文档库 最新最全的文档下载
当前位置:文档库 › QAM盲载波恢复算法---DD算法(频率捕获范围代码)

QAM盲载波恢复算法---DD算法(频率捕获范围代码)

QAM盲载波恢复算法---DD算法(频率捕获范围代码)
QAM盲载波恢复算法---DD算法(频率捕获范围代码)

%%DD算法---频率捕获范围

%仿真参数

N = 500000;

M = 256;

SNR = 30;

samplingFreq = 5000000;

carrFreqOffset = -300000:20000:300000; carrPhsOffset = 0;

h1 = modem.qammod('M',2^8, 'SymbolOrder', 'Gray');

h2 = modem.qamdemod('M', 2^8, 'SymbolOrder', 'Gray');

%鉴相器参量

DifferOfPha = zeros(1,N);

DD_bitsOutput = zeros(1,N);

DD_DifferOfPha = zeros(1,N);

Z = zeros(1,N);

Y = zeros(1,256);

%锁定检测器参量

lamuda = 0.7;

beita = 0.6;

Ncounter = 0;

Track_sign = 0;

MeanOfY = 0;

Lock_N = zeros(1,length(carrFreqOffset));

%环路滤波器及NCO参量

fs = samplingFreq;

fn = 50000;

yita = 0.5;

wn = 2*pi*fn/fs;

Kp = 2*yita*wn;

Ki = wn^2;

PraZ = 0;

PhasControl = 0;

PhaseOfNCO = 0;

%环路捕获频率

PreAcqFreq = 0;

RealAcqFreq = zeros(1,length(carrFreqOffset));

%通信过程仿真

for fre = 1:1:length(carrFreqOffset)

bitSrc = randi([0 M-1],1,N);

bitsTransmit = modulate(h1,bitSrc);

phaseStep = carrFreqOffset(fre) / samplingFreq;

phaseVar = phaseStep * (0:1:length(bitsTransmit)-1);

aftFreOffset = bitsTransmit .* exp(1j*(2*pi*phaseVar+carrPhsOffset)); bitsnoise = awgn(aftFreOffset,SNR,'measured');

for m=1:N

%%PD

DifferOfPha(m) = bitsnoise(m)*exp(-1j*PhaseOfNCO);

DD_bitsOutput(m) = demodulate(h2,DifferOfPha(m));

DD_DifferOfPha(m) = modulate(h1,DD_bitsOutput(m));

Ncounter=Ncounter+1;

if(abs(DD_DifferOfPha(m)-DifferOfPha(m))

Y(Ncounter)=1;

else

Y(Ncounter)=0;

end

if(Ncounter==256)

MeanOfY = mean(Y);

Ncounter = 0;

end

if(Track_sign==0)

Z(m) = imag(DifferOfPha(m)/DD_DifferOfPha(m));

if(MeanOfY>yita)

Track_sign = 1;

Lock_N(fre) = m;

end

else

Z(m) = imag(DifferOfPha(m)/DD_DifferOfPha(m)); end

%%Loop Filter

Phaz = Kp*Z(m) + PhasControl;

PhasControl = Ki*Z(m) + PhasControl;

%%NCO

PhaseOfNCO = PhaseOfNCO + Phaz;

%%acqucisition frequency

Acqfreq = 0.01*PhasControl + 0.99*PreAcqFreq; PreAcqFreq = Acqfreq;

RealAcqFreq(fre) = PreAcqFreq/2/pi*5000000;

end

end

%figure

figure(1);

i1 = 1:1:length(carrFreqOffset);

plot((i1-16)*20000,RealAcqFreq,'k-*','linewidth',2); xlabel('实际频率偏移/Hz');

ylabel('环路捕获频率/Hz');

grid on;

if 0

figure(2);

i2 = 1:1:length(carrFreqOffset);

plot((i1-16)*20000,Lock_N,'k-*','linewidth',2);

xlabel('实际频率偏移/Hz');

ylabel('环路工作时间/T');

end

排序算法汇总(图解加程序代码)

排序算法汇总 第1节排序及其基本概念 一、基本概念 1.什么是排序 排序是数据处理中经常使用的一种重要运算。 设文件由n个记录{R1,R2,……,Rn}组成,n个记录对应的关键字集合为{K1,K2,……,Kn}。所谓排序就是将这n个记录按关键字大小递增或递减重新排列。b5E2RGbCAP 2.稳定性 当待排序记录的关键字均不相同时,排序结果是惟一的,否则排序结果不唯一。 如果文件中关键字相同的记录经过某种排序方法进行排序之后,仍能保持它们在排序之前的相对次序,则称这种排序方法是稳定的;否则,称这种排序方法是不稳定的。p1EanqFDPw 3.排序的方式 由于文件大小不同使排序过程中涉及的存储器不同,可将排序分成内部排序和外部排序两类。整个排序过程都在内存进行的排序,称为内部排序;反之,若排序过程中要进行数据的内、外存交换,则称之为外部排序。DXDiTa9E3d 内排序适用于记录个数不是很多的小文件,而外排序则适用于记录个数太多,不能一次性放人内存的大文件。 内排序是排序的基础,本讲主要介绍各种内部排序的方法。

按策略划分内部排序方法可以分为五类:插入排序、选择排序、交换排序、归并排序和分配排序。 二、排序算法分析 1.排序算法的基本操作 几乎所有的排序都有两个基本的操作: <1)关键字大小的比较。 <2)改变记录的位置。具体处理方式依赖于记录的存储形式,对于顺序型记录,一般移动记录本身,而链式存储的记录则通过改变指向记录的指针实现重定位。RTCrpUDGiT 为了简化描述,在下面的讲解中,我们只考虑记录的关键字,则其存储结构也简化为数组或链表。并约定排序结果为递增。5PCzVD7HxA 2.排序算法性能评价 排序的算法很多,不同的算法有不同的优缺点,没有哪种算法在任何情况下都是最好的。评价一种排序算法好坏的标准主要有两条:jLBHrnAILg <1)执行时间和所需的辅助空间,即时间复杂度和空间复杂度; <2)算法本身的复杂程度,比如算法是否易读、是否易于实现。 第2节插入排序 插入排序的基本思想是:每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的记录集中,使记录依然有序,直到所有待排序记录全部插入完成。xHAQX74J0X 一、直接插入排序 1.直接插入排序的思想

贪心算法0-1背包问题(算法实验代码)

实验三、0-1背包问题(贪心算法) 实验代码: #include int max(int a,int b) { if(a>b) return a; else return b; } void Knapsack(int *v,int *w,int *x,int c,int n, int m[8][100]) { int i,j; for(j=0;j=1;i--) { for(j=w[i];j<=c;j++) m[i][j]=max(m[i+1][j],m[i+1][j-w[i]]+v[i]); } for(i=1;i

printf("物品总数为:7\n"); printf("物品重量和价值分别为:\n"); printf("\n重量价值\n"); for (i=1;i<=n;i++) printf("%d %d \n",w[i],v[i]); int m=15; int array[8][100]={0}; Knapsack(v,w,x,m,7,array); printf("背包能装的最大价值为: %d\n",array[1][m]); printf("贪心算法的解为: "); for(i=1;i<=n;i++) { if(i==1) printf("%d",x[i]); else printf(" %d",x[i]); } printf("\n"); return 0; } 测试截图为:

计算机图形学实验--橡皮筋技术(完整代码,准确无误)

计算机图形学上机实验报告 橡皮筋技术 计算机科学与技术学院 姓名: xxx 完成日期: 2010-12-7

实验:橡皮筋技术 一、实验目的与要求 实验目的:1.学会使用OpenGL,进一步掌握基本图形的绘制方法, 2.理解glut程序框架 3.理解窗口到视区的变换 4.理解OpenGL实现动画的原理 5.学会基于鼠标和键盘实现交互的实现方法 二、实验内容: 利用OpenGL实现折线和矩形的皮筋绘制技术,并采用右键菜单实现功能的选择 实现方法:1.橡皮筋技术的实现采用双缓存技术,绘制图形时分别绘制到两个缓存,交替显示。 2.右键菜单控制选择绘制折线还是绘制矩形,实现方法:通过菜单注册函数创建一个弹出式菜单,然后使用函数加入菜单项,最后使用函数讲菜单与鼠标右键关联起来,GLUT通过为菜单提供一个整数标识符实现对菜单的管理,在main主函数通过标识符用函数指定对应的菜单为当前的菜单。 2. 折线的橡皮筋绘制技术实现:鼠标所在位置确定一个点,移动鼠标时,每次移动时将点的信息保存在数组中,连接当前鼠标所在点和前一个点的直线段。 3.矩形的橡皮筋绘制技术:每个矩形由两个点唯一确定,鼠标当前点为第一个点,移动鼠标确定第二个点的位置,由这两点的坐标绘制出举行的四条边(直线段),矩形即绘制完毕。 三、实验结果

图鼠标右键菜单 图绘制矩形 四、体会 1> 经过这次实验,逐步对opengl软件有了一定的了解,而且对于理论知识有了很好的巩固,并非仅仅会C语言就能编写画图程序,gult程序有自己特殊的框架与实现过程.在这次试验中,虽然没有完全理解其原理,但在一定程度上已经为我们今后的学习应用打下了基础. 2>初步了解了如何在OpenGL实现基本的绘图功能,以及鼠标和键 盘灯交互设备的实现,还有如何由初始生成元绘制分形物体。在这个过 程中遇到了很多问题,程序的调试也是困难重重,通过自己看书思考和 老师、同学的帮助最终完成了程序的调试,在这一过程中加深了对理论 知识的理解,以及理清了理论到实践转换的一点点思路,再一次体会到 理论与实践的结合的重要性,今后要多多提高提高动手能力。

排序算法

一、冒泡排序 冒泡排序(BubbleSort)的基本概念是:依次比较相邻的两个数,将小数放在前面,大数放在后面。即在第一趟:首先比较第1个和第2个数,将小数放前,大数放后。然后比较第2个数和第3个数,将小数放前,大数放后,如此继续,直至比较最后两个数,将小数放前,大数放后。至此第一趟结束,将最大的数放到了最后。在第二趟:仍从第一对数开始比较(因为可能由于第2个数和第3个数的交换,使得第1个数不再小于第2个数),将小数放前,大数放后,一直比较到倒数第二个数(倒数第一的位置上已经是最大的),第二趟结束,在倒数第二的位置上得到一个新的最大数(其实在整个数列中是第二大的数)。如此下去,重复以上过程,直至最终完成排序。 代码实现如下: 二、插入排序 插入排序的基本思想是每步将一个待排序的记录按其排序码值的大小,插到前面已经排好的文件中的适当位置,直到全部插入完为止。插入排序方法主要有直接插入排序和希尔排序。 直接插入排序具体算法描述如下: 1. 从第一个元素开始,该元素可以认为已经被排序 2. 取出下一个元素,在已经排序的元素序列中从后向前扫描 3. 如果该元素(已排序)大于新元素,将该元素移到下一位置 4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置 5. 将新元素插入到下一位置中 6. 重复步骤2 伪码描述如下: 代码实现如下:

三、归并排序 归并排序是将两个或两个以上的有序子表合并成一个新的有序表。初始时,把含有n个结点的待排序序列看作由n个长度都为1的有序子表组成,将它们依次两两归并得到长度为2的若干有序子表,再对它们两两合并。直到得到长度为n的有序表,排序结束。 归并操作的工作原理如下: 1、申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列 2、设定两个指针,最初位置分别为两个已经排序序列的起始位置 3、比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置 4、重复步骤3直到某一指针达到序列尾 5、将另一序列剩下的所有元素直接复制到合并序列尾 代码实现如下:

算法设计实验_贪心算法背包问题

《算法分析与设计》 课程实验 专业年级:信息与计算科学 学生学号: 学生姓名: 实验题目:用贪婪法求解背包问题 指导老师: 实验时间:20xx年xx月x日 一、实验内容 用贪婪法求解背包问题 要求:用非递归实现 二、实验步骤 2.1、理解算法思想和问题要求; 2.2、写出每个操作的算法 非递归算法: greedbag() { int N; int c;

int[] w; int[] v; Scanner scan=new Scanner(System.in); System.out.print("输入背包的容量:"); c=scan.nextInt(); System.out.print("输入物品的数量:"); N=scan.nextInt(); System.out.print("分别输入物品的价值:"); v=new int[N]; for(int i=0;i

几种排序算法的分析与比较--C语言

一、设计思想 插入排序:首先,我们定义我们需要排序的数组,得到数组的长度。如果数组只有一个数字,那么我们直接认为它已经是排好序的,就不需要再进行调整,直接就得到了我们的结果。否则,我们从数组中的第二个元素开始遍历。然后,启动主索引,我们用curr当做我们遍历的主索引,每次主索引的开始,我们都使得要插入的位置(insertIndex)等于-1,即我们认为主索引之前的元素没有比主索引指向的元素值大的元素,那么自然主索引位置的元素不需要挪动位置。然后,开始副索引,副索引遍历所有主索引之前的排好的元素,当发现主索引之前的某个元素比主索引指向的元素的值大时,我们就将要插入的位置(insertIndex)记为第一个比主索引指向元素的位置,跳出副索引;否则,等待副索引自然完成。副索引遍历结束后,我们判断当前要插入的位置(insertIndex)是否等于-1,如果等于-1,说明主索引之前元素的值没有一个比主索引指向的元素的值大,那么主索引位置的元素不要挪动位置,回到主索引,主索引向后走一位,进行下一次主索引的遍历;否则,说明主索引之前insertIndex位置元素的值比主索引指向的元素的值大,那么,我们记录当前主索引指向的元素的值,然后将主索引之前从insertIndex位置开始的所有元素依次向后挪一位,这里注意,要从后向前一位一位挪,否则,会使得数组成为一串相同的数字。最后,将记录下的当前索引指向的元素的值放在要插入的位置(insertIndex)处,进行下一次主索引的遍历。继续上面的工作,最终我们就可以得到我们的排序结果。插入排序的特点在于,我们每次遍历,主索引之前的元素都是已经排好序的,我们找到比主索引指向元素的值大的第一个元素的位置,然后将主索引指向位置的元素插入到该位置,将该位置之后一直到主索引位置的元素依次向后挪动。这样的方法,使得挪动的次数相对较多,如果对于排序数据量较大,挪动成本较高的情况时,这种排序算法显然成本较高,时间复杂度相对较差,是初等通用排序算法中的一种。 选择排序:选择排序相对插入排序,是插入排序的一个优化,优化的前提是我们认为数据是比较大的,挪动数据的代价比数据比较的代价大很多,所以我们选择排序是追求少挪动,以比较次数换取挪动次数。首先,我们定义我们需要排序的数组,得到数组的长度,定义一个结果数组,用来存放排好序的数组,定义一个最小值,定义一个最小值的位置。然后,进入我们的遍历,每次进入遍历的时候我们都使得当前的最小值为9999,即认为每次最小值都是最大的数,用来进行和其他元素比较得到最小值,每次认为最小值的位置都是0,用来重新记录最小值的位置。然后,进入第二层循环,进行数值的比较,如果数组中的某个元素的值比最小值小,那么将当前的最小值设为元素的值,然后记录下来元素的位置,这样,当跳出循环体的时候,我们会得到要排序数组中的最小值,然后将最小值位置的数值设置为9999,即我们得到了最小值之后,就让数组中的这个数成为最大值,然后将结果数组result[]第主索引值位置上的元素赋值为最小值,进行下一次外层循环重复上面的工作。最终我们就得到了排好序的结果数组result[]。选择排序的优势在于,我们挪动元素的次数很少,只是每次对要排序的数组进行整体遍历,找到其中的最小的元素,然后将改元素的值放到一个新的结果数组中去,这样大大减少了挪动的次序,即我们要排序的数组有多少元素,我们就挪动多少次,而因为每次都要对数组的所有元素进行遍历,那么比较的次数就比较多,达到了n2次,所以,我们使用选择排序的前提是,认为挪动元素要比比较元素的成本高出很多的时候。他相对与插入排序,他的比较次数大于插入排序的次数,而挪动次数就很少,元素有多少个,挪动次数就是多少个。 希尔排序:首先,我们定义一个要排序的数组,然后定义一个步长的数组,该步长数组是由一组特定的数字组成的,步长数组具体得到过程我们不去考虑,是由科学家经过很长时间计算得到的,已经根据时间复杂度的要求,得到了最适合希尔排序的一组步长值以及计算

【精选】贪心算法的应用

贪心算法的应用 课程名称:算法设计与分析 院系:计算机科学与信息工程学院 学生姓名:**** 学号:********** 专业班级:********************************** 指导教师:****** 201312-27

贪心算法的应用 摘要:顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。贪心算法求问题一般具有两个重要性质:贪心选择性质和最优子结构性质。所谓贪心选择性是指所求问题的整体最优解可以通过一系列局部最优解的选择,即贪心选择达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法主要区别。当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 背包问题是一个经典的问题,我们可以采用多种算法去求解0/1背包问题,比如动态规划法、分支限界法、贪心算法、回溯法。在这里我们采用贪心法解决这个问题。 关键词:贪心法背包问题最优化

目录 第1章绪论 (3) 1.1 贪心算法的背景知识 (3) 1.2 贪心算法的前景意义 (3) 第2章贪心算法的理论知识 (4) 2.1 问题的模式 (4) 2.2 贪心算法的一般性描述 (4) 第3章背包问题 (5) 3.1 问题描述 (5) 3.2 问题分析 (5) 3.3算法设计 (5) 3.4 测试结果与分析 (10) 第4章结论 (12) 参考文献 (13) 附件 (13)

c语言排序算法总结(主要是代码实现)

冒泡排序(Bubble Sort)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。 #include void bubbleSort(int arr[], int count) { int i = count, j; int temp; while(i > 0) { for(j = 0; j < i - 1; j++) { if(arr[j] > arr[j + 1]) { temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp; } } i--; } } int main(int arc, char* const argv[]) { int arr[] = {5, 4, 1, 3, 6}; bubbleSort(arr, 5); int i; for(i = 0; i < 5; i++) printf("%4d", arr[i]); } 选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。 #include int main() { int a[]={2,3,4,5,1,7,0,9}; int len=sizeof(a)/sizeof(a[0]); select_sort(a,len); for(int i=0;i a[ j]) min = j; //交换 if( min != i) { t = a[ min]; a[ min] = a[ i]; a[ i] = t; } } } 插入排序(Insertion Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于 未排序数据,在已排序序列中从后向前扫描,找到相应

背包问题(贪心算法)

算法分析与设计实验报告 第 4 次实验

}

附录:完整代码 #include #include #include struct node{ float value; float weight; }; float Value,curvalue=0; float Weight,curweight=0; //按价重比冒泡排序 void sort(node Node[],int M){ int i,j; node temp; for(i=0;i

计算机图形学实验C++代码

一、bresenham算法画直线 #include #include #include void draw_pixel(int ix,int iy) { glBegin(GL_POINTS); glVertex2i(ix,iy); glEnd(); } void Bresenham(int x1,int y1,int xEnd,int yEnd) { int dx=abs(xEnd-x1),dy=abs(yEnd-y1); int p=2*dy-dx; int twoDy=2*dy,twoDyMinusDx=2*dy-2*dx; int x,y; if (x1>xEnd) { x=xEnd;y=yEnd; xEnd=x1; } else { x=x1; y=y1; } draw_pixel(x,y); while(x

} void myinit() { glClearColor(0.8,1.0,1.0,1.0); glColor3f(0.0,0.0,1.0); glPointSize(1.0); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(0.0,500.0,0.0,500.0); } void main(int argc,char **argv ) { glutInit(&argc,argv); glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB); glutInitWindowSize(500,500); glutInitWindowPosition(200.0,200.0); glutCreateWindow("CG_test_Bresenham_Line example"); glutDisplayFunc(display); myinit(); glutMainLoop(); } 二、中点法绘制椭圆 #include #include #include inline int round(const float a){return int (a+0.5);} void setPixel(GLint xCoord,GLint yCoord) { glBegin(GL_POINTS); glVertex2i(xCoord,yCoord); glEnd(); } void ellipseMidpoint(int xCenter,int yCenter,int Rx,int Ry) { int Rx2=Rx*Rx; int Ry2=Ry*Ry; int twoRx2=2*Rx2; int twoRy2=2*Ry2; int p; int x=0; int y=Ry; int px=0; int py=twoRx2*y; void ellipsePlotPoints(int,int,int,int);

排序算法题目及其代码

排序算法题目及其代码 1、明明的随机数(Noip2006) 【问题描述】 明明想在学校中请一些同学一起做一项问卷调查,为了实验的客观性,他先用计算机生成了N个1到1000之间的随机整数(N≤100),对于其中重复的数字,只保留一个,把其余相同的数去掉,不同的数对应着不同的学生的学号。然后再把这些数从小到大排序,按照排好的顺序去找同学做调查。请你协助明明完成“去重”与“排序”的工作。 【输入文件】 输入文件random.in 有2行, 第1行为1个正整数,表示所生成的随机数的个数:N 第2行有N个用空格隔开的正整数,为所产生的随机数。 【输出文件】 输出文件random.out 也是2行,第1行为1个正整数M,表示不相同的随机数的个数。第2行为M个用空格隔开的正整数,为从小到大排好序的不相同的随机数。 【输入样例】 10 20 40 32 67 40 20 89 300 400 15 【输出样例】 8 15 20 32 40 67 89 300 400 【参考程序】 var n,s:byte; i,min,max,x:word; b:array[1..1000]of boolean; begin assign(input,'random.in');reset(input); assign(output,'random.out');rewrite(output); readln(n); fillchar(b,sizeof(b),false); min:=1000;max:=0;s:=0; for i:=1 to n do begin read(x); b[x]:=true; if xmax then max:=x; end; close(input); for i:=min to max do if b[i] then inc(s); writeln(s); for i:=min to max do if b[i] then write(i,' ');

贪心算法背包问题

算法设计与分析实验报告 题目:贪心算法背包问题 专业:JA V A技术xx——xxx班 学号: 姓名: 指导老师:

实验三:贪心算法背包问题 一、实验目的与要求 1、掌握背包问题的算法 2、初步掌握贪心算法 二、实验题: 问题描述:与0-1背包问题相似,给定n种物品和一个背包。物品i的重量是wi,其价值为vi,背包的容量为c。与0-1背包问题不同的是,在选择物品i装入背包时,背包问题的解决可以选择物品i的一部分,而不一定要全部装入背包,1< i < n。 三、实验代码 import java.awt.*; import java.awt.event.*; import javax.swing.*; public class er extends JFrame { private static final long serialVersionUID = -1508220487443708466L; private static final int width = 360;// 面板的宽度 private static final int height = 300;// 面板的高度 public int M; public int[] w; public int[] p; public int length; er() { // 初始Frame参数设置 this.setTitle("贪心算法"); setDefaultCloseOperation(EXIT_ON_CLOSE); setSize(width, height); Container c = getContentPane(); c.setLayout(new BoxLayout(c, BoxLayout.Y_AXIS)); setLocation(350, 150); // 声明一些字体样式 Font topF1 = new Font("宋体", Font.BOLD, 28); Font black15 = new Font("宋体", Font.PLAIN, 20); Font bold10 = new Font("宋体", Font.BOLD, 15); // 声明工具栏及属性设置 JPanel barPanel = new JPanel(); JMenuBar topBar = new JMenuBar(); topBar.setLocation(1, 1); barPanel.add(topBar); // 面板1和顶部标签属性设置 JPanel p1 = new JPanel(); JLabel topLabel = new JLabel("背包问题");

计算机图形学 实验一:生成彩色立方体(含源代码)

实验一 实验目的:生成彩色立方体 实验代码://ColorCube1.java import java.applet.Applet; //可以插入html import java.awt.BorderLayout; //窗口采用BorderLayout方式布局import com.sun.j3d.utils.applet.MainFrame; //application import com.sun.j3d.utils.geometry.ColorCube;//调用生成ColorCube的Utility import com.sun.j3d.utils.geometry.Primitive; import com.sun.j3d.utils.universe.*; //观测位置的设置 import javax.media.j3d.*; //核心类 import javax.vecmath.*; //矢量计算 import com.sun.j3d.utils.behaviors.mouse.*; public class ColorCube1 extends Applet { public BranchGroup createSceneGraph() { BranchGroup objRoot=new BranchGroup(); //BranchGroup的一个对象objRoot(放置背景、灯光)BoundingSphere bounds=new BoundingSphere(new Point3d(0.0,0.0,0.0),100.0);//有效范围 TransformGroup objTrans=new TransformGroup(); objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); objRoot.addChild(objTrans); MouseRotate behavior = new MouseRotate(); behavior.setTransformGroup(objTrans); objRoot.addChild(behavior); behavior.setSchedulingBounds(bounds); MouseZoom behavior2 = new MouseZoom(); behavior2.setTransformGroup(objTrans); objRoot.addChild(behavior2); behavior2.setSchedulingBounds(bounds); MouseTranslate behavior3 = new MouseTranslate(); behavior3.setTransformGroup(objTrans); objRoot.addChild(behavior3); behavior3.setSchedulingBounds(bounds);

0-1背包问题的算法设计策略对比与讲解

算法设计与分析大作业 班级:电子154 姓名:吴志勇 学号: 1049731503279 任课老师:李瑞芳 日期: 2015.12.25

算法设计与分析课程论文 0-1背包问题的算法设计策略对比与分析 0 引言 对于计算机科学来说,算法的概念是至关重要的。在一个大型软件系统的开发中,设计出有效的算法将起到决定性的作用。通俗的讲,算法是解决问题的一种方法。也因此,《算法分析与设计》成为计算科学的核心问题之一,也是计算机科学与技术专业本科及研究生的一门重要的专业基础课。算法分析与设计是计算机软件开发人员必修课,软件的效率和稳定性取决于软件中所采用的算法;对于一般程序员和计算机专业学生,学习算法设计与分析课程,可以开阔编程思路,编写出优质程序。通过老师的解析,培养我们怎样分析算法的“好”于“坏”,怎样设计算法,并以广泛用于计算机科学中的算法为例,对种类不同难度的算法设计进行系统的介绍与比较。本课程将培养学生严格的设计与分析算法的思维方式,改变随意拼凑算法的习惯。本课程要求具备离散数学、程序设计语言、数据结构等先行课课程的知识。 1 算法复杂性分析的方法介绍 算法复杂性的高低体现在运行该算法所需要的计算机资源的多少上,所需的资源越多,该算法的复杂性越高;反之,所需资源越少,该算法的复杂性越低。对计算机资源,最重要的是时间与空间(即存储器)资源。因此,算法的复杂性有时间复杂性T(n)与空间复杂性S(n)之分。 算法复杂性是算法运行所需要的计算机资源的量,这个量应集中反映算法的效率,并从运行该算法的实际计算机中抽象出来,换句话说,这个量应该只依赖要解决的问题规模‘算法的输入和算法本身的函数。用C表示复杂性,N,I和A表示问题的规模、算法的输入和算法本身规模,则有如下表达式: C=F(N,I,A) T=F(N,I,A) S=F(N,I,A) 其中F(N,I,A)是一个三元函数。通常A隐含在复杂性函数名当中,因此表达式中一般不写A。 即:C=F(N,I) T=F(N,I) S=F(N,I) 算法复杂性中时间与空间复杂性算法相似,所以以下算法复杂性主要以时间复杂性为例: 算法的时间复杂性一般分为三种情况:最坏情况、最好情况和平均情况。下面描述算法复杂性时都是用的简化的复杂性算法分析,引入了渐近意义的记号O,Ω,θ,和o。 O表示渐近上界Ω表示渐近下界: θ表示同阶即:f(n)= O(g(n))且 f(n)= Ω(g(n)) 2 常见的算法分析设计策略介绍 2.1 递归与分治策略 分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。 直接或间接地调用自身的算法称为递归算法。用函数自身给出定义的函数称为递归函数。 由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。 分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。 递归算法举例: 共11页第1页

计算机图形学课程教学大纲

《计算机图形学》课程教学大纲一、课程基本信息 课程代码:110053 课程名称:计算机图形学 英文名称:Computer Graphics 课程类别:专业课 学时:72 学分: 适用对象:信息与计算科学专业本科生 考核方式:考试(平时成绩占总成绩的30%) 先修课程:高级语言程序设计、数据结构、高等代数 二、课程简介 中文简介: 计算机图形学是研究计算机生成、处理和显示图形的学科。它的重要性体现在人们越来越强烈地需要和谐的人机交互环境:图形用户界面已经成为一个软件的重要组成部分,以图形的方式来表示抽象的概念或数据已经成为信息领域的一个重要发展趋势。通过本课程的学习,使学生掌握计算机图形学的基本原理和基本方法,理解图形绘制的基本算法,学会初步图形程序设计。 英文简介: Computer Graphics is the subject which concerned with how computer builds, processes and shows graphics. Its importance has been shown in people’s more and more intensively need for harmony human-machine interface. Graphics user interface has become an important part of software. It is a significant trend to show abstract conception or data in graphics way. Through the learning of this course, students could master Computer Graphics’basic theories and methods,understand graphics basic algorithms and learn how to design basic graphics program. 三、课程性质与教学目的 《计算机图形学》是信息与计算科学专业的一门主要专业课。通过本课程的学习,使学生掌握基本的二、三维的图形的计算机绘制方法,理解光栅图形生成基本算法、几何造型技术、真实感图形生成、图形标准与图形变换等概念和知识。学会图形程序设计的基本方法,为图形算法的设计、图形软件的开发打下基础。 四、教学内容及要求 第一章绪论 (一)目的与要求 1.掌握计算机图形学的基本概念; 2.了解计算机图形学的发展、应用; 3.掌握图形系统的组成。

数据结构排序算法的分析和比较(包涵源代码)

排序算法的分析比较 学生姓名: 学号: 专业: 班级: 一、题目概述 排序的方法很多,但是就其全面性能而言,很难提出一种被认为是最好的方法,每一种方法都有各自的优缺点,适合在不同的环境下使用。如果排序中依据的不同原则对内部排序方法进行分类,则大致可分为直接插入排序、直接选择排序、起泡排序、Shell排序、快速排序、堆排序等六类排序算法。 本文是对直接插入排序、直接选择排序、起泡排序、Shell排序、快速排序、堆排序这几种内部排序算法进行比较,用不同的测试数据做测试比较。比较的指标为关键字的比较次数和关键字的移动次数。最后用图表数据汇总,以便对这些内部排序算法进行性能分析。 二、数据定义 输入数据: 由于大多数排序算法的时间开销主要是关键字之间的比较和记录的移动,算法的执行时间不仅依赖于问题的规模,还取决于输入实例中数据的状态。所以对于输入数据,我们采用由用户输入记录的个数(以关键字的数目分别为20,100,500为例),测试数据由随机数产生器生成。 输出数据: 产生的随机数分别用直接插入排序;直接选择排序;起泡排序;Shell排序;快速排序;堆排序这些排序方法进行排序,输出关键字的比较次数和移动次数。 各种排序的基本原理及时间复杂度分析 1、直接插入排序(InsertSort) 1.1、基本原理: 假设待排序的n个记录{R0,R1,…,Rn}顺序存放在数组中,直接插入法在插入记录Ri(i=1,2,…,n-1)时,记录被划分为两个区间[R0,Ri-1]和[Ri+1,Rn-1],其中,前一个子区间已经排好序,后一个子区间是当前未排序的部分,将关键码Ki与Ki-1Ki-2,…,K0依次比较,找出应该插入的位置,将记录Ri插,然后将剩下的i-1个元素按关键词大小依次插入该有序序列,没插入一个元素后依然保持该序列有序,经过i-1趟排序后即成为有序序列。每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子文件中的适当位置,直到全部记录插入完成为止。 1.2、时间复杂度分析: 直接插入排序算法必须进行n-1趟。最好情况下,即初始序列有序,执行n-1趟,但每一趟只比较一次,移动元素两次,总的比较次数是(n-1),移动元素次数是2(n-1)。因此最好情况下的时间复杂度就是O(n)。最坏情况(非递增)下,最多比较i次,因此需要的比较次数是:所以,时间复杂度为O(n2)。

贪心算法实现背包问题算法设计与分析实验报告

算法设计与分析实验报告 实验名称贪心算法实现背包问题评分 实验日期年月日指导教师 姓名专业班级学号 一.实验要求 1. 优化问题 有n个输入,而它的解就由这n个输入满足某些事先给定的约束条件的某个子集组成,而把满足约束条件的子集称为该问题的可行解。可行解一般来说是不唯一的。那些使目标函数取极值(极大或极小)的可行解,称为最优解。 2.贪心法求优化问题 算法思想:在贪心算法中采用逐步构造最优解的方法。在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。决策一旦作出,就不可再更改。作出贪心决策的依据称为贪心准则(greedy criterion)。 3.一般方法 1)根据题意,选取一种量度标准。 2)按这种量度标准对这n个输入排序 3)依次选择输入量加入部分解中。如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。 procedure GREEDY(A,n) /*贪心法一般控制流程*/ //A(1:n)包含n个输入// solutions←φ //将解向量solution初始化为空/ for i←1 to n do x←SELECT(A) if FEASIBLE(solution,x) then solutions←UNION(solution,x) endif repeat return(solution) end GREEDY 4. 实现典型的贪心算法的编程与上机实验,验证算法的时间复杂性函数。 二.实验内容 1. 编程实现背包问题贪心算法。通过具体算法理解如何通过局部最优实现全局最优,

并验证算法的时间复杂性。 2.输入5个的图的邻接矩阵,程序加入统计prim算法访问图的节点数和边数的语句。 3.将统计数与复杂性函数所计算比较次数比较,用表格列出比较结果,给出文字分析。 三.程序算法 1.背包问题的贪心算法 procedure KNAPSACK(P,W,M,X,n) //P(1:n)和W(1;n)分别含有按 P(i)/W(i)≥P(i+1)/W(i+1)排序的n件物品的效益值 和重量。M是背包的容量大小,而x(1:n)是解向量 real P(1:n),W(1:n),X(1:n),M,cu; integer i,n; X←0 //将解向量初始化为零 cu←M //cu是背包剩余容量 for i←1 to n do if W(i)>cu then exit endif X(i) ←1 cu←cu-W(i) repeat if i≤n then X(i) ←cu/ W(i) endif end GREEDY-KNAPSACK procedure prim(G,) status←“unseen” // T为空 status[1]←“tree node” // 将1放入T for each edge(1,w) do status[w]←“fringe” // 找到T的邻接点 dad[w] ←1; //w通过1与T建立联系 dist[w] ←weight(1,w) //w到T的距离 repeat while status[t]≠“tree node” do pick a fringe u with min dist[w] // 选取到T最近的节点 status[u]←“tree node” for each edge(u,w) do 修改w和T的关系 repeat repeat 2.Prim算法

相关文档
相关文档 最新文档