文档库 最新最全的文档下载
当前位置:文档库 › 感应电机参数的离线辨识

感应电机参数的离线辨识

感应电机参数的离线辨识
感应电机参数的离线辨识

感应电动机参数的测定

感应电动机参数的测定 感应电动机的参数可以用空载试验和堵转(短路)试验来确定。 一、空载试验 空载试验的目的是确定电动机的激磁参数R m、X m,以及铁耗p Fe和机械损耗pΩ. 试验是在转子轴上不带任何负载,电源频率f = f N,转速n≈n s的情况下进行。用调压器改变试验电压的大小,使定子端电压从(1.1~1.2)U1N,逐步下降到0.3 U1N左右,每次记录电动机的端电压U1、空载电流I10。和空载功率P10,即可得到电动机的空载特性I10,P10=f(U1),如图5-21所示。 空载时,电动机的三相输人功率全部用以克服定子铜耗、铁耗和转子的机械损耗,所以从空载功率P10减去定子铜耗,即得铁耗和机械损耗两项之和.即 (5-39)由于铁耗基本上与端电压的平方成正比,机械损耗则仅与转速有关而与端电压的高低无关,因此把铁耗和机械损耗两项之和与端电压的平方值画成曲线pFe+pΩ=f(U12),则该线将近似为一直线,如图5-22所示.把该线延长到U l=0处,如图5—22中虚线所示,则该处的纵坐标就表示机械损耗P10,虚线以上部分则是随电压而变化的铁耗。 空载时,转差率s≈0,转子可认为开路,于是根据等效电路,激磁电阻为 (5-40)定于的空载电抗X10为 (5-41)式中,X10=X1σ+Xm,R0=R1+Rm;其中定子漏抗X1σ可由堵转试验确定,于是激磁电抗Xm为 (5-42) 二、堵转试验 堵转(短路)试验的目的是确定感应电动机的漏阻抗,试验在转子堵转情况(s=1)下进行.调节试验电压,使U1≈0.4U1N(对小型电动机.若条件具备,最好从U1≈0.9U1N~1.0U1N 做起),然后逐步降低电压,每次记录定子的端电压U1、定子电流I1k和功率P1k,即可得到短路特性,I1k,P1k=f(U1),如图5-23所示。

三相异步电动机参数测试

三相异步电机参数的测试 摘要介绍了根据传统的电机学试验原理,在变频器中对电机参数进行离线测试,通过对其采取相应的措施以达到测试参数的高精确度。 关键字矢量控制;电机参数;离线测试 0 引言 在异步电机的矢量控制系统中,电动机的参数是十分重要的物理量。在电机学中利用电动机的参数构成等值电路,以此为基础可以对三相电动机的各种运行特性进行分析。变频调速中采用的矢量控制,控制系统性能完全依赖于所使用的电机参数的准确程度,如果参数不准确,将直接导致矢量控制性能指标下降,甚至导致变频器不能正常工作。 三相异步电动机的基本参数包括定子电阻、定子漏感、转子电阻、转子漏感、定转子互感。这些参数的确定,可以利用电机设计制造时的技术数据进行理论计算,但计算复杂,并且与实际有较大误差;也可以采用试验方法确定,下面具体介绍在变频器中采用试验的方法对各参数的测试。 1 参数测定试验 在变频器中,测试参数主要有两种方法:一种是在线测试,一种是离线测试。在线测试方法主要有卡尔曼滤波法、模型参考自适应法、滑模变结构法等,这些方法要求处理器具有较高的处理速度,对系统硬件要求较高;离线测试方法主要有频率响应试验、阶跃响应试验等,但测试精度不高,存在计算复杂、程序计算量大等问题,故很少采用。 这里主要介绍根据传统的电机学试验原理,在变频器中对电机参数进行离线测试,通过对其采取相应的措施达到测试参数的高精确度。 1.1 采用直流伏安法测试电机的定子电阻 在变频器系统中,采用直流伏安法测试定子电阻的关键是如何得到低压直流电源,当变频器直接连接到电网时,其直流母线电压较高,通常的办法是对直流母线进行电压斩波控制,得到一个平均值很低、周期固定且占空比固定的高频电压脉冲系列,这样经过定子绕组中的电感滤波后,就得到一个脉动很小的直流电流。如果占空比为D,直流母线电压为Udc,电流为I,则相应的定子电阻值为

电机参数测试--方法小结

三相鼠笼式异步电动机参数测试方法 ——陈小波(注:该总结报告文档是本人在南京航空航天大学《电机学实验指导书》的基础上产生的一点自己的见解, 如有不当,请见谅!) 三相鼠笼式异步电动机参数测定分三部分:测量定子绕组的冷态直流电阻,空载实验,短路(堵转)实验。下面将分别讲述。 一、测量定子绕组的冷态直流电阻 原理:将电机在室内放置一段时间,用温度计测量电机绕组端部或铁心的温度。当所测温度与冷却介质温度之差不超过2K时,即为实际冷态。记录此时的温度和测量定子绕组的直流电阻,此阻值即为冷态直流电阻。 具体实现方法有:伏安法、电桥法等。各种方法详细的理论分析及原理介绍在书中有说明。在实际应用场合,可以使用万用表来进行伏安法的测试。 二、空载实验 《电机学实验指导书》上讲述的是Δ接法的测量方法。原理分析如下: 采样Δ接法的测量方法时,只需一相绕组短接,测量一相得到的数据是线电压跟线电流,可以得出空载实验的空载阻抗。Δ接法电机等效电路如图1所示。 A B C 图1 Δ接法电机等效图 但是,在小功率的应用场合(比如:家电等消费产品场合),三相异步电动机亦有好多

采用Y 型接法。此时电机测量如果可以检测相电压或者线电压均可,下面将逐一分析。 Y 型接法电机等效图如图2所示。 A B C 图2 Y 接法电机等效图 按照图2的等效图,若检测一相得到相电压,线电流,则可直接计算得出短路阻抗。若检测一相得到线电压,线电流,计算便可得到2倍的短路阻抗。 三、短路(堵转)实验 短路实验的原理跟实际的操作流程在实验指导书上均有详细的指导,再次不再重复叙述。 注:因三相异步电动机的广泛使用,在许多场合并未对三相异步电动机的一些细则进行说明,例如,现在许多三相电动机均由变频器拖动,且变频器的前级整流大部分采用全桥整流。下面以小功率消费场合所采用不控整流技术来进行说明: 此时 直流输出 22.34cos d U U α=[1] 大部分情况下,我们只知道电机的供电电源是市电。而不知道电机的一些详细额定参数(我遇到的是额定电压未知)。此时,在进行实验时,我们无法确定三相调压器所施加电压的上限是多少。 所以,在这种情况下,可根据上面的公式及电机的供电方式及供电电源的等级来确定三相调压器所施加电压的上限(上式中反推所得到的2U )。

感应电动机参数离线辨识方法实验研究_王高林

中图分类号:T M346 文献标志码:A 文章编号:100126848(2009)0620004204 感应电动机参数离线辨识方法实验研究 王高林,商 振,于 泳,徐殿国 (哈尔滨工业大学,哈尔滨 150001) 摘 要:为进一步提高感应电机矢量调速系统的性能,介绍了一种改进的参数离线辨识方案。系统通过自动进行直流实验、单相交流实验和空载实验来辨识感应电机的参数。所提出的改进方案可以有效消除集肤效应和死区效应所产生的辨识误差。对方案进行了详细分析,介绍了具体实现过程;最后将这种参数辨识方法应用到11k W 感应电机矢量控制系统。实验结果验证了方案的有效性。 关键词:参数辨识;离线;感应电动机;集肤效应;死区效应;实验 Research on O ff 2li n e Param eter I den ti f i ca ti on for I nducti on M otor WANG Gao 2lin,SHANG Zhen,Y U Yong,XU D ian 2guo (Harbin I nstitute of Technol ogy,Harbin 150001,China ) Abstract:Pr oposed an i m p r oved inducti on mot or off 2line para meter identificati on sche me f or vect or con 2tr olled AC mot or drives . The inverter drives aut omatically perf or med the DC test,the single 2phase test, and the no 2l oad test t o calculate all the machine para meters during self 2comm issi oning peri od .The p r o 2 posed sche me can eli m inate the para meter identificati on err or due t o the skin and dead 2ti m e effects . I n 2 tr oduced the scheme p rinci p le and the i m p le ment method in detail .Experi m ental results de monstrated the feasibility of the para meter identificati on method in 11k W vect or contr olled inducti on mot or drive sys 2 te m. Key W ords:Para meter identificati on;Off 2line;I nducti on mot or;Skin effect;Dead 2ti m e effect;Ex 2peri m ent 收稿日期:2008209217 0 引 言 在感应电机矢量控制系统中,电机参数的准确性影响到磁链估计以及控制参数调节等重要环节,因此电机参数辨识对于高性能调速系统具有重要的意义 [1] 。对于高性能感应电机矢量控制型 变频器,产品要求具有参数离线自学习的功能,需要在电机运行之前对参数进行离线辨识。离线辨识获得的电机参数将有助于矢量控制调速系统的正常运行,同时也可以对参数在线辨识的收敛性起参考作用。实际应用中,通常需要辨识的电机等效电路参数包括定、转子电阻和漏感以及互感等参数,目前已经有很多文献对其进行了深入研究 [224] 。本文介绍一种只需要通过检测电流信号 无需其它附加电路的电机参数离线辨识方法。由于逆变器中死区时间、开关管开关延迟时间和管 压降的存在,使得加在绕组电压的参考值与实际值存在一定差别,如不对这些因素进行考虑,将会引起辨识误差,本文采取了有效措施对其进行消除。另外,在单相交流实验过程中,考虑了集肤效应对转子电阻辨识的影响。 1 等效模型 假设感应电机工作在励磁特性的线性区,其数学模型可以用矢量的方式来表示: u s =R s i s +(L m +L σs ) d i s d t +L m d i r d t 0=R r i r +L m d i s d t +(L m +L σr )d i r d t + j p ωr [L m i s +(L m +L σr )i r ](1) 式中,u s 为定子电压矢量;i s 和i r 分别为定、转子电流矢量;R s 和R r 分别为定、转子电阻;L σs 和 L σr 分别为定、转子漏电感;L m 为定转子互感;p 为电机极对数;j 为复数虚部单位。 ? 4?

感应电机参数的离线辨识

电气传动2006年第36卷第8期感应电机参数的离线辨识 感应电机参数的离线辨识 罗慧刘军锋万淑芸 华中科技大学 摘要:提出了一种基于SVPWM的感应参数离线辨识方法,通过改进的直流实验、堵转实验、空载实验和 阶跃电压实验辨识感应电机所有的参数。辨识过程由系统自动完成,无需人工操作,无需速度信息。信号处 理使用了离散快速傅立叶变换(DFFT)和最小二乘法,准确地提取了有效信息,提高了辨识精度。实验结果 证明了上述方法是正确可靠的,且保证了较高的辨识精度。 关键词:感应电机参数辨识离散快速傅立叶变换 off-HneIdentificationofInductionMotorParamete体 LuoHuiLiuJunfengWanShuyun Abstract:Anoff_lineidentificationmethodofinductionmotor(IM)parametersispresentedinthispaper. Beforestartup,theinverterdriveautomaticallyperformsthemodifiedDCtest,locked_rotortest,no—loadtest andstep—voltagetest.Nospeedsignalsarerequiredinthisapproach.Inordertoobtaintheeffectivemessage inthesetests,thediscretefastfouriertransform(DF王叮)andtheleast_squaresareusedtoprocessthesignals ofcurrentsandvoltages.Thevalidity,reliabilityandaccuracyofthepresentedmethodsareverifiedbytheex— perimentsonaVSI-fedIMdrivesystem. Keywords:inductionmotorparameteridentificationdiscretefastfouriertransform 1引言 随着矢量控制技术的发展,使感应电机达到了与直流电机相当的调速性能,加之感应电机结构简单、鲁棒性强、无电刷且价格低廉,使之在工业应用中越来越广泛。现在的感应电机驱动系统多使用间接磁场定向或无速度传感器磁场定向控制技术,无论是间接磁场定向还是无速度传感器磁场定向控制,都需要准确的电机参数[1’2],特别是无速度传感器磁场定向控制。 一般感应电机参数辨识可分为在线式和离线式。在线式辨识需要系统已整定好以及准确的速度信息,其方法主要有卡尔曼滤波[3]、遗传算法Ⅲ、模型参考自适应‘53和最小方差估计器嘲。这些方法要么计算量大,实时性不强,要么需要特殊的激励信号,而且在无速度传感器系统中,电机转速和转子电阻的同时辨识是很困难的[7]。离线式辨识可以不需要速度信息。利用离线辨识得到电机参数的初始值,当电机运行时根据参数变化在线修改电机参数,可以加快在线辨识算法的收】6敛速度。学者们提出了许多感应电机参数的离线自动辨识方法,无需机械堵转电机,也不需要专业人员操作。这些方法在电机投入运行前,向电机施加不同形式的电压、电流信号,检测电机的电压、电流,通过它们的关系计算出各种电机参数或者采用某种拟合算法辨识电机参数[8 ̄13|。 本文在假定感应电机三相平衡的前提下,基于SVPWM,提出了一种改进的直流实验、堵转实验、空载实验和阶跃电压实验对感应电机参数进行离线辨识。直流实验辨识定子电阻(R。)。堵转实验可以通过单相实验实现[13|,辨识定、转子漏感(L,。一L,,)和转子电阻(R,)。空载实验采用V/,控制方式,辨识定转子问的互感(L。)。通过阶跃电压实验直接辨识总漏感(乩。),消除了采用前3个实验辨识出的定、转子自感(L。一L,)和L。计算吐。产生的累计误差。上述实验过程全部由系统自动完成,无需机械堵转和专业人员操作。本文还提出了一种电机相电压的检测方法,省去了死区补偿。实验结果说明上述方法保证了较高的可靠性和精度。  万方数据

在线辨识永磁同步电动机参数

永磁同步电机参数在线辨识:模型参考与EKF 的比较 摘要:本文基于模型参考在线辨识的方法,对永磁同步电机进行参数辨识。运用李雅普诺夫第二方法和奇异扰动理论对增广系统的全局稳定性进行了分析。结果表明,该方法应用的解耦控制技术,改善了系统的收敛性和稳定性. 把这种方法与扩展卡尔曼滤波(EKF)的在线识别方法比较,结果表明,尽管基于扩展卡尔曼滤波(EKF)的在线辨识法在实现的复杂性上相对于所提出的方法更简单,但是该方法与所提出的方法相比不能给出更好的结果. 仿真结果以及对隐极式永磁同步电机实验的分析,证实了所提出方法的有效性。 永磁同步机因为他们的高效率和良好的可控性成功的应用于不同的领域。永磁同步机的控制主要是通过高性能的矢量控制实现的。控制变量如(速度,位置,或转矩),主要的困难在于控制转矩,这说明了控制定子电流的必要性。在矢量控制中,如果想实现这一点,定子电流和电压矢量需在d-q 坐标系下进行分析研究。为了控制定子电流,必须先控制其直轴电感(d)和正交电感(q)。永磁同步电机在d-q 坐标下的电气模型是一个两输入-两输出系统,如下: f q d e e ψ==,0 f K =ω Ω是反电动势矢量d-q 分量;q d q d i i v v ,,,是d-q 轴电压和电流,Ω=P ω是转子电角速度,Ω是转子机械角速度,P 是极对数量。系统的输入是q d v v ,,输出是q d i i ,。根据适当的控制律控制这些电流,是定子电压通过电压源逆变器得到应用。逆变器通常根据一个恒定增益v G 来建模。我们可以得到qr v q dr v d v G v v G v ==,,qr dr v v ,是电流调节器的输出。他们用于调节d-q 坐标系的电流。隐极永磁同步电机,d 轴基准电流通常固定为零,电机转矩和转度由q 轴基准电流控制。d q s f L L R ,,,ψ是参考模型的参数。电机时间常数是 s q q s d d R L R L /,/==ττ。 事实上,这些参数是不准确的,他们会慢慢的发生变化。这些变化可能是由于一个故障或一个变化的操作点[2]。他们有时对控制系统是致命的并可能损坏驱动器。在这些情况下,一个在线辨识算法是必要的。该算法对电机参数进行辨识,用于控制算法或检测故障中。

三相异步电动机的参数测定

实验报告

图2-1 三相异步电动机参数测定接线图 (2)利用调压电源改变供给异步电动机的电源,异步电动机连接成Y 形,即将U 、V 、W (A 、B 、C )各接A 、B 、C 三相宫电线,X 、Y 、Z 接在一起。 (3)当施加电压从零逐渐增加,达到某值时,电机开始启动,然后逐渐增加电压到额定电压。测量其空载转速,观察其方向,再降低电压,使电机停下来。 (4)将三相交流供电线任意两相交换,再逐渐增加电压,观察电动机的转向,理解电源相序变化对电机转向的影响。 2. 参数测定 测量定子绕组的冷态直流电组,用数字万用表测量三个定子绕组1r 值, 娶妻平均数,即得冷态电阻。至于异步电动机的参数12 12,,,,,m m x x x r r r '',可用空载和短路实验来测定。下面主要作这两个实验。 (1). 空载实验 a.按照图3-1接线。电机绕组为Y 接(U N =220V )。负载与电机脱开,即不加负载。 b.把交流调压器的电压调至最小位置,接通电源,逐渐升高电压,是电动机旋转,并注意电机的旋转方向。若电机的旋转方向不符合要求,则需改变任意两根输入线即可。 c.保持电机在额定电压下,空载运行数分钟,使电机的机械损耗达到稳

1 x由下列短路实验求得。励磁电阻: 2 3 Fe m P r I =,式中 Fe P为额定电压下的铁损耗,由图3-2确定。 图2-2 电机的铁损与机械损耗 即作出2 () P f U =曲线,在2H U时对应的,Fe mec mec P P P 。可取2 () P f U =的延长线与 纵轴的交点,线段OK的长度表示机械损耗 mec P。 由短路实验计算出短路参数: 短路阻抗K k k U Z I =;短路电阻: 2 3 k k k P R I =;短路电抗:22 k k k X Z R =-,式中 ,, k k k U I P分别是短路相电压、短路相电流、三相短路功率之和。 转子绕组的折合值为 21 k r R R '=-,定、转子漏电抗为 12 1 2k x x X ' =≈最后画出完整的三相异步电动机等效电路图,并填入相关参数。

异步电动机参数自辨识

参数自辨识——现代逆变器结构下感应电动机系统的新特征 介绍 在实际应用中,磁场定向(field-oriented )现代交流调速系统的突出优点只有在自运行过程中准确得到所连接系统的信息才能够完全发挥。在实际系统中,当变频器和电机不是一起销售的时候,电机的参数是不能够预先知道的。因此,在试车过程中,必须有一些特别的测量和测试步骤。因为磁场定向矢量控制结构的复杂性,因此控制器参数设定将是一个需要时间而且特别受训练的人员才能够胜任。 为了简化这个过程,,在文章中给出来了参数自辨识(self-commissioning )——现代控制系统一种新特征。在参数自辨识过程中,系统自己得到电机参数并且同时设置控制器参数。这些过程都是在静止状态下完成的。随后,用一个测试来得到电机的转动惯量。 在现代直流控制系统中,这些特性已经可以得到[1],但是对交流调速系统,或者更复杂的系统,参数自辨识的过程完全是新的。 文章中描述了PWM 逆变器结构下异步电动机参数自辨识过程。 1、驱动装置结构 系统由整流部分、电压源型逆变器(VSI )和鼠笼电动机(M )组成。微处理器控制逆变器,执行磁场定向控制并控制操作面板。电机的两相电流R i 和S i 需要被测量。A/D 部分在综合测量原则下工作以使在选定周期里能够得到信号的准确平均值。中间回路的直流电压d U 和电机转速需要另外测量。 自辨识过程可以在所有电压等级和所有类型的PWM 逆变器(thyristor 、GTO 、transistor )上实施。实验是在15KW 电机上进行,逆变器的开关频率为500Hz 。 图1 驱动装置结构

2、自辨识的过程 当逆变器连接到主回路和主电机上时,操作者可以启动参数自辨识程序。首先,系统通过交互界面模式要求操作者输入电机的额定电压、电流和频率。然后,系统调整各个测量通道的偏移量(offset ),系统测量A/D 转换模块和逆变器及电机控制所必须的其他部分的功能,故障(如缺中断信号)会被准确检测到。这样,可以避免更大的损坏并且简化维修。 电机电流的测量通道和和逆变器本身只有在电子管被触发并且有电流流过时才可能。在操作者给予授权之前,这个测试是不能进行的。 当第二阶段测试正确执行以后,电机的参数(定子和转子电阻、总漏感L σ、转子时间常数)被确定。参数测量程序在几秒钟内完成。 接着,控制参数将自动计算并且被设置。 在需要的情况下,参数自辨识程序可以在电机运行的情况下再进行测试,以确定驱动装置的机械参数。 所有的参数被保存在非易失性存储器中,以便它们在下次启动时候可以立即调用。 3、异步电动机的数学模型 经过常规的近似以后,方程(1)可以用来描述鼠笼电机的电磁特性。 12 2111121121222222221010100010m a a a m m m R R T i L i u R R i L i T u R T R T σβσββααββωωψψωψψω??--?????????????---?????????????????=+????????--??????????????????????-???? (1) 符号表 12,R R 定子电阻、*变换后转子电阻; 11,u u αβ 两相坐标系下的定子电压; 11,i i αβ 两相坐标系下的定子电流; 22,αβψψ *变换后的转子磁链; m ω 单极对数下的电角速度; L σ 总漏感; 2L *变换后的转子电抗; 222 L T R = 转子时间常数

三相异步电机参数的测试

三相异步电机参数的测试 0 引言 在异步电机的矢量控制系统中,电动机的参数是十分重要的物理量。在电机学中利用电动机的参数构成等值电路,以此为基础可以对三相电动机的各种运行特性进行分析。变频调速中采用的矢量控制,控制系统性能完全依赖于所使用的电机参数的准确程度,如果参数不准确,将直接导致矢量控制性能指标下降,甚至导致变频器不能正常工作。 三相异步电动机的基本参数包括定子电阻、定子漏感、转子电阻、转子漏感、定转子互感。这些参数的确定,可以利用电机设计制造时的技术数据进行理论计算,但计算复杂,并且与实际有较大误差;也可以采用试验方法确定,下面具体介绍在变频器中采用试验的方法对各参数的测试。 1 参数测定试验 在变频器中,测试参数主要有两种方法:一种是在线测试,一种是离线测试。在线测试方法主要有卡尔曼滤波法、模型参考自适应法、滑模变结构法等,这些方法要求处理器具有较高的处理速度,对系统硬件要求较高;离线测试方法主要有频率响应试验、阶跃响应试验等,但测试精度不高,存在计算复杂、程序计算量大等问题,故很少采用。 这里主要介绍根据传统的电机学试验原理,在变频器中对电机参数进行离线测试,通过对其采取相应的措施达到测试参数的高精确度。 1.1 采用直流伏安法测试电机的定子电阻 在变频器系统中,采用直流伏安法测试定子电阻的关键是如何得到低压直流电源,当变频器直接连接到电网时,其直流母线电压较高,通常的办法是对直流母线进行电压斩波控制,得到一个平均值很低、周期固定且占空比固定的高频电压脉冲系列,这样经过定子绕组中的电感滤波后,就得到一个脉动很小的直流电流。如果占空比

为D,直流母线电压为Udc,电流为I,则相应的定子电阻值为 在测试中为了防止变频器出现过电流,应该正确考虑占空比的设定,在实际测试中可以采用电流闭环加PI 调节器 得出占空比的方法控制电流大小,如图1 所示。 图1 中,I * 为控制目标,即给定电流,I 为反馈电流,即实际运行电流。试验时,变频器中的开关器件IGBT 的导通压降,对测试值的影响是不能忽略的,对导通压降补偿的正确与否直接影响到测试电阻精度的高低,导通压降除了IGBT的导通压降,还有续流二极管的导通压降。同时,由于IGBT在开通和关断过程中都有一定的延时,为了准确计算输出的直流电压,这部分延时也不能忽略。 1.2 利用堵转试验测试转子电阻及定转子漏感 在实际的应用中,对电机进行堵转比较困难,在此采用单相短路试验代替三相试验,当电机加上单相正弦电压时,没有电磁转矩产生,其电磁现象与三相堵转时基本相同,测试中,让电机的某一相开路,在另外两相之间通入单相的正弦交流电,然后通入一定的电流,此时测试定子上的电压,电流和输入功率,这样即可计算出电机的短路电阻和短路电抗。

三相异步电动机工作特性及全参数测定实验

实验二、三相鼠笼异步电动机的工作特性及参数测定 一、实验目的 1、掌握三相异步电动机的空载、堵转和负载试验的方法。 2、用直接负载法测取三相鼠笼式异步电动机的工作特性。 3、测定三相鼠笼式异步电动机的参数。 二、预习要点 1、异步电动机的工作特性指哪些特性? 2、异步电动机的等效电路有哪些参数?它们的物理意义是什么? 3、工作特性和参数的测定方法。 三、实验项目 1、测量定子绕组的冷态电阻。 2、空载实验。 3、短路实验。 4、负载实验。 四、实验方法 1、实验设备 2、屏上挂件排列顺序 D33、D32、D34-3、D31、D42、D51

三相鼠笼式异步电机的组件编号为DJ16。 3、测量定子绕组的冷态直流电阻。 将电机在室放置一段时间,用温度计测量电机绕组端部或铁心的温度。当所测温度与冷却介质温度之差不超过2K时,即为实际冷态。记录此时的温度和测量定子绕组的直流电阻,此阻值即为冷态直流电阻。 利用万用表测定绕组电阻,记录下表 表4-3 4、空载实验 1) 按图4-3接线。电机绕组为Δ接法(U N=220V),直接与测速发电机同轴联接,负载电机DJ23不接。 2) 把交流调压器调至电压最小位置,接通电源,逐渐升高电压,使电机起动旋转,观察电机旋转方向。并使电机旋转方向符合要求( 如转向不符合要求需调整相序时,必须切断电源)。 3) 保持电动机在额定电压下空载运行数分钟,使机械损耗达到稳定后再进行试验。 图4-3 三相鼠笼式异步电动机试验接线图 4) 调节电压由1.2倍额定电压开始逐渐降低电压,直至电流或功率显著增大

为止。在这围读取空载电压、空载电流、空载功率。 5) 在测取空载实验数据时,在额定电压附近多测几点,共取数据7~9 组记录于表4-4中。 表4-4 5、短路实验 1) 测量接线图同图4-3。用制动工具把三相电机堵住。制动工具可用DD05上的圆盘固定在电机轴上,螺杆装在圆盘上。 2) 调压器退至零,合上交流电源,调节调压器使之逐渐升压至短路电 流到1.2倍额定电流,再逐渐降压至0.3倍额定电流为止。 3) 在这围读取短路电压、短路电流、短路功率。 表4-5 4) 共取数据5~6组记录于表4-5中。

同步电动机参数辨识方法

同步电动机参数辨识方法(待续)同步电机辨识的参数主要有两类:1、等效电路参数(电阻、电感等) 2、时间常数与电抗(包括瞬变超瞬变参数)考虑问题:1、怎样选取适当的辨识信号和设计有效的辨识实验 2、怎样选取辨识模型(使用较多的是两回路的转子模型) 3、怎样证明辨识所得参数的有效性 经典辨识:通过作阶跃响应、频率响应、脉冲响应等试验,测得对象以时间或频率为变量的实验曲线。 最小二乘法:目前使用比较广泛。 基于进化的策略法,如神经网络、遗传算法、粒子群游优化算法等等。 一般采用方法:突然短路、甩负荷、直流衰减法、静止频率响应法等等。 (理想情况下辨识,以及考虑饱和、磁滞、集肤效应等非线性因素) 国内: 传统方法:●对突然短路电流曲线的包络线加减来得到短路电流的中期分量和非周分量——改进:基于小波变换的短路数据处理方法(缺点是:需要选取小波基) ●基于扩展Prony算法的超瞬态参数计算方法(缺点是在实际应用中存在阶数确定的难题) (1)基于HHT的同步电机参数辨识(中国电机工程学报2006) 基于Hilbert变换和非线性变量优化(NLO)的基波分量辨识算法,实现了同步电机瞬态和超瞬态参数的精确辨识。 (2)基于小波变换和神经网络的同步电机参数辨识新方法(中国电机工程学报2007) 先利用小波变换对短路电流信号进行预处理,再通过改进的人工神经元模型对短路电流进行较为精确的信号分离,得到短路电流中的直流分量、基波分量和二次谐波分量,并且辨识出了电机参数值以及精度较高的时间参数。(小波变换对短路电流进行预处理,并辨识得到各个时间参数,用来设定神经元激发函数中时间常数的迭代值)(3)一种新颖的电机磁链辨识算法(中国电机工程学报2007) 是基于对电机磁链的估计,方法是针对电压模型中的积分环节进行改造:利用一个高通滤波器和1个坐标变换环节构成 (4)感应电机参数的离线辨识方法 直流实验辨识定子电阻,堵转实验辨识定、转子漏感、转子电阻,空载试验采用V/f控制方式,辨识定转子间的互感 (5)直流衰减静测法局部辨识同步电机参数研究 定子a相绕组轴线与转子d轴重合,a相绕组开路,励磁绕组短路。b、c相绕组通过电阻串接到直流电源上。试验时,使bc绕组突然对线短路,采集定子bc的相电流和励磁绕组电流 (6)还有一些比如最小二乘法、卡尔曼滤波辨识、扩展粒子群优化算法等等 (7)基于人工神经网络的同步电机在线参数辨识 能反映电机实际运行过程中受到的饱和、电机老化、电磁力等因素的影响。目前国内的研究还比较少。缺点是:必须有足够多的、足够精确的导师样本。 改善1:用不同的励磁电压和功率下进行多次仿真的结果作为导师样本来训练神经网络。 改善2:采用在线参数辨识的混合算法:先利用遗传算法在大范围内进行参数寻

直流电机参数辨识的实验方法.doc11

直流电机参数辨识的实验方法 摘要 本文的主要目的是估计的直流电动机的参数实验采用一个综合的离散测量测功机。正在审议的参数是电机电枢绕组电阻和电感,反电势常数,电机转矩常数,转动惯量和粘性摩擦。测功机输出的电枢电流,离散角速度测量,电枢电压(系统输入法),由电机开发的扭矩。在这个文件的直流电动机参数辨识采用最小二乘算法,是实施过程中不受一个D/ A转换器和功率放大器使用。特别是,电枢电压产生使用的主要推动者和同步发电机。数据采集系统是由现有的测功机具有特殊的软件相结合的数据收集不同导致收购在指定的固定时间间隔自动测量。一个卡尔曼滤波器也实现,作为一个国家的观察员,估计角加速度与电枢电流的导数。此外,为提高整体识别性能,直流参数进行了第一次估计解耦AC参数使用DC输入信号。随后,估计直流参数,然后用来识别交流参数。实验结果来说明了该系统的效率。 本文的主要目的是应用集成测功仪的离散测量方法实验性的估算直流电机参数。估算的参数有电动机电枢绕组电阻,电感,反电动势常熟,电机转矩常数,转动惯量和粘滞摩擦系数。这款测功仪的输出是绕组电流,角速度,电枢电压(系统输入)和电机转矩的离散值。文中直流电机的参数辨识,采用了最小平方法,并且在运行中不需要使用D/A转换器和功率放大器。而且,电枢电压由一个原动机和一个同步发电机提供。数据采集系统由在一设定的时间间隔自动测量收集数据的特殊的测功仪数据收集软件组成的。为了估算角加速度和电枢电流,应用了卡尔曼滤波器,作为实时观测器。此外,为了改善整体辨识性能,首先通过计算使用直流输入信号的交流参数来估算直流参数。实验结果证实了该系统的有效性。 关键词你没翻译 关键词:直流电机参数辨识卡尔曼滤波器 1 简介 目前,对于采用多种技术参数辨识。梯度算法,它是一个最速下降法辨识误差最小化。随机状态估计,那里的参数集考虑到是该制度,这是一个卡尔曼滤波器估算未知状态。对于线性时不变系统,最小二乘算法is.widely使用。这种方法最大限度地减少了integralsquared识别错误。前两种方法通常用于时变系统,并要求闭环设置。在这个文件中,第三种方法,那就是最小二乘算法,是选择的效率和简单。然而,这三个方法

三相异步电动机的工作特性和参数测定

第8章三相异步电动机的工作特性和参数测定 原理简述 一、基本方程式和等效电路 异步电机定子绕组所产生的旋转磁场,以转差速度切割转子导体,在转子导体中感应电势,产生电流,转子导体中的电流与定子旋转磁场相互作用而产生电磁转矩,使转子旋转。当转子的 转速与定子旋转磁场的转速相等时,定、转子之间没有相对切割,转子中就没有电流,也就不能产生转矩。因此转子的转速一定要异于磁场的转速,故称异步电机。由于异步而产生的转 矩称为异步转矩。当时,为电动机运行;时为发电机运行;当即转子逆着磁场方向旋转时,它是制动运行。异步电机绝大多数都是作为电动机运行。其转矩和转速(转差率)曲线,如图8-1所示。 由《电机学》中可知,将转子边的量经过频率折算和绕组折算,可得到异步电机的基本方程式为: 式中转差率是异步电机的重要运行参数,为折算到定子一边的转子参数,也就是从定子上测得转子方面的数值。

由方程式可以画出相应的等效电路,如图8-2所示。 当异步电动机空载时,,。附加电阻。图8-2中转子回路相当 开路;当异步电动机堵转时,,,附加电阻,图8-2转子回路相当短路,这就和变压器完全相同。因此异步电机也可以通过空载实验和堵转(短路)实验来求出异步电机的等效电路中的各参数。 二、空载实验 由空载实验可以求得励磁参数,以及铁耗和机械损耗。实验是在转子轴上 不带任何机械负载,转速,电源频率的情况下进行的。用调压器改变试验电压 大小,使定子端电压从逐步下降到左右,每次记录电动机的端电压、 空载电流和空载功率,即可得到异步电动机的空载特性,如图8-3所示。 图 8-3 空载特性图 8-4 铁耗和机械耗分离 空载时,电动机的输入功率全部消耗在定子铜耗、铁耗和转子的机械损耗上。所以从空载功 率中减去定子铜耗,即得铁耗和机械耗之和,即 式中为定子绕组每相电阻值,可直接用双臂电桥测得。 机械损耗仅与转速有关而与端电压无关,因此在转速变化不大时,可以认为是常数。

交流感应电机参数辨识方法的综述

综述与专论《机电技术》2009年增刊交流感应电机参数辨识方法的综述 陈凌飞 黄敬党 (福建农林大学机电工程学院 福建 福州 350002) 摘 要:在矢量控制和直接转矩控制系统,电机参数准确性决定了系统控制性能。本文介绍了当前交流感应电机参数辨识的方法,例如有限元分析、递推最小二乘法、扩展卡尔曼滤波、模型参考自适应、人工神经网络和遗传算法等。最后介绍了参数离线辨识和在线辨识的作用。 关键词:矢量控制 直接转矩控制 交流感应电机 参数辨识 中图分类号:TM346+.6 文献标识码:A The Overview of AC induction motor parameter identification methods Chen Lingfei Huang Jingdang (College of Mechanical and Electrical Engineering,Fujian Agriculture and Forestry University,Fuzhou 350002,China) Abstract: In the vector control and direct torque control,the motor parameter determine the accuracy of the performance of the system.The article describes the current AC induction motor parameter identification methods, such as finite element analysis, recursive least squares method, extended Kalman filtering, model reference adaptive, artificial neural networks and genetic algorithms.Finally,it describes the fuction of off-line idetificatio and on-line idetification . Keywords: Vector control,Direct torque,AC induction motor,Parameter identification 引言 在现代交流感应电机变频调速中,矢量控制被认为是一种理想、技术较为成熟的一种控制方法,它实现了对电机的励磁电流和电枢电流的解耦,能够按照直流电机控制规律来控制。在矢量控制系统中,要是控制系统采用的参数同电机实际参数不匹配,将严重的影响系统的性能。另外,在无速度传感器的直接转矩控制中,同样需要辨识电机参数。 1 辨识方法的分类 目前,交流感应电机包括离线辨识和在线辨识。离线辨识的具体的做法是,在电机运行之前,变频器自动执行一套辨识电机参数的程序,对电机施加特定波形的激励,电机在一般的情况下是处在静止的状态,检测电机的对激励的响应辨识电机的参数,并将这些参数设定好,也称为“参数自整定”[1-3]。离线辨识能够为矢量控制、直接转矩等控制系统提供足够精度的电机参数初始值,但是在电机运行的过程中,电机的参数不是恒定的。例如,电机温度变化、频率不同引起的集肤效应,会影响电机定转子的阻值;磁场的饱和也会影响电感参数等。在线辨识就是为了解决这种参数变化的问题,对电机参数进行实时在线辨识然后对控制系统中参数进行校准,也称为“参数自校准”。 2交流感应电机辨识具体方法 电机参数辨识方法如果是按照何种数据可以测量,那些数据可以使用,辨识的方法可以分为以下几种。一是由电机结构的数据来辨识电机参数,该类方法需要十分详细的电机结构参数,例如电机的几何尺寸和制造电机所用的材料等等,该类方法主要基于现场计算,例如有限元分析[10]。二是频域辨识,根据系统的频率特性来获得电机参数。虽然频域辨识在计算已经较为成熟,且稳定性好,但是由于其是

三相异步电动机参数测定

实验九三相异步电动机参数测定 一、实验目的 1、掌握异步电动机的空载、短路实验方法。 2、求异步电动机的损耗。 3、测定三相笼型异步电动机的参数。 二、实验内容 1、用直流电源测冷态下的定子绕组电阻。 2、做异步电动机空载实验。 3、做异步电动机短路实验。 三、实验设备 1、MCL-Ⅱ型实验台主控制屏 2、电机导轨及测功机 3、波形测试及开关板MEL-05 4、直流电压电流表MEL-06 四、实验步骤 1、测量定子绕组的冷态直流电阻。 将电机在室内放置一段时间,电机铁芯与环境温差不超过2K,由实验室给出环境温度作为铁芯温度。此时测量定子绕组的直流电阻, 测量线路图为图一。量程的选择:测量时通 过的最大测量电流约为电机额定电流的10%,即 约为50毫安,因而直流电流表的量程用200mA 档。三相笼型异步电动机定子一相绕组的电阻约 为50欧姆,因而当流过的电流为50毫安时二端 电压约为2.5伏,所以直流电压表量程用20V档。 按图一接线电机定子。接通开关S2,将励磁 电流源调至25mA。调节励磁电流源使实验电流不 图一三相交流绕组电阻测定 超过电机额定电流的10%(为了防止因试验电流 过大而引起绕组的温度上升),读取电流值,再接通开关S1,读取电压值。读完后,先打开 开关S1,再打开开关S2。每一电阻测量三次,取其平均值,测量定子三相绕组的电阻,记 录于表一中。 ①在测量时,电动机的转子须静止不动。 ②测量通电时间不应超过1分钟。 2、空载试验 测量线路图为图二,电机绕组Δ接法。(额定电压220Ⅴ) 按图二接线。

图二 三相笼型异步电动机实验接线图 首先把交流调压器退到零位,然后接通电源,逐渐升高电压,使电机起动旋转,观察电机旋转方向。并使电机旋转方向符合要求。 注意:调整相序时,必须切断电源。保持电动机在额定电压下空载运行数分钟,使机械损耗达到稳定后再进行试验。调节电压由1.2倍额定电压开始逐渐降低,直至电流或功率显著增大为止。在这范围内读取空载电压、空载电流、空载功率,共读取5-6组数据,记录于表二中。 3、 短路试验 测量接线图同图二。 由测功机上端小孔插入一金属棒使转子堵转,调压器退至零,台上交流电源,调节调压器使之逐渐升压至短路电流到1.2倍额定电流,再逐渐降压至0.3倍额定电流为止。在这范围内读取短路电压、短路电流、短路功率共读取4-5组数据,记录于表三中。 五、实验报告 1、 计算基准工作温度时的相电阻 由实验直接测得每相电阻值,此值为实际冷态电阻值。冷态温度为室温。按下式换算到基准工作温度时的定子绕组相电阻: 235235ref lef lc C r r θθ+=+ 式中r lef ——换算到基准工作温度时定子绕组的相电阻,Ω;

电机参数辨识-matlab官网教程

Creating a High-Fidelity Model of an Electric Motor for Control System Design and Verification By Brad Hieb, MathWorks An accurate plant model is the linchpin of control system development using Model-Based Design. With a well-constructed plant model,engineers can verify the functionality of their control system, conduct closed-loop model-in-the-loop tests, tune gains via simulation,optimize the design, and run what-if analyses that would be difficult or risky to do on the actual plant. Despite these advantages, engineers are sometimes reluctant to commit the time and resources required to create and validate a plant model. Concerns include how much time it will take to run a simulation, how much domain and tool knowledge will be required to build and validate the model, and what type of equipment will be needed to acquire hardware test data for building and validating the model.This article describes a workflow for creating a permanent magnet synchronous machine (PMSM) plant model using MATLAB ?and Simulink ?and commonly available lab equipment. The workflow involves three steps: ?Execute tests ?Identify model parameters from test data ?Verify parameters via simulation We used the plant model to build and tune a closed-loop PMSM control system model. We ran step response and coast-down tests using the controller model in simulation and on hardware using an xPC Target? turnkey real-time testing system. We found close agreement between the simulation and hardware results, with normalized root mean square deviation (NRMSD) below 2% for key signals such as rotor velocity and motor phase currents (Figure 1). Figure 1. Comparison of simulation results (blue) with hardware results (red) for rotor velocity (left) and phase current (right). The Plant Model and Its Parameters The PMSM plant model, developed with SimPowerSystems?, includes the motor and a load—in this example, an acrylic disc. The model has nine parameters that define its behavior: one (disc inertia) associated with the load and eight associated with the motor (Figure 2). See more articles and subscribe at https://www.wendangku.net/doc/ef11282348.html,/newsletters .

相关文档