文档库 最新最全的文档下载
当前位置:文档库 › 塔设备计算实例

塔设备计算实例

塔设备计算实例
塔设备计算实例

《化工设备设计基础》

课程设计计算说明书

学生姓名:学号:

所在学院:

专业:

设计题目:

指导教师:

2006 年月日

目录

一.设计任务书 (2)

二.设计参数与结构简图 (4)

三.设备的总体设计及结构设计 (5)

四.强度计算 (7)

五.设计小结 (13)

六.参考文献 (14)

一、设计任务书

1、设计题目

根据《化工原理》课程设计工艺计算内容进行填料塔(板式塔)设计。各个同学按照自己的工艺参数确定设计题目:填料塔(板式塔)DNXXX设计。

设计题目:

例:精馏塔(DN1800)设计

2、设计任务书

2.1设备的总体设计与结构设计

(1)根据《化工原理》课程设计,确定塔设备的型式(填料塔、板式塔);

(2)根据化工工艺计算,确定塔板数目(或填料高度);

(3)根据介质的不同,拟定管口方位;

(4)结构设计,确定材料。

2.2设备的机械强度设计计算

(1)确定塔体、封头的强度计算。

(2)各种开孔接管结构的设计,开孔补强的验算。

(3)设备法兰的型式及尺寸选用;管法兰的选型。

(4)裙式支座的设计验算。

(5)水压试验应力校核。

2.3完成塔设备装配图

(1)完成塔设备的装配图设计,包括主视图、局部放大图、焊缝节点图、管口方位图等。

(2)编写技术要求、技术特性表、管口表、明细表和标题栏。

3、原始资料

3.1《化工原理》课程设计塔工艺计算数据。

3.2参考资料:

[1] 董大勤.化工设备机械基础[M].北京:化学工业出版社,2003.

[2] 全国化工设备技术中心站.《化工设备图样技术要求》2000版[S].

[3] GB150-1998.钢制压力容器[S].

[4] 郑晓梅.化工工程制图化工制图[M].北京:化学工业出版社,2002.

[5] JB/T4710-2005.钢制塔式容器[S].

4、文献查阅要求

设计说明书中公式、内容等应明确文献出处;装配图上应写明引用标准号。5、设计成果

1、提交设计说明书一份。

2、提交塔设备(填料塔、板式塔)装配图一张(A1)。

二. 设计参数与结构简图

1、设计参数

本课程设计的工艺条件由化工原理课程设计计算而得。

工作温度°C:120 设计温度°C:150 工作压力MPa:0.1 设计压力MPa:0.11 塔体内径mm:1800 塔板数块:63 介质:醋酸-丙酸混合物

2、结构简图(手画)

图1 塔结构简图

三. 设备的总体设计及结构设计

1、根据《化工原理》课程设计,确定塔设备的型式(填料塔、板式塔)。

2、根据化工工艺计算,确定塔板数目(或填料高度)。

3、根据介质条件的不同,拟定管口方位。

(画出俯视管口方位)

4、结构设计,设备法兰的型式及尺寸选用,管法兰等零部件选型。

1)零部件材料的选取

根据塔器使用条件(介质的腐蚀性、设计压力、设计温度)、材料的焊接性能、零件的制造工艺及经济合理性进行选材:

塔体:16MnR 封头:16MnR

接管:20 底座:Q235-B

塔盘:16MnR 法兰:16MnII

(材料的许用应力按照《化工设备机械基础》表8-7查并列表)

2)塔盘结构

根据工艺条件、塔体直径,塔盘结构选为单液流分块式塔盘,具体塔盘结构及尺寸的选取见第十七章第三节(p430-438)。(自选)

3)工艺接管

接管的选取根据介质流量,参照GB12771-91,接管的选取如下表:

4 )压力容器法兰和接管法兰

压力容器法兰的选取按照《化工设备机械基础》选JB/T4700~4707-2000标准。(按照《化工设备机械基础》(p263)写出选取过程)

容器法兰选取结果如下表:

管法兰选取结果汇总:

5)法兰密封垫片的选取

法兰密封垫片的选取参照《化工设备机械基础》表10-30

6)裙座选取

裙座的选取根据参照《化工设备机械基础》图17-21确定裙座各尺寸。

7)人孔设置

人孔的选取根据筒体直径和公称压力参照《化工设备机械基础》表11-1和表11-6,例:本设计中选用带颈平焊法兰人孔,公称压力1.0MPa,公称直径500 mm,标准号为HG20594-95。

8)手孔设置

手孔选取同上,例:本设计中选用不锈钢板式平焊人孔(仅限凸面),公称压力0.6MPa,公称直径150mm,标准号为HG20597-95。

9)视镜和液位计的选取

视镜和液位计的选取根据《化工设备机械基础》表11-9、表11-11选取10)焊接接头形式和和焊接材料的选取

焊接接头形式的选取参照《化工设备机械基础》第十四章第二节(p367-377),标准为HG20583-1998,A、B类焊接接头按照HG20583-1998中DU4,D类焊接接头按照HG20583-1998中G2,带补强圈D类焊接接头按照JB/T4736-2002中C,

焊接材料的选取参照第十四章《化工设备机械基础》第四节(p379-382),标准GB/T5117-95、GB/T5118-95 GB/T983-95

焊接接头的检验《化工设备机械基础》第十四章第三节(p378)

11)压力容器类别的划分

压力容器类别的划分按《压力容器安全技术监察规程》,本设计塔器为低压分离设备,介质为易燃、中毒危害介质,故划分为一类压力容器。

四、强度计算

1、塔体壁厚计算

塔体圆筒体壁厚计算按照GB150-1998《钢制压力容器》式5-1 计算壁厚: 2[]c i

t

c

p D p δσ?=

- (4-1) 式中 δ:塔体的理论计算壁厚,mm

p c :塔体的计算压力,MPa D i :塔体内径,mm

[]t σ:钢板在设计温度下的许用应力,MPa ?:焊接接头系数;

名义厚度: n C δδ=++?; (4-2)

12C C C =+;

e n C δδ=-;

式中 n δ:名义厚度;

C 1:腐蚀裕量; C 2:钢板负偏差;

?:圆整量;

e δ:有效厚度;

查表《化工设备机械基础》表8-7[]t σ=170 MPa p c :取塔体的设计压力,0.11 MPa 焊缝为双面焊,局部射线检测,?=0.85

代入数据到式(4-1)得:2[]c i

t

c

p D p δσ?=

-= 0.11180021700.850.11???-=0.69 mm C 1 =1 mm C 2 =0 mm

代入数据到式(4-2)得:名义厚度: n C δδ=++?= 2 mm 按最小厚度δmin 要求 取 n δ= 6 mm

2) 封头的强度计算

(封头的设计参照第八章第二节p175-185)。

塔体封头壁厚计算按照GB150-1998《钢制压力容器》式7-1 计算壁厚: 2[]0.5c i

t c

p D p δσ?=

- (4-3)

式中 δ:塔体封头的理论计算壁厚,mm

p c :塔体的计算压力,MPa D i :塔体内径,mm

[]t σ:钢板在设计温度下的许用应力,MPa ?:焊接接头系数;

名义厚度: n C δδ=++?;

12C C C =+;

e n C δδ=-;

式中 n δ:名义厚度;

C 1:腐蚀裕量; C 2:钢板负偏差;

?:圆整量;

e δ:有效厚度;

查表《化工设备机械基础》表8-7[]t σ=170 MPa p c :取塔体的设计压力,0.11 MPa 焊缝为双面焊,100%射线检测,取?=1

代入数据到式(4-3)得: 2[]0.5c i

t c

p D p δσ?=

-

=

0.111800

217010.50.11

?

??-?

=0.59 mm

C1 =1 mm C2 =0 mm

代入数据到式(4-2)得:名义厚度:

n C

δδ

=++?= 2 mm

按标准椭圆封头最小厚度δmin 〉0.15%D i要求取

n

δ= 6 mm

查《化工设备机械基础》(p196)

选标准椭圆形封头JB/T4746-2002封头直边高度h0取25mm

封头高度h取450mm

3)开孔补强计算

开孔补强结构选用JB/T4736-2002补强圈结构,补强圈尺寸按照《化工设备机械基础》p327(列出所选尺寸),焊接坡口尺寸选《化工设备机械基础》第十四章第二节p375 C型。

开孔补强计算采用等面积补强法,其公式参照第十二章第一节(p326-p335)。

例:人孔开孔补强计算:

人孔选公称压力1.0MPa,公称直径500 mm,标准号为HG20594-95

接管¢530?8(p302)材料:20

a.开孔所需补强面积;

A=dδ+2δδet(1-

r

f) (4-4)

式中

r

f:强度削弱系数

d :开孔直径mm

δ:塔体的计算壁厚mm

δet:接管的有效厚度mm

d=di+2Ct=(530-16)+2(1+0)=518 mm

δet=δnt- Ct=8-1=7 mm

塔体材料:16MnR []t

σ=170 MPa

接管材料:20 []t

σt=130 MPa

[][]

t

t r t

f σσ==

130

170

=0.78 代入式(4-4) A=d δ+2δδet(1-r f )

=5180.69?+2?0.69?7(1-0.78) = 359.5 mm 2

b. 有效补强范围内的补强面积: ①有效补强范围

有效宽度: B=2d=2?518=1036 mm 外伸高度:h 1

内伸高度:h 2= 0 mm

②壳体多余截面积

A1=(B-d)( e δ-δ)-2δet ( e δ-δ)(1-r f ) (4-5) 代入式(4-5)

A1=(1036-518)(7-0.69)-2?7(7-0.69)(1-0.78) = 1211.2 mm 2 ③接管多余截面积

A2=2h 1(δet-δt) r f +2h 2(δet-C2) r f (4-6) 接管计算厚度δt=2[]c i

t c

p d p δσ?=

-= 0.11514213010.11???-=0.22 mm 式中 di :接管内直径 mm di=530-16=514 mm

代入式(4-6) A2=2h 1(δet-δt) r f +2h 2(δet-C2) r f

=2?64.4(7-0.22)0.78=681 mm 2

④焊缝金属截面积 A3=6?6=36 mm 2

A1+A2+A3>A 满足不另行补强条件,所以不需补强。 其它开孔直径比人孔直径要小,故不需再进行开孔计算

(如计算结果需要补强,还需对其他接管进行补强计算) 4)筒体的稳定性校核

因圆筒不受外压,所以此处不必对圆筒的周向稳定进行校核。如筒体工作压力为真空,筒体的轴向稳定性校核参照第九章第六节(p242-244)。 5)裙座的轴向稳定性校核

裙座的轴向稳定性校核:参照《化工设备机械基础》p442图17-21确定裙座各项尺寸,查取相关许用应力。根据《化工设备机械基础》p242进行裙座的轴向稳定性校核。 6)座圈的压应力校核

m 封头=120?2=240 kg (p197) m 筒体=267?26.5=240 kg (p195) m 塔盘=n(Aa+Af+Ai)ρ= 6995.4 kg

m 水=v 筒?26.2?ρ水+ v 封?2?ρ水=2.545?26.2?1000+0.826?2?1000 =68331 kg (p195、197) Q 设备= m 封头+ m 筒体+ m 塔盘=88445 N Q 附件= 10%Q 设备=8844.5 N Q 水= m 水g=68331?9.81=670327 N A= π(1.8162-1.82)/4=0.034 m 2

Q A

=Q Q Q ++设备附件水

A

=22.6 MPa < []t σ

校核合格

7) 水压试验应力校核

水压试验压力P T

[]

1.25[]

T t

P P

σσ'= (3-7) 卧置水压试验压力:T T P P '=+ γh

水压试验压力下的应力校核:

[]2T i e T e

P D δσδ+=

0.9S ?σ≤ (3-8)

式中 ?: 焊接接头系数

e δ: 塔体有效厚度

S σ: 塔体材料的屈服极限

T P : 水压试验压力

T σ: 圆筒水压试验压力下的应力

[]σ:试验温度下材料的许用应力

[]t σ:设计温度下材料的许用应力 D i : 圆筒内直径 代入数据到式(3-8)

[]2T i e T e

P D δσδ+=

= 0.9S ?σ≤

满足水压试验压力下的应力校核条件。

五. 设计小结

(约300字左右)

六. 参考文献

[1] 董大勤.化工设备机械基础[M].北京:化学工业出版社,2003.

[2] 全国化工设备技术中心站.《化工设备图样技术要求》2000版[S].

[3] GB150-1998.钢制压力容器[S].

[4] 郑晓梅.化工工程制图化工制图[M].北京:化学工业出版社,2002.

[5] JB/T4710-2005.钢制塔式容器[S].

过滤器常用计算公式

过滤器常用计算公式 缠丝管过水面积计算公式: P:缠丝面孔隙率 d 1:垫筋宽度或直径(mm ) d 2:缠丝直径或宽度(mm ) m 1:垫筋中心距离(mm ) m 2:缠丝中心距离(mm ) 石英砂滤料水头损失: 2014m 11h H ))(γ γ(--= γ1:滤料的相对密度(石英砂为) γ:水的相对密度 m 0:滤料膨胀前的孔隙率(石英砂为) H 2:滤层膨胀前厚度(m ) 滤料高度为直筒高度的2/3;筒体高度=膨胀高度+填料高度 膨胀率:单层石英砂:45%;双层滤料:50%;三层滤料:55% 清洁滤层水头损失: V l d m m g h 02030200)1()1(180φν-= ν:运动粘滞系数(cm 2 /S )()

g :水的重力加速度(981cm/s 2 ) m 0:滤料孔隙率( ) d 0:与滤料体积相同的球体直径(cm ) l 0:滤层深度(cm ) v :滤速(cm/s ) φ:滤料球度系数() 过滤器反冲洗强度计算: 单位时间单位滤池面积通过的反冲洗水量称为反冲洗强度q ,通常用L/()表示,其值与滤料粒径水温孔隙率和要求的膨胀率有关,可用下式进行计算,也可以用试验方法确定。 )() ε()()ε(μs .m /11e e 100254.0077.1231054.0131L d q c +++= d c :滤料当量直径(cm) μ:水的动力粘度,g/ ε0:干净滤层的孔隙率 根据经验,过滤一般的悬浮物时,要求q 约为12-15L/()之间,如果过滤油质悬浮物,则要求q 增大至20L/()或更大。 反洗强度测定: )冲洗时间()滤池面积()冲洗水量(s m 2?=L w

塔设备计算实例讲解

《化工设备设计基础》 课程设计计算说明书 学生姓名:________________ 学号: __________________ 所在学院:_________________________________________ 专业:____________________________________________ 设计题目:_________________________________________ 指导教师: ________________________________________

2006 年月 目录 一. 设计任务书 (2) 二. 设计参数与结构简图 (4) 三. 设备的总体设计及结构设计 (5) 四. 强度计算 (7) 五. 设计小结............................................ ..13 六. 参考文献............................................ ..14

、设计任务书 1、设计题目 根据《化工原理》课程设计工艺计算内容进行填料塔(板式塔)设计。各 个同学按照自己的工艺参数确定设计题目:填料塔(板式塔)DNXXX设计。 设计题目: —例:精馏塔(DN1800)设计 2、设计任务书 2.1设备的总体设计与结构设计 (1)根据《化工原理》课程设计,确定塔设备的型式(填料塔、板式塔); (2)根据化工工艺计算,确定塔板数目(或填料高度); (3)根据介质的不同,拟定管口方位; (4)结构设计,确定材料。 2.2设备的机械强度设计计算 (1)确定塔体、封头的强度计算。 (2)各种开孔接管结构的设计,开孔补强的验算。 (3)设备法兰的型式及尺寸选用;管法兰的选型。 (4)裙式支座的设计验算。 (5)水压试验应力校核。 2.3完成塔设备装配图 (1)完成塔设备的装配图设计,包括主视图、局部放大图、焊缝节点图、 管口方位图等。 (2)编写技术要求、技术特性表、管口表、明细表和标题栏。 3、原始资料 3.1《化工原理》课程设计塔工艺计算数据。

塔设备强度计算-裙座基础环和螺栓计算

㈡基础环板设计 1. 基础环板内、外径的确定 裙座通过基础环将塔体承受的外力传递到混凝土基础上,基础环的主要尺寸为内、外直径(见下图),其大小一般可参考下式选用 (4-68) 式中: D ob-基础环的外径,mm; D ib-基础环的内径,mm; D is-裙座底截面的外径, mm。 2. 基础环板厚度计算 在操作或试压时,基础环板由于设备自重及各种弯矩的作用,在背风侧外缘的压应力最大,其组合轴向压应力为: (4-69) 式中: A b-基础环面积,mm2; W b-基础环的截面系数,mm3; (1)基础环板上无筋板 基础环板上无筋板时,可将基础环板简化为一悬臂梁,在均布载荷σbmax的作用下,基础环厚度: (4-70) 式中: δb-基础环厚度,mm; [σ]b-基础环材料的许用应力,MPa。对低碳钢取[σ]b=140MPa。 (2)基础环板上有筋板 基础环板上有筋板时,筋板可增加裙座底部刚性,从而减薄基础环厚度。此时,可将基础环板简化为一受均布载荷σbmax作用的矩形板(b×l)。基础环厚度:

(4-71) 式中: δb-基础环厚度,mm; M s-计算力矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较大者,M x、M y按表4-35计算,N·mm/mm。无论无筋板或有筋板的基础环厚度均不得小于16mm。 ㈢地脚螺栓 地脚螺栓的作用是使设备能够牢固地固定在基础底座上,以免其受外力作用时发生倾倒。在风载荷、自重、地震载荷等作用下,塔设备的迎风侧可能出现零值甚至拉力作用,因而必须安装足够数量和一定直径的地脚螺栓。塔设备在基础面上由螺栓承受的最大拉应力为: (4-72) 式中: σB-地脚螺栓承受的最大拉应力,MPa。 当σB≤0时,塔设备可自身稳定,但为固定塔设备位置,应设置一定数量的地脚螺栓。 当σB>0时,塔设备必须设置地脚螺栓。地脚螺栓的螺纹小径可按式(4-73)计算: (4-73) 式中: d1-地脚螺栓螺纹小径,mm; C2-地脚螺栓腐蚀裕量,取3mm; n-地脚螺栓个数,一般取4的倍数;对小直径塔设备可取n=6; [σ]bt-地脚螺栓材料的许用应力,选取Q-235-A时,取[σ]bt=147MPa;选取16Mn时,取[σ]bt=170MPa。圆整后地脚螺栓的公称直径不得小于M24。 ㈣裙座体与塔体底封头的焊接结构 裙座体与塔体的焊接形式有下表所示的两种: 名称结构要求特点适用对象 对接焊 缝裙座与塔体直径相等,二者对 齐焊在一起 焊缝承受压应力作用,可承受较高 的轴向载荷 大型塔设备 搭接焊 缝 裙座内径稍大于塔体外径焊缝承受剪应力作用,受力条件差小型塔设备 1.裙座体与塔体对接焊缝(如附图)J-J 截面的拉应力校核 (4-74)

设备选型-精馏塔设计说明书

第三章设备选型-精馏塔设计说明书3.1 概述 本章是对各种塔设备的设计说明与选型。 3.2设计依据 气液传质分离用的最多的为塔式设备。它分为板式塔和填料塔两大类。板式塔和填料塔均可用作蒸馏、吸收等气液传质过程,但两者各有优缺点,根据具体情况进行选择。设计所依据的规范如下: 《F1型浮阀》JBT1118 《钢制压力容器》GB 150-1998 《钢制塔式容器》JB4710-92 《碳素钢、低合金钢人孔与手孔类型与技术条件》HG21514-95 《钢制压力容器用封头标准》JB/T 4746-2002 《中国地震动参数区划图》GB 18306-2001 《建筑结构荷载规范》GB50009-2001 3.3 塔简述 3.3.1填料塔简述 (1)填料塔

填料塔是以塔内的填料作为气液两相间接触构件的传质设备,由外壳、填料、填料支承、液体分布器、中间支承和再分布器、气体和液体进出口接管等部件组成。 填料是填料塔的核心,它提供了塔内气液两相的接触面,填料与塔的结构决定了塔的性能。填料必须具备较大的比表面,有较高的空隙率、良好的润湿性、耐腐蚀、一定的机械强度、密度小、价格低廉等。常用的填料有拉西环、鲍尔环、弧鞍形和矩鞍形填料,20世纪80年代后开发的新型填料如QH—1型扁环填料、八四内弧环、刺猬形填料、金属板状填料、规整板波纹填料、格栅填料等,为先进的填料塔设计提供了基础。 填料塔适用于快速和瞬间反应的吸收过程,多用于气体的净化。该塔结构简单,易于用耐腐蚀材料制作,气液接触面积大,接触时间长,气量变化时塔的适应性强,塔阻力小,压力损失为300~700Pa,与板式塔相比处理风量小,空塔气速通常为0.5-1.2 m/s,气速过大会形成液泛,喷淋密度6-8 m3/(m2.h)以保证填料润湿,液气比控制在2-10L/m3。填料塔不宜处理含尘量较大的烟气,设计时应克服塔内气液分布不均的问题。 (2)规整填料 塔填料分为散装填料、规整填料(含格栅填料) 和散装填料规整排列3种,前2种填料应用广泛。 在规整填料中,单向斜波填料如JKB,SM,SP等国产波纹填料已达到国外MELLAPAK、FLEXIPAC等同类填料水平;双向斜波填料如ZUPAK、DAPAK 等填料与国外的RASCHIG SUPER-PAK、INTALOX STRUCTURED PACKING 同处国际先进水平;双向曲波填料如CHAOPAK等乃最新自主创新技术,与相应型号的单向斜波填料相比,在分离效率相同的情况下,通量可提高25% -35%,比国外的单向曲波填料MELLAPAK PLUS通量至少提高5%。上述规整填料已成功应用于φ6400,φ8200,φ8400,φ8600,φ8800,φ10200mm等多座大塔中。 (3)板波纹填料 板波纹填料由开孔板组成,材料薄,空隙率大,加之排列规整,因而气体通过能力大,压降小。其比表面积大,能从选材上确保液体在板面上形成稳定薄液

关于过滤器压力降的计算公式

关于设计过滤器压力降的具体计算数据 关于设计过滤器压力降的具体计算数据 1.根据用户提供该过滤器具体数据如下: 压力:30000Pa 通径:DN400 介质:瓦斯 丝网:30目流量:80m3/分钟 2.根据表中查得,粘度μ=0.023厘泊(1厘泊=0.001公斤/米?秒),即得:μ=2.3*10-5公斤/米?秒 瓦斯比重p=570kg/米3 首先求得流量: W=80m3/分钟=80*570kg/分钟=2.73×106kg/小时 求得流速:V=W//3600P?A米/秒=0.002947306米/秒 注:A为管道截面积A=0.7854*D2=0.7854*0.42=0.1256m2 再求得雷诺数:Re.根据公式得: Vdp 0.002947306*0.4*570 Re=--------------=----------------------------=2978.2 64273 μ?g 2.3*10-5*9.81 再求得摩擦系数,根据公式得: f=64/Re=64/2978.264273=0.021489026 根据压力降公式计算如下: △Pf=6.38*10-13fLw2/d5p=6.38*10-13*0.021489026*80*456002/0.45*570 =6.38*10-13*0.021489026*80*2.097*109/5.8368=3.9*10-4 Kg/CM2 注为当量直管段长度DN400 丝网为30目时,L取最小值即 L=80*103mm=80m 再根据HGJ532-91规定过滤器有效过滤面积为相连管道的截面积三倍以上,即得0.125664*4倍=0.502656 根据提供30目丝网标准过滤器面为50%,得 0.502656+0.251328=0.753984m2+滤筒阻力损失 0.2m2=0.953984m2

三相滤波电抗器参数计算实例

三相滤波电抗器作 一.设计依据 482V 500V 1,电抗器总额定容量16.66kvar 15.51kvar 2,电抗率 4.16% 4.16% 3,总电感量 0.0577mH 0.0619mH 4,电容器安装总容量550Kvar 550Kvar 5,电容器额定电压 480v 500v 6,电容器基波容量383.31Kvar 357.31Kvar 7,成套装置分四组即:50kvar ,100kvar ,200kvar ,200kvar 。 按安装容量分配: 1/2/4/4 故需制做四只三相或12只单相电抗器 二,电抗器制作要求 ⒈ 电抗器的绝缘等级660v 。 ⒉ 电抗器的耐热等级H 级。 ⒊ 电抗器的额定容量S ,0.7Kvar 。 ⒋ 电抗器的电抗率 4.16%。 ⒌ 电抗器的电感1.995mH 。 ⒍ 电抗器的额定电流33.2A 。 ⒎ 电抗器的绝缘耐压5千伏。 三,铁芯计算及材料的选择 ⒈ 硅钢片选用D310取向硅钢片。 2.电抗器容量的确定。 (1)给定无功16.6Kvar 求电容量 C =92102?fU ?=9210500 3146.16??=910785000006.16?=211.46μF (2)根具电容量求容抗 Xc= 6101c ω=61046 .2113141??=15.064?

(3)已知容抗和电抗率求电抗 XL=0.0416064.15?=0.6266624 ? (4)求制作电抗器的电感 L=310?ωXL =310314 6266624.0=1.9957mH (5)根具电容器的容抗和额定电压求电抗器的流 IL=XC u =064 .15500=33.2A (6)求制作电抗器的容量 Q=310-IV =33.2?21310-=0.7kvar ⒉ 铁芯柱截面积的选择。 ⑴按0.7Kvar 计算铁芯柱的截面积。(按三相变 直径 D =kd 4P =69×47.0=6.31cm (KD-经验数据) 铁芯柱圆截面积 S =π×2231.6??? ??=3.14×9.55=312cm 电抗器的电压 V =P ÷I =0.7÷33.2=21V 一、 硅钢片宽度的选择 1 硅钢片宽度尺寸的计算 E =(2.6-2.9)2LI =2.922.330019957.0?=4.3cm 取4.8 2 铁心厚度尺寸的计算 ⑴ 净厚度B =S ÷E =31 2cm ÷4.8cm =6.5 cm 硅钢片数为:6.5÷0.27=240片 ⑵铁心厚度 s B =B ÷K =6.5 cm ÷0.91=7.15 cm 二、 绕组匝数w 和气隙的计算 ⒈ 绕组匝数的计算w

塔设备强度设计计算

塔设备强度设计计算 管理提醒: 本帖被tandongchi 从图纸专区移动到本区(2010-07-21) 一、塔体的强度计算 安装在室外的高度与直径比(H/D)较大的塔设备,除承受操作压力外,还要承受质量载荷、风载荷、地震载荷和偏心载荷等,见塔设备各种载荷示意图。因此,在进行塔设备设计时必须根据受载情况进行强度计算与校核。 ㈠按设计压力计算筒体及封头壁厚 按本篇第十五章"容器设计基础"中内压、外压容器的设计方法,计算塔体和封头的有效厚度。 ㈡塔设备所承受的各种载荷计算 以下要讨论的载荷主要有:操作压力;质量载荷;风载荷;地震载荷;偏心载荷。 1.操作压力 当塔为内压时,在塔壁上引起周向及轴向拉应力;当塔为外压时,在塔壁上引起周向及轴向压应力。操作压力对裙座不起作用。 2.质量载荷 塔设备的质量包括塔体、裙座体、内构件、保温材料、扶梯和平台及各种附件等的质量,还包括在操作、停修或水压试验等不同工况时的物料或充水质量。 设备操作时的质量 m0=m1+m2+m3+m4+m5+ma+me (4-42) 设备的最大质量(水压试验时) mmax =m1+m2+m3+m4+mw+ma+me (4-43) 设备最小质量 mmin =m1+0.2m2+m3+m4+ma+me (4-44) 式中: m1:塔体和裙座质量,Kg; m2:内件质量,Kg; m3:保温材料质量,Kg; m4:平台、扶梯质量,Kg; m5:操作时塔内物料质量,Kg; ma:人孔、接管、法兰等附件质量,Kg; me:偏心质量,Kg; mw:液压试验时,塔内充液质量,Kg; 0.2m2:考虑内件焊在塔体上的部分质量,如塔盘支承圈、降液管等。 当空塔吊装时,如未装保温层、平台、扶梯等,则mmin应扣除m3和m4。 在计算m2、m4及m5时,若无实际资料,可参考表4-25进行估算。 表4-25 塔设备部分内件、附件质量参考值 名称笼式扶梯开式扶梯钢制平台圆形泡罩塔盘条形泡罩塔盘筛板塔盘浮阀塔盘舌型塔盘塔盘充液 单位质量 40Kg/m 15~24 Kg/m 150Kg/m2 150Kg/m2 150Kg/m2 65Kg/m2 75Kg/m2 75Kg/m2 7 0Kg/m2

塔设备选型讲解.(优选)

塔设备选型 1.1 设计标准 1.2 塔设备设计原则 塔设备设计应满足以下原则: (1) 生产能力大。在较大的气(汽)液流速下,仍不致发生大量的雾沫夹带、拦液或液泛等破坏正常操作的现象。 (2) 操作稳定、弹性大。当塔设备的气(汽)液负荷量有较大的波动时,仍能在较高的传质效率下进行稳定的操作,并且塔设备应保证能长期连续操作。 (3) 流体流动阻力小,即流体透过塔设备的压力降小。这将大大节省生产中的动力消耗,以降低操作费用。对于减压蒸馏操作,较大的压力降还将使系统无法维持必要的真空度。 (4) 结构简单、材料耗用量小、制造和安装容易。这可以减少基建过程中的投资费用。 (5) 耐腐蚀和不易堵塞,方便操作、调节和检修。 1.3 塔型的选择 1.3.1 板式塔与填料塔的比较 精馏塔按传质元件区别可分为两大类,即板式精馏塔和填料精馏塔。根据上述要求,可对板式塔和填料塔的性能作一简要的比较,详见表1-1所示。

表1-1 板式塔与填料塔的对比 选择塔型时应考虑的因素有很多,主要有:物料性质、操作条件、塔设备的性能,以及塔设备的制造、安装、运输和维修等,具体如下: ?与物性有关的因素 a)易起泡的物系,如处理量不大时,以选择填料塔为宜。因为填料能使泡沫破裂,在板式塔中则易引起液泛。 b)具有腐蚀性的介质,可选用填料塔,如必须用板式塔,宜选用结构简单、造价便宜的筛板塔、穿流式塔盘或舌形塔盘,以便及时更换。 c)具有热敏性的物料需减压操作,以防过热引起分解或聚合时,应选用压力降较小的塔型,如可采用装填规整填料的塔、湿壁塔等,当要求真空度较低时,宜用筛板塔和浮阀塔。 d)粘性较大的物系,可以选用大尺寸填料。板式塔的传质效率太差。 含有悬浮物的物料,应选择液流通道较大的塔型,以板式塔为宜。可选用泡罩塔、浮阀塔、栅板塔、舌形塔和孔径较大的筛板塔等。不宜使用小填料。 e)操作过程中有热效应的系统,用板式塔为宜。因塔盘上有液层,可在其中安放换热管,进行有效的加热或冷却。 ?与操作条件有关的因素 a)若气相传质阻力大(即气相控制系统,如低粘度液体的蒸馏,空气增湿等),宜采用填料塔,因填料层中气相呈湍流,液相为膜状流。反之,受液相控制的系统,宜采用板式塔,因为板式塔中液相呈湍流,用气体在液层中鼓泡。 b)大的液体负荷,可选用填料塔,若用板式塔时,宜选用气液并流的塔型(如

带式压滤机介绍及处理能力的计算方法

一、水解酸化池污泥产量一般可以这样考虑: 排泥量计算主要是两个方面:一个是,细胞生长产生的污泥;还有就是进水的TSS产生的惰性污泥。 1、污泥有机部分产量 W1 = Yobs * ( So - Se ) * Q / 1000*(1-η水解率)=50.4kg/d Yobs:BOD5表观产率系数:一般在生物用于同化生长中,一般是用于生物生长的有机物占有1/3左右,可以考虑取0.3-0.4kgVSS/kgBOD。 污泥的水解率大概是可取30%-40%。 2、污泥惰性部分产泥量W2 = ηss * SSo *Q / 1000 = 37.5kg / d 总悬浮物TSS惰性组份比例ηss 取30-50%,另外45-50%被水解去掉,10-20%左右出水中。 说明:前者是污泥的产量的有机部分,后者是总悬浮物中一般无机惰性部分,有机部分被生化掉,形成了完全的惰性污泥。 活性污泥总产量W '=W1/fvss+W2=72+37.5=109.5kg/d: fvss:是污泥中有机部分的质量含量,一般在0.7-0.8之间。 带式压滤机处理能力的计算方法 0前言 在城市污水处理工艺中,一个好的污泥脱水方法是必要的。水中的COD大部分是由微粒物组成的,大约70%的COD是随粒径>0.45 μm的颗粒的去除而除去的,许多污染物与微粒物 (如氮、磷)合为一体或被吸附在微粒上(如重金属、有机微量污染物),亦会随之去除[1]。传统活性污泥法产生的污泥是从二沉池排出剩余污泥,在污泥浓缩池浓缩消化后再进行污泥脱水。然而污泥在浓缩池的浓缩过程中,吸附在污泥中的磷又被析出,污水中磷的浓度太高,致使外排水严重超标。因此对市政污水进行脱氮除磷处理已在世界上引起广泛重视。目前已出现多种新工艺,虽然因几何形状、运行参数和微生物的状态不同而有所不同,但剩余活性污泥脱水是污水治理的关键。带式浓缩压滤机作为新型污泥脱水工艺的关键设备,其开发研制被国家经贸委列为1999年城市污水处理厂八大类技术开发研制设备。 带式浓缩压滤机在结构设计上要考虑物料在浓缩机上停留时间的长短与处理量的关系和与压滤机带速比的关系。其结构形式大体有三种:一体机、分体机和组合机。将带式浓缩机与带式压滤机组装在一个机架上,由一台电机驱动,称为带式浓缩压滤一体机;将带式浓缩机与带式压滤机分别组装在两个机架上,有各自的基础,分别由两台电机作驱动力,称为

塔器设计时应具备那些知识点.doc

一、塔器的分类及用途 1.塔设备的作用: 2.塔器的分类:①按操作压力分②按单元操作分③按内件结构分:填料塔和 板式塔 3.填料塔的结构:①塔体②支座③人孔或手孔④吊柱及扶梯⑤操作平台 ⑥填料⑦除沫器,等等 4.板式塔的结构:①塔体②支座③人孔或手孔④吊柱及扶梯⑤操作平台⑥ 塔盘等。 5.填料塔使用场合:①分离程度要求高的情况②具有腐蚀性的物料的情况 ③容易发泡的物料的情况 6.板式塔使用场合:①液相负荷较小时②含固体颗粒,容易结垢,有结晶 的物料等。 二、填料塔 1.填料塔的特点: 2.填料分类:散装填料和规整填料 散装填料的分类:(1)环形填料(2)开孔环形填料(3)鞍形填料 (4)金属环矩鞍填料 规整填料分类:(1)丝网波纹填料(2)板波纹填料 填料的选用: 3.液体的分布器分类:(1)管式液体分布器:重力型和压力型(2)槽式液体 分布器(3)喷洒式液体分布器(4)盘式液体分布器 4.液体的分布器作用: 5.了解填料支撑的种类,结构 三、板式塔的种类 1、泡罩塔的结构 优点: 缺点: 2、浮阀塔的结构 优点: 缺点: 3、筛板塔的结构 优点: 缺点: 4、无降液管塔 5、导向筛板塔 6、斜喷型塔 四、板式塔的塔盘 1、板式塔的塔盘分类:溢流型和穿流型 2、板式塔的塔盘结构分类:①整块式塔盘:定距管式塔盘和重叠式塔盘 ②分块式塔盘 3、塔盘支撑结构种类,结构 五、塔设备的附件 1、除沫器的作用: 2、常用的除沫装置:丝网除沫器、折流板式除沫器、旋流板除沫器

3、吊柱的结构: 六、塔设备的计算 塔设备的各种载荷,计算中需要知道设计哪些载荷 塔设备标准的适用范围,什么样的设备,才算是塔设备 设计压力,设计温度如何考虑 材料的选择,负偏差,腐蚀裕量,最小厚度 1.了解塔设备的受力模型,塔设备受力模型的理论基础 地震受力模型 地震水平力如何计算, 地震垂直力如何计算;什么情况下考虑地震垂直作用力 地震弯矩如何计算 多质点的地震弯矩是如何叠加的 风载受力模型 风作用力的计算 风弯矩的计算 地震作用和风载作用是如何叠加的 2.塔设备强度计算包括哪些步骤 3.塔的固有周期,振型的概念是什么,又是如何参与到塔设备计算中的 七、塔设备零部件 1.裙座 1.1 裙座材料的选择,地脚螺栓的选择,许用应力的确定 1.2 裙座的类型,每种类型适用场合,每种结构有何要求 1.3 裙座与塔壳的连接形式,焊缝有和要求 1.4 排气孔,排气管和隔火圈的规格数量的确定 1.5 裙座上面引出管的结构如何设计 1.6检查孔规格,数量的确定 1.7地脚螺栓座的结构有哪些,每种结构尺寸如何确定的 2.塔壳 通常包括的元件有哪些,塔壳结构有哪些 3.静电接地板如何设置 4.地脚螺栓模板的用途,结构如何考虑 5.设置吊柱的目的(分段塔可不设置吊柱),结构尺寸的确定 6.塔设备吊耳如何选择,如何计算 八、设备法兰(专题讨论) 1)设备法兰的类型,以及各种类型的优缺点,各适用什么场合 2)设备法兰的标准号,在选用标准设备法兰需要注意什么 3)非标设备法兰如何计算,结构尺寸如何确定,怎样才算是最优设计 4)设备法兰材料有哪些,如何选择 5)设备法兰的制造,法兰的制造技术要求有哪些 九、螺栓和螺母, 1)螺栓材料选择,标准的选择,载荷计算

水质工程学计算实例

3 物理处理单元工艺设计计算 3.1格栅 格栅用以去除废水中较大的悬浮物、漂浮物、纤维物质和固体颗粒物质,以保证后续处理单元和水泵的正常运行,减轻后续处理单元的处理负荷,防止阻塞排泥管道。 3.1.1 设计参数及其规定 ○ 1水泵前格栅栅条间隙,应根据水泵要求确定。 ○ 2污水处理系统前格栅栅条间隙,应符合:(a)人工清除25~40mm ;(b)人工清除16~25mm ;(c)最大间隙40mm 。 污水处理厂亦可设置两粗细两道格栅,粗格栅栅条间隙50~150mm 。 ○ 3如水泵前格栅间隙不大于25mm ,污水处理系统前可不再设置格栅。 ○ 4栅渣量与地区的特点、格栅的间隙大小、污水流量以及下水道系统的类型等因素有关。在无当地运行资料时,可采用:(a)格栅间隙16~25mm ,0.10~0.06m 3/103m 3 (栅渣/污水); (b)格栅间隙30~50mm ,0.03~0.01m 3/103m 3 (栅渣/污水)。 栅渣的含水率一般为80%,容重约为960kg/m 3 。 ○5在大型污水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m 3),一般应采用机械清 渣。 ○ 6机械格栅不宜少于2台,如为1台时,应设人工清除格栅备用。 ○ 7过栅流速一般采用0.6~1.0m/s 。 ○ 8格栅前渠道内水流速度一般采用0.4~0.9m/s 。 ○ 9格栅倾角一般采用45o~75o。国内一般采用60o~70o。 ○ 10通过格栅水头损失一般采用0.08~0.15m 。 ○ 11格栅间必须设置工作台,台面应高出栅前最高设计水位0.5m 。工作台上应有安全设施和冲洗设施。 ○ 12格栅间工作台两侧过道宽度不应小于0.7m 。工作台正面过道宽度:(a)人工清除不应小于 1.2m (b) 机械清除不应小于1.5m 。 ○ 13机械格栅的动力装置一般宜设在室内,或采取其他保护设备的措施。 ○ 14设置格栅装置的构筑物,必须考虑设有良好的通风设施。 ○ 15格栅间内应安设吊运设备,以进行格栅及其他设备的检修和栅渣的日常清除。 3.1.2 格栅的计算 【例题】 已知某城市污水处理厂的最大污水量Q max =0.2m 3 /s ,总变化系数K z =1.50,求格栅各部分尺寸。 【解】 (1) 栅条的间隙数(n) 设栅前水深h=0.4m ,过栅流速v=0.9m/s ,栅条间隙宽度b=0.021m ,格栅倾α=60o。 max 260.0210.40.9 Q n bhv ==≈??(个) (2) 栅槽宽度(B) 设栅条宽度S=0.01m 。 B=S(n-1)+bn=0.01×(26-1)+0.021×26=0.8(m) (3) 进水渠道渐宽部分的长度

塔设备选型

塔设备选型 1.1设计标准 1.2塔设备设计原则 塔设备设计应满足以下原则: (1)生产能力大。在较大的气(汽)液流速下,仍不致发生大量的雾沫夹带、拦液或液泛等破坏正常操作的现象。 (2)操作稳定、弹性大。当塔设备的气(汽)液负荷量有较大的波动时,仍能在较高的传质效率下进行稳定的操作,并且塔设备应保证能长期连续操作。 (3)流体流动阻力小,即流体透过塔设备的压力降小。这将大大节省生产中的动力消耗,以降低操作费用。对于减压蒸馏操作,较大的压力降还将使系统无法维持必要的真空度。 (4)结构简单、材料耗用量小、制造和安装容易。这可以减少基建过程中的投资费用。 (5)耐腐蚀和不易堵塞,方便操作、调节和检修。 1.3塔型的选择 1.3.1板式塔与填料塔的比较 精馏塔按传质元件区别可分为两大类,即板式精馏塔和填料精馏塔。根据上述要求,可对板式塔和填料塔的性能作一简要的比较,详见表1-1 所示。 表1-1 板式塔与填料塔的对比

1.3.2塔型选择时应考虑的因素 选择塔型时应考虑的因素有很多,主要有:物料性质、操作条件、塔设备的性能,以及塔设备的制造、安装、运输和维修等,具体如下: 与物性有关的因素 a)易起泡的物系,如处理量不大时,以选择填料塔为宜。因为填料能使泡沫破裂,在板式塔中则易引起液泛。 b)具有腐蚀性的介质,可选用填料塔,如必须用板式塔,宜选用结构简单、造价便宜的筛板塔、穿流式塔盘或舌形塔盘,以便及时更换。 c)具有热敏性的物料需减压操作,以防过热引起分解或聚合时,应选用压力降较小的塔型,如可采用装填规整填料的塔、湿壁塔等,当要求真空度较低时,宜用筛板塔和浮阀塔。 d)粘性较大的物系,可以选用大尺寸填料。板式塔的传质效率太差。含有悬浮物的物料,应选择液流通道较大的塔型,以板式塔为宜。可选用泡罩塔、浮阀塔、栅板塔、舌形塔和孔径较大的筛板塔等。不宜使用小填料。 e)操作过程中有热效应的系统,用板式塔为宜。因塔盘上有液层,可在其中安放换热管,进行有效的加热或冷却。 与操作条件有关的因素 a)若气相传质阻力大(即气相控制系统,如低粘度液体的蒸馏,空气增湿等),宜采用填料塔,因填料层中气相呈湍流,液相为膜状流。反之,受液相控制的系统,宜采用板式塔,因为板式塔中液相呈湍流,用气体在液层中鼓泡。 b)大的液体负荷,可选用填料塔,若用板式塔时,宜选用气液并流的塔型(如喷射型塔盘)或选用板上液流阻力较小的塔型(如筛板和浮阀)。此外,导向筛板塔 盘和多降液管筛板塔盘都能承受较大的液体负荷。 c)低的液体负荷,一般不宜采用填料塔。因为填料塔要求一定数量的喷淋密度,但网体填料能用于低液体负荷的场合。

过滤器选型计算

精心整理篮式粗过滤器选型计算 粗过滤器工艺计算 1.总则 本工艺计算依据石油化工管道、泵用过滤器标准计算,参考标准SH/T3411-1999《石油化 工泵用过滤器选用、检验及验收》、HG-T21637-1991《化工管道过滤器》。本计算仅适用 于过滤器内过滤面积及起始压降计算,过滤器壳体执行GB150标准,不在本计算内。 2.过滤面积计算 依据SH/T3411-1999标准,其规定的有效过滤面积定义为:过滤器内支撑结构开孔总面积 减去开孔处滤网占据面积的净面积。因此计算有效过滤面积时考虑支撑结构的有效面积以及 滤网的有效面积。根据标准要求,永久性过滤器的有效过滤面积与管道截面积之比不小于1.5。 本项目的过滤器按照临时过滤器要求,有效过滤面积与管道截面积之比取不小于3.0。 2.1管道截面积计算S1: 本项目过滤器进出口管道工程直径DN200,S1=(0.2/2)2×3.14=0.0314m2 2.2过滤器有效过滤面积计算S2: 按照标准要求面积比取3,即S2/S1=3,即S2=S1×3=0.0314×3=0.0942m2 2.3过滤器过滤网面积计算 按照项目要求,过滤网要求0.8mm,表面积0.45m2。 本过滤器选择蓝式滤芯的表面积为0.56m2,滤篮支撑结构开孔率取50%,滤网选24目(可 拦截0.785mm以上颗粒),其有效开孔率为56%。因此本项目所选过滤器滤篮的有效过滤 面积为S=0.56×0.5×0.56=0.157m2,有效过滤面大于2.2计算结果0.0942m2,因此 在过滤面积上满足要求。 3.起始压降计算 压降计算按照标准所提供的参考公式计算,其中涉及到的物理量有雷诺数、当量长度、流体 密度、黏度等。 计算公式: 符号说明:

塔设备选型

塔设备选型 1、1 设计标准 1、2 塔设备设计原则 塔设备设计应满足以下原则: (1) 生产能力大。在较大的气(汽)液流速下,仍不致发生大量的雾沫夹带、拦液或液泛等破坏正常操作的现象。 (2) 操作稳定、弹性大。当塔设备的气(汽)液负荷量有较大的波动时,仍能在较高的传质效率下进行稳定的操作,并且塔设备应保证能长期连续操作。 (3) 流体流动阻力小,即流体透过塔设备的压力降小。这将大大节省生产中的动力消耗,以降低操作费用。对于减压蒸馏操作,较大的压力降还将使系统无法维持必要的真空度。 (4) 结构简单、材料耗用量小、制造与安装容易。这可以减少基建过程中的投资费用。 (5) 耐腐蚀与不易堵塞,方便操作、调节与检修。 1、3 塔型的选择 1、3、1 板式塔与填料塔的比较 精馏塔按传质元件区别可分为两大类,即板式精馏塔与填料精馏塔。根据上述要求,可对板式塔与填料塔的性能作一简要的比较,详见表1-1所示。 表1-1 板式塔与填料塔的对比

选择塔型时应考虑的因素有很多,主要有:物料性质、操作条件、塔设备的性能,以及塔设备的制造、安装、运输与维修等,具体如下: ?与物性有关的因素 a)易起泡的物系,如处理量不大时,以选择填料塔为宜。因为填料能使泡沫破裂,在板式塔中则易引起液泛。 b)具有腐蚀性的介质,可选用填料塔,如必须用板式塔,宜选用结构简单、造价便宜的筛板塔、穿流式塔盘或舌形塔盘,以便及时更换。 c)具有热敏性的物料需减压操作,以防过热引起分解或聚合时,应选用压力降较小的塔型,如可采用装填规整填料的塔、湿壁塔等,当要求真空度较低时,宜用筛板塔与浮阀塔。 d)粘性较大的物系,可以选用大尺寸填料。板式塔的传质效率太差。 含有悬浮物的物料,应选择液流通道较大的塔型,以板式塔为宜。可选用泡罩塔、浮阀塔、栅板塔、舌形塔与孔径较大的筛板塔等。不宜使用小填料。 e)操作过程中有热效应的系统,用板式塔为宜。因塔盘上有液层,可在其中安放换热管,进行有效的加热或冷却。 ?与操作条件有关的因素 a)若气相传质阻力大(即气相控制系统,如低粘度液体的蒸馏,空气增湿等),宜采用填料塔,因填料层中气相呈湍流,液相为膜状流。反之,受液相控制的系统,宜采用板式塔,因为板式塔中液相呈湍流,用气体在液层中鼓泡。 b)大的液体负荷,可选用填料塔,若用板式塔时,宜选用气液并流的塔型(如喷射型塔盘)或选用板上液流阻力较小的塔型(如筛板与浮阀)。此外,导向筛板塔盘与多降液管筛板塔盘都能承受较大的液体负荷。 c)低的液体负荷,一般不宜采用填料塔。因为填料塔要求一定数量的喷淋密度,但网体填料能用于低液体负荷的场合。

过滤器选型标准

过滤器选型标准 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

1. 过滤器(英文filter)介绍 根据过滤器的使用位置以及用途,可以分为两类:粗过滤器(英文strainer)和精细过滤器 粗过滤器主要应用于泵、流量计、阀门前,以保护设备不受大的金属颗粒磨碎,其精度基本是几百微米以上。精细过滤主要是净化流体,保护工艺安全。其精度范围基本在1微米到30微米之间。 按照制造设计要求可以分:压力容器和非压力容器 按照压力容器设计和制造的过滤器壳体执行GB150或者ASME标准。非压力容器执行 SH/T3411或HGT 21637标准执行。 根据使用介质可分为:气体过滤器和液体过滤器 气体过滤器适用于气-固分离流域,可用于气体净化、分成回收等。液体过滤器适用于液-固分离领域,如润滑油过滤、石油化工行业过滤以及污水处理等。 2. 精细过滤器过滤面积: 粗过滤器国内有三部行业标准,因此,只要按照标准选型既可满足要求。 精细过滤器的过滤面积计算基本上不用公式计算,选形时主要依据的是实验数据,因此,过滤器的选择建议还是让生产厂家来选。

过滤三大曲线: 流量压差曲线(ΔP-Q),粒径与过滤比曲线(μ-β),时间与压将曲线(T-ΔP) 因此,计算过滤面积时要依据这三个曲线,其中最主要的的是流量压差曲线,这个曲线由有实力的过滤器制造厂进行试验测得。 目前最权威的测试方法是多次通过试验:ISO 4572 多次通过试验标准。此试验台价格昂贵,目前国内仅有2-3台。目前国内的小厂家过滤器公司滤芯检测是单次通过实验。 过滤面积计算步骤: 1. 确定过滤精度为25微米的过滤比,如200(过滤效率),确定何时滤材 2. 根据给定压降,对滤材进行流量压差测试。得出合适流量(L/min) 3. 根据所得流量,除以试验滤材的面积,计算流速(L/)。 4. 根据流速,和实际应用的流量,确定过滤面积,流量/流速=过滤面积 5. 根据所选用的过滤面积和滤材确定滤芯结构形式,折叠式或圆筒卷绕式 篮式粗过滤器选型计算 粗过滤器工艺计算 1. 总则 本工艺计算依据石油化工管道、泵用过滤器标准计算,参考标准SH/T 3411-1999《石油化工泵用过滤器选用、检验及验收》、HG-T 21637-1991 《化工管道过滤器》。本

有关过滤设备的计算实例

过滤设备的计算实例 一、前言 过滤设备是利用过滤介质(滤布、滤纸、多孔滤材或者砂层等)把含有固体细粒子的悬浮中的液体的固体分开的设备。在过滤介质上推积起来的细小粒子称为滤饼,通过过滤介质的液体称作为滤液,本文简单介绍了过滤没备的分类和有关过滤设备的计算实例。 二、过滤设备的分类 过滤设备的种类很多,分类方法也有多种,本文以过滤压力来进行分类可以分为以下四类:1、重力式 含固体颗粒是悬浮液进入过滤介质的上部,在重力的作用下,液体在过滤介质间流过而固体颗粒被介质捕集在过滤介质的上部(或者在介质内部被捕)形成滤饼。 2、加压式 工业上经常使用的板框式压滤机和加压叶片式过滤机均属此种类型。一般过滤介质固定在滤板上,具有一定压悬浮液体进入过滤介质的一侧,液体在压力作用下通过过滤介质的滤板的沟槽流出,固体被截留在过滤介质的另一侧。通常这类滤设备是间歇操作的,但是也有连续操作的加压过滤设备,如连续机械挤压式滤机、连续加压旋转叶片式过滤机等。 3、真空式 真空式过滤机一般在滤板的外侧包有过滤介质,而内侧处于真空状态,液体在板的外侧,常常它的过滤面有一部分浸在液体中,如转鼓式真空滤机和旋转叶片真空过滤机,它们在转动中经过了过滤,洗涤,吸干和卸料过程。但也有一类滤机它们的过滤面是水平放置的,如连续水平真空带式过滤机,倾覆盘式过滤机,转台式过滤机等。 4、离心式 在一个转动的圆筒内固定有过滤介质,悬浮液进入转鼓,在离心力的作用下滤液通过过滤介质流出转鼓,滤饼留在转鼓内。滤饼的排出可以是间歇的(上悬式三足离心机)也可以是连续的(刮刀卸料的离心过滤机),所发离心式过滤机也可以分为间歇式和边续式两大类。

水处理设备常用计算公式

水处理设备常用计算公式 基础数据: 直径(D)、填高(H)、流速(S)、比重(ρ)、体积(V)、重量(G)、出水量(Q)、原水硬度(C)、原水含盐量(Y)、再生周期(T)、 再生剂耗量[工业盐(F1)、盐酸(F2)、氢氧化钠(F3) ] 活性炭9元/公斤,石英砂0.7元/kg,树脂9元/kg 机械过滤器一般流速S=8m/h 活性炭过滤器一般流速S=8-10m/h 钠床、阳床、阴床一般流速S=15-20m/h 混床一般流速S=30-40m/h 石英砂比重ρ=1800Kg/m3 活性炭比重ρ=450Kg/m3 阳树脂比重ρ=820Kg/m3(漂莱特) 阴树脂比重ρ=700Kg/m3(漂莱特) 阳树脂交换容量800mmol/m3 阴树脂交换容量300mmol/m3 1、过滤器: 滤料体积V=0.785×D2×H 滤料重量G=V×ρ 出水量Q=0.785×D2×S 2、钠床:(阳树脂) 滤料体积V=0.785×D2×H 滤料重量G=V×ρ 出水量Q=0.785×D2×S 再生周期T=V×800×50÷C÷Q 再生剂耗量-工业盐F1=V×800×1.8×0.0585

3、阳床:(阳树脂) 滤料体积V=0.785×D2×H 滤料重量G=V×ρ 出水量Q=0.785×D2×S 再生周期T=V×800×58.5÷Y÷Q 再生剂耗量-盐酸F2=V×800×3×0.0365÷0.35 4、阴床:(阴树脂) 滤料体积V=0.785×D2×H 滤料重量G=V×ρ 出水量Q=0.785×D2×S 再生周期T=V×300×58.5÷Y÷Q 再生剂耗量-氢氧化钠F3=V×300×4×0.04 5、混床: (阳、阴树脂比例为1:2;筒体直径<500mm填料高度为1350;筒体直径>500 mm 填料高度为1800:) 阳树脂体积V1=0.785×D2×H÷3 阳树脂重量G1=V1×ρ 阴树脂体积V2=0.785×D2×H×2÷3 阴树脂重量G2=V2×ρ 出水量Q=0.785×D2×S 再生周期T=V2×300×58.5÷Y÷Q 再生剂耗量-盐酸F2=V1×800×3×0.0365÷0.35 再生剂耗量-氢氧化钠F3=V2×300×4×0.04

过滤器设计计算书

设计计算书产品/项目名称:过滤器 编制人/日期: 审核人/日期: 批准人/日期:

1. 滤芯截面尺寸的确定 为了不增加水流水阻,滤芯过水截面积应等于管子的截面 积,即滤芯的直径应等于公称通径(D DN )。如右图所示阴影部分的面积为管子公称通径的截面积。 8寸管的公称通径为 200mm ,滤芯的直径为200mm 8吋过滤机公称通径的截面积 242 21014.34 2004 mm D A DN DN ?=?= = ππ 2. 滤芯长度的确定 2.1. 根据SH/T3411-19991.6倍公称通径截面积,本项目取1.6。样机有一个圆过滤面,如右图所示: DN DN A K L D 6.1=???π 式中: K--------方孔筛网的开孔率为10% ∴80010 .020014.31014.36.16.14 ≈????=??=K D A L DN DN π 经画图,调整比例,L 取700mm 。 则mm L A D DN DN 228700 10.014.310 14.36.1πK 6.14 ≈????==' 滤芯直径圆整取230mm 。 3. 主管的确定

参考中国建筑标准设计研究所的标准图集《除污器》,刷式全自动过滤机主管与进出 3.2主管壁厚的确定 参考《压力容器与化工设备使用手册》上册,第2章:压力容器壳体与封头 ??φ σ2i PD S = (2-1-6) 式中:--计算厚度S ,mm D i ――圆筒的内直径,mm P ――设计压力,MPa ;设计压力取最大级别工作压力P=1.6 MPa φ――焊缝系数,取φ=0.85 [σ]――材料的许用应力,主管材料采用Q235-A ,[σ]=n s σ n ――安全系数,取n=1.5 出入水管:4.285 .06.12352200 6.108≈???= S mm 主管: 21.485 .023523506.1' 08≈???=S mm

精馏塔强度计算实例

第六部分 塔内件机械强度设计及校核 6.1精馏塔筒体和裙座壁厚计算 选用16MnR 钢板,查《化工设备机械基础》表9-4得:,MPa 170][t =δ焊接采用双面焊 100%无损探伤检查,焊接接头系数00.1=?,则由筒体的计算厚度为: []0.11182300 0.76()2217010.1118 c i p D c mm t p δσ??= ==-??- 查《化工设备机械基础》表9-10得mm C 8.01=,加上壁厚附加量C=2mm ,并圆整,还考虑刚度、稳定性及多种载荷等因素,取筒体、封头和裙座的名义厚度Sn 为8mm ,则 有效厚度 826mm e n C δδ=-=-=() 应力校核: 采用水压试验,试验压力为 [][] 1701.25 1.250.11180.14 170T t p p MPa σσ==??=() 压力试验时的薄膜应力 ()e T δδσ2D p e i T += 故() 0.142300626.9()26 T MPa σ?+= =? 查表9-4,16MnR 的 MPa s 345=σ 故0.90.91345310.5()26.9MP s T MPa a ?σσ=??==> 所以满足水压试验要求。 封头采用标准椭圆封头 6.2精馏塔塔的质量载荷计算 6.2.1塔壳和裙座的质量 圆筒质量 塔体圆筒总高度Z 8m = ()14 2 2 i D -D Z m π ρ= ()2 232.316 2.300137.85105916.554 kg π = -???= 6.2.2封头质量 查的DN2300,壁厚8mm 的椭圆形封头的质量为251kg ,则 kg 5022251m 2=?=

相关文档
相关文档 最新文档