQ(1995)Chemical and immunological heterogeneity of fibrillar amyloid in plaques of Alzhei-mer’s disease and Down’s syndrome brains revealed by confocal micros-copy.Am J Pathol147:503–515.

Selkoe DJ(1991)The molecular pathology of Alzheimer’s disease.Neuron 6:487–498.

Selkoe DJ(1994)Alzheimer’s disease:a central role for amyloid.J Neuro-pathol Exp Neurol53:438–447.

Tam JP(1988)Synthetic peptide vaccine design:synthesis and properties of

a high-density multiple antigenic peptide system.Proc Natl Acad Sci USA

85:5409–5413.

Weiner HL,Selkoe DJ(2002)Inflammation and therapeutic vaccination in CNS diseases.Nature420:879–884.

Westerman MA,Cooper-Blacketer D,Mariash A,Kotilinek L,Kawarabayashi T,Younkin LH,Carlson GA,Younkin SG,Ashe KH(2002)The rela-tionship between A?and memory in the Tg2576mouse model of Alzhei-mer’s disease.J Neurosci22:1858–1867.

Wilcock DM,Rojiani A,Rosenthal A,Subbarao S,Freeman MJ,Gordon MN, Morgan D(2004)Passive immunotherapy against Abeta in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhem-orrhage.J Neuroinflammation1:24.

Wilcock DM,Jantzen PT,Li Q,Morgan D,Gordon MN(2007)Amyloid-beta vaccination,but not nitro-NSAID treatment,increases vascular amy-loid and microhemorrhage while both reduce parenchymal amyloid.

Neuroscience144:950–960.

Petrushina et al.?Testing the Epitope Vaccine in APP Tg2576Mice J.Neurosci.,November14,2007?27(46):12721–12731?12731

【马克思主义政治经济学原理】选择题(附答案)

一、单项选择题 1、马克思主义政治经济学研究的出发点是 A. 社会生产关系B ?物质资料生产 C.商品 D .社会总产品 【B 】 2、列宁对马克思政治经济学所作出的突出贡献是 A .创立了剩余价值学说 B .揭示了资本的积累过程 C .提出了平均利润学说 D .揭示了帝国主义的实质和基本特征 【D 】 3、马克思主义政治经济学的研究对象是 A .物质资料的生产过程B.社会生产力 C.社会生产关系 D .生产力和生产关系的对立统一即生产方式 【C 】 4、马克思主义政治经济学在研究生产关系本身时 A .要从生产力和生产关系两个层面来研究 B .要从经济制度和经济体制两个层面来研究 C .要从经济和政治相结合的角度来研究 D .要从理论与实践相结合的角度来研究 【B 】 5、作为商品的计算机软件,其价值的物质承担者是 A. 软件磁盘本身 B.软件的有用性 C.购买软件的货币 D.应用软件的计算机 【B 】 6、货币能够执行价值尺度的职能,因为货币 A. 有特殊的使用价值 B.是商品交换的媒介 C.自身也有价值 D.可作为支付手段 【C 】 7、商品买卖的实质是,商品生产者之间在进行 A. 商品使用价值的交换B、商品与货币的交换 C、等价交换D等量劳动相交换 【D 】8、马克思在研究商品时,之所以考察商品的使用价值,因为使用价值是

A. 构成财富的物质内容 B. 人类生存、发展的物质条件 C. 满足人们需要的物质实体 D. 商品价值的物质承担者 【D 】9、理解马克思主义政治经济学的枢纽是

【C 】 10、 一本书售价18元5角,这里的"元、角”是 A. 价格标准 B.价值尺度 C. 观念货币 D.货币价值 【A 11、 商品内在的使用价值和价值的矛盾,其完备的外在表现形式是 A. 商品与商品的对立 B. 具体劳动与抽象劳动的对立 C. 私人劳动与社会劳动的对立 D. 商品与货币的对立 【D 】 12、 马克思在劳动价值理论上的贡献在于 A. 创立了劳动价值论 B. 提出了劳动二重性原理 C. 扩展了创造价值的劳动的内容和范围 D. 提出了生产要素参与价值分配的问题 【B 】 13、 资本总公式的矛盾是资本价值增殖和 A. 价值规律的矛盾 B .竞争规律的矛盾 C .货币流通规律的矛盾 D.平均利润率规律的矛盾 【A 】 14、 解决资本总公式的矛盾的先决条件是 A .价值增殖不能从流通产生 B .价值增殖不在流通中产生又不能离开流通领域而产生 C .价值增殖不能离开流通产生 D .劳动力成为商品 【D 】 15、 货币转化为资本的决定性条件是 A .货币是一般等价物 B.劳动力成为商品 C .生产资料可以买卖 D.货币是社会财富的一般代表 【B 】 16、 劳动力商品的价值决定有一个重要特点,就是劳动力的价值 A .由劳动时间决定 A. 剩余价值学说 C.劳动二重性学说 B. 生产价格理论 D.劳动力商品理论

一年级语文练习题库

一年级语文练习题库 语文是偏重从文献角度研究语言和文字的学科总称,一般包括文字学、训诂学、音韵学、校勘学等。小编为大家准备了这篇一年级语文上册第一单元测试试题,希望对同学们有所帮助。 一年级语文上册第一单元测试试题2017 1、看拼音写词语。 péngyǒushuōhuànǐmenwànsuìchūnjié mǔqīnchūnt?ānláile,x?ǎopéngyǒumenzhǎnggāole。 2、把词语补充完整。 亲()好()红()绿()春()大()柳()花()泉水()()百()齐()()致勃勃()往()来()颜()色()暖()开()歌()语()里()云()花盛()()风拂() 3古诗乐园—填空。 春晓 ()眠()觉晓,村居孟浩然 ()()()啼()。()()莺()()()(), ()()()()(),拂堤()柳醉()烟。 ()()()()()。()()散()归()(),

()趁()()()纸鸢。 4、组词。 有门东百高声万 友们冬白亮生升方早明 草朋 5、对的.打勾。 朋(péngpén)绿(lǜlù)草(cǎochǎo)声(shēngsēng) 行(hánghán)醒(xǐnxǐng)争(zèngzhèng)软(luǎnuǎn)龄(línglín)经(jīngjīn)亲(qīngqīn)诗(shīsī)醉(zuìzùn)散(sànsǎn) 6反义词。 矮—黑—少—有—去—闲—今— 7、看图写出几对反义词。 长———短 ()———()()———()()———() ()———()()———()()———() 8、换偏旁。 活话(说话)朋()()爷()()放()()各()() 9、写出班级中5位同学的名字。 8、访写。 例:春天,果树开花了。梨化花开了,苹果花也开了。

教育心理学试题及答案

《教育心理学》试卷 1、第一个系统的论述教育心理学,被称为“现代教育心理学之父”的心理学家是() A桑代克B斯金纳C布鲁纳D加涅 2、离下课还有10分钟,这时候一些学生的注意力开始涣散,老师说:“如果大家认真听课,我就免去今天的额外作业”。学生开始认真听课了。老师采取的措施是() A 正强化 B 负强化 C 惩罚 D 消退 3、学习动机中最现实、最活跃,并带有积极情绪色彩的成分是()。 A学习需要B认知兴趣C学习目的D学习理想 4、对客观事物进行判断时,倾向于利用自己内在的参照(主体感觉),不易受到外来因素的影响和干扰的认知方式属于() A 场独立型 B 场依存型 C 冲动型 D沉思型 5、采用“道德两难故事法”研究儿童青少年品德发展的过程,提出了儿童青少年品德发展三个水平六个阶段理论的心理学家是() A皮亚杰 B布鲁姆 C朱志贤 D柯尔伯格 6. ()认为“教育就是塑造行为”,在教学中提出程序教学思想。 A桑代克 B斯金纳 C班杜拉 D皮亚杰 7、所谓具有广泛迁移价值的材料是指() A最鲜活的内容 B最形象、生动的内容 C事例或案例 D学科的基本概念与原理 8、根据动机的归因理论,在“能力高低”、“努力程度”和“任务难度”三种因素中,属于内部可控制的因素是( ) A能力高低 B努力程度 C任务难度 D以上均不是 9、一般来讲,容易、简单、枯燥的学习对动机水平的要求,比复杂的、需要思维卷入过多,具有一定创造性的学习对动机水平的要求()。 A高 B低 C一样 D因个体的差异而不同 10、某学生背一篇古文,读8遍刚好成诵,要取得最佳的记忆效果,他应该再读() A 2遍 B 4遍 C 6遍 D 8遍

政治经济学试题和答案

政治经济学试题及答案 2010-05-23 06:31:56| 分类:经济|举报|字号大中小订阅 请将正确答案填在括号内。 一、名词解释 1、资本主义工资:是劳动力的价值或价格的转化形式。 2、国民生产总值:是指一国国民在一定时期内所生产的最终产品的市场价值的总和。 3、集约型经济增长方式:它的基本特征是依靠提高生产要素的质量和利用效率来实现经济增长。 4、企业经济行为:指企业为了实现一定的目标而采取的决策和行动。 二、不定向选择题 1、商品的价值是( B ) A、商品的自然属性 B、交换价值的内容和基础 C、商品的有用属性 D、商品的价格表现形式 2、一定时期流通中所需要的货币量与(BCD ) A、社会待售商品量成正比 B、商品的价格水平成正比 C、单位货币流通速度成正比 D、单位货币流通速度成反比 E、商品的价格水平成反比

3、划分现代企业的组织形式是按照( B ) A、所有制形式 B、财产的组织形式和所承担的法律责任 C、企业内部的现代化程度 D、企业对人、财、物的利用程度 4、现代企业制度的基本特征是(BCDE ) A、厂长负责制 B、产权清晰 C、权责分明 D、政企分开 E、管理科学 三、判断题: 1、剩余价值是资本家进行资本积累的唯一源泉,资本积累是资本家扩大再生产的源泉。(× ) 2、国家运用货币政策调节经济的中心是调节货币量。(∨) 3、私人劳动与社会劳动之间的矛盾是商品经济的基本矛盾。(∨) 4、资本主义生产过程的特点是劳动过程和价值增值过程的统一。(∨) 5、资本主义基本矛盾是无产阶级同资产阶级之间的矛盾。(× ) 6、社会主义初级阶段的主要矛盾是生产力和生产关系的矛盾。(× ) 7、对宏观经济进行管理是计划经济的要求。(× ) 8、现代企业制度就是承包经营责任制。(× ) 9、为了扩大出口,我国应当主要发展出口导向型经济。(× ) 10、调节经济总量,就是调节总产量。(× ) 四、填空题

小学英语单词(带音标)(1)

三年级 pen[pen]钢笔pencil[ 'pens?l ]铅笔pencil-case['pens?l keis]铅笔盒 ruler[ 'ru:l? ]尺子eraser[ i'reiz? ]橡皮crayon[ 'krei?n ]蜡笔book[ buk ]书 bag[b?ɡ]书包school[ sku:l ]学校sharpener[ '?ɑ:p?n?]卷笔刀 hello[h?'l?u]喂 hi[ hai ]喂 my [ma?] 我的name[ ne?m ]名字名字 goodbay['ɡud'bai]再见bye[ bai ] 再见(口语) what[ w?t]什么 is[ iz ]是 your[j?:] 你的;你们的 you [ju:]你;你们head[ hed ]头 face[ feis ]脸 nose[ n?uz ]鼻子mouth[ mauθ ]嘴eye[ ai ]眼睛 ear[ i? ]耳朵 arm[ɑ:m]胳膊;手臂hand[h?nd]手finger[ 'fi?ɡ? ]手指leg[leɡ]腿 foot[fut]脚 food[fu:d]食物body['b?di]身体

good[ɡud]好的morning['m?:ni?]早晨;上午 this[ eis]这;这个nice[ nais ]好的meet[ mi:t ]见面;遇见; go[ ɡ?u ]去 to[tu:]给;对afternoon[,ɑ:ft?:'nu :n]下午午后. too[ tu: ]也;太 red[ red ]红色的yellow[ 'jel?u ]黄色的 green[ ɡri:n ]绿色的blue[ blu: ]蓝色的. purple[ 'p?:pl ]紫色的white[ hwait ]白色 的 . black[ bl?k ] 黑色的. orange[ '?rind?] 橙色的 pink[ pi?k ] 粉红色的. brown[braun]棕色的;褐色的 how[ hau ]如何;怎样 . are[ɑ:]是 fine[ fain ] 好的thank[ θ??k ]谢谢thanks[θ??ks]多谢paint[ peint ]绘画great[ ɡreit ]很好的cat[ k?t ]猫 dog[ [d?ɡ] ]狗

教育心理学课后选择题汇总

教育心理学 1、学与教的过程从宏观上说包括五个要素,下面选项中不属于其中的是( B ) A、学生与教师 B、教育行政部门 C、教学内容 D、教学媒体和教学环境 2、教育心理学中各家各派学习理论之争也都集中体现在对(A)的不同解释上。 A、学习过程 B、教学过程 C、评价过程 D、反思过程 3、1903年,美国心理学家( D )出版了《教育心理学》,这是西方第一本以教育心理学命名的专著。 A、杜威 B、加涅 C、乌申斯基 D、桑代克 4、( C )以实用主义为基础的“从做中学”为信条,进行改革教学的实践活动,对教育产生了相当深远的影响。 A、罗杰斯 B、鲁宾斯坦 C、杜威 D、布鲁斯 5、按照一定的目的和计划,间接地搜集研究对象有关的现状及历史资料,从而弄清事实,通过分析、概括等方法,发现问题,探索教育规律的研究方法是( B ) A、实验法 B、调查法 C、观察法 D、教育经验总结法 6、根据皮亚杰的观点,可以同时从两个或两个以上角度思考问题,这一特征是儿童认知发展水平达到哪个阶段的重要标志?(C) A、感知运动阶段 B、前运算阶段 C、具体运算阶段 D、形式运算阶段 7、自我中心是哪个阶段的主要成就?(B) A、感知运动阶段 B、前运算阶段 C、具体运算阶段 D、形式运算阶段 8、根据埃里克森的人格发展理论,6-12岁的儿童要解决的主要矛盾是( C ) A、自主感对羞耻感 B、主动感对内疚感 C、勤奋感对自卑感 D、自我同一性对角色混乱 9、有的人判断客观事物时容易受外来因素的影响和干扰,这种认知方式属于(A) A、场依存型 B、场独立型 C、冲动型 D、反思型 10、个体能正确建构自我的能力,知道如何用这些意识察觉来做出适当的行为,并规划、引导自己的人生。这种能力属于加德纳多元智能理论中的(D) A、语言智能 B、逻辑-数学智能 C、空间智能 D、内省智能 11、教师在课堂教学中帮助学生制定适当的学习目标,提供学习策略的指导,并

小学一年级语文练习题

小学一年级语文练习题 zhǎo yìzhǎo xiěxiàlái 一、找一找,写下来。(23分) zhǎo chūzhěnɡtǐrèn dúyīn jiéxiěxiàlái 二、找出整体认读音节,写下来。(7分) zhìyǐnɡrìshēyuēyānɡyèěr yuán ɡēn jùtúpiàn ɡěi yīn jiébiāo shēnɡdiào 三、根据图片给音节标声调。(6分) ' shui hu qie zi zu qiu

yue yɑyu sɑn dɑi shu zhào yànɡzi tián yìtián 四、照样子,填一填。(5分) 例:f--ū--(fū)j--īn--()j--()--jiù j--i--ǎo--()q--ü--án--()r--u--ò--()zài zhènɡquède yīn jiéhòu miàn huà 五、在正确的音节后面画“√”。(4分) xuěhuā()xiǎo zhū() xiěhuā()xǎo zhū()@ lǎo niú()xǐquè() lǎo liú()xǐqüè() dúpīn yīn xiěbǐhuà 六、读拼音,写笔画。(4分) hénɡnàshùhénɡpiě dúpīn yīn xiěhàn zì 七、读拼音,写汉字。(14分) tiān shànɡtǔhéxià ( 白云飘,里长苗,地 èr sān 蚯蚓条。

àn bǐshùn xiěyìxiě 八、按笔顺写一写。(4分) 文火 ɡěi xiàmiàn de zìjiāyìbǐbiàn chénɡxīn zì 九、给下面的一成新字。( 十木大了人 ( bǎyìsīxiānɡfǎn de zìlián yìlián 十、把意思相反的字连一连。(4分) 上大左出 小入下右 cíyǔhétúpiàn lián yìlián 十一、词语和图片连一连。(4分) 白兔河马画报读书{ 风雨飞机跳高花朵

教育心理学选择题!汇总

第一章教育心理学概述 选择题 1.学与教相互作用过程是一个系统过程,该系统包含学生、教师、教学内容、教学媒体和()等多种要素。 A 教学环境 B 教学方法 C 教学手段 D 教学目的 2.1903 年,美国心理学家()出版了《教育心理学》,这是西方第一本以“教育心理学”命名的专著。 A 布鲁纳 B 布卢姆 C 桑代克 D 斯金纳 3.教育心理学诞生于()。 A 1903 年 B 1913 年 C 1924 年

D 1934 年 4.教育心理学的创始人是()。 A 华生 B 桑代克 C 布鲁纳 D 加涅 5.教育心理学作为一门具有独立的理论体系的学科形成于()。 A 20 世纪20 年代以前 B 20 世纪20 年代到50 年代末 C 20 世纪60 年代到70 年代末 D 20 世纪80 年代以后 6.教育心理学发展的成熟时期所对应的年代是()。 A 20 世纪20 年代到50 年代 B 20 世纪80 年代以后 C 20 世纪60 年代到70 年代末 D 20 世纪90 年代起 7.教育心理学正式诞生于()。

A 20 世纪末 B 20 世纪初 C 19 世纪末 D 19 世纪初 8.我国第一本《教育心理学》的编写者是()。 A 廖世承 B 房东岳 C 潘菽 D 陆志伟 9.教育心理学主要研究的是学校教育中的()。 A 学生的学习 B 教育措施 C 学校环境 D 学与教的规律 10.在教育心理学看来,()不仅是课堂管理研究的主要范畴,也是学习过程研究和教学设计研究所不能忽 视的重要内容。

A 教学内容 B 教学媒体 C 教学环境 D 评价反思过程 11.在学与教的过程中,要有意传递的主要信息是()。 A 教学过程 B 教学手段 C 教学内容 D 教学媒体 12.学习的主体因素是指()。 A 学生 B 教师 C 教学手段 D 教学环境 13.在学校教育中,起关键作用的是()。 A 教学媒体 B 教师

政治经济学试题及答案

政治经济学 一、单项选择题1、商品的使用价值与一般物品的使用价值的区别在于( A ) a、前者是劳动生产出来的,后者是天然具有的 b、前者是他人生产的,后者是为自己生产的 c、前者构成社会财富的物质容,后者不是社会财富 d、商品使用价值是商品价值的物质承担者 2、马克思指出:“如果物没有用,那么其中包含的劳动也就没有用,不能算作劳动,因此不形成价值。”这句话说明( B ) a、只要物是有用的,它就有价值 b、价值的存在以物的有用性为前提 c、价值的存在与物的有用性互为前提 d、物越是有用就越有价值 3、货币转化为资本的决定性条件是() a、劳动产品成为商品 b、生产资料成为商品 c、劳动力成为商品 d、资本家手中集中了很多商品 4、商品的价值量由生产商品的必要劳动时间所决定,它是在(A ) a、同类商品的生产者之间的竞争实现的 b、不同商品的生产者之间的竞争中实现的 c、商品生产者与消费者之间的竞争中实现的 d、商品生产者与销售者之间的竞争中实现的 5、复杂劳动可以折合为倍加的简单劳动,这种折合比例(C) a、参加交换的商品生产者自觉协商出来的 b、由经纪人规定并取得买卖双方同意的 c、在无数次交易中自发形成的 d、由社会职能部门自觉计算出来的 6、商品在的使用价值和价值的矛盾,其完备的外在表现形式是(C ) a、具体劳动与抽象劳动的对立 b、商品与货币之间的对立 c、私人劳动与社会劳动之间的对立 d、商品与商品之间的对立 7、货币的基本职能是( A ) a、价值手段与流通手段 b、支付手段与世界货币 c、储藏手段与支付手段 d、流通手段与储藏手段 8、简单商品经济的基本矛盾是() a、个别劳动时间与社会必要劳动时间的矛盾 b、使用价值与价值的矛盾 c、具体劳动与抽象劳动的矛盾 d、私人劳动与社会劳动的矛盾 9、在生产过程中劳动力商品所创造的新价值是() a、剩余价值 b、商品价值 c、劳动力自身价值 d、剩余价值和劳动力价值之和 10、从整个社会来讲,在不延长工作日且实际工资还有所提高的情况下() a、工人所受剥削就会有所减轻 b、剩余价值率仍会提高 c、资本家攫取的剩余价值量不会增加 d、剩余价值量仍可增加 11、剩余价值转化为利润掩盖了资本主义剥削关系的实质,是因为() a、剩余价值被视为不变资本的产物 b、剩余价值被视为所费资本的产物 c、剩余价值被视为全部预付资本的产物 d、剩余价值被视为超过成本价格的部分 12、商业利润来源于() a、商业销售人员创造的剩余价值 b、商品购销价格的差额 c、资本在流通领域的增值 d、产业工人所创造的剩余价值的一部分 13、同一生产部门部的竞争形成商品的() a、社会价值 b、平均利润 c、生产价格 d、成本价格 14、平均利润形成后,商品价格上下波动围绕的中心是() a、成本价格 b、生产价格 c、同一部门商品的平均价格 d、同一部门商品的平均成本 15、资本主义级差地租产生的原因是() a、对土地的资本主义经营垄断 b、土地私有权的垄断 c、对同一块土地连续追加投资的收益不同 d、土地的优劣等级差别

一年级语文上册全套练习题

一年级语文上册全套练习题 篇一:人教版小学一年级语文上册单元测试题【全套】 人教版小学一年级语文上册单元测试题【全套】 小学语文第一册汉语拼音第一单元基础练习与检测(1) 姓名得分xiǎo p?nɡ you xià miɑn de yùn mǔ nǐ huì dú mɑ dúɡti t?nɡ wai 一、小朋友, 下面的韵母你会读吗? 读给同位 t?nɡ tinɡ 听听。(6分)ɑ u o ? e i xià miɑn de tú zhōnɡ cánɡ zhe zǐ xi kàn kɑn y?nɡ 二、下面的图中藏着“ɑ、o、e”,仔细看看,用 nǐ zuì xǐ huün de yán sa bànɡ miáo chū lɑi 你最喜欢的颜色棒描出来。(15分) kàn yi kàn xià miɑn de tú li yǒu xu? ɡu? de yùn mǔ mɑ shì zhe 三、看一看,下面的图里有学过的韵母吗?试着zài sì xiàn ɡ? li xit xià lɑi ( mti ɡa zì mǔ xit sün ɡa) 在四线格里写下来。( 每个字母写 3 个)(15分) à miài nǎt yi 四、先说说下面的字母住在哪一格里,再写一 xit 写。(12分) ɑoeI u? dú yi dú bǐ yi bǐ xit yi xit 五、读一读,比一比,写一写。(18分) ɑ——o u——? o——e á——ǎí——ǐǘ——ǚ ?——ǒ ?——t ù——ǔ xiün kàn yi kàn tú shɑnɡ huà de shì sh?n me zài ɡti zì mǔ jiü

教育心理学练习题(一)

教育心理学练习题(一) (注意:红色部分为重点题目)第一章教育心理学概述 一、单项选择题 1、教育心理学成为一门独立学科的标志是(A )。 A、1903年桑代克《教育心理学》一书的出版 B、1883年霍尔《儿童心理学的内容》一文的发表 C、1905年,比纳—西蒙两人《比纳-西蒙智力量表》的创建 D、冯特创立第一个心理学实验室 2、教育心理学和其他科学都应遵循的基本原则是(C )。 A、系统性原则 B、教育性原则 C、客观性原则 D、分析和综合的原则 3、被誉为美国教育心理学之父的人物是( D)。 A、霍尔(Hall,G.S.1844—1924) B、鲍德温(Baldwin J.M.1861—1934) C、詹姆士(James W.1842—1910) D、桑代克(Thorndike E.L.1874—1949) 4、下述研究方法中,对条件控制最严格的是( D )。 A、观察法 B、自然实验 C、问卷调查及相关法 D、实验室实验 5、小学教育心理学的研究对象是( B )。 A、小学教育中教与学的心理活动 B、小学教育中教与学及其与环境相互作用的心理活动及其规律 C、小学教育中人的本性及其改变的规律 D、以上答案都不正确 6、实验法的主要特点是( B )。 A、简便易行 B、严格控制 C、定量研究 D、探讨相关关系 7、观察法的实施背景应该是( B )。 A.控制条件 B.自然条件 C.以探讨因果关系为目的 D.均衡被试

8、人类认识世界的基本方式是( B )。 A.自然实验法 B.观察法 C.实验室实验法 D.问卷调查法 9、教育心理学研究中最常用的方法是( C )。 A.观察法 B.自然实验 C.实验法 D.问卷调查法 10、学校环境中的最重要因素是( B )。 A.学生 B.教师 C.教 D.学 11、俄国教育心理学的奠基人是( C )。 A.卡普杰烈夫 B.苏霍姆林斯基 C.乌申斯基 D.布隆斯基 12、一切科学都应遵循的基本原则是( A )。 A.客观性原则 B.系统性原则 C.教育性原则 D.发展性原则 13、苏联心理学家阿格法诺夫做的“拾柴火”实验是( B)。 A.观察法实验 B.自然实验 C.实验室实验 D.自然实验与实验室相结合实验 14、现代教育心理学的创始人是( C)。 A.冯特 B.比奈 C.桑代克 D.班杜拉 15、在学校教育中,使能力、品格、个性得以成长,学生也是学习中有能动性的主体,指的是(B)。 A.教 B.学 C.环境 D.氛围 16、机械学习和意义学习有何区别及其作用?属于教育心理学任务是( C)。 A.应用任务 B.学习任务 C.理论任务 D.教学任务 二、多项选择题 1、学校教育中的核心因素是( ABC)。 A、环境 B、学 C、教 D、教材 2、与教育心理学成为一门独立学科有关的陈述有(ABDE )。

政治经济学试题与答案全集

政治经济学试题及答案 一、选择题(每题2分,共30分) 1.政治经济学研究生产关系要联系( B ) A.生产力和经济基础 B.生产力和上层建筑 C.生产力和生产方式 D.经济基础和上层建筑 2.基本经济规律是( A ) A.某一社会形态特有的经济规律. B.几种社会形态共有的经济规律 C.在一切社会形态都存在和起作用的经济规律 D.只存在于资本主义社会的经济规律 3.理解马克思主义政治经济学的枢纽(D ) A. 剩余价值理论 B. 商品经济理论 C.生产商品的劳动二重性理论 D.阶级斗争理论 4.纸币的发行量取决于( B ) A.市场购买力 B.流通中所需要的金属货币量 C.商品价格总额 D.商品的供求状况 5.劳动力商品的价值是由( B ) A.个别劳动时间决定的 B.生产和再生产劳动力商品的社会必要劳动时间决定的 C. 历史和道德因素决定的 D. 市场供求关系决定的 6.任何社会再生产从其容看(B ) A.既是生产力的再生产,又是生产关系的再生产 B. 既是物质资料的再生产,又是生产关系的再生产 C.既是使用价值的再生产,又是价值的再生产 D.既是外延的扩大再生产,又是涵的扩大再生产 7.社会总产品在价值形式上表现为( D ) A.货币资本 B.生产资本 C. 流通资本 D.社会总产值 8.生产成本( C ) A.同资本主义生产费用是不同的量 B.是商品价值的转化形式 C.由生产单位商品所耗费的不变资本和可变资本之和构成 D. 是计算全部生产资料的耗费 9.商品资本的职能独立化为商业资本的职能( C ) A.产业资本中的商品资本便不复存在 B. 商业资本仍是产业资本的职能形式 C.有利于产业资本集中力量从事生产活动,增加利润总额 D.使流通环节增多,延缓了产业资本的周转 10.资本主义绝对地租来源于( C ) A.农产品在流通领域中的贱买贵卖 B. 农业工人所创造的剩余价值的一部分 C.农业资本家所获得的平均利润的一部分 D.工业资本家转让给农业资本家的一部分利润 11.新殖义在实质上同旧殖义是相同的,二者的区别在于(D ) A.仅仅是所处的历史发展阶段不同 B.发达国家援助发展中国家的方法有所改变 C.体现着国际分工的不同发展阶段 D. 所采取的控制和掠夺的方法有所改变 12.国家垄断资本主义的局限性在于( D ) A.使垄断资本主义存在着时而迅速发展时而停滞的趋势 B.使垄断资本主义经济长期处于停滞状态 C.使垄断资本主义经济长期处于滞胀状态 D.它只能暂时使某些矛盾缓和,但却使这些矛盾进一步加深和复杂化 13.资本主义经济政治发展不平衡规律(A ) A.与自由竞争时期相比,这一规律在垄断阶段的作用呈现出一些新的特点 B.只是在垄断资本主义经济条件的基础上产生并发生作用

人教版一年级语文练习题

一、选一选,连一连。 只头个堆颗群 一()牛一()鸭子一()猫一()枣一()杏子一()桃 二、照样子,填一填。 ①多②小③去④地⑤关⑥黑 大—(②)开—()少—() 天—()白—()来—() 三、按要求填一填。 1、“小”字的笔顺是:,共()画,第3画是()。 2、“少”字的笔顺是:,共()画,第1画是()。 3、“牛”字的笔顺是:,共()画,第3画是()。 4、“果”字的笔顺是:,共()画,第5画是()。 5、“鸟”字的笔顺是:,共()画,第4画是()。

按要求填一填。 1、“早”字的笔顺是:,共()画,第5画是()。 2、“书”字的笔顺是:,共()画,第2画是()。 3、“尺”字的笔顺是:,共()画,第3画是()。 4、“刀”字的笔顺是:,共()画,第1画是()。 5、“本”字的笔顺是:,共()画,第4画是()。 一、看拼音写词语或笔画。 kàn jiàn bái yún tián kōng diàn huàěr mù mǎ chē shù zhé shù piě shù wān gōu héng zhé wān gōu 二、写出下列字的反义词。 大()开()有()小()

热()黑 ( ) 晚 ( ) 远 ( ) 短 ( ) 来 ( ) 哭 ( ) 三、比一比,再组词。 田()日()了( ) 月( ) 门( ) 电()白 ( ) 子( ) 目( ) 们( ) 木 ( ) 票()天()毛() 禾 ( ) 漂()无()手() 四、我会连。 弯弯的船闪闪的火苗 蓝蓝的月儿青青的星星 小小的天空红红的草地 五、我会按课文内容填空。 弯弯的( )()的船。小小的船儿() 我在(),只看见()星星()天。《江南》

带音标英语单词完整版

带音标英语单词 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

1、学习用品(schoolthings) pen/pen/钢笔 pencil/'pensl/铅笔 pencil-case/'penslkeis/铅笔盒ruler/'ru:l/尺子 book/buk/书 bag/b?g/包 postcard/p?ustkɑ:d/明信片newspaper/'nju:z,peip/报纸schoolbag/sku:lb?g/书包eraser/i'reis/橡皮 crayon/'krei?n/蜡笔sharpener/'ɑ:pn/卷笔刀 story-book/'st:ri]buk/故事书notebook/'n?utbuk/笔记本Chinesebook/'t?ai'ni:z/语文书Englishbook/'igli/英语书 mathsbook/m?θs/数学书magazine/,mg'zi:n/杂志 newspaper/'nju:z,peip/报纸dictionary/'dikneri/词典 2、身体部位(body) foot/fut/脚 head/hed/头 face/feis/脸 hair/h/头发 nose/n?uz/鼻子 mouth/mauθ/嘴 eye/ai/眼睛 ear/i/耳朵 arm/ɑ:m/手臂 hand/h?nd/手finger/'fig/手指 leg/leg/腿 tail/teil/尾巴 3、颜色(colours) red/red/红 blue/blu:/蓝 yellow/'jel?u/黄 green/gri:n/绿 white/wait/白 black/bl?k/黑 pink/pi?k/粉红 purple/'p:pl/紫orange/':rind/橙 brown/braun/棕 4、动物(animals) cat/k?t/猫 dog/d?g/狗 pig/pig/猪 duck/d?k/鸭 rabbit/'r?bit/兔子horse/h:s/马 elephant/'elif?nt/大象ant/nt/蚂蚁 fish/fi/鱼 bird/b:d/鸟 snake/sneik/蛇 mouse/maus/鼠kangaroo/,kg'ru:/袋鼠monkey/'m?ki/猴子panda/'pnd/熊猫 bear/b/熊 lion/'lai?n/狮 tiger/'taig/老虎

教育心理学课后练习题参考答案

《教育心理学》资料整理 第一章绪论 1、学校教育心理学的对象是什么? 答:学校教育心理学是研究学校情境中学与教的基本心理学规律的科学。即研究学生如何学习,教师如何帮助学生学习的科学。理解学校教育心理学的对象,要注意四个要点: 1)学校教育心理学是一门科学的学科,它要遵循科学的全部规律,具备科学学科应当具备的要求。 2)学校教育心理学并不研究所有的学与教问题,它主要研究学校情境中的学与教。 3)学校教育心理学研究的学与教,包括知识、技能的学与教及其伴随这一过程的有关能力的发展。 4)只有弄清了学生如何学习的过程及其主要影响因素,才能知识如何有效地指导学生学习。(它以研究学生学习过程为核心) 2、学校教育心理学的范围有哪些? 答:学校教育心理学的范围主要包括: 1)对学校教育现象的心理学认识; 2)学习的基本理论; 3)各种类型的学习; 4)学习的迁移、保持和遗忘; 5)影响学习的主要心理因素; 6)学习过程及其结果的测量和评定等。 3、学校教育心理学与普通心理学、儿童心理学、教育学及其教学论有何关系? 答:1)学校教育心理学不是普通心理学加教育实际的例子,否则便没有存在的理由。学校教育心理学要利用普通心理学所揭示的关于人的心理的一些普通规律,但有自己专门的对象和理论体系。 2)儿童心理学主要研究不同年龄儿童心理发生发展的过程和规律,要做好教育教学工作,必须从不同年龄阶段儿童特征出发。然而,学校教育心理学主要是研究儿童年龄特征这一重要因素对学校中学与教的影响,目的是为了解决学与教的性质、过程和结果这一特殊的中心问题。 3)学校教育心理学也不同于教育学及其教学论,虽然它们都要涉及教师和学生,学与教等方面的问题,但各自的出发点、范围和方法都有不同。教育学及其教学论主

2015年4月政治经济学试题和答案

2015年4月高等教育自学考试政治经济学(财)试题 (课程代码 00009) 请考生按规定用笔将所有试题的答案涂、写在答题纸上。 选择题部分 注意事项: 1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。 2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。不能答在试题卷上。 一、单项选择题(本大题共30小题,每小题1分,共30分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。错涂、多涂或未涂均无分。 1.马克思主义政治经济学的研究对象是 A.生产关系 B.生产力 C.经济体制 D.经济运行机制 2.一切社会经济形态共有的经济规律是 A.价值规律 B.剩余价值规律 C.按劳分配规律 D.生产关系一定要适合生产力性质规律 3.区别不同社会形态的根本标志是 A.生产方式 B.经济体制 C.社会经济制度 D.资源配置方式 4.市场经济要求市场机制在社会资源配置中发挥 A.排他性作用 B.辅助性作用 C.决定性作用 D.替代性作用 5.简单商品经济的基本矛盾是 A.具体劳动和抽象劳动的矛盾 B.私人劳动和社会劳动的矛盾 C.体力劳动与脑力劳动的矛盾 D.简单劳动与复杂劳动的矛盾 6.社会必要劳动时间的计量尺度是 A.简单劳动 B.复杂劳动 C.体力劳动 D.脑力劳动 7.执行贮藏手段职能的货币是 A.纸币 B.信用货币 C.观念上的货币 D.足值的金属货 8.随着经济繁荣期生产的发展,商业信用规模 A.扩大 B.萎缩 C,不变 D.不确定 9.按照解决资本总公式矛盾的条件,剩余价值发生在 阶段的货币上阶段购买商品的价值上 阶段购买商品的使用价值上阶段上 10.某企业工作日为12小时,工人日工资3元,每天生产皮鞋两双,每双社会价值12元,其中生产资料转移价值9元、新创造价值3元,则资本家获剩余价值 元元 元元

英语单词大全分类带音标(整理版)

一、学习用品(school[sku:l] things) Pen钢笔[pen] Pencil铅笔['pens?l] pencil-case铅笔盒['pens?l-keis] ruler尺子['ru:l?] book书[buk] bag包[b?ɡ] comicbook漫画书['k?mik-buk]postcard明信片[p?ust-kɑ:d] newspaper报纸['nju:s,peip? 'nju:z-] schoolbag书包['sku:lb?ɡ]eraser橡皮[i 'reiz?] crayon蜡笔['krei?n] sharpener卷笔刀story-book故事书 ['st ?:ri-buk] notebook笔记本['n?utbuk] Chinese book语文书English book英语书math book数学书 [m?θ-buk] magazine杂志[,m?ɡ?'zi:n] dictionary词典 ['dik??n?ri]二、人体(body)['b?di] foot脚[fut] head头[hed] face脸[feis] hair头发[hε?]nose鼻子[n?uz]mouth嘴 [mauθ]eye眼睛[ai] ear耳朵[i?]arm手臂[ɑ:m] hand手[h?nd] finger手指['fi? ɡ?] leg腿[leɡ] tail 尾巴[teil] 三、颜色(colours) red红[red] blue蓝[blu:]yellow黄['jel?u] green绿[ɡri:n] white白[hwait]black黑[bl?k] pink粉红[pi?k] purple紫['p?:pl] orange橙['?rind?, '?:-]brown棕[braun] 四、动物(animals)animal['?niml] cat猫[k?t] dog狗[d?ɡ, d?:ɡ]pig猪[piɡ]duck鸭[d?k] rabbit兔['r?bit] horse马[h?:s]elephant大象 ['elif?nt] ant蚂蚁[?nt]fish鱼[fi?] bird鸟[b?:d]eagle鹰['i:ɡl]beaver海狸['bi:v?]snake蛇[sneik]mouse老鼠[maus, mauz] squirrel松鼠['skw?:r?l, 'skwi-, 'skw?-] kangaroo袋鼠[,k?nɡ?'ru:]monkey猴['m??ki] panda熊猫['p?nd] bear熊[bε?]lion狮子['lai?n]tiger老虎['taiɡ?] fox狐狸[f?ks] zebra斑马['zi:br?] deer鹿[di?] goose鹅[ɡu:s] giraffe长颈鹿[d?i'rɑ:f] hen母鸡[hen]turkey火鸡['t?:ki] lamb小羊[l?m] sheep绵羊[?ip] goat山羊[ɡ?ut] cow奶牛[kau] donkey驴['d??ki] squid鱿鱼[skwid] lobster龙虾['l?bst?] shark鲨鱼[?ɑ:k] seal海豹[si:l] sperm whale抹香鲸[sp?:m-hweil] killer whale虎鲸['kil?- hweil] 五、人物(people)['pi:pl] friend朋友[frend] boy男孩[b?i] girl 女孩[ɡ?:l]mother母亲['m?e?] father父亲['fɑ:e?]sister姐妹['sist?] brother兄弟['br?e?] uncle叔叔;舅['??kl]舅 man男人[m?n] woman女人['wum?n] Miss小姐[mis] Mr先.生 lady女士小;姐['leidi] mom妈妈[m?m] dada爸爸[d?d, 'dɑ:dɑ:]parents父母parent['pε?rnt]son儿子[s?n] grandparents祖父母['ɡr?nd,pε?r?nt] grandma/grandmother(外)祖['ɡ母r?nd,m?e?]aunt姑姑[ɑ:nt, ?nt] cousin堂(表)兄弟;堂(表)姐妹['k?z?n]daughter女儿['d?:t?] baby婴儿['beibi]kid小孩[kid]queen女王[kwi:n] classmate同学['klɑ:smeit]visitor参观者['vizit?] neighbour邻居['neib?] principal校长['prins?p?l] university student大学生[,ju:ni'v?:s?ti-'stju:d?nt]pen pal笔友[pen-p?l]tourist旅行者['tu?rist] people人物['pi:pl]robot机器人['r?ub?t, -b?t, 'r?b?t] grandpa/grandfather(外)祖父['ɡr?ndpɑ:]/ ['ɡr?nd,fɑ:e?]六、职业(jobs)[d??bs] teacher教师['ti:t??] student学生['stju:d?nt, 'stu:-]doctor医生[d?kt?] nurse护士[n?:s]driver司机[n?:s] farmer农民['fɑ:m?]singer歌唱家['si??] writer作家['rait?] actor男演员['?kt?] actress女演员['?ktris] artist画家['ɑ:tist] TV reporter电视台记[ri'p?:t?]者 engineer工程师[,end?i'ni?] accountant 会计[?'kaunt?nt] policeman(男)警察[p?'li:sm?n] salesperson销售员['seilz,p?:s?n] cleaner清洁工 ['kli:n?] police警察[p?'li:s] baseball player棒球运动['beisb?:l员- 'plei?] assistant售货员[?'sist?nt] 七、食品、饮(料food & drink) rice米饭[rais]bread面包[bred]beef牛肉[bi:f]milk牛奶[milk] water水['w?:t?, 'w?-] egg蛋[eɡ]fish 鱼[fi?] tofu豆腐['t?ufu:]cake蛋糕[keik] hot dog热狗[h?t-[d?ɡ]hamburger汉堡包['h?mb:ɡ?]jam果酱[d??m] French fries炸薯条[fraids]cookie曲奇['kuki]biscuit饼干['biskit] noodles面条['nu:dl]meat肉[mi:t] chicken 鸡肉['t?ikin]pork猪肉[p?:k]mutton羊肉['m?t?n] vegetable蔬菜['ved?it?bl]salad沙拉['s?l?d]ice冰[ais] soup汤[su:p]ice-cream冰淇淋['aiskri:m]Coke可乐 juice 果汁[d?u:s] tea茶[ti:] coffee咖啡['k?fi] breakfast 早餐['brekf?st] lunch午餐[l?nt?] dinner/supper晚餐['din?] / ['s?p?] meal一餐[mi:l] 八、水果、蔬(fruit/菜 vegetables)[fru:t]['ved?it?bl]

政治经济学选择题300题及答案解析

单项选择题 1、马克思主义政治经济学的理论基础是( C ) A、劳动价值论 B、剩余价值论 C、辩证唯物主义和历史唯物主义 D、资产阶级古典政治经济学和空想社会主义 解析:劳动价值论是政治经济学的基础,唯物史观和剩余价值理论是马克思的两个伟大发现,选项D是马克思主义政治经济学的理论来源。只有答案C才是理论基础。 4、在生产资料中属于劳动资料的是( B ) A、原材料 B、机器设备 C、燃料 D、辅助材料 解析:劳动资料是指人的劳动和劳动对象联系起来的媒介物,A、C、D属于劳动对象范畴,即人把自己的劳动加于其上的东西。 8、价值规律是( A ) A、只在几个社会形态存在的经济规律 B、各个社会形态都存在的经济规律 C、资本主义社会特有的经济规律 D、社会主义社会特有的经济规律 解析:价值是商品的特有属性,非商品的劳动产品不存在价值,在原始社会和共产主义社会不存在商品,因此,商品只是在奴隶社会、封建社会、资本主义社会和社会主义社会存在。 9、基本经济规律是( D ) A、只存在于资本主义社会的经济规律 B、在一切社会形态都存在和起作用的经济规律 C、几种社会形态共有的经济规律 D、一种社会形态起主导作用的经济规律 解析:此题考核的是基本经济规律的名词解释。需要注意,基本经济规律是一个社会起主导作用的规律。在中国现在虽然有存在私营企业,存在剥削,存在剩余价值,但因为它不占主导地位,所以不能说剩余价值规律是我国的基本经济规律,剩余价值是资本主义的基本经济规律。目前我国的基本经济规律是公有制占主导的按劳分配规律。 11、价值的实体是( B ) A、具体劳动 B、抽象劳动 C、私人劳动 D、社会劳动 解析:本题考察价值的内涵,即价值一词的名词解释,抽象劳动是形成价值的唯一源泉,因此答案是B。注意抽象劳动本身并不是价值,抽象劳动的凝结才构成价值。 12、社会经济制度更替的一般规律是( A ) A、生产关系随生产力的发展而逐渐改变自身的性质 B、生产力不断运动 C、生产关系不断变革 D、生产力和生产关系不断进行矛盾运动 解析:社会经济制度属于生产关系的范畴,生产关系的变化归根到底取决于生产力的变化,所以答案为A。 13、市场经济是指( B ) A、以市场存在为条件的商品经济 B、市场对资源配置起基础性作用的商品经济 C、市场决定一切经济活动的商品经济

相关文档
相关文档 最新文档