文档库 最新最全的文档下载
当前位置:文档库 › TOPSwitch单片开关电源的原理及应用

TOPSwitch单片开关电源的原理及应用

TOPSwitch单片开关电源的原理及应用
TOPSwitch单片开关电源的原理及应用

第5期(总第126期)

2004年10月机械工程与自动化

M ECHAN I CAL EN G I N EER I N G & AU TOM A T I ON N o 15

O ct 1

文章编号:167226413(2004)0520053204

TO PSw itch 单片开关电源的原理及应用

陈 纬

(太原钢铁(集团)公司计控处,山西 太原 030003)

摘要:三端单片开关电源是20世纪90年代才开始流行的新型开关电源芯片,采用它制作高频开关电源,不仅简化了电路,同时可以改善电源的电磁兼容性能,降低制作成本。阐述了其性能特点及工作原理,并介绍一种用TO P 221Y 制作的稳压电源,具有一定的使用价值。关键词:单片开关电源;脉宽调制;原理;应用中图分类号:TN 86 文献标识码:A

收稿日期:2004205220

作者简介:陈纬(19672),女,江苏省人,工程师,1992年毕业于郑州工学院,本科。

0 引言

单片开关电源具有单片集成化、最简外围电路、最佳性能指标、能构成无工频变压器开关电源等显著优点。TO PSw itch 器件是美国功率集成公司(POW ER In tegrati on s Inc )于20世纪90年代中期推出的新型

高频开关电源芯片。它是三端脱线式PWM 开关(T h ree 2ter m inal O ff linePWM Sw tich )的英文缩写,其第一代产品以1994年推出的TO P 100 200系列为代表,第二代产品则是1997年问世的TO PSw itch - 。上述产品一经问世便显示出强大的生命力,它极大地简化了150W 以下开关电源的设计,使电路大为简化,体积进一步缩小,成本也明显降低。1 T OPSwitch 产品分类

TO PSw itch 包括TO P 100系列(TO P 100Y ~TO P 104Y )、TO P 200系列(TO P 200Y ~TO P 202Y ,TO P 214Y )、TO P 209

210系列、TO PSw itch - 系列(TO P 221~TO P 227)。TO PSw itch - 是TO P 2Sw itch 的改进型号,它将单电压输入时的最大功率100W 提高到150W ,电磁兼容性也得到增强,具有更

高的性能价格比,现已成为国际上开发中、小功率开关电源模块的优选集成电路。TO PSw itch - 所包括的几个型号之间的区别在于输出功率的不同,其产品分类见表1。2 T OPSwitch 结构

TO PSw itch 的管脚排列如图1所示。它有三种封

装形式,其中,TO P 221Y ~TO P 227Y 采用TO -220

封装,有3个引脚;TO P 221P G ~TO P 224P G 采用D IP -8封装及S M D -8封装,有8个引脚,但8只管脚中有6只管脚实际是连在一起作为S 端,故可简化成3只管脚,这样它仍系三端器件。3个引出端分别是漏极端D (DRA I N )、源极端S (SOU RCE )和控制端C (CON TROL )。其中,D 是内装M O SFET 的漏极,也是内部电流的检测点,启动操作时,漏极端由一个内部电流源提供内部偏置电流。控制端C 控制输出占空比,是误差放大器和反馈电流的输入端。在正常操作时,内部的旁路调整端提供内部偏置电流,且能在输入异常时自动锁定保护。源极端S 是M O SFET 的源极,同时是TO P 开关及开关电源初级电路的公共接地点及基准点。

表1 TO PSw itch - 的产品分类及最大输出功率

产品型号

固定输入

(110V 115V 230V ,A C ,±15%)

宽范围输入

(85V ~265V ,A C )

TO P221Y 12W 7W TO P 222Y 25W 15W TO P 223Y 50W 30W TO P 224Y 75W 45W TO P 225Y 100W 60W TO P 226Y 125W 75W TO P 227Y 150W 90W TO P221P G 9W 6W TO P 222P G 15W 10W TO P 223P G 25W 15W TO P 224P G

30W

20W

3 T OPSwitch 性能特点311 安全性高

将脉宽调制(PWM )控制系统的全部功能集成到三端芯片中,内含脉宽调制器、功率开关场效应管(M O SFET )、自动偏置电路、保护电路、高压启动电路和环路补偿电路,通过高频变压器使输出端与电网完全隔离,真正实现了无工频变压器、隔离式开关电源的单片集成化,使用安全可靠

图1 TO PSw itch 的管脚排列

312 系统效率高

TO PSw itch 系采用C M O S 工艺制作,并在芯片

中集成了尽可能多的功能,故与采用二极管或分立的功率开关电路相比,偏置电流显著降低。开关电源所需的功能集成于芯片中后,外部的电流传感电阻和初始启动偏压电流的电路均可除去,系统效率大大提高。特别是TO PSw itch 器件专门针对反激式功率变换电路进行了优化,使占空比最大值可达70%

,TO P 100Y ~TO P 104Y 和TO P 200Y ~TO P 202Y TO P 214Y 的效率可达90%,TO P 209 TO P 210的效率也可超过80%。313 设计简化

TO PSw itch 器件在3脚的TO -220封装中集成了PWM 控制器和高压M O SFET 功率开关,只需外接一个电容就能实现补偿、旁路、启动和自动重启功能。另外,美国功率集成公司还为TO PSw itch 器件提供了许多标准设计的电路板,使应用TO PSw itch 的设计更为方便,极大地缩短了产品开发至进入市场所需的时间。

314 应用灵活性高

TO PSw itch 器件支持降压型、升压型、正激式和反激式功率变换电路,并且很容易和光耦及变压器初级的反馈电路结合,无论在连续传导模式和不连续传导模式下均可工作;输入交流电压和频率的范围极宽,作固定电压输入时可选110V 115V 230V 交流电,允许变化±15%;在宽电压范围输入时,适配85V ~

265V 交流电,但最大输出功率比前者降低40%。315 功能完善的系统级故障保护

TO PSw itch 具有自动重启和逐周电流限制功能,

故可对功率变压器初级和次级电路的故障进行保护。TO PSw itch 还具有在片热关闭选通功能,可在电路超负荷时有效地保护电源。

316 外围电路简单且成本低廉

使用TO PSw itch 器件,可减少20个~50个元器件,使产品的大小和重量减少50%;TO PSw itch 因采用了源极调节板和可控的M O SFET 通态驱动,故电磁干扰(E M I )和E M I 滤波器的成本可明显降低。317 以最简方式构成反激式开关电源

TO PSw itch - 只有3个引出端,可以同三端线性集成稳压器相媲美,能以最简方式构成无工频变压器的反激式普通型或精密型开关电源。开关频率的典型值为100kH z ,允许范围90kH z ~110kH z ,占空比调节范围是117%~67%。4 T OPSwitch 工作原理

TO P 开关工作原理框图见图2。TO P 包括10部

分,其中Z c 为控制端的动态阻抗,R E 是误差电压检测电阻。R A 与C A 构成截止频率为7kH z 的低通滤波器。411 控制电压源

控制电压U c 能向并联调整器和门驱动级提供偏置电压,而控制端电流I c 则能调节占空比。U c 有两种工作模式,一种是滞后调节,用于启动和过载两种情况,具有延迟控制作用;另一种是并联调节,用于分离误差信号与控制电路的高压电流源。刚启动电路时由D -C 极之间的高压电流源提供控制端电流I c 。412 带隙基准电压源

带隙基准电压源除向内部提供各种基准电压之外,还产生一个具有温度补偿并可调整的电流源,以保证精确设定振荡器频率和门极驱动电流。413 振荡器

内部振荡电容是在设定的上、下阈值U H 、U L 之间周期性地线性充放电,以产生脉宽调制器所需要的锯齿波(SAW ),与此同时还产生最大占空比信号(Dm ax )和时钟信号(CLOCK )。为减小电磁干扰,提高电源效率,振荡频率(即开关频率)设计为100kH z ,脉冲波形的占空比设定为P 。414 放大器

误差放大器的增益由控制端的动态阻抗Z c 来设定。Z c 的变化范围是108~208,典型值为158。误差放大器将反馈电压U F 与517V 基准电压进行比较后,输出误差电流I r ,在R E 上形成误差电压U R 。415 脉宽调制器(PWM )

?

45?机械工程与自动化 2004年第5期 

脉宽调制器是一个电压反馈式控制电路,它具有两层含义:①改变控制端电流I c 的大小,即可调节占空比P ,实现脉宽调制;②误差电压U R 经由R A 、C A 组成截止频率为7kH z 的低通滤波器,滤掉开关噪声电压之后,加至PWM 比较器的同相输入端,再与锯齿波电压U J 进行比较,产生脉宽调制信号U B

图2 TO P 开关工作原理框图

416 门驱动级门驱动级(F )用于驱动功率开关管(M O SFET ),使之按一定速率导通,从而将共模电磁干扰减至最小。漏源导通电阻与产品型号和芯片结温有关。417 过流保护电路

过流比较器的反相输入端接阈值电压U L I M I T ,同相输入端接M O SFET 管的漏极。此外,芯片还具有初

始输入电流限制功能。刚通电时可将整流后的直流限制在016A 或0175A 。418 过热保护电路

当芯片结温T J >135℃时,过热保护电路就输出高电平,将触发器 置位,使Q =1,关断输出级。此时进入滞后调节模式,U c 端波形也变成幅度为417V ~517V 的锯齿波。若要重新启动电路,需断电后再接通

电源开关;或者将控制端电压降至313V 以下,达到U c (reset )值,再利用上电复位电路将触发器 置零,使M O SFET 恢复正常工作。419 关断 自动重启动电路

一旦调节失控,关断 自动重启动电路立即使芯片在5%占空比下工作,同时切断从外部流入C 端的电流,U c 再次进入滞后调节模式。倘若故障已排除,U c 又回到并联调节模式,自动重新启动电源恢复正常工

作。自动重启动的频率为112H z 。4110 高压电流源

在启动或滞后调节模式下,高压电流源经过电子开关S 1给内部电路提供偏置,并且对C t 进行充电。电源正常工作时S 1改接内部电源,将高压电流源关断。

当TO P 开关启动操作时,在控制端环路振荡电路的控制下,漏极端有电流流入芯片,提供开环输入。该输入通过旁路调整器、误差放大器时,由控制端进行闭环调整,改变I r ,经由PWM 控制M O SFET 的输出占空比,最后达到动态平衡。5 单片开关电源的典型应用

图3是TO P 221Y 单片开关电源,它是由TO P 221Y 构成的+5V 开关电源。511 TO P 221Y 主要性能参数

(1)TO P 221Y 是宽电压范围的单片开关电源模

块,可通过外接少量外围元件组成功率在15W 以下的高效率电源。

(2)为提高输出电压的稳压精度,电压采样电路使用了高精度可调稳压管TL 431,并通过光电耦合将负反馈电压回馈至TO P 221Y 的控制端。

(3)通过合理的印刷板设计,可使电路工作稳定可靠,电磁辐射降至最小,也可有效地抗外部电磁干

?

55? 2004年第5期 陈 纬:TO PSw itch 单片开关电源的原理及应用

扰,具有较好的电磁兼容性能。

(4)输出直流电路采用了L C 滤波电路,有效消除次级电路中的高频干扰信号。

(5)交流输入电压范围:85V ~265V (47H z ~

440H z )。

(6)直流输出:5V 018A ,纹波小于50mV 。(7)该电源具有约1%的电压调整率和负载调整

率,整机效率可达70%以上

图3 TO P 221Y 单片开关电源

(8)工作温度范围:0~75℃。512 电路工作原理

交流电A C (范围为120V ~265V )由两个A C 接点输入,经C 1和L 1组成的E M I 滤波器抑制电磁噪声,进入整流电路。由于TO P 221Y 具有频率抖动特性,可有效抑制噪声干扰,因而在小功率开关电源中,只需简单的E M I 滤波器,并采用合理的接地技术,即可符合有关电磁兼容性要求。BR 1为整流电路,这里选用快恢复特性的整流桥2KPB 06M ,整流后的脉动直流电经C 2滤波,提供给TO P 221Y 开关调制电路。高频变压器的次级绕组有两个,一个是主绕组,它提供电源的主能量,高频电压经快速二极管SB 540整流后由滤波电容C 4、C 5滤波,再经L 2组成低通滤波器向负载输出。L 2主要是抑制高频噪声向负载输出,以防止负载受其干扰。输出端的电解电容C 8是为了降低输出的交流纹波系数而加的,它主要是降低输出直流电压的交流纹波。

另一个次级绕组组成反馈电压绕组,由二极管整流后加在光敏管两端,输出的反馈电压加在光耦的二极管正极上,电阻R 5和稳压管U 1组成基准电压源,为光耦提供基准电压,这样光耦中的二极管的发光强度是由输出电压控制的,经光耦耦合到TO P 221Y 的控制端,从而实现脉宽的可控,达到稳压目的。电阻R 6和C 7是控制环路的补偿元件。

该电源的输入电压范围可达85V ~265V A C ,输出电压为5V DC ,可提供018A 的电流输出。负载调整率为±1%,电源效率约为70%,输出纹波电压小于50mV 。电路使用了最简的设计,作为一些掌上型电器

的适配电源,完全可以满足要求。6 结束语

由于TO P 芯片内部完全集成了S M PS 的全部功能,所以利用它设计开关电源周期短、成本低。随着TO P 开关系列的不断发展与改进,其在开关电源及其

它应用领域中必将有着更加灿烂的前景。

Pr i nc iple and Application of T OPSw itch

CHEN W e i

(T aiyuan Iron and Steel (Group )Co .L td .,T aiyuan 030003,Ch ina )

Abstract :T h ree ends single ch i p s w itch ing pow er supp ly is a new type s w itch ing pow er supp ly co re w h ich has been popular since 1990.T he h igh frequency s w itch ing pow er supp ly mode from it can no t only si m p lify the circuit ,but also i m p rove the E M C charac 2teristics of pow er supp ly and reduce the p roducti on co sts .T h is paper introduces p roperties and p rinci p le of the co re as w ell as a k ind of stable vo ltage supp ly m ade of TO P 221Y .It has som e p ractical value .Key words :single ch i p s w itch ing pow er supp ly ;P WM ;p inci p le ;app licati on

?65?机械工程与自动化 2004年第5期 

开关电源的分类及运用

开关电源的分类及运用 1.开关电源的分类 开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。以下分别对两类开关电源的结构和特性作以阐述。 1.1DC/DC变换 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton (通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类: (1)Buck电路降压斩波器,其输出平均电压Uo小于输入电压Ui,极性相同。 (2)Boost电路升压斩波器,其输出平均电压Uo大于输入电压Ui,极性相同。 (3)Buck-Boost电路降压或升压斩波器,其输出平均电压Uo大于或小于输入电压Ui,极性相反,电感传输。 (4)Cuk电路降压或升压斩波器,其输出平均电压Uo大于或小于输入电压UI,极性相反,电容传输。 当今软开关技术使得DC/DC发生了质的飞跃,美国VICOR公司设计制

造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6、2、10、17)W/cm3,效率为(80-90)%。日本NemicLambda公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOS-FET代替肖特基二极管),是整个电路效率提高到90%。 1.2AC/DC变换 AC/DC变换是将交流变换为直流,其功率流向可以是双向的,功率流由电源流向负载的称为整流,功率流由负载返回电源的称为有源逆变。AC/DC变换器输入为50/60Hz的交流电,因必须经整流、滤波,因此体积相对较大的滤波电容器是必不可少的,同时因遇到安全标准(如UL、CCEE等)及EMC指令的限制(如IEC、FCC、CSA),交流输入侧必须加EMC滤波及使用符合安全标准的元件,这样就限制AC/DC电源体积的小型化,另外,由于内部的高频、高压、大电流开关动作,使得解决EMC电磁兼容问题难度加大,也就对内部高密度安装电路设计提出了很高的要求,由于同样的原因,高电压、大电流开关使得电源工作消耗增大,限制了AC/DC变换器模块化的进程,因此必须采用电源系统优化设计方法才能使其工作效率达到一定的满意程度。 AC/DC变换按电路的接线方式可分为,半波电路、全波电路。按电源相数可分为,单项、三相、多相。按电路工作象限又可分为一象限、二象限、三象限、四象限。

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

开关电源的分类及应用

开关电源的分类及应用 1引言 随着电力电子技术的告诉发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一成本反转点。随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。 2开关电源的分类 人们的开关电源技术领域是边开发相关电力电子器件,边开发开关变频技术,两者相互促进推动着开关电源每年以超过两位数字的增长率向着轻、

小、薄、低噪声、高可靠、抗干扰的方向发展。开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。以下分别对两类开关电源的结构和特性作以阐述。 2.1 DC/DC变换 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路有以下几类: (1) Buck电路——降压斩波器,其输出平均电压Uo小于输入电压Ui,极性相同。 (2) Boost电路——升压斩波器,其输出平均电压Uo大于输入电压Ui,极性相同。 (3) Buck-Boost电路——降压或升压斩波器,其输出平均电压Uo大于或小于输入电压Ui,极性相反,电感传输。 (4) Cuk电路——降压或升压斩波器,其输出平均电压Uo 大于或小于输入电压UI, 极性相反,电容传输。 当今软开关技术使得DC/DC发生了质的飞跃,美国VICOR公司设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W

单片开关电源的发展及其应用

单片开关电源的发展及其应用 单片开关电源集成电路具有高集成度、高性价比、最简外围电路、最佳性能指标、能构成高效率无工频变压器的隔离式开关电源等优点。它于90 年代中、后期相继问世后,便显示出强大的生命力,目前它成为国际上开发中、小功率开关电源、精密开关电源及电源模块的优选集成电路。由它构成的开关电源,在成本上与同等功率的线性稳压电源相当,而电源效率显著提高,体积和重量则大为减小。这就为新型开关电源的推广与普及,创造了良好条件。 开关电源被誉为高效节能电源,它代表着稳压电源的发展方向,现已成为稳压电源的主流产品。近20 多年来,集成开关电源沿着下述两个方向不断发展。第一个方向是对开关电源的核心单元——控制电路实现集成化。1997 年国外首先研制成脉宽调制(PWM)控制器集成电路,美国摩托罗拉公司、硅通用公司(Silicon General)、尤尼特德公司(Unitrode)等相继推出一批PWM 芯片,典型产品有MC3520 、SG3524 、UC3842 。90 年代以来,国外又研制出开关频率达1MHz 的高速PWM 、PFM(脉冲频率调制)芯片,典型产品如UC1825 、UC1864 。第二个方向则是对中,小功率开关电源实现单片集成化。这大致分两个阶段:80 年代初意-法半导体有限公司(SGS-Thomson)率先推出L4960 系列单片开关式稳压器。该公司于90 年代又推出了L4970A 系列。其特点是将脉宽调制器、功率输出级、保护电路等集成在一个芯片中,使用时需配工频变压器与电网隔离,适于制作低压输出(5.1~40V)、大中功率(400W 以下)、大电流(1.5A~10A)、高效率(可超过90%)的开关电源。但从本质上讲,它仍属DC/DC 电源变换器。 1994 年,美国动力(Power)公司在世界上首先研制成功三端隔离式脉宽调制型单片开关电源,被人们誉为“顶级开关电源”。其第一代产品为TOPSwitch 系列,第二代产品则是1997 年问世的TOPSwitch-II 系列。该公司于1998 年又推出了高效、小功率、低价格的四端单片开关电源TinySwitch 系列。在这之后,Motorola 公司于1999 年又推出MC33370 系列五端单片开关电源,亦称高压功率开关调节器(HighVoltage Power Switching Regulator)。目前,单片开关电源已形成四大系列、近70 种型号的产品。 TOPSwitch-11 根据封装形式,TOPSwitch-II 可划分成三种类型:TOP221Y~227Y(TO-220 封装),TOP221P~224P(DIP-8 封装),TOP221G~224G(SMD-8 封装),产品分类详见表1。其中以TOP227Y 的输出功率为最大。 2.1 TOPSwitch-11 (1)TOPSWitch-II 内部包括振荡器、误差放大器、脉宽调制器、门电路、高压功率开关管(MOSFET)、偏置电路、过流保护电路、过热保护及上电复位电路、关断/自动重启动电路。它通过高频变压器使输出端与电网完全隔离,使用安全可靠。它属于漏极开路输出的电流控制型开关电源。由于采用CMOS 电路,使器件功耗显著降低。 (2)只有三个引出端:控制端C 、源极S 、漏极D,可同三端线性稳压器相媲美,能以最简方式构成无工频变压器的反激式开关电源。为完成多种控制、偏置及保护功能,C 、D 均属多功能引出端,实现了一脚多用。以控制端为例,它具有三项功能:①该端电压VC 为片内并联调整器和门驱动级提供偏压;②该端电流IC 能调节占空比;③该端还作为电源支路与自动重启动/补偿电容的连接点,通过外接旁路电容来决定自动重启动的频率,并对控制回路进行补偿。

开关电源工作原理

开关电源 一.开关电源得工作原理 (以LQ-1600K3电源为例) 1、滤波电路 交流输入经滤波电路整形进入全桥整流。滤波电路减小了外部噪声与打印机内部所产生得噪声。滤波器中使用得线圈与电容得作用就是抑制交流电中得毛刺脉冲,使噪声干扰降低到最小从而得到一个较平滑得正弦波.C3、C4电容接于地就是为了防止电源中窜入高脉冲损坏电路. 经全桥整流与电容滤波形成300多伏得准直流电压。 2.开关电路 开关电路使用环形阻塞转换器式交流输入开关电源电路。具有元件少,变压器小得特点,场效应管Q1既就是开关管又就是振荡管,振荡周期由电阻R11与C13得充放电时间常数所决定。电路得工作过程就是导通饱与→截止→导通饱与,周而复始地进行下去。其工作过程如下: a、导通饱与阶段 电源接通,交流220V经过滤波、整流、平滑输出直流电压300V,由启动电阻R10、R31接至振荡管Q1得栅极上,产生栅压Vgs,在Q1得漏极上产生漏极电流Id,从小到大。在变压器T1上线圈T15—12内产生一个力图阻止Id增大得自感电动势,极性为上正下负,同时在T10—9中感应出一个感应电动势其极性也为上正下负,由于C13两端电压不能突变,因此T10—9线圈中产生得感应电势不能立即充电, 通过R11、C13加至Q1得栅极,使栅极电位提高,Q1漏极电流更加增大,又通过T10—9使Q1栅极电位更加提高,从而使漏极电流增

大更快,这种连锁得正反馈使Q1进入饱与状态. b、从饱与到截止阶段 由于Q1导通饱与后,T10—9感应电动势通过R11、R19向C13充电,充电方向从T10-9得10端经R11、C13、R19,于就是C13被充电,电压为右正左负,随着充电得进行,C13右端电位逐渐升高,左端电位随着降低,经过一段时间,当C13左端电位低到一定数值时,Q1得栅压开始减小,漏极电流Id也随之减小,由于线圈有抵制电流变化得特性,T15—12线圈中就产生一个力图阻止漏极电流减小得自感电动势,它得极性与刚才得相反,就是上负下正,并且在线圈T10—9中感应出一个上负下正得感应电动势,它得负端通过R11、C13加到Q1得栅极,使栅极电压更负,从而使漏极电流Id更小,这种正反馈得作用,使Q1很快脱离饱与转入截止状态,即所谓截止阶段. Q1关断时,产生一个浪涌电流经线圈T15—12使线圈T15-12中产生一个上正下负得感应电动势,并且在线圈T11—9中也感应出一个上正下负得感应电动势,然而Q3得发射极电压超过了基极电压,而Q3得基极电压就是由IC1(TL431)稳压得,所以Q3导通,便使?Q2也导通,并且短路Q1得栅极,维持接地,保持Q1可靠得截止,直至浪涌电压经地线耗尽为止。 c、从截止到导通饱与阶段 Q1截止后,C13停止充电,并通过R11→T10-9→D2→C13放电,C13两端电位发生了变化,C13右边电位降低,左边电位相对提高,于就是通过C13左边连接到Q1栅极得电位也随之提高,当栅极得电位升高到一定数值时,就重新产生漏极电流,如上述由于正反馈得作用使Q1很快从截止状态进入导通饱与阶段. 所以振荡电路从导通饱与—-截止——导通饱与周而复始地循环 3.+35V整形电路 包括T3—5、T4—6、D51、C51、C52等。 4、 +35V稳压控制电路 正常工作状态下,稳压控制电路使输出电压稳定在35±6%之间。如果因某种原因引起输出电压高于35V+6%,而稳压二级管ZD51、ZD81~ZD85两端电压32、7V保持不变;或因稳压二级管ZD51、ZD81~ZD85两端电压低于32、7—2、75%V时,流经DZ51—DZ85—D81-R57得电流会增大,使得PC1得1-2腿上得电流加大并使7—8腿导通,以至于使Q3发射极电位提高导至Q3、Q2导通,使Q1截止;相反若输出低于35V-6%时,PC1、Q2截止,Q1处于正常导通状态,输出继续增大,直到恢复35V±6%。 5、 +35V过载检测电路

直流开关电源的新技术应用与发展

直流开关电源的新技术应用与发展摘要:随着电子技术和通信业的快速发展,高频开关电源的应用越来越广,开关频率的持续提高使开关电源的性能也得以进一步优化,集成度更高,功耗更低,电路更加简单,工作更加可靠,是开关电源发展的方向。目前,高频开关电源在我省广播电视各微波站得到了广泛的应用,基于此结合实际将传统电源与现代高频开关电源对比来介绍高频开关电源的新技术及其优点。 关键词:高频;谐振;开关;逆变 1 高频开关电源组成原理 高频开关整流器一般是先将交流电直接经二极管整流、滤波成直流电,再经过开关电源变换成高频交流电,通过高频变压器变压隔离后,由快速恢复二极管高频整流、电感电容滤波后输出,见图1。 1.1 主电路 从交流电网输入、直流输出的全过程,包括: (1)输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。 (2)整流与滤波:将电网交流电源直接整流为较平滑的直流电,并向功率因数校正电路提供稳定的直流电源。 (3)功率因数校正:位于整流滤波和逆变之间,为了消除由整流电路引起的谐波电流污染电网和减小无功损耗来提升功率因数。 (4)逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。 (5)输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 1.2 控制电路 一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对整机进行各种保护措施。 1.3 检测电路 除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表数据供值班人员观察、记录。 1.4 辅助电源

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

开关电源之软开关技术在开关电源中的应用阐述

开关电源之软开关技术在开关电源中的应用阐述 开关电源中的硬开关和软开关是针对开关晶体管而言的。硬开关是不管 开关管上的电压或电流,强行接通或关断开关管。当开关管(漏极和源极之间,或者集电极和发射极之间)的电压及电流较大时,切换开关管,由于开关管状态间的切换(由导通到截止,或由截止到导通)需要一定的时间,这样就会造 成在开关管状态切换的某一段时间内,电压和电流有一个交越区域,这个交 越造成的开关管损耗(开关管的切换损耗)随开关频率的提高而急速增加。 ?若是感性负载,在开关晶体管关断时会感应出尖峰电压。开关频率越高, 关断越快,该感应电压越高。此电压加在开关器件两端,容易造成器件击穿。 ?若是容性负载,在开关晶体管导通瞬间的尖峰电流大。因此,当开关晶体 管在很高的电压下接通时,储存在开关晶体管结电容中的能量将以电流形式 全部耗散在该器件内。频率越高,开通电流尖峰越大,从而会引起开关管的 过热损坏。 ?另外,在次级高频整流回路中的二极管,在由导通变为截止时,有一个反 向恢复期,开关晶体管在此期间内接通时,容易产生很大的冲击电流。显然 频率越高,该冲击电流也越大,对开关晶体管的安全运行造成危害。 ?最后,做硬开关运用的开关电源中,开关晶体管会产生严重的电磁骚扰。 随着频率的提高和电路中的di/dt和du/dt增大,所产生的电磁骚扰也在增大,影响开关电源本身和周围电子设备的正常工作。 ?上述问题严重阻碍了开关器件(开关晶体管和高频整流二极管)工作频率的 提高。近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。和硬开关工作原理不同,理想的软关断过程是电流先降小到零,电压在缓慢

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

软开关技术在开关电源中的应用

软开关技术在开关电源中的应用 开关电源中的硬开关和软开关是针对开关晶体管而言的。 硬开关是不管开关管上的电压或电流,强行接通或关断开关管。当开关管(漏极和源极之间,或者集电极和发射极之间)的电压及电流较大时,切换开关管,由于开关管状态间的切换(由导通到截止,或由截止到导通)需要一定的时间,这样就会造成在开关管状态切换的某一段时间内,电压和电流有一个交越区域,这个交越造成的开关管损耗(开关管的切换损耗)随开关频率的提高而急速增加。 开关管的切换损耗与开关管的负载特性有关: 若是感性负载,在开关晶体管关断时会感应出尖峰电压。开关频率越高,关断越快,该感应电压越高。此电压加在开关器件两端,容易造成器件击穿。 若是容性负载,在开关晶体管导通瞬间的尖峰电流大。因此,当开关晶体管在很高的电压下接通时,储存在开关晶体管结电容中的能量将以电流形式全部耗散在该器件内。频率越高,开通电流尖峰越大,从而会引起开关管的过热损坏。 另外,在次级高频整流回路中的二极管,在由导通变为截止时,有一个反向恢复期,开关晶体管在此期间内接通时,容易产生很大的冲击电流。显然频率越高,该冲击电流也越大,对开关晶体管的安全运行造成危害。 最后,做硬开关运用的开关电源中,开关晶体管会产生严重的电磁骚扰。随着频率的提高和电路中的di/dt 和du/dt增大,所产生的电磁骚扰也在增大,影响开关电源本身和周围电子设备的正常工作。 上述问题严重阻碍了开关器件(开关晶体管和高频整流二极管)工作频率的提高。近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。和硬开关工作原理不同,理想的软关断过程是电流先降小到零,电压在缓慢上升到断态值,所以关断损耗近似为零。由于器件关断前电流已经下降到零,便解决了感性关断问题。理想的软开通过程是电压先降到零,电流在缓慢上升到通态值,所以开通损耗近似为零,器件结电容的电压也为零,解决了容性开通问题。同时,开通时,二极管反向恢复过程已经结束,因此二极管反向恢复问题不存在。 软开关技术还有助于电磁骚扰水平的降低,其原因是开关晶体管在零电压的情况下导通和在零电流的情况下关断,同时快恢复二极管也是软关断的,这可以明显减小功率器件的di/dt和du/dt,从而可以减小电磁干扰的电平。 一般来说软开关的效率较高(因为没有切换损);操作频率较高,PFC或变压器体积可以减少,所以开关电源的体积可以做到更小。但成本也相对较高,设计较复杂

三极管开关电源的原理及其应用

三极管开关原理[2009年05月21日] 2009-05-21 22:09 图1 NPN 三极管共射极电路图2 共射极电路输出特性曲 图一所示是NPN三极管的共射极电路,图二所示是它的特性曲线图,图中它有3 种工作区域:截止区(Cutoff Region)、线性区(Active Region) 、饱和区(Saturation Region)。三极管是以B 极电流IB 作为输入,操控整个三极管的工作状态。若三极管是在截止区,IB 趋近于0 (V BE亦趋近于0),

C 极与E 极间约呈断路状态,I C = 0,V CE = V CC。若三极管是在线性区,B-E 接面为顺向偏压,B-C 接面为逆向偏压,IB 的值适中(V BE = 0.7 V),I C =h F E I B呈比例放大,Vce = Vcc -Rc I c = V cc - Rc h FE I B可被I B操控。若三极管在饱和区,I B很大,V BE= 0.8 V,V CE = 0.2 V,V BC = 0.6 V,B-C 与B-E 两接面均为正向偏压,C-E间等同于一个带有0.2 V 电位落差的通路,可得I c=( Vcc - 0.2 )/ Rc,Ic与I B无关了,因此时的I B大过线性放大区的I B值,Ic

TOP204-单片开关电源原理及应用

TOP204-单片开关电源原理及应用 1前言 开关电源自20世纪70年代开始应用以来,涌现出许多功能完备的集成控制电路,使开关电源电路日益简化,工作频率不断提高,效率大大提高,并为电源小型化提供了广阔的前景。三端离线式脉宽调制单片开关集成电路 TOP(Threeterminaloffline)将PWM控制器与功率开关MOSFET合二为一封装在一起,已成为开关电源IC发展的主流。采用TOP开关集成电路设计开关电源,可使电路大为简化,体积进一步缩小,成本也明显降低。 2.TOP开关结构及工作原理 2.1结构 TOP开关集各种控制功能、保护功能及耐压700V的功率开关MOSFET于一体,采用TO 220或8脚DIP封装。少数采用8脚封装的TOP开关,除D、C两引脚外,其余6脚实际连在一起,作为S端,故仍系三端器件。三个引出端分别是漏极端D、源极端S和控制端C。其中,D是内装MOSFET的漏极,也是内部电流的检测点,起动操作时,漏极端由一个内部电流源提供内部偏置电流。控制端C控制输出占空比,是误差放大器和反馈电流的输入端。在正常操作时,内部的旁路调整端提供内部偏置电流,且能在输入异常时,自动锁定保护。源极端S是MOSFET 的源极,同时是TOP开关及开关电源初级电路的公共接地点及基准点。 2.2工作原理 TOP包括10部分,其中Zc为控制端的动态阻抗,RE是误差电压检测电阻。RA 与CA构成截止频率为7kHz的低通滤波器。主要特点是: (1)前沿消隐设计,延迟了次级整流二级管反向恢复产生的尖峰电流冲击; (2)自动重起动功能,以典型值为5%的自动重起动占空比接通和关断; (3)低电磁干扰性(EMI),TOP系列器件采用了与外壳的源极相连,使金属底座及散热器的dv/dt=0,从而降低了电压型控制方式与逐周期峰值电流限制; (4)电压型控制方式与逐周期峰值电流限制。 下面简要叙述一下: (1)控制电压源 控制电压Uc能向并联调整器和门驱动极提供偏置电压,而控制端电流Ic则能调节占空比。控制端的总电容用Ct表示,由它决定自动重起动的定时,同时控制环路的补偿,Uc有两种工作模式,一种是滞后调节,用于起动和过载两种情况,

BUCK开关电源的应用

目录 第1章课题背景 (1) 1.1 BUCK电路的工作原理 (1) 1.2 BUCK开关电源的应用 (1) 第2章课题设计要求 (1) 第3章课题设计方案 (1) 3.1 参数 (1) 3.2 系统的组成 (2) 3.3 主电路部分的设计 (2) 3.3.1 滤波电感的计算 (3) 3.3.2 滤波电容的计算 (3) 3.4 开环系统的分析 (3) 3.4.1 开环原始传递函数的计算 (3) 3.4.2 开环原始传递函数的伯德图和相角裕量的分析图 (4) 3.5 闭环系统的设计 (4) 3.6 双极点双零点补偿控制器的设计 (5) 3.6.1 补偿网络电路的原理分析 (5) 3.6.2 补偿器伯德图 (7) 3.6.3 加入补偿器后系统伯德图分析 (8) 3.7 闭环系统的仿真 (9) 3.7.1 电路模块的添加 (9) 3.7.2 仿真电路参数的设置 (9) 3.7.3 仿真结果 (10) 第4章总结心得 (10) 第5章参考文献 (11) 第6章附录 (11)

第1章课题背景 1.1 BUCK电路的工作原理 BUCK开关电源功能是将电能质量较差的原生态电源,转换成满足设备要求的质量较高的直流电压。 1.2 BUCK开关电源的应用 开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防监控,LED灯袋,电脑机箱,数码产品和仪器类等领域。它巨大的作用决定了对它研究的意义。 第2章课题设计要求 1.根据设计要求计算滤波电感和滤波电容的参数值,完成开关电路的设计 2.根据设计步骤和公式,设计双极点-双零点补偿网络,完成闭环系统的设计 3.采用MATLAB中simulink中simpowersystems模型库搭建开环闭环降压式变 换器的仿真模型 4.观察并记录系统在额定负载以及突加、突卸80%额定负载时的输出电压和负 载电流的波形 第3章课题设计方案 3.1 参数 图3-1 Buck变换器主电路图

开关电源原理与应用讲义

开关电源的原理与应用 课件下载方法: 进入综合信息门户-教学资源-网络教学综合平台中,在课程编号中输入(0806034034)-出现(开关电源的原理与应用)点击进入后-左侧信息中点击(课程互动)-左侧信息中点击(教学材料)-显示(开关电源讲义--2011)-点击后显示(开关电源的原理与应用)-点击下载 序论 开关电源的技术领域-属于电力电子技术 电力电子技术-电力学、电子技术、控制理论三个学科的交叉 1.电力电子技术的概念及研究领域 电力电子技术(Power Electronics)是以电力电子器件(Power Electronic Device)为基础,利用电路和控制理论对电能进行交换和控制的技术,即应用于电力应用领域的电子技术。 电力电子技术也称为电力电子学或功率电子学。 电力电子技术由电力学、电子学、和控制理论三个学科交叉形成,是目前较为活跃的应用型学科。 电力电子技术通常分为器件的制造技术和电力电子电路的应用技术即变流技术两大部分。其中,器件制造技术包括各种电力电子器件的设计、制造、参数测试、模型分析等。而目前所用的电力电子器件基本都采用半导体材料制成,所以电力电子器件也称为电力半导体器件。电力电子器件的制造技术是电力电子技术的基础。 电能有交流(Alternating Current, AC)和直流(Direct Current, DC)两大类。 交流电能有电压大小、相位、频率和相数的差别,直流电能有大小和极性的差别。 在电能的实际应用中,常常需要在两种电能之间,或是对同一种电能的一个或多个参数(如电压、电流、频率等)进行变换,这就是电力变换(Power Conversion),也就

开关电源工作原理详细解析

开关电源工作原理详细解析 个人PC所采用的电源都是基于一种名为―开关模式‖的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC 交流电转化为脉动电压(配图1和2中的―3‖);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的―4‖);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC 直流电输出了(配图1和2中的―5‖) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的―开关电源‖其实是―高频开关电源‖的缩写形式,和电源本身的关闭和开启式没有任何关系的。

L4970A大功率单片集成开关电源原理与应用_杨碧石

收稿日期:2003-08 作者简介:杨碧石(1961 )男,副教授,主要从事电子技术和数字逻辑系统的设计理论与实验教学工作。 L4970A 大功率单片集成开关电源原理与应用 杨碧石 (南通职业大学电子工程系,江苏南通266007) 摘要:介绍L4970A 大功率单片集成开关电源芯片的内部结构、电路特点、工作原理和应用电路。 关键词:开关电源;应用电路;集成电路 中图分类号:TM44 文献标识码:B 文章编号:1006-2394(2004)01-0055-02 L4970A High power Single chip Integrated Switch power s Principle and Application YANG Bi shi (Nantong Vocational College,Nantong 226007,Chi na) Abstract:In this paper,L4970A s internal structure,circui t characteristic,work principle and applicati on circuits are introduced.Key words:s witch power;application circuit;IC L4970A 系列大功率单片集成开关电源是ST 公司继L4960系列之后推出的第二代产品。电路的特点是:采用DMOS 开关功率管、混合式C MOS/双极型晶体管等集成电路制造新工艺研制而成;输出电压在5.1V ~40V 范围内连续可调;通过自举电容可获得大电流输出;利用掉电复位电路能实时地向微机发出信号,监视系统电源的工作状态。1 工作原理 L4970A 的原理框图如图1所示(注:引脚序号适用于L4970A/4975A/4977A)。其内部功能电路主要包括基准电压源,锯齿波发生器,内置40kHz 振荡器,欠压检测与过热保护电路,误差放大器,比较器,PWM 锁存器,或非门,触发器(由两级或门构成),驱动级,DMOS 开关功率管,限流比较器,软启动电路,掉电复 图1 L4970A 原理框图 位电路。其中内部基准电压源能输出两路基准电压,一路是V REF =5.1V,供设定输出电压V 0值用;另一路为V S TART =12V,它与自举电路相配合,可将驱动级的电源电压提升12V 。误差放大器的开环电压增益A VO >60dB,电源电压抑制比PMRR =80dB,输入失调电压为2mV 。 1.1 L4970A 系列的导通阈值电压 导通阈值电压V ON =11V,并有1V 的滞回电压。为保证芯片能可靠工作,要求最低输入电压V IL >11V,一般取V Im i n 15V 。为了给DMOS 开关功率管提供足够大的驱动电压,采用了自举升压方式。利用内部的12V 基准电压源将自举电容C b 充电到12V,叠加到驱动级电源上,使之提升到(V I +12V)。DMOS 功率管的开关时间为50ns,能在200kHz 高频下正常工作,其峰值驱动电流约为0.5A 。 1.2 PWM 控制环路 PW M 控制环路的工作原理是:首先把反馈输入电压与5.1V 基准电压进行比较,产生误差电压V r ;再将V r 与锯齿波电压V J 作比较,获得固定频率的脉冲调制信号,经驱动级驱动DMOS 功率管,最后利用由L 、VD 、C 构成的降压式输出电路,得到稳定的输出电压。图1中,将同步输入信号加到锯齿波发生器上,目的是提供一个前馈信号,使器件在很宽的输入电压范围内具有良好的稳压性能。下面重点介绍限流电路及复位和掉电电路的工作原 55 2004年第1期仪表技术

简单的TOP系列单片开关电源

查看文章 简单简单的的TOP 系列系列单单片开关电开关电源源 2007-07-26 16:07 电源是各种电子设备必不可缺的组成部分,其性能的优劣直接关系到电子设备的技术指标以及能否安全可靠地工作。目前常用的直流稳压电源分为线性电源和开关电源两大类。线性稳压电源亦称串联调整式稳压电源,其稳压性能好,输出纹波电压很小,但它必须使用笨重的工频变压器,并且调整管的功率损耗较大,致使电源的体积和重量大、效率低。而开关电源内部的关键元器件工作在高频开关状态,它本身消耗的能量很低,电源效率可达80~90%,比普通线性稳压电源提高近一倍。因此,它具有高效率、高可靠性、体积小、重量轻的特点,它代表着稳压电源的发展方向,现已成为稳压电源的主流产品。 本文向大家介绍的一款具有多路电压输出的开关电源,它的主要特点是采用了TOP系列三端单片开关电源集成电路,所以它的电路简单可靠,即便是初学者也能轻易组装成功,同时还可以根据本文的一些图表资料设计出不同规格的开关电源。 表1:TOPSwitch TOPSwitch——Ⅱ的产品分品分类类及最大及最大输输出功率出功率Po Po M 图1:TOPSwitch TOPSwitch——Ⅱ的管的管脚脚排列 图2:电气原理原理图图 本开关电源具有三路稳压输出,主输出为5V ±5%/2A/10W ,辅助输出为12V ±10%/12.1A/14.4W 和30V ±10%/200mA/0.6W ,总功率为25W 。输入为宽电压输入(AC85~265V)。 高频变压器采用EE29型铁氧体磁芯,初级绕组(1~2脚)用Ф0.3mm漆包线绕77匝,反馈绕组(3~4脚)用Ф0.3mm漆包线绕9匝。 次级绕组可以有二种绕法,一种是分离绕法,另一种是堆叠绕法。这两种具体绕法见图3。 TO-220封装( Y ) DIP-8封装(P )/SMD-8封装(G ) 产品型号 固定电压输入:110/115/230V (A C ),±15% 宽范围电压输入:85~265 V(AC) 产品型号 固定电压输入:110/115/230V (A C ),±15% 宽范围电压输入:85~265V (AC) TOP221Y 12W 7W TOP221P/22 1G 9W 6W TOP222Y 25W 15W TOP222P/22 2G 15W 10W TOP223Y 50W 30W TOP223P/22 3G 25W 15W TOP224Y 75W 45W TOP224P/22 4G 30W 20W TOP225Y 100W 60W TOP226Y 125W 75W TOP227Y 150W 90W Anythink 智能控制 和 无线通信 主页博客相册个人档案好友

相关文档
相关文档 最新文档