文档库 最新最全的文档下载
当前位置:文档库 › 基于S7-300,400 CPU集成PN 接口 Modbus TCP通讯快速入门(更新版本V2.4)

基于S7-300,400 CPU集成PN 接口 Modbus TCP通讯快速入门(更新版本V2.4)

基于S7-300,400 CPU集成PN 接口 Modbus TCP通讯快速入门(更新版本V2.4)
基于S7-300,400 CPU集成PN 接口 Modbus TCP通讯快速入门(更新版本V2.4)

CPU接口类型大全

CPU接口类型大全 我们知道,CPU需要通过某个接口与主板连接的才能进行工作。CPU经过这么多年的发展,采用的接口方式有引脚式、卡式、触点式、针脚式等。而目前CPU的接口都是针脚式接口,对应到主板上就有相应的插槽类型。CPU接口类型不同,在插孔数、体积、形状都有变化,所以不能互相接插。Socket AM2 Socket AM2是2006年5月底发布的支持DDR2内存的AMD64位桌面CPU的接口标准,具有940根CPU针脚,支持双通道DDR2内存。虽然同样都具有940根CPU针脚,但Socket AM2与原有的Socket 940在针脚定义以及针脚排列方面都不相同,并不能互相兼容。目前采用Socket AM2接口的有低端的Sempron、中端的Athlon 64、高端的Athlon 64 X2以及顶级的Athlon 64 FX等全系列AMD桌面CPU,支持200MHz外频和1000MHz的HyperTransport 总线频率,支持双通道DDR2内存,其中Athlon 64 X2以及Athlon 64 FX最高支持DDR2 800,Sempron和Athlon 64最高支持DDR2 667。。按照AMD的规划,Socket AM2接口将逐渐取代原有的Socket 754接口和Socket 939接口,从而实现桌面平台CPU接口的统一。Socket S1 Socket S1是2006年5月底发布的支持DDR2内存的AMD64位移动CPU的接口标准,具有638根CPU针脚,支持双通道DDR2内存,这是与只支持单通道DDR内存的移动平台原有的Socket 754接口的最大区别。目前采用Socket S1接口的有低端的Mobile Sempron 和高端的Turion 64 X2。按照AMD的规划,Socket S1接口将逐渐取代原有的Socket 754接口从而成为AMD移动平台的标准CPU接口。 Socket F Socket F是AMD于2006年第三季度发布的支持DDR2内存的AMD服务器/工作站CPU 的接口标准,首先采用此接口的是Santa Rosa核心的LGA封装的Opteron。与以前的Socket 940接口CPU明显不同,Socket F与Intel的Socket 775和Socket 771倒是基本类似。Socket F接口CPU的底部没有传统的针脚,而代之以1207个触点,即并非针脚式而是触点式,通过与对应的Socket F插槽内的1207根触针接触来传输信号。Socket F接口不仅能够有效提升处理器的信号强度、提升处理器频率,同时也可以提高处理器生产的良品率、降低生产成本。Socket F接口的Opteron也是AMD首次采用LGA封装,支持ECC DDR2内存。按照AMD的规划,Socket F接口将逐渐取代Socket 940接口。1 W( f- ~' B2 P! C# i w Socket 771 Socket 771是Intel2005年底发布的双路服务器/工作站CPU的接口标准,目前采用此接口的有采用LGA封装的Dempsey核心的Xeon 5000系列和Woodcrest核心的Xeon 5100系列。与以前的Socket 603和Socket 604明显不同,Socket 771与桌面平台的Socket 775倒还基本类似,Socket 771接口CPU的底部没有传统的针脚,而代之以771个触点,即并非针脚式而是触点式,通过与对应的Socket 771插槽内的771根触针接触来传输信号。Socket 771接口不仅能够有效提升处理器的信号强度、提升处理器频率,同时也可以提高处理器生产的良品率、降低生产成本。Socket 771接口的CPU全部都采用LGA封装。按照Intel的规划,除了Xeon MP仍然采用Socket 604接口之外,Socket 771接口将取代双路Xeon(即Xeon DP)目前所采用的Socket 603接口和Socket 604接口。 Socket 479. f$ ~' I" J2 o4 O. L9 \1 q Socket 479的用途比较专业,是2003年3月发布的Intel移动平台处理器的专用接口,具有479根CPU针脚,采用此接口的有Celeron M系列(不包括Yonah核心)和Pentium M系列,而此两大系列CPU已经面临被淘汰的命运。Yonah核心的Core Duo、Core Solo和Celeron M已经改用了不兼容于旧版Socket 478的新版Socket 478接口。. ?6 D5 _8 j0 S* `

力控教程

KNT-WP01型风光互补发电综合实训系统教程之力控教程建立一个新的项目的基本流程: 1、打开软件:双击桌面上的图标,打开软件,弹出工程管理器对话框,如图1所示, 图1 2、新建工程:点击工程管理对话框上的按钮,弹出新建工程对话框,如图2所示,可对工程项目进行命名等,点击确定。 图2

3、工程开发制作,点击工程管理对话框上的按钮,弹出如图3所示界面,对工程进行开发制作。 图3 4、新建窗口,双击开发系统左侧的,弹出窗口对话框,如图4所示, 图4 可对窗口属性进行设定,如名字、背景色等。 5、新建I/O设备组态,双击图标,可对PLC、变频器、modbus 等下位设备进行I/O设备组态设置。对话框如图5所示,

图5 各设备组态可对其设备名称,设备地址,串口,波特率,奇偶校验,数据位以及停止位等进 行设置,如下图6、7所示: 图6 图7

表1为各设备的I/O设备的串口,波特率,奇偶校验,数据位,停止位的一些参数。 6、建立数据库组态,双击图标,弹出数据库组态对话框,如图8所示: 图8

可建立开关量、模拟量等数据库变量,如表2所示。 7、画图,建立链接。 该图标为图库标志,可选择各个按钮或指示灯。 该标志位工具栏标志,可选择按钮和文本框等。

8、专家报表。 点击工具下拉菜单中的“专家报表”,如图9所示, 图9 9、趋势曲线 点击工具下拉菜单的复合组件,弹出如下对话框,点击曲线模板,得到趋势曲线模板。如图10所示。 图10 10、一些程序脚本, 死区时间选择的脚本: deadtime.pv=strtoint(#combobox44.listgetbtem(#combobox44.listgetselection())) 变频器启动脚本:按下鼠标对话框中, A0.PV=1;A1.PV=1;A2.PV=1;A3.PV~A6.PV=1;A7.PV~A9.PV=0;A10.PV=1:;A11~A14.PV=0; 释放鼠标对话框中输入:F_set.pv=50。 变频器停止脚本:按下鼠标对话框中输入: A0.PV=0;A1.PV=1;A2.PV=1;A3.PV~A6.PV=1;A7.PV~A9.PV=0;A10.PV=1:;A11~A14.PV=0; 释放鼠标对话框中输入:F_set.pv=0。 脚本对话框有以下步骤弹出:双击画出的按钮图标,得到对话框,如图11所示。

Modbus协议中文版(比较完善)

GB/T ××××—×××× 前言 -----------串行链路和TCP/IP上的MODBUS标准介绍 该标准包括两个通信规程中使用的MODBUS应用层协议和服务规范: ·串行链路上的MODBUS MODBUS串行链路取决于TIA/EIA标准:232-F和485-A。 ·TCP/IP上的MODBUS MODBUS TCP/IP取决于IETF标准:RFC793和RFC791有关。 串行链路和TCP/IP上的MODBUS是根据相应ISO层模型说明的两个通信规程。 下图强调指出了该标准的主要部分。绿色方框表示规范。灰色方框表示已有的国际标准(TIA/EIA和IETF标准)。 Modbus 协议规范 45页 MODBUS应用层MODBUS报文传输在TCP/IP 上的实现指南49页 在TCP/IP上的MODBUS映射 TCP IETF RFC 793 MODBUS报文IP IETF RFC 791 传输在串行链路 上的实现指南 45页 串行链路主站/从站以太网II/802.3 IEEE 802.2 TIA/EIA-232-F TIA/EI A-485-A 以太网物理层 MODBUS标准分为三部分。第一部分(“Modbus协议规范”)描述了MODBUS事物处理。第二部分(“MODBUS报文传输在TCP/IP上的实现指南”)提供了一个有助于开发者实现TCP/IP上的MODBUS应用层的参考信息。第三部分(“MODBUS报文传 输在串行链路上的实现指南”)提供了一个有助于开发者实现串行链路上的MODBUS 应用层的参考信息。

GB/T ××××—××××第一部分:Modbus协议 1

力控pFieldComm通讯协议转发器简介

北京三维力控科技有限公司 https://www.wendangku.net/doc/e111192271.html,/ pFieldComm 通讯协议转发器

北京三维力控科技有限公司 https://www.wendangku.net/doc/e111192271.html,/ pFieldComm 通讯协议转发器 一.适用范围 国内企业的自动化系统中,由于历史原因,存在着大量的不同厂家和不同通讯方式的设备。设备之间的数据不能共享已经制约了企业信息化的发展,在一个自动化工程当中,自动化工程技术人员经常因为各种自动化装置之间的通讯调试而花费大量的时间,一个简单的系统间通讯问题常常莫名其妙地占用一半左右的调试时间。同时远程通讯技术的发展,使远程的诊断和设备维护成为可能。使用pFieldComm 以后,就可以大大节省这些不必要的调试时间,使各种自动化装置之间的通讯变得轻松简便,远程的设备监控成为可能。pFieldComm 通讯协议转发器是一种新型的通讯协议自动转发装置,主要用于各种综合自动化系统之间的互连通讯,实现数据共享,彻底解决信息孤岛问题,也适用于其他需要通讯协议转换的应用。 二. 功能特点 2.1 概述 本装置可以从通讯协议级实现串口(包括RS232、RS485、RS422等)、以太网、各种现场总线(包括CAN 、LonWorks 、Profibus 等)通讯网络的相互转换。以便与其它设备或调度间进行实时的数据交换;同时完成 各个 网络上所有测量、控制、保护、信号等数据汇总工作,按RS-232 、RS-485、各种现场总线或以太网通讯方式传输,可与调度系统按相关通讯规约连接,构成分散式控制RTU 系统。 2.2 pFieldComm 工作原理 实质上,pFieldComm 是一个能够进行自动进行数据采集和自动数据转发的软件。pFieldComm 的数据采集是按照使用人员事先组态或者设定好的通讯协议进行数据采集,要采集数据设备的物理地址、采集数据的通道地址或者参数名称也是能够由使用人员自主设定。 pFieldComm 的数据转发,则是将pFieldComm 当作一台数据服务器,接受来自数据采集主机的数据采集指令。pFieldComm 的数据转发协议类型、站物理地址、转发数据通道地址或者参数名称由使用人员自主设定。 所有数据采集、转发均支持数据的读、写双向访问。 2.3 丰富的规约库及优秀的开放式驱动开发平台 pFieldComm 可以与多种I/O 设备进行通信。目前支持的I/O 设备包括:各电力厂家的保护测控装置、直流屏、小电流选线装置、VQC 自动装置、可编程控制器(PLC)、DCS 、智能模块、板卡、智能仪表、变频器等共有500多种。 pFieldComm 的数据转发模块目前支持多种标准规约,比如IEC60870-5-101/103/104,CDT ,Modbus ,1801,DNP 等。 pFieldComm 与I/O 设备之间通过以下几种方式进行数据交换:串行通信方式(支持Modem 远程通信)、板卡方式、网络节点方式、适配器方式、OPC 方式、

MODBUS协议说明文档

MODBUS通讯协议说明 1、概述 Modbus 协议是应用于电子控制器上的一种通用语言。通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。它已经成为一通用工业标准。有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控。 本文档通信协议说明详细地描述了MODBUS设备的输入和输出命令、信息和数据,以便第三方使用和开发。 1.1通信协议的作用 使信息和数据在上位机(主站)和MODBUS设备之间有效地传递,允许访问MODBUS设备的所有测量数据。 MODBUS设备可以实时采集现场各种数据值,具备一个RS485通讯口,能满足MODBUS监控系统的要求。 MODBUS设备通信协议采用MODBUS RTU协议,本协议规定了应用系统中主机与MODBUS 设备之间,在应用层的通信协议,它在应用系统中所处的位置如下图所示: 本协议所处的位置 从机: 1.2 物理接口: 连接上位机的主通信口,采用标准串行RS485通讯口,使用压接底座。 信息传输方式为异步方式,主要配置参数,一般默认:起始位1位,数据位8位,停止位1位,无校验,数据传输缺省速率为9600b/s 2、MODBU通信协议详述 2.1 协议基本规则 以下规则确定在回路控制器和其他串行通信回路中设备的通信规则。 1)所有回路通信应遵照主/从方式。在这种方式下,信息和数据在单个主站和从站(监控设备)之间传递。 2)主站将初始化和控制所有在通信回路上传递的信息。 3)无论如何都不能从一个从站开始通信。 4)所有环路上的通信都以“打包”方式发生。一个包裹就是一个简单的字符串(每个字符串8位),一个包裹中最多可含255个字节。组成这个包裹的字节构成标准异步串行数据,并按8位数据位,1位停止位,无校验位的方式传递。串行数据流由类似于RS232C中使用的设备产生。 5)所有回路上的传送均分为两种打包方式: A) 主/从传送 B) 从/主传送 6)若主站或任何从站接收到含有未知命令的包裹,则该包裹将被忽略,且接收站不予响应。

AMD处理器接口详细规格

开始支持DDR2内存的AM2接口 除了APU之外,目前AMD处理器的接口均是以AM为开头命名 常见的有:AM2/AM2+/AM3以及AM3+ 而在AM系列插槽出现之前,主流的插槽有Socket 754以及Socket 939两种,其中Socket 754接口仅支持单通道DDR内存。 AM2 2006.5月AM2接口为用户带来的最大特性就是它开始集成了DDR2内存控制器,接口名“AM2”中的“2”也正是代表着它支持DDR2内存。

过渡性质的AM2+接口 AM2+平台相对于AM2平台在实质上改变并不大 唯一的区别就是AM2+支持HT 3.0前端总线. 此前的AM2平台仅支持HT 1.0以及HT 2.0前端总线,工作频率较低,传输带宽被大大的限制(工作频率仅为1GHz,最高传输速度8GB/s) 而AM2+平台则提供了对HT 3.0总线的支持,工作频率最高可达2.6GHz,最高传输速度增至20.8GB/s。

AM3接口 AM3接口的处理器拥有938根阵脚,可以安装在AM2以及AM2+插槽上使用。但是由于针脚位置不同,AM2以及AM2+的处理器无法安装在AM3插槽上使用。

推土机御用的AM3+ 首先,AM3+插孔要比AM3的大11%,因此安装起来更加方便,其次是电气性能上的差距,AM3+接口的CPU采用了3.1MHz的VID设计,可以提供更好地功耗管理以及节能效果,而AM3只有400KHz,效果自然慢了很多;其余在功耗噪音方面都明显得到了许多的改善。 9系列芯片组的主要使命自然是支持新的黑色Socket AM3+插座和FX系列推土机处理器,不过得益于良好的向下兼容性,也可以继续搭配Socket AM3封装接口的Phenom II/At hlon II/Sempron系列处理器。

CPU的接口类型有哪些

CPU的接口类型有哪些 CPU接口:Socket 939 Socket 939是AMD公司2004年6月才推出的64位桌面平台接口标准,具有939根CPU针脚,支持双通道DDR内存。目前采用此接口的有面向入门级服务器/工作站市场的Opteron 1XX系列以及面向桌面市场的Athlon 64以及Athlon 64 FX 和Athlon 64 X2,除此之外部分专供OEM厂商的Sempron也采用了Socket 939接口。Socket 939处理器和与过去的Socket 940插槽是不能混插的,但是Socket 939仍然使用了相同的CPU风扇系统模式。随着AMD从2006年开始全面转向支持DDR2内存,Socket 939被Socket AM2所取代,在2007年初完成自己的历史使命从而被淘汰,从推出到被淘汰其寿命还不到3年。 CPU接口:Socket 940 Socket 940是最早发布的AMD64位CPU的接口标准,具有940根CPU针脚,支持双通道ECC DDR内存。目前采用此接口的有服务器/工作站所使用的Opteron 以及最初的Athlon 64 FX。随着新出的Athlon 64 FX以及部分Opteron 1XX系列改用Socket 939接口,所以Socket 940已经成为了Opteron 2XX全系列和Opteron 8XX全系列以及部分Opteron 1XX系列的专用接口。随着AMD从2006 年开始全面转向支持DDR2内存,Socket 940也会逐渐被Socket F所取代,完成自己的历史使命从而被淘汰。 CPU接口:Socket 603 Socket 603的用途比较专业,应用于Intel方面高端的服务器/工作站平台,采用此接口的CPU是Xeon MP和早期的Xeon,具有603根CPU针脚。Socket 603接口的CPU可以兼容于Socket 604插槽。 CPU接口:Socket 604 与Socket 603相仿,Socket 604仍然是应用于Intel方面高端的服务器/工作站平台,采用此接口的CPU是533MHz和800MHz FSB的Xeon。Socket 604接口的CPU不能兼容于Socket 603插槽。 CPU接口:Socket 775(LGA775) Socket 775又称为Socket T,是目前应用于Intel LGA775封装的CPU所对应的接口,目前采用此种接口的有LGA775封装的单核心的Pentium 4、Pentium 4 EE、Celeron D以及双核心的Pentium D和Pentium EE等CPU。与以前的Socket 478接口CPU不同,Socket 775接口CPU的底部没有传统的针脚,而代之以775个触点,即并非针脚式而是触点式,通过与对应的Socket 775插槽内的775根触针接触来传输信号。Socket 775接口不仅能够有效提升处理器的信号强度、提

基于tcpip协议的Modbus

基于tcp/ip协议的modbus 业以太网与Modbus TCP/IP 一以太网的标准 以太网是一种局域网。早期标准为IEEE802.3,数据链路层使用CSMA/CD,10Mb/s 速度物理层有: (1)10Base5粗同轴电缆,RG-8,一段最长为500m; (2)10Base2细同轴电缆,RG-58,一段最长为185m; (3)10Base T双绞线,UTP或STP,一段最长为100m。 快速以太网为100Mb/s,标准为802.3a,介质为100Base Tx双绞线、100Base Fx光纤。 目前10/100M以太网使用最为普遍,很多企事业用户已实现100M到以太网桌面,确实体验到高速“冲浪”的快感,另外从距离而言,非屏蔽双绞线(UTP)为100m,多模光纤可达2~3km,单模光纤可大于100km。千兆以太网1000Mb/s为802.3z/802.3ab,万兆以太网10Gb/s 为802.3ae,将为新一轮以太网的发展带来新的机遇与冲击。 二工业以太网与商用以太网的区别 什么是工业以太网?技术上,它与IEEE802.3兼容,故从逻辑上可把商用网和工业网看成是一个以太网,而用户可根据现场情况,灵活装配自己的网络部件,但从工业环境的恶劣和抗干扰的要求,设计者希望采用市场上可找到的以太网芯片和媒介,兼顾考虑下述工业现场的特殊要求:首先要考虑高温、潮湿、振动;二是对工业抗电磁干扰和抗辐射有一定要求,如满足EN50081-2、EN50082-2标准,而办公室级别的产品未经这些工业标准测试,表1列出了一些常用工业标准。为改善抗干扰性和降低辐射,工业以太网产品多使用多层线路板或双面电路板,且外壳采用金属如铸铝屏蔽干扰;三是电源要求,因集线器、交换机、收发器多为有源部件,而现场电源的品质又较差,故常采用双路直流电或交流电为其供电,另外考虑方便安装,工业以太网产品多数使用DIN导轨或面板安装;四是通信介质选择,在办公室环境下多数配线使用UTP,而在工业环境下推荐用户使用STP(带屏蔽双绞线)和光纤。

力控与力控通讯总结概要

力控与力控之间通讯总结 通过测试,力控与力控之间的通讯方式有commsever、datesever、netsever和opc,现将这四种方法的测试步骤和在测试过程中要注意的事项做了如下说明,以下测试都是在局域网中搭建的,在广域网中搭建的话有说明,广域网举例附图: https://www.wendangku.net/doc/e111192271.html,msever测试方法: 1.在作为服务器的计算机中打开力控数据库组态建点tag1.pv,运行commsever。

2.在设置中选择“通讯设置”,以网络通讯方式(被动方式)为例:本机IP 和端口输入作为服务器的计算机IP和端口,本机地址默认为0然后确定,提示重新启动commsever 。 3.在测试机(作为客户端)中新建IO驱动(力控-数据库-commsever通讯),服务器以网络通信方式为例所以客户端通信方式选择tcp/ip 设备地址 与服务器本机地址相同填0 ,点击下一步。

一步。

5.勾选允许同步历史,完成IO配置。 6.进入数据库组态建点a.pv,连接IO设备,增加。

7.参数是服务器端的点,以tag1.pv为例,参数填写tag1.pv 。 8.运行力控,将服务器端的tag1.pv在实时数据库中赋值,客户端a.pv的值与tag1.pv相同,commsever通讯正常。 (注:当设置客户端IO驱动时,设置的IP、端口、本机地址要与服务器相同。以上为局域网内commsever测试,当在广域网中搭建commsever 时,服务器的IP和端口为作为服务器计算机的IP和端口,客户端填写的IP是作为服务器的计算机的公网IP,端口为路由器映射出的作为服务

器的计算机的端口)。 2.opc测试方法: 1.组件配置(开始-运行-dcomcnfg 进入组件服务)。 2.配置我的电脑(右键-属性配置COM安全)选择访问权限:编辑限制: 添加everyone和ANONYMOUS LOGON 将访问权限全部选择允许,选择编辑 默认值:添加everyone和ANONYMOUS LOGON 将访问权限全部选择允许。 选择启动和激活权限:编辑限制:添加everyone和ANONYMOUS LOGON 将 访问权限全部选择允许,选择编辑默认值:添加everyone和ANONYMOUS

所有CPU插槽介绍(部分设计图,实物图)

所有CPU插槽介绍(部分设计图,实物图) 1.由于部分插槽没有中文 所以个人帮助翻译可能不专业 敬请原谅 2.由于部分原图首发ZOL, 所以部分图片有ZOL 水印并非抄袭 我在ZOL网名为AdrianJ 先发一张总览表 在这张表里 缺失AMD最新插槽AM2+ 以及Intel的最新插槽SOCKET B(LGA 1366)和几款很老很老的CPU插槽(广义上) 但是后面实物图和介绍上我会补上 ———————————————————————————————— ———————————————— - DIP 插槽 DIP 代表Dual in-line package(不知国内叫什么),在微电子学中也被称 作DIL 正常写法是DIPn n代表针脚数入DIP14 DIP 用于集成电路中,入CPU DIP由仙童半导体公司(Fairchild Semicondutor)于1965年发明PLCC插槽 全称Plastic Leaded Chip Carrier(不知怎翻译) PLCC是一个四边有脚而中空的集成电路块 PLCC插槽应对的是CPU Harris 80286-16 (下左图)

INTEL 80286 INTEL 80386 SOCKET 1(自己翻译) SOCKET 1 是第二个被设计出来的用于X86 微型CPU的标准 SOCKETCPU插槽 拥有169个PIN 适用于5-Volt, 16 到33 MHZ , 486 ,DX486, DX2 和 DX4 系列CPU Socket 2 SOCKET 2是SOCKET1的升级版本增加了对奔腾CPU的支持 同时针脚数由原来的169 上升到238 使用19*19的规格划分 支持CPU 有5-volt, 25 到50 MHz 486 SX, 486 DX, 486 DX2, 486 DX4, DX4 63 或者83 MHz,奔腾系列CPU SOCKET 3 SOCKET 3的设计是为了数学协处理器芯片适用于INTEL 低电压CPU 对比于SOCKET2 ,它重新排列了针脚,并且省略了一个针脚 SOCKET3 拥有237个针脚

MODBUS-TCP协议介绍

MODBUS-TCP 协议 一以太网的标准 以太网是一种局域网。早期标准为IEEE 802.3,数据链路层使用CSMA/CD,10Mb/s 速度物理层有: (1)10 Base 5粗同轴电缆,RG-8,一段最长为500m; (2)10 Base 2细同轴电缆,RG-58,一段最长为185m; (3)10 Base T双绞线,UTP或STP,一段最长为100m。 快速以太网为100Mb/s,标准为802.3a,介质为100 Base Tx双绞线、100 Base Fx光纤。 目前10/100M以太网使用最为普遍,很多企事业用户已实现100M到以太网桌面,确实体验到高速“冲浪”的快感,另外从距离而言,非屏蔽双绞线(UTP)为100m,多模光纤可达2~3km,单模光纤可大于100km。千兆以太网1000Mb/s为802.3z/802.3ab,万兆以太网10Gb/s 为802.3ae,将为新一轮以太网的发展带来新的机遇与冲击。 二工业以太网与商用以太网的区别 什么是工业以太网?技术上,它与IEEE802.3兼容,故从逻辑上可把商用网和工业网看成是一个以太网,而用户可根据现场情况,灵活装配自己的网络部件,但从工业环境的恶劣和抗干扰的要求,设计者希望采用市场上可找到的以太网芯片和媒介,兼顾考虑下述工业现场的特殊要求:首先要考虑高温、潮湿、振动;二是对工业抗电磁干扰和抗辐射有一定要求,如满足EN50081-2、EN50082-2标准,而办公室级别的产品未经这些工业标准测试,表1列出了一些常用工业标准。为改善抗干扰性和降低辐射,工业以太网产品多使用多层线路板或双面电路板,且外壳采用金属如铸铝屏蔽干扰;三是电源要求,因集线器、交换机、收发器多为有源部件,而现场电源的品质又较差,故常采用双路直流电或交流电为其供电,另外考虑方便安装,工业以太网产品多数使用DIN导轨或面板安装;四是通信介质选择,在办公室环境下多数配线使用UTP,而在工业环境下推荐用户使用STP(带屏蔽双绞线)和光纤。 三TCP/IP 1. 为什么使用TCP/IP? 最主要的一个原因在于它能使用在多种物理网络技术上,包括局域网和广域网技术。TCP/IP协议的成功很大程度上取决于它能适应几乎所有底层通信技术。 20世纪80年代初,先在X.25上运行TCP/IP协议;而后又在一个拨号语音网络(如电话系统)上使用TCP/IP协议,又有TCP/IP在令牌环网上运行成功;最后又实现了TCP/IP远程

最新AMD-CPU接口大全

●统一接口时代的开始:Socket AM2 2006年五月,Socket AM2接口发布,支持AMD 64位桌面CPU ,它为用户带来的最大特性就是开始集成了DDR2内存控制器,接口名“AM2”中的“2”也正是代表着它支持DDR2内存。计划用于取代原有的的Sock 754和Sock 939接口,从而实现了AMD 桌面平台CPU 插槽的统一。这一年,中端市场AMD K8架构处理器大行其道,AM2接口也得到了众厂商的一致支持。 AMD 统一接口的时代,从AM2开始

这一年是AMD走下神坛的一年,也是K8架构在主流市场大行其道的一年。为了应对突如其来的Intel的“扣肉”处理器,AMD把旗下的速龙系列大幅度降价,这让追求性价比的主流用户享受到许多物美价廉的好产品,其中最有代表性的就是单核速龙64 3200+和后来成为“入门双核”的速龙64 x2 3600+ AMD AM2 Athlon 64 3200+

速龙64 X2 3600+成为双核市场普及先锋 这段期间AMD发布的产品非常多,也非常复杂。单单是速龙X2 就横跨了90纳米到65纳米两个时代,还有全新命名规则的BE-2300、LE-1150系列,一路穿越到2008年,45纳米全面普及,采用的依然是AM2接口。这种做法让DIY用户的平台升级变得非常简单,不少人就直接从90纳米时代飞跃到45纳米,要做的仅仅是刷新一下BIOS,换一个处理器。 ●“路人甲”:过渡接口Socket AM2+ 2007年第三季度,AMD推出了AM2到AM3之间的过渡性接口:Socket AM2+。其实按照AMD最初的设定,AM2服役时间过后就会被AM3所替代,但由于K8架构的四核羿龙一再跳票只能作罢,推出了过渡性质的AM2+接口,这款接口与AM2完全相容,也就是说AM2+处理器能用在AM2主板上,AM2处理器也能用上AM2+主板。

51单片机与力控modbus通信

网上关于单片机和力控modbus通信的实例很少,关键并不是modbus协议而是力控与单片机连接的设置,下面的程序是基于51单片机做的。在正个调试过程中由于我们不清楚力控发送给单片机的请求数据格式,我们可以用串口调试工具进行串口调试,将力控发送请求显示在串口调试工具中,其中单片机的程序如下 #include #include #define uchar unsigned char //一个字节 #define uint unsigned int // 两个字节 void send_char(unsigned char txd); uint rece_count=0; uint send_flag=0; uchar rece_buf[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; uint i; /*串行口初始化*/ void chushi() {SCON=0x50; //串口工作方式1,即10位异步 PCON=0x00;//波特率不倍增 TMOD=0x20; TH1=TL1=0xfa; TR1=1; } /*主程序*/ main() {chushi(); rece_count=0; while(1) { if(RI) {RI=0; if(rece_count<8) { rece_buf[rece_count]=SBUF; rece_count++; } } if(rece_count==8) { send_flag=1; } while(send_flag==1)

{ for(i=0;i<8;i++) {SBUF=rece_buf[i]; while(TI==0) ; TI=0; } } } } 打开力控运行,将发送的数据保存到单片机中,然后打开串口调试工具,显示如下: 我们看力控发送请求的格式:01 03 ff ff 00 01 84 2e,最后的两位crc是高位在前,低位在后。Crc的高低位的前后顺序一定要注意,尤其在单片机编程中。

目前CPU的接口都是针脚式接口

目前CPU的接口都是针脚式接口,对应到主板上就有相应的插槽类型。CPU接口类型不同,在插孔数、体积、形状都有变化, 所以不能互相接插。 Socket 775 Socket 775又称为Socket T,是目前应用于Intel LGA775封装的CPU所对应的接口,目前采用此种接口的有LGA775封装的Pentium 4、 Pentium 4 EE、Celeron D等CPU。与以前的Socket 478接口CPU不同,Socket 775接口CPU的底部没有传统的针脚,而代之以775个触点, 即并非针脚式而是触点式,通过与对应的Socket 775插槽内的775根触针接触来传输信号。Socket 775接口不仅能够有效提升处理器的信 号强度、提升处理器频率,同时也可以提高处理器生产的良品率、降低生产成本。随着Socket 478的逐渐淡出,Socket 775将成为今后所 有Intel桌面CPU的标准接口。 Socket 754 Socket 754是2003年9月AMD64位桌面平台最初发布时的CPU接口,目前采用此接口的有低端的Athlon 64和高端的Sempron,具有754 根CPU针脚。随着Socket 939的普及,Socket 754最终也会逐渐淡出。 Socket 939 Socket 939是AMD公司2004年6月才推出的64位桌面平台接口标准,目前采用此接口的有高端的Athlon 64以及Athlon 64 FX,具有 939根CPU针脚。Socket 939处理器和与过去的Socket 940插槽是不能混插的,但是,Socket 939仍然使用了相同的CPU风扇系统模式,因 此以前用于Socket 940和Socket 754的风扇同样可以使用在Socket 939处理器。 Socket 940 Socket 940是最早发布的AMD64位接口标准,具有940根CPU针脚,目前采用此接口的有服务器/工作站所使用的Opteron以及最初的 Athlon 64 FX。随着新出的Athlon 64 FX改用Socket 939接口,所以Socket 940将会成为Opteron的专用接口。 Socket 603 Socket 603的用途比较专业,应用于Intel方面高端的服务器/工作站平台,采用此接口的CPU是Xeon MP和早期的Xeon,具有603根 CPU针脚。Socket 603接口的CPU可以兼容于Socket 604插槽。

CPU接口10年变迁

技术发展晴雨表细数CPU接口10年变迁 前言:CPU接口一直是消费者又爱又恨的对象,爱是因为每一次接口的变迁都代表了一次技术上的进步,更高性能的处理器即将到来,恨的是每一次的接口变迁都要让消费者再掏一次钱来更换产品,因为原来的老产品已经不能继续使用。今天,我们就来说一说处理器接口从2000年到2009年这十年来的变迁。 处理器在2000-2009这十年的发展历程中,能够称之为代表的也就只有Intel 和AMD两家了,虽然VIA也曾经在x86架构上耕耘过,但是从市场的表现来看就已经r让人们知道了结果

。所以这10年的CPU接口变化的幕后操纵者实质上就只有Intel和AMD。因此我的文章也将围绕Intel和AMD进行。 处理器最新接口的代表LGA1366与LGA1156 笔者简单的数了一数,在这整整10年之中,Intel与AMD总共推出了多达10个新的处理器接口。平均下来每一年就要更换一次。为了方便大家了解每一次接口的更新历程。我们完全按照时间的顺序将这10次接口的更新历程展现给大家。

首先我们来看一看进入新千年的2000年。 在2000年的中国处理器市场,突然间冒出了一个“全新”的处理器品牌——AMD,这在已经看惯了Intel与奔腾的中国消费者来讲是非常新鲜的。而这个新的品牌也为DIY市场带来了一个全新的选择,速龙处理器。虽然当时的AMD 还并没有能力与Intel直接抗衡,但是正是因为Athlon XP处理器的到来,将昂贵的CPU价格拖入了百姓价位时代。此时的Athlon XP处理器使用的正是一代经典Socket A(462接口)接口。 Socket A(462)接口的经典作品:Barton核心Athlon XP 2500+处理器 Socket A接口,也就是Socket 462接口。2000年7月,AMD推出了基于K7架构设计的Duron和Athlon处理器,Socket A接口也随之被推广。Athlon处理器的到来不仅震动了整个处理器业界,同时也为Intel敲响了警钟,因为他昭示着属于Intel垄断的时代已经结束了。 在Socket A接口时代,一大批耳熟能详的处理器涌现在市场上,其中最为经典的就要算是Barton核心的Athlon XP 2500+处理器。从这时期,性价比也被广大的消费者记在了心中。 Socket A接口是AMD成功的开始,这一接口也一直陪伴AMD长达5年的时间,随着新一代K8架构处理器Athlon 64的出现,Socket A接口也走到了尽头,终于在2005年5月正式宣告结束。 2000年底,Intel推出了新世纪的第一个产品,Pentium 4处理器。由于之前的处理器已经出现了主频超过1GHz产品,因此如何提升主频进行主频大战就成为了Intel当时的主要目的。早期的Pentium 4处理器采用的是0.18微米制造的Willamette核心,为了能够提供足够的带宽,Intel设计了全新的Socket 423接口,此时的CPU前端总线已经到达了当时惊人的400MHz,不得不说Socket 423接口的奔腾4处理器是当时的典范。

海为PLC与力控组态通讯实例

海为PLC与力控组态通讯实例 提示:1、本例使用的力控版本为6.1; 2、由于本例着重在于讲述海为PLC与力控组态通讯的建立,对于力控组态的一些基本使用操作不做过多赘述; 3、海为PLC和力控组态通讯时,海为PLC元件的初始地址从1开始,请结合海为PLC通讯地址代码表对工程使用中的元件地址做相应变化。 正文: 我们知道创建新的应用程序工程的一般过程是:绘制图形界面、配置I/O 设备、创建数据库、进行I/O数据连接、建立动画连接、运行及调试。 本例将按照这个程序,来实现海为PLC与力控组态之间的通讯。控制要求主要有:实现对PLC位元件Y0Y1的控制,对PLC寄存器元件V0V1及系统寄存器SV12、SV13...SV18(海为PLC内部系统时间年月日时分秒星期)的读写和监视。 1、绘制图形界面 按照本例的要求,简单绘制图形画面如下图: 2、配置I/O设备 在开发系统的工程项目中,双击IO设备组态

双击IO设备组态后出现,然后选择PLC下拉选项的MODICON(莫迪康)如下图:

双击MODICON(莫迪康),选择MODBUS (RTU串行口) 双击它,跳出设备配置步骤,进行如下设置: 设备名称自定,本例为:Haiwell

点击下一步:选择串口 这时候点击设置,进行通讯资料的设置,海为PLC默认的通讯格式为:19200 N 8 2 RTU

点击保存,点击下一步。如下图: 最后点击完成,就完成配置I/O设备的配置了。点击文件,选择退出设置。 3、创建数据库并与IO连接 双击工程项目中的数据库组态

跳出如下画面: 这时候双击NAME下的黑框,跳出如下画面:

最新IntelCPU接口类型汇总

I n t e l C P U接口类型 汇总

Intel CPU 接口类型汇总 LGA 1155接口 LGA 1155是Intel继LGA 1356之后的CPU插槽。是最新的SNB平台处理器平台标准,Sandy Bridge是将取代Nehalem的一种新的微架构,将采用32纳米芯片加工技术制造。Sandy Bridge将是第一个拥有高级矢量扩展指令集(Advanced Vector Extensions)微架构”(之前称作VSSE),其重要性堪比1999年Pentium III 处理器引入的SSE指令集。这种新的指令能够以256位数据块的方式处理数据,因此数据传输将获得显著提升,从而加快图像、视频和音频等应用程序的浮点计算。从理论上来讲,AVX指令集的引入使得CPU内核浮点运算性能提升到了2倍。 LGA 1156接口 LGA 1156又叫做Socket H,是Intel在LGA775与LGA 1366之后的CPU插槽。它也是Intel Core i3/i5/i7处理器器(Nehalem系列)的插槽,读取速度比LGA 775高。 LGA1366接口 Intel将在下一代45nm Nehalem 系列处理器中开始使用新的LGA 1366接口.又称 Socket B,逐步取代流行多年的LGA 775.从名称上就可以看出,LGA 1366要比LGA 775A多出约600个针脚,这些针脚会用于QPI总线、三条64bit DDR3内存通道等连接。Bloomfield、Gainestown以及Nehalem处理器的接口为 LGA 1366,比目前采用LGA 775接口的Penryn的面积大了20%。处理器die越大,

CPU型号大全总结CPU型号查询一览表

CPU型号大全总结CPU型号查询一览表 一、X86时代的CPUCPU的溯源可以一直去到1971年。在那一年,当时还处在发展阶段的INTEL公司推出了世界上第一台微处理器4004。这不但是第一个用于计算器的4位微处理器,也是第一款个人有能力买得起的电脑处理器!!4004含有2300个晶体管,功能相当有限,而且速度还很慢,被当时的蓝色巨人IBM 以及大部分商业用户不屑一顾,但是它毕竟是划时代的产品,从此以后,INTEL 便与微处理器结下了不解之缘。可以这么说,CPU的历史发展历程其实也就是INTEL公司X86系列CPU的发展历程,我们就通过它来展开我们的“CPU历史之旅”。 4004处理器核心架构图1978年,Intel公司再次领导潮流,首次生产出16位的微处理器,并命名为i8086,同时还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集,但在i8087指令集中增加了一些专门用于对数、指数和三角函数等数学计算指令。由于这些指令集应用于i8086和i8087,所以人们也这些指令集统一称之为X86指令集。虽然以后Intel又陆续生产出第二代、第三代等更先进和更快的新型CPU,但都仍然兼容原来的X86指令,而且Intel在后续CPU的命名上沿用了原先的X86序列,直到后来因商标注册问题,才放弃了继续用阿拉伯数字命名。至于在后来发展壮大的其他公司,例如AMD和Cyrix等,在486以前(包括486)的CPU都是按Intel的命名方式为自己的X86系列CPU命名,但到了586时代,市场竞争越来越厉害了,由于商标注册问题,它们已经无法继续使用与Intel的X86系列相同或相似的命名,只好另外为自己的586、686兼容CPU命名了。 1979年,INTEL公司推出了8088芯片,它仍旧是属于16位微处理器,内含29000个晶体管,时钟频率为4.77MHz,地址总线为20位,可使用1MB内存。8088内部数据总线都是16位,外部数据总线是8位,而它的兄弟8086是16位。1981年8088芯片首次用于IBMPC机中,开创了全新的微机时代。也正是从8088开始,PC机(个人电脑)的概念开始在全世界范围内发展起来。 Intel8086处理器1982年,许多年轻的读者尚在襁褓之中的时候,INTE已经推出了划时代的最新产品枣80286芯片,该芯片比8006和8088都有了飞跃的发展,虽然它仍旧是16位结构,但是在CPU的内部含有13.4万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。从80286开始,CPU的工作方式也演变出两种来:实模式和保护模式。 Intel80286处理器1985年INTEL推出了80386芯片,它是80X86系列中的第一种32位微处理器,而且制造工艺也有了很大的进步,与80286相比,80386内部内含27.5万个晶体管,时钟频率为12.5MHz,后提高到20MHz,25MHz,33MHz。80386的内部和外部数据总线都是32位,地址总线也是32位,可寻址高达4GB 内存。它除具有实模式和保护模式外,还增加了一种叫虚拟86的工作方式,可以通过同时模拟多个8086处理器来提供多任务能力。除了标准的80386芯片,也就是我们以前经常说的80386DX外,出于不同的市场和应用考虑,INTEL又陆续推出了一些其它类型的80386芯片:80386SX、80386SL、80386DL等。1988年推出的80386SX是市场定位在80286和80386DX之间的一种芯片,其与80386DX 的不同在于外部数据总线和地址总线皆与80286相同,分别是16位和24位即寻址能力为16MB。1990年推出的80386SL和80386DL都是低功耗、节能型芯片,主要用于便携机和节能型台式机。80386SL与80386DL的不同在于前者是基于

相关文档
相关文档 最新文档