文档库 最新最全的文档下载
当前位置:文档库 › 第十五章 组合变形

第十五章 组合变形

第十五章组合变形

§15.1组合变形的概念与方法 §15.2 强度理论

§15.3 斜弯曲

§15.4 拉(压)弯组合变形 §15.5 弯扭组合变形

§15.6 组合变形的一般情况

§15.1 组合变形的概念与方法

组合变形——杆件在外力作用下,同时产生两种或两种以上基本变形

的情况。

例如:(a)厂房边柱

压(拉)弯组合

N

M

矩形截面梁斜弯曲

例如:(b)坡屋顶上的横梁

斜弯曲

弯扭组合变形

例如:(c)传动轴

m

T1 T2

弯扭组合

分析方法:在线弹性范围,采用叠加原理,先分解成基本变形,然后将同一点的应力叠加。

τ

σ

§15.2 强度理论

强度理论——材料失效的假设

注意:在应力状态相同的情况下,不同的材料会有不同的失效形式。

轴向拉伸: 铸铁的失效与低碳钢的失效。 圆轴扭转: 铸铁的失效与低碳钢的失效。

前面研究过单向应力状态和纯剪应力状态的强度问题。

复杂应力状态的强度问题?

四种常用的强度理论

1、第一强度理论(最大的拉应力理论)

(主要用于脆性材料)σmax 达到某一数值C时,材料失效。

由于σ

max = σ

1

在单向拉伸时,σ

1= σ

b

失效

即C= σ

b

令[σ]= σ

b

/n

复杂应力状态:σ

1

=[σ] 失效

强度条件:σ

1

[σ]

2、第二强度理论(最大拉应变理论)

(主要用于脆性材料)ε

max

达到某一数值C时,材料失效。

由于ε

max = ε

1

在单向拉伸时,ε

1= ε

b

b

/ E 失效

即C= σ

b

/ E

令[σ]= σ

b

/n

复杂应力状态:ε

1

=[σ] / E 失效

强度条件:σ

1

-ν(σ2+ σ3) [σ]

3、第三强度理论(最大剪应力理论)

(主要用于塑性材料)

τmax 达到某一数值C 时,材料失效。由于

τmax = (σ1 -σ3)/ 2

在单向拉伸,材料屈服时,σ1= σs , σ3=0即τmax =σs / 2 失效所以C= σs / 2

令[σ]= σs / n

复杂应力状态: τmax = (σ1 -σ3)/ 2=[σ] /2 失效强度条件:

σ1 -σ3 [σ]

4、第四强度理论(最大歪形能理论)

(主要用于塑性材料) u

f

达到某一数值C时,材料失效。

由于

u f =[(σ

1

2

)2 + (σ

2

3

)2 + (σ

3

1

)2](1+ν)/6E

在单向拉伸,材料屈服时,

σ1= σs, σ2= σ3= 0

即u f = σs 2(1+ ν)/3E

失效

所以C= σs 2(1+ ν)/3E 令

[σ]= σs / n

])()()[(2

12

13232221σσσσσσ?+?+?复杂应力状态:

= [σ] 失效])()()[(2

12

13232221σσσσσσ?+?+?强度条件:

[σ]

四个强度理论的统一表示形式:

σr i ≤[σ] i =1 ~ 4σr i 称为相当应力其中:σr 1= σ1

σr 2= σ1-ν(σ2+ σ3)σr 3= σ1-σ3σr 4=

])()()[(2

1213232221σσσσσσ?+?+?

注意:应力状态不同,材料失效的形式也可能发生变化。

例如:

铸铁单向受压,试件沿45o斜截面断裂,应采用第三或第四强度理论。

低碳钢三个主方向均受拉,材料沿与σ

1直截面断裂,应采用第一或第二强度理论。

莫尔强度理论:

对于拉、压强度不相同的材料,即

[σt ] ≠[σc ]

强度条件:σ1-σ3 [σt ] / [σc ] ≤[σt ] 当[σt ] = [σc ]时,则上式简化为第三强度理论。

§15.3 斜弯曲

斜弯曲--梁上横向载荷的作用方向过横截面的弯曲中心,但不与横截面形心主轴平行。

矩形截面梁斜弯曲

第八章组合变形构件的强度习题

第八章组合变形构件的强度习题 一、填空题 1、两种或两种以上基本变形同时发生在一个杆上的变形,称为()变形。 二、计算题 1、如图所示的手摇绞车,最大起重量Q=788N,卷筒直径D=36cm,两轴承间的距离l=80cm,轴的许用应力[]σ=80Mpa。试按第三强度理论设计轴的直径d。 2、图示手摇铰车的最大起重量P=1kN,材料为Q235钢,[σ]=80 MPa。试按第三强度理论选择铰车的轴的直径。 3、图示传动轴AB由电动机带动,轴长L=1.2m,在跨中安装一胶带轮,重G=5kN,半径R=0.6m,胶带紧边张力F1=6kN,松边张力F2=3kN。轴直径d=0.1m,材料许用应力[σ]=50MPa。试按第三强度理论校核轴的强度。 4、如图所示,轴上安装有两个轮子,两轮上分别作用有F=3kN及重物Q,该轴处于

平衡状态。若[σ]=80MPa。试按第四强度理论选定轴的直径d。 5、图示钢质拐轴,AB轴的长度l AB=150mm, BC轴长度l BC=140mm,承受集中载荷F 的作用,许用应力[σ]=160Mpa,若AB轴的抗弯截面系数W z=3000mm3,。试利用第三强度理论,按AB轴的强度条件确定此结构的许可载荷F。(注:写出解题过程) 6、如图所示,由电动机带动的轴上,装有一直径D=1m的皮带轮,皮带紧边张力为2F=5KN,松边张力为F=2.5KN,轮重F P=2KN,已知材料的许用应力[σ]=80Mpa,试按第三强度理论设计轴的直径d。 7、如图所示,有一圆杆AB长为l,横截面直径为d,杆的一端固定,一端自由,在自由端B处固结一圆轮,轮的半径为R,并于轮缘处作用一集中的切向力P。试按第三强度理论建立该圆杆的强度条件。圆杆材料的许用应力为[σ]。

12-第十二章组合变形时的强度概论

第十二章 组合变形 §12.1 组合变形和叠加原理 一、组合变形的概念 由两种或两种基本变形的组合而成的变形。 例如:转扬机,牛腿,水坝,烟囱等。 二、组合变形的计算方法 由于应力及变形均是荷载的一次函数,所以采用叠加法计算组合变形的应力和变形。 §12.2 斜弯曲 一、斜弯曲的概念 若梁作用的载荷的荷载不在同一平面内或虽在同一平面但并不位于梁的一个形心主惯性矩内,这时梁发生非平面弯曲。这种非平面弯曲可分解为两个平面弯曲。两个互相垂直平面弯曲的组合,构成斜弯曲或双向弯曲。 二、斜弯曲的应力计算 1. 外力的分解 对于任意分布横向力作用下的梁,先将任意分布的横向力向梁的两相互垂直的形心主惯性矩平面分解,得到位于两形心主惯性矩平面内的两组力。位于形心主惯性平面内的每组外力都使梁发生平面弯曲。如上所示简支梁。 2. 内力计算 形心主惯性平面xOy 内所有平行于y 轴的外力将引起横截面上的弯矩z M ,按弯曲内力的计

算方法可以列出弯矩方程z M 或画出z M 的弯矩图。同样,形心主惯性平面xOz 内所有平行于z 轴的外力将引起横截面上的弯矩y M ,也可列出弯矩方程y M 或画出其弯矩图。 合成弯矩:2 Z 2y M M M += 合成弯矩矢量M 与y 轴的夹角为:y z M M tan =? 以上弯矩z M 和y M 均取绝对值计算, 由力偶的矢量表示法可知,合成弯矩M 的作用平面垂直于矢量M 。 3. 计算 y z I z I y y z M M + =''+'=σσσ 4. 轴的位置 两平面弯曲组合成斜弯曲,只在横截面上正应力为零的点的连线才是斜弯曲 的中性轴。设中性轴上任一点的坐标)(00,y z ,将0y ,0z 代入应力计算公式,并令σ等于方程:零,得中性轴: 0M M 0 y 0z =+y z I z I y 中性轴与y 轴的夹角α,?αtan tan z z 00 I I M M I I y z y y z y =?== 5. 最大正压力 中性轴把横截面分为两个区域,一个受拉区,另一个受压区,离中性轴最远的点,正应力最大。 (1) 矩形或矩形组合截面 对于有棱角的矩形(含正方形)或矩形组合截面,截面上的最大正应力一定发生在离形心最远的棱角上。将最远点的坐标代入应力计算公式 y y z z y z W M W M I z I y +=+=max y max z max M M σ (2) 圆形截面 圆形截面的合成弯矩作用面与中性轴垂直。合成弯矩作用面与圆截面的两交点即最大拉应力和最大压应力点,其最大拉、压应力相等。 W M max =σ, 2 z 2y M M M += 例题 图示简支梁由22a 工字钢构成,许用应力[]MPa 140=σ。求该梁的许用载[]F ,图中长度l=1000mm 。

《材料力学》第8章 组合变形及连接部分的计算 习题解

第八章 组合变形及连接部分的计算 习题解 [习题8-1] 14号工字钢悬臂梁受力情况如图所示。已知m l 8.0=,kN F 5.21=, kN F 0.12=,试求危险截面上的最大正应力。 解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因钢材的拉压 性能相同,故只计算最大拉应力: 式中,z W ,y W 由14号工字钢,查型钢表得到3 102cm W z =,3 1.16cm W y =。故 MPa Pa m m N m m N 1.79101.79101.168.0100.11010228.0105.2363 63363max =?=???+?????=--σ [习题8-2] 受集度为 q 的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为 030=α,如图所示。已知该梁材料的弹性模量 GPa E 10=;梁的尺寸为 m l 4=,mm h 160=,mm b 120=;许用应力MPa 12][=σ;许用挠度150/][l w =。试校核梁的强度和刚度。

解:(1)强度校核 )/(732.1866.0230cos 0m kN q q y =?== (正y 方向↓) )/(15.0230sin 0m kN q q z =?== (负z 方向←) )(464.34732.181 8122m kN l q M y zmaz ?=??== 出现在跨中截面 )(24181 8122m kN l q M z ymaz ?=??== 出现在跨中截面 )(51200016012061 61322mm bh W z =??== )(3840001201606 1 61322mm hb W y =??== 最大拉应力出现在左下角点上: y y z z W M W M max max max + = σ MPa mm mm N mm mm N 974.1138400010251200010464.33 636max =??+??=σ 因为 MPa 974.11max =σ,MPa 12][=σ,即:][max σσ< 所以 满足正应力强度条件,即不会拉断或压断,亦即强度上是安全的。 (2)刚度校核 =

工程力学(天津大学)第14章答案教学提纲

第十四章 组合变形 习 题 14?1 截面为20a 工字钢的简支梁,受力如图所示,外力F 通过截面的形心,且与y 轴成φ角。已知:F =10kN ,l =4m ,φ=15°,[σ]=160MPa ,试校核该梁的强度。 解:kN.m 104104 1 41=??== Fl M kN.m;58821510kN.m;65991510.sin φsin M M .cos φcos M M y z =?===?==οο 查附表得:3 3 cm 531cm 237.W ;W y z == 122.9MPa Pa 10912210 5311058821023710569966 3 63=?=??+??=+=--....W M W M σy y z z max []σσmax <,强度满足要求。 14?2 矩形截面木檩条,受力如图所示。已知:l =4m ,q =2kN/m ,E =9GPa ,[σ]=12MPa , 4326'=οα,b =110mm ,h =200mm ,200 1][=l f 。试验算檩条的强度和刚度。 z

解:kN.m 4428 1 8122=??== ql M kN.m;789143264kN.m;578343264.sin φsin M M .cos φcos M M y z ='?==='?==οοm ...W ;m ...W y z 424210033411022061 10333722011061--?=??=?=??= MPa 329Pa 1032910 033410789110333710578364 343......W M W M σy y z z max =?=??+??=+=-- []σσmax <,强度满足要求。 m ...sin EI φsin ql f m ...cos EI φcos ql f y y z z 33 943433 943410931411022012 1 1093844326410253845100349220110121 1093844326410253845--?=?????'????==?=?????' ????= =οο mm ..f f f y z 4517104517322=?=+= - 200 1 2291< =l f ,所以挠度满足要求。 14?3 一矩形截面悬臂梁,如图所示,在自由端有一集中力F 作用,作用点通过截面的形心,与y 轴成φ角。已知:F =2kN ,l =2m ,φ=15°,[σ]=10MPa ,E =9GPa ,h/b =1.5,容许挠度为l /125,试选择梁的截面尺寸,并作刚度校核。 解: =M kN.m;0351154kN.m;8643154.sin φsin M M .cos φcos M M y z =?===?==οο []62 3 2310106 110035*********?=≤?+?=+=σhb .bh .W M W M σy y z z max 将h/b=1.5代入上式得:mm b 113≥;则mm h 170≥。 取b=110mm;h=170mm z

第八章组合变形练习题

组合变形练习题 一、选择 1、应用叠加原理的前提条件是:。 A:线弹性构件; B:小变形杆件; C:线弹性、小变形杆件; D:线弹性、小变形、直杆; 2、平板上边切h/5,在下边对应切去h/5,平板的强度。 A:降低一半; B:降低不到一半; C:不变; D:提高了; 3、AB杆的A处靠在光滑的墙上,B端铰支,在自重作用下发生变形, AB杆发生变形。 A:平面弯曲 B:斜弯; C:拉弯组合; D:压弯组合; 4、简支梁受力如图:梁上。 A:AC段发生弯曲变形、CB段发生拉弯组合变 形 B:AC段发生压弯组合变形、CB段发生弯曲变形 C:两段只发生弯曲变 形 D:AC段发生压弯组合、CB段发生拉弯组合变形 5、图示中铸铁制成的压力机立柱的截面中,最合理的是。

6、矩形截面悬臂梁受力如图,P2作用在梁的中间截面处,悬臂梁根部截面上的最大应力为:。 A:σ max =(M y 2+M z 2)1/2/W B:σ max =M y /W y +M Z /W Z C:σ max =P 1 /A+P 2 /A D:σ max =P 1 /W y +P 2 /W z 7、塑性材料制成的圆截面杆件上承受轴向拉力、弯矩和扭矩的联合作用,其强度条件是。 A:σ r3 =N/A+M/W≤|σ| B:σ r3 =N/A+(M2+T2)1/2/W≤|σ| C:σ r3 =[(N/A+M/W)2+(T/W)2]1/2≤|σ| D:σ r3 =[(N/A)2+(M/W)2+(T/W)2]1/2≤|σ| 8、方形截面等直杆,抗弯模量为W,承受弯矩M,扭矩T,A点处正应力为σ,剪应力为τ,材料为普通碳钢,其强度条件为:。 A:σ≤|σ|,τ≤|τ| ; B: (M2+T2)1/2/W≤|σ| ; C:(M2+0.75T2)1/2/W≤|σ|; D:(σ2+4τ2)1/2≤|σ| ; 9、圆轴受力如图。该轴的变形为: A:AC段发生扭转变形,CB段发生弯曲变形 B:AC段发生扭转变形,CB段发生弯扭组合变形 C:AC段发生弯扭组合变形,CB段发生弯曲变形

工程力学课后习题答案第十二章-组合变形

第十二章 组合变形 习 题 12.1 矩形截面杆受力如图所示。已知kN 8.01=F ,kN 65.12=F ,mm 90=b , mm 180=h ,材料的许用应力[]MPa 10=σ,试校核此梁的强度。 题12.1图 解:危险点在固定端 max y z z y M M W W σ= + max 6.69[]10MPa MPa σσ=<= 12.2 受集度为q 的均布载荷作用的矩形截面简支梁,其载荷作用面与梁的纵向对称面间的夹角为0 30=α,如图所示。已知该梁材料的弹性模量GPa 10=E ;梁的尺寸为m 4=l , mm 160=h ,mm 120=b ;许用应力[]M Pa 12=σ;许可挠度[]150 l w = 。试校核梁的强度和刚度。 题12.2图 22zmax 11 cos3088y M q l q l ==?解: 22ymax 11 sin 3088 z M q l q l ==?

22 ymax zmax 2 211 cos30sin 308866 z y q l q l M M bh bh W W σ??= +=+ 26cos30sin 30 ()8ql bh h b =+ 3 2 616210422 ( )8120160100.1600.120 -???=+??? []6 11.971012.0,Pa MPa σ=?==强度安全 44 z 3 5512sin 30384384z y q l q l W EI Ehb ?== 4 4 3 5512cos30384384y y z q l q l W EI Ehb ?== max W == = []4 0.0202150 m w m =<=刚度安全。 12.3 简支于屋架上的檩条承受均布载荷kN/m 14=q , 30=?,如图所示。檩条跨长 m 4=l ,采用工字钢制造,其许用应力[]M Pa 160=σ,试选择工字钢型号。 14 kN/m q = 题12.3图 解: cos ,sin y z q q q q ??== 22 max max ,8 8 y z z y q l q l M M = = max max max []y z z y M M W W σσ=+≤

第十一章组合变形(习题解答)

第十一章组合变形(习题解答)

————————————————————————————————作者:————————————————————————————————日期:

10-3 试求图示[16a 简支梁由于自重作用所产生的最大正应力及同一截面上AB 两点的正应力。 (-) (-) (-) q q y 4.2m C φ o =20 (+) (+ ) ( +) q q z A B 解:(1)查表可矩[16a 的理论重量为17.24kg/m ,故该梁重均布载荷的集度为172.4N/m 。截面关于z 轴对称,而不关于y 轴称,查表可得: 364 6 4 0108cm 10810, 73.3cm 0.73310m ,63mm =0.063m , 1.8cm =0.018m z y W I b z --==?==?== ⑴外力分析: cos 172.4cos 20162.003/sin 172.4sin 2058.964/y z q q N m q q N m ??======o o ⑵内力分析:跨中为危险面。 32,max 32,max 11 162.003 4.2357.21788 11 58.964 4.2130.01688 z y y z M q l N m M q l N m ==??=?==??=? ⑶应力分析:A 、B 点应力分析如图所示。A 点具有最大正应力。 ,max ,max max 66 ,max ,max max 066 357.217130.016 (0.0630.018)11.29MPa 108100.73310 357.217130.016 0.018 6.50MPa 108100.73310y z A A z y y z B z y M M z W I M M z W I σσσ σ- --+ --==- -?=--?-=-??==+ + ?= +?=??max 11.29MPa A σσ==-

第八章-组合变形及连接部分的计算-习题选解

习 题 [8-1] 14号工字钢悬臂梁受力情况如图所示。已知m l 8.0=,kN F 5.21=, kN F 0.12=,试求危险截面上的最大正应力。 解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因 钢材的拉压性能相同,故只计算最大拉应力: y z y y z z W l F W l F l F W M W M 211max 2++? =+= σ 式中,z W ,y W 由14号工字钢,查型钢表得到3102cm W z =,31.16cm W y =。故 MPa Pa m m N m m N 1.79101.79101.168.0100.11010228.0105.2363 63363max =?=???+?????=--σ [8-2] 矩形截面木檩条的跨度m l 4=,荷载及截面尺寸如图所示,木材为杉木,弯曲许用正应力MPa 12][=σ,GPa E 9=,许可挠度200/][l w =。试校核檩条的强度和刚度。

图 习题?-2 8 解:(1)受力分析 )/(431.13426cos 6.1cos '0m kN q q y ===α )/(716.03426sin 6.1sin '0m kN q q z ===α (2)内力分析 )(432.14716.081 8122max ,m kN l q M z y ?=??=== )(864.24432.18 1 8122max ,m kN l q M y z ?=??=== (3)应力分析 最大的拉应力出现在跨中截面的右上角点,最大压应力出现在左下角点。 z z y y W M W M max ,max ,max + = + σ 式中,32 232266*********mm hb W y ≈?== 32 24693336 1601106mm bh W z ≈?== MPa mm mm N mm mm N 54.1046933310864.232266710432.13 636max =??+??=+ σ (4)强度分析 因为MPa 54.10max =+σ,MPa 12][=σ,即][max σσ<+,所以杉木的强度足够。 (5)变形分析 最大挠度出现在跨中,查表得: z y cy EI l q w 38454 = ,y z cz EI l q w 38454 =

ch10组合变形

第十章 组合变形 10-2 图a 所示板件,b =20mm , =5mm ,载荷F = 12 kN ,许用应力[] = 100 MPa , 试求板边切口的允许深度x 。 题10-2图 解:在切口处切取左半段为研究对象(图b ),该处横截面上的轴力与弯矩分别为 F F =N )(a b F M -= (a) 显然, 2 22x b x b a -=-= (b) 将式(b)代入式(a),得 2 Fx M = 切口段处于弯拉组合受力状态,该处横截面上的最大拉应力为 2 2N max 432(2a)6 22a Fx a F Fx a F W M A F δδδδσ+ =+=+= 根据强度要求,在极限情况下, ][4322 σδδ=+a Fx a F 将式(b)与相关数据代入上式,得 01039.61277.042=?+--x x 由此得切口的允许深度为 m m 20.5=x

10-3 图示矩形截面钢杆,用应变片测得上、下表面的纵向正应变分别为a ε=×10 -3 与b ε=×10-3 ,材料的弹性模量E =210GPa 。试绘横截面上的正应力分布图,并求拉力F 及其偏心距e 的数值。 题10-3图 解:1.求a σ和b σ 截面的上、下边缘处均处于单向受力状态,故有 MPa 84Pa 104.010210 MPa 210Pa 100.1102103 9 39=???===???==--b b a a E εσE εσ 偏心拉伸问题,正应力沿截面高度线性变化,据此即可绘出横截面上的正应力分布图,如图10-3所示。 图10-3 2.求F 和e 将F 平移至杆轴线,得 Fe M F F ==,N 于是有 a z a E εW Fe A F σ=+= E εW Fe A F σz b =-= 代入相关数据后,上述方程分别成为 26250240=+Fe F 10500240=-Fe F

第八章组合变形构建的强度习题答案.

第八章 组合变形构件的强度习题答案 一、填空题 1、组合 二、计算题 1、解:31 7888010157.610(N mm)4M =???=?? 336 78810141.8410(N mm)2T =??=?? 33 800.1r d σ= =≤ 解得 d ≥30mm 2 、解:(1) 轴的计算简图 画出铰车梁的内力图: 险截面在梁中间截面左侧,P T P M 18.02.0max == (2) 强度计算 第三强度理论:() ()[]σπσ≤+=+= 2 2 322318.02.032 P P d W T M Z r []()()()() mm m d 5.320325.010118.01012.010 8032 10118.01012.032 3 2 32 36 32 32 3==??+????=??+??≥πσπ 所以绞车的轴的最小直径为32.5mm 。 3、解:

m kN 8.1? m kN 2.4? (1)外力分析,将作用在胶带轮上的胶带拉力F 1、F 2向轴线简化,结果如图b . 传动轴受竖向主动力: kN 1436521=++=++=F F G F , 此力使轴在竖向平面内弯曲。 附加力偶为: ()()m kN 8.16.03621?=?-=-=R F F M e , 此外力偶使轴发生变形。 故此轴属于弯扭组合变形。 (2)内力分析 分别画出轴的扭矩图和弯矩图如图(c )、(d ) 危险截面上的弯矩m kN 2.4?=M ,扭矩m kN 8.1?=T (3)强度校核 ()() []σπσ≤=??+?= += MPa W T M Z r 6.4632 1.0108.110 2.43 2 32 32 23 故此轴满足强度要求。 4、解:1)外力分析 kN F Q Q F 625 .01==∴?=?Θ 2)内力分析,做内力图

第十四章组合变形杆件强度计算

第十四章 14-4试分别求出图示不等截面杆的绝对值最大的正应力,并作比较。 解题思路: (1)图(a )下部属偏心压缩,按式(14-2)计算其绝对值最大的正应力,要正确计算式中 的弯曲截面系数; (2)图(b )是轴向压缩,按式(7-1)计算其最大正应力值; (3)图(a )中部属偏心压缩,按式(14-2)计算其绝对值最大的正应力,要正确计算式中 的弯曲截面系数。 答案:2a 34)(a F =σ,2 b )(a F =σ,2 c 8)(a F =σ 14-6某厂房一矩形截面的柱子受轴向压力1F 和偏心荷载2F 作用。已知kN 1001=F , kN 452=F ,偏心距mm 200=e ,截面尺寸mm 300,mm 180==h b 。 (1)求柱内的最大拉、压应力;(2)如要求截面内不出现拉应力,且截面尺寸b 保持不变,此时h 应为多少?柱内的最大压应力为多大? 解题思路: (1)立柱发生偏心压缩变形(压弯组合变形); (2)计算立柱I-I 截面上的内力(轴力和弯矩); (3)按式(14-2)计算立柱截面上的最大拉应力和最大压应力,要正确计算式中的弯曲截 面系数;

(4)将b 视为未知数,令立柱截面上的最大拉应力等于零,求解b 并计算此时的最大压应 力。 答案:(1)MPa 648.0m ax t =σ,MPa 018.6m ax c =σ (2)cm 2.37=h ,MPa 33.4m ax c =σ 14-9旋转式起重机由工字钢梁AB 及拉杆BC 组成,A 、B 、C 三处均可简化为铰链约束。起 重荷载kN 22P =F ,m 2=l 。已知MPa 100][=σ,试选择AB 梁的工字钢型号。 解题思路: (1)起重荷载移动到AB 跨中时是最不利情况; (2)研究AB 梁,求BC 杆的受力和A 支座的约束力。AB 梁发生压弯组合变形; (3)分析内力(轴力和弯矩),确定危险截面; (4)先按弯曲正应力强度条件(12-27)设计截面,选择AB 梁的工字钢型号; (5)再按式(14-2)计算危险截面的最大应力值,作强度校核。 答案:选16.No 工字钢 14-11图示圆截面悬臂梁中,集中力P1F 和P2F 分别作用在铅垂对称面和水平对称面内,并且 垂直于梁的轴线。已知N 800P1=F ,kN 6.1P2=F ,m 1=l ,许用应力MPa 160][=σ,试确定截面直径d 。 解题思路: (1)圆截面悬臂梁发生在两个互相垂直平面上的平面弯曲的组合变形; (2)分析弯矩y M 和z M ,确定危险截面及计算危险截面上的y M 和z M 值; (3)由式(14-15)计算危险截面的总弯矩值; (4)按弯曲正应力强度条件(12-27)设计截面,确定悬臂梁截面直径d 。 答案:mm 5.59≥d 14-13功率kW 8.8=P 的电动机轴以转速min /r 800=n 转动,胶带传动轮的直径

第十二章 组合变形的强度计算

第十二章 组合变形的强度计算 思 考 题 1 何谓组合变形?如何计算组合变形杆件横截面上任一点的应力? 2 何谓平面弯曲?何谓斜弯曲?二者有何区别? 3 何谓单向偏心拉伸(压缩)?何谓双向偏心拉伸(压缩)? 4 将斜弯曲、拉(压)弯组合及偏心拉伸(压缩)分解为基本变形时,如何确定各基本变形下正应力的正负? 5 对斜弯曲和拉(压)弯组合变形杆进行强度计算时,为何只考虑正应力而不考虑剪应力? 6 什么叫截面核心?为什么工程中将偏心压力控制在受压杆件的截面核心范围内? 习 题 1 矩形截面悬臂梁受力如图所示,F通过截面形心且与y轴成角,已知F=1.2kN ,l=2m,5.1, 12==?b h ?,材料的容许正应力[σ]=10MPa ,试确定b和h的尺寸。 2 承受均布荷载作用的矩形截面简支梁如图所示,q与y轴成?角且通过形心,已知l=4m,b=10cm,h=15cm,材料的容许应力[σ]=10MPa ,试求梁能承受的最大分布荷载m ax q 。 题 1 图 题 2 图 3 如图所示斜梁横截面为正方形,a =10cm,F=3kN作用在梁纵向对称平面内且为铅垂方向,试求斜梁最大拉压应力大小及其位置。

4 矩形截面杆受力如图所示,F 1和F2的作用线均与杆的轴线重合,F3作用在杆的对称平面内,已知F1=5kN ,F2=10kN ,F3.=1.2kN , =2m,b=12cm ,h=18cm ,试求杆中的最大压应力。 题 3 图 题 4 图 5 图为起重用悬臂式吊车,梁AC由№18工字钢制成,材料的许用正应力[σ] =100MPa 。当吊起物重(包括小车重)Q=25kN,并作用与梁的中点D时,试校核梁AC的强度。 6 柱截面为正方形,边长为a,顶端受轴向压力F作用,在右侧中部挖一个槽(如图),槽深4 a 。求开槽前后柱内的最大压应力值。 题 5 图 题 6 图 7 砖墙及其基础截面如图,设在1m长的墙上有偏心力F=40kN 的作用,试求截面1-1和2-2上的应力分布图。 8 矩形截面偏心受拉木杆,偏心力F=160kN ,e=5cm ,[σ]=10MPa ,矩形截面宽度b=16cm ,试确定木杆的截面高度h

工程力学习题12 廖明成5页

第十二章 组合变形 习 题 12.1 矩形截面杆受力如图所示。已知kN 8.01=F ,kN 65.12=F ,mm 90=b ,mm 180=h ,材料的许用应力[]MPa 10=σ,试校核此梁的强度。 题12.1图 解:危险点在固定端 12.2 受集度为q 的均布载荷作用的矩形截面简支梁,其载荷作用面与梁的纵向对称面间的夹角为030=α,如图所示。已知该梁材料的弹性模量GPa 10=E ;梁的尺寸为m 4=l ,mm 160=h ,mm 120=b ;许用应力[]M Pa 12=σ;许可挠度[]150 l w =。试校核梁的强度和刚度。 题12.2图 12.3 简支于屋架上的檩条承受均布载荷kN/m 14=q ,ο30=?,如图所示。檩条跨长m 4=l ,采用工字钢制造,其许用应力[]M Pa 160=σ,试选择工字钢型号。 题12.3图 解: 对工字钢,z y W W 大约在6~10之间,现设为8,由上式得 查40C 号钢,有, 验算 最大应力略大于许用应力,但不超过许用应力的5%,工程上允许,故可选40C 号钢 12.4 图示构架的立柱AB 用25号工字钢制成,已知kN 20=F ,[]M Pa 160=σ,试校核立柱的强度。 题12.4图 解: 由图可知 由受力图可知D 截面为危险截面,其上的轴力和弯矩分别为 25号钢3402z W cm =,248.541A cm = 12.5 图示一混凝土挡水墙,浇筑于牢固的基础上。墙高为m 2,墙厚

为m 5.0,试求:(1)当水位达到墙顶时,墙底处的最大拉应力和最大压应力(混凝土重力密度3kN/m 24=γ)。(2)如果要求混凝土中不出现拉应力,试求最大允许水深h 为多少? 题12.5图 解:以单位宽度的水坝计算 水压30 1.0109.8219.6/q gh kN m ρ==???= 混凝土对墙底的压力 墙坝的弯曲截面系数 墙坝的截面面积 墙底处的最大拉应力 最大压应力 如果混凝土中不出现拉应力,即 12.6图示一楼梯木斜梁的长度为m 4=l ,截面为m 1.0m 2.0?的矩形,受均布载荷作用,m /kN 2=q 。试作梁的轴力图和弯矩图,并求横截面上的最大拉应力和最大压应力。 题12.6图 杆为弯压组合变形,最大压应力和最大拉应力分别发生在跨中截面上边缘和下边缘处: 11.7 图示一悬臂滑车架,杆AB 为18号工字钢,其长度为m 6.2=l 。试求当载荷kN 25=F 作用在AB 的中点D 处时,杆内的最大正应力。设工字钢的自重可略去不计。 题12.7图 解: 取AB 杆为隔离体, 由∑=0A M ,即 030sin 2 =??+?-l F l F B ∴ FB =F 由B 点平衡可知 F F F B NAB 2330cos - =?-= 杆AB 在D 点的弯矩 Fl W W 41max == 故杆AB 在D 点截面有最大压应力, 查18号工字钢,得A =30.6cm 2,Wz=185cm 3

第09章组合变形题解

第 9 章 组 合 变 形 9-1 试分析下列构件在指定截面A 的内力分量(判断基本变形) 解:(a )拉伸与弯曲; (b )压缩、扭转与两个方向的弯曲; (c )压缩、扭转与两个方向的弯曲。 9-2 木制矩形截面悬臂梁受力如图,已知 F 1 = 0.8 kN ,F 2 = 1.65 kN ,木材的许用应力 [ σ ] =10 MPa ,若矩形 h /b = 2 ,试确定其截面尺寸。 解:显然固定端是危险截面。 kNm 6.128.01=?==l F M y kNm 65.1165.12 2 =?==l F M z =+=+=2 2max 66bh M hb M W M W M z y z z y y σ ][)2 3 3(1 3 σ≤+ = z y M M b 代入数据得到 363mm 7275001010 65 .15.16.13=??+?≥ b , mm 180h ,mm 90≥≥b 。 9-3 工字钢简支梁受力如图,已知 F = 7 kN ,[ σ ] =160 MPa ,试选择工字钢型号。(提示:先假定 W z /W y 的比值进行试选,然后校核。) 解:显然中间截面是危险截面。 kNm 74 1 max == l F M kNm 394.220sin max == M M y , kNm 578.620cos max == M M z (b )车刀 (a )机械 构件

][max σσ≤+ = z z y y W M W M 选 6=y z W W 试算 33cm 8.2110160 6394 .26578.6] [66=???+= +≥ σy z y M M W 查表取 16 号工字钢 W y = 21.2 cm 3 ,W z = 141 cm 3 校核强度 ][M Pa 15910)2 .21394 .2141578.6(3max σσ≤=?+=+ = z z y y W M W M 强度刚好够,所以选定 16 号工字钢。 9-4 证明斜弯曲时横截面仍然绕中性轴转动(提示:证明截面形心位移垂直于中性轴)。 证明:假设在任意相距很近 dx 的截面之间作用两个M y ,M z ,其中下标 y ,z 为截面 形心主惯性轴,中性轴方程由 0=- = y I M z I M z z y y σ 确定为 ?tan ==y z z y I M I M z y 两截面之间由M z 和M y 产生的相对位移分别为 2)(dx EI M dx d Y z z z =?=θ,2)(dx EI M dx d Z y y y -=?=θ, tan =-=z y y z I M I M Z Y 显然 tan α tan ? = -1 ,α = ?±90° 即截面形心位移与中性轴互相垂直。 [反证法] 假设斜弯曲时横截面绕非中性轴转动,则中性轴上的纵向纤维将有伸长或缩短,这与斜弯曲时横截面存在有中性轴的结论是相矛盾的。故斜弯曲时横截面绕中性轴转动。 9-5 证明对正多边形截面梁,横向力无论作用方向如何偏斜,只要力的作用线通过截面形心,都只产生平面弯曲。 证明:只要证明任意正多边形的形心坐标轴为形心主惯轴即可。现以正三角形为例,图中y 、z 轴为一对正交形心主轴,y 和y 1轴为对称轴,显然,I y = I y 1,I yz = 0;由式(A-13)有 β2cos 221y z y z y y I I I I I I -++== 即 z y y z y z I I I I I I =?=-?=--00)2cos 1(2β 设Y 、Z 为一对任意正交形心轴,由式(A-15)有 02cos 2sin 2 =+-=ααyz y z YZ I I I I 即任意形心轴都是主惯性轴,其惯性矩都相等,只可能发生平面弯曲,不会发生斜弯曲。 z

第八章组合变形及连接部分的计算习题测验选解

习题 [8-1] 14号工字钢悬臂梁受力情况如图所示。已知m l8.0 =,kN F5.2 1 =,kN F0.1 2 =,试求危险截面上的最大正应力。 解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因钢材的拉压性能相同,故只计算最大拉应力: y z y y z z W l F W l F l F W M W M 2 1 1 max 2+ + ? = + = σ 式中, z W, y W由14号工字钢,查型钢表得到3 102cm W z =,3 1. 16cm W y =。故 MPa Pa m m N m m N 1. 79 10 1. 79 10 1. 16 8.0 10 0.1 10 102 2 8.0 10 5.2 3 6 3 6 3 3 6 3 max = ? = ? ? ? + ? ? ? ? ? = - - σ [8-2]矩形截面木檩条的跨度m l4 =,荷载及截面尺寸如图所示,木材为杉木,弯曲许用正应力MPa 12 ] [= σ,GPa E9 =,许可挠度200 / ] [l w=。试校核檩条的强度和刚度。

图 习题?-2 8 解:(1)受力分析 )/(431.13426cos 6.1cos '0m kN q q y ===α )/(716.03426sin 6.1sin '0m kN q q z ===α (2)内力分析 )(432.14716.081 8122max ,m kN l q M z y ?=??=== )(864.24432.18 1 8122max ,m kN l q M y z ?=??=== (3)应力分析 最大的拉应力出现在跨中截面的右上角点,最大压应力出现在左下角点。 z z y y W M W M max ,max ,max + = + σ 式中,32 232266*********mm hb W y ≈?== 32 24693336 1601106mm bh W z ≈?== MPa mm mm N mm mm N 54.1046933310864.232266710432.13 636max =??+??=+ σ (4)强度分析 因为MPa 54.10max =+σ,MPa 12][=σ,即][max σσ<+,所以杉木的强度足够。 (5)变形分析 最大挠度出现在跨中,查表得: z y cy EI l q w 38454 = ,y z cz EI l q w 38454 =

第十二章 压杆稳定(习题解答)

12-4 图示边长为a 的正方形铰接结构,各杆的E 、I 、A 均相同,且为细长杆。试求达到临界状态时相应的力P 等于多少?若力改为相反方向,其值又应为多少? N B B C N B A B C C D 解:(1)各杆的临界力 2 2 2 ..2 2 2cr BD cr EI EI P P a a ππ= = = 外 (2)求各杆的轴力与P 的关系。 由对称性可知,外围的四个杆轴力相同,AB BC CD DA N N N N ===。研究C 、B 结点,设各杆都是受拉的二力杆,则与结点相联系的杆施与背离结点指向杆内的拉力,C 、B 结点受力如图所示。 第一种情况: C:)02450CB CB X P N cos N =→ --=→=- ∑ 压杆 B:()02450BD BC BD BC Y N N cos N P = →--=→==∑ 拉杆 令2 ,.2 = C B cr C B cr EI N P P P a a π=- == ?外第二种情况: )C B P N = 拉杆 ()-BD BC N P ==压杆 2 2 .2 2 -== 22BD BC cr BD EI EI N P P P a a ππ=== ? 12-6 图示矩形截面松木柱,其两端约束情况为:在纸平面内失稳时,可视为两端固定;在出平面内失稳时,可视为上端自由下端固定。试求该木柱的临界力.

解:(1)计算柔度: ①当压杆在在平面内xoz 内失稳,y 为中性轴。 0.57101.04xz xz y l i μλ??= = = ②当压杆在出平面内xoy 内失稳,z 为中性轴。 27242.490.200xy xy z l i μλ??= = = ③λ越大,压杆越容易失稳,故此压杆将在在平面内先失稳。 m ax(.)242.49xz xy λλλ== (2)松木75242.49P λ=<,故采用欧拉公式计算P cr 2 2 2 11 2(0.110) (0.1200.200)40.28242.49 cr cr E P A A πσλ π=?= ???= ??=N kN 12-7铰接结构ABC 由具有相同截面和材料的细长杆组成。若由于杆件在ABC 平面内失稳而引起破坏。试确定荷载P 为最大时的θ角。(2 0π θ< <) 解:(1)研究B 结点求两杆轴力与P 的关系:

第二章组合变形.

第十一章组合变形 2.5 组合变形 一、教学目标 1、掌握组合变形的概念。 2、掌握斜弯曲、弯扭、拉(压)弯、偏心拉伸(压缩)等组合变形形式的概念和区分、危险截面和危险点的确定、应力计算、强度计算、变形计算、中性轴的确定等。 3、正确区分斜弯曲和平面弯曲。 4、了解截面核心的概念、常见截面的截面核心计算。 二、教学内容 1、讲解组合变形的概念及组合变形的一般计算方法:叠加法。 2、举例介绍斜弯曲和平面弯曲的区别。 3、讲解斜弯曲的应力计算、中性轴位置的确定、危险点的确立、强度计算、变形计算。 4、讲解弯曲和扭转组合变形内力计算,确定危险截面和危险点,强度计算。 5、讲解拉伸(压缩)和弯曲组合变形的危险截面和危险点分析、强度计算。 6、讲解偏心拉伸(压缩)组合变形的危险截面和危险点分析、应力计算、强度计算。 7、简单介绍截面核心的概念和计算。 三、重点难点 重点:斜弯曲、弯扭、拉(压)弯、偏心拉伸(压缩)等组合变形形式的应力和强度计算。 难点: 1、解决组合变形问题最关键的一步是将组合变形分解为两种或两种以上的基本变形: 斜弯曲——分解为两个形心主惯性平面内的平面弯曲;

弯曲和扭转组合变形——分解为平面弯曲和扭转; 拉伸(压缩)和弯曲组合变形——分解为轴向拉伸(压缩)和平面弯曲(因剪力较小通常忽略不计); 偏心拉伸(压缩)组合变形——单向偏心拉伸(压缩)时,分解为轴向拉伸(压缩)和一个平面弯曲,双向偏心拉伸(压缩)时,分解为轴向拉伸(压缩)和两个形心主惯性平面内的平面弯曲。 2、组合变形的强度计算,可归纳为两类: ⑴危险点为单向应力状态:斜弯曲、拉(压)弯、偏心拉伸(压缩)组合变形的强度计算时只需求出危险点的最大正应力并与材料的许用正应力比较即可; ⑵危险点为复杂应力状态:弯扭组合变形的强度计算时,危险点处于复杂应力状态,必须考虑强度理论。 四、教学方式 采用启发式教学,通过提问,引导学生思考,让学生回答问题。 五、学时:2学时 六、讲课提纲 (一)斜弯曲 斜弯曲梁的变形计算 仍以矩形截面的悬臂梁为例:

第十五章 组合变形

第十五章 组合变形 一、内容提要 1. 组合变形的概念及计算原理 组合变形 由两种以上的基本变形组合而成的变形 计算原理 叠加原理 2. 组合变形的计算步骤 (1) 简化或分解外力。 (2) 分析内力。 (3) 分析应力。 3. 强度条件 斜弯曲 强度条件为 σmax = z z W M max + y y W M max ≤[σ] 拉(压)与弯曲组合 强度条件为 σmax =A F N ±z W M max ≤ [σ] 单向偏心压缩(拉伸) 强度条件为 z z N M M A F ±± =max σ≤[σ] 双向偏心压缩(拉伸) 强度条件为 y y z z N W M W M A F ±±±=max σ≤][σ 二、典型例题解析 例15-1 某柱如图15-1所示,由屋架传来的压力F P1=100kN ,由吊车传来的压力F P2=30kN ,柱的单位体积重量γ=25kN/m (牛腿部分自重略去),柱高l =4m ,偏心距e y =0.2m ,已知截面宽度b=0.2m ,试求: (1)截面高度h ≥?时截面上不出现拉应力。 (2)计算在确定的截面高度时柱中的最大压应力。 图15-1 知识点 压弯组合变形的应力 解 (1)固定端截面为危险截面 将偏心压力向截面形心平移后,危险截面上的内力为 轴心压力 F N = F P1+F P2+W=-(130+20h) kN 弯矩 M= F P2×e y =6kN ·m 截面上不出现拉应力时应满足 σt max =-A F N +z W M max ≤0

即 Pa h Pa h h 2332.061062.010)20130(??+?+-≤0 h ≥0.27m (2)取 h =0.28m 此时 σ c max =-A F N -z W M max = Pa Pa 2 3328.02.0610628.02.010)28.020130(???-???+-=-4.72MPa 三、思考题提示或解答 15-1 图示各杆的AB 、BC 、CD 各段截面上有哪些内力,各段产生什么组合变形? 思15-1图 提示 a) AB 段产生弯、扭变形; BC 段产生弯、拉变形;CD 段产生弯、扭变形。 b) AB 段产生弯曲变形; BC 段产生弯、压变形;CD 段产生弯曲变形。 c) AB 段产生弯、压变形; BC 段产生弯、扭变形;CD 段产生弯曲变形。 15-2 图示各杆的组合变形是由哪些基本变形组合成的?并判定在各基本变形情况下A 、B 、C 、D 各点处正应力的正负号。 思15-2图 提示 a) 由轴向拉伸与两个平面内的弯曲变形组合成。 b) 由两个平面内的弯曲变形组合成。 c) 由轴向压缩与两个平面内的弯曲变形组合成。 15-3 图示三根短柱受压力F 作用,图b 、c 的柱各挖去一部分。试判断在a 、b 、c 三种情况下,短柱中的最大压应力的大小和位置。 思15-3图 解答 a) 柱产生轴向压缩变形。 σ c max =-2a F A F N -= 位于柱横截面上的任意点 b) 未挖去段柱产生轴向压缩变形,挖去段柱产生弯、压变形。 σ c max =-A F N -z W M max =-238a F 位于削弱截面右边缘上的任意点 c)柱产生轴向压缩变形。

相关文档
相关文档 最新文档