文档库 最新最全的文档下载
当前位置:文档库 › 导线的特性及应用

导线的特性及应用

导线的特性及应用
导线的特性及应用

碳纤维导线的特性及应用

韩国聚1赵功展2齐文灿1、2

(1.平顶山电力设计院;2.平顶山供电公司;河南平顶山市,467001)

摘要:主要论述了碳纤维导线的特性及在老线路改造工程中的应用。

关键词:碳纤维导线特性拐点 ACCC/TW ACSR

Properties and Applications of Aluminum Conductor Composite Core

HAN Guo-ju et al

(Pingdingshan Electric Power Design Institute, Pingdingshan467001,Henan Province,China) Abstract: This paper discusses the characteristics of Aluminum Conductor Composite Core and the transformation of the old-line engineering

Keywords:Aluminum Conductor Composite Core Features Knee ACCC/TW ACSR

0引言

随着我国电力需求的不断增长,许多电力线路面临增容的压力。线路增容最经济的办法之一是利用原有杆塔只更换导线。而利用原有杆塔的前提条件是,更换的导线荷载不能超过原有杆塔的设计条件。为此,新更换的导线一般不能采用普通的钢芯铝绞线ACSR(Aluminum Conductor Steel Reinforced),而是采用新型的增容导线。这种新型导线一般具备这样三个特点:一是弧垂随温度的变化小;二是质量轻、外径小;三是具有输送大电流的能力。而碳纤维复合芯软铝绞线(以下简称碳纤维导线)ACCC/TW(Aluminum Conductor Composite Core/Trapezoidal Wire)是典型的品质优良的增容导线品种之一。

1.碳纤维导线的结构

碳纤维导线ACCC/TW的结构独特,内部是一根由碳纤维为中心层和玻璃纤维包覆制成的复合芯,外层由一系列呈梯形截面的软铝线绞合而成。碳纤维复核芯承担导线总的力学性能,具有强度高、密度小、膨胀系数小、耐腐蚀等特点。外层软铝具有导电率高、电阻小、自阻尼性能强的特点。碳纤维复合芯与软铝线绞制而成的导线,便具有优良的性能:导线重量轻,电阻小,表面光滑不易舞动,拉力质量比大,弧垂随温度的变化小等[1]。因此,可作为电力部门老旧线路改造、电力增容导线使用。其结构如图1-1所示。

外层软铝

碳纤维复核芯

图1-1碳纤维导线结构

2.碳纤维导线的特性

2.1.抗拉强度高

目前各设计院广泛采用的钢芯铝绞线基本上仍为GB1197-83标准中的型式,该标准导线中使用的钢芯绞合后强度为1244N/mm2,而碳纤维导线ACCC/TW的复合芯抗拉强度最小值可

以达到2150N/mm2,为前者的1.73倍。例如,直径9.53mm的复合芯抗拉强度达到2414N/mm2,是钢芯铝绞线中钢芯强度的1.94倍。

2.2.拐点以后弧垂随温度的变化量小

根据试验,当温度达到80℃附近,碳纤维导线的线膨胀系数α和弹性模量E出现拐点,80℃及以下α=12.5~14X10-6/℃,E=64000~68000N/mm2;在80℃以上α=1.6X10-6/℃,

E=117000N/mm2。由于碳纤维导线具有的这样的特点,因此在同样档距下弧垂随温度的变化

比钢芯铝绞线要小。例如我院原设计的220千伏线路尊平线路改造工程中,比较了碳纤维导线JRLX/T-310/40和钢芯铝绞线2XLGJ-300/40两种方案,并把碳纤维导线与钢芯铝绞线档距400米下的弧垂进行了比较。计算条件及结果分别见表2-1、2-2、2-3。

表2-1 工程设计气象条件

计算条件气温(℃)风速(m/s)覆冰(mm)

最高气温+40 0 0

最低气温-20 0 0

最大风速-5 30 0

最大覆冰-5 10 10

安装情况-10 10 0

年平均气温+15 0 0

外过电压+15 10 0

内过电压+15 15 0 表2-2 碳纤维导线和普通钢芯铝绞线参数表

导线型号碳纤维导线JRLX/T-310/40 钢芯铝绞线LGJ-300/40

总截面 mm2349.5 338.99

铝截面 mm2309.5 300.09

直径(mm)21.78 23.94 保证计算拉断力95%AT(N)97850 87600 弹性系数(N/mm2)拐点前65000,拐点后117000 73000

膨胀系数(10-6 /℃)拐点前13.0,拐点后1.6 19.6

单位重量(kg/m)0.927 1.133

安全系数 2.5 2.5 表2-3 400米档距时碳纤维导线和普通钢芯铝绞线弧垂表单位:m

温度℃

20 40 60 80 100 120 140 160 导线型号

LGJ-300/40 11.486 12.337 13.153 13.937

JRLX/T-310/40 7.928 8.590 9.243 9.883 9.968 10.053 10.137 10.220 由上表可知,400米档距时温度由20℃升高到80℃,钢芯铝绞线LGJ-300/40,弧垂增大2.451米;碳纤维导线JRLX/T-310/40,弧垂增大1.955米,碳纤维导线弧垂变化量小于

钢芯铝绞线。但是当温度由80℃升高到160℃,碳纤维导线JRLX/T-310/40,弧垂仅再增大0.337米。

另外,我们通过对常用的钢芯铝绞线,如LGJ-240/30、LGJ-300/25、LGJ-300/40、LGJ-400/35、LGJ-500/45与碳纤维导线JRLX/T-218/28、JRLX/T-310/40、JRLX/T-413/52、JRLX/T-517/71、JRLX/T-600/71,在安全系数2.5、3.0,覆冰厚度10毫米、15毫米、20毫米等条件下应力弧垂特性进行了计算和分析,形成了上万个数据,并对数据进行了归纳总结,发现碳纤维导线在弧垂特性方面存在以下特点:

1.外径、截面基本相同、安全系数和气象条件一样的条件下,温度80℃及以下时,碳纤维导线的弧垂随温度升高而产生的变化量小于钢芯铝绞线。产生这一结果的原因是,碳纤维导线设计水平张力比钢芯铝绞线大,而质量又相对轻,拉力质量比大。由弧垂公式我们知道,对于同一档距内两根导线弧垂之比

f2

f1 = 01T m01/02T m02(m 01、m

02——导线质量,T 01、T 02

导线水平拉力),由该公式不难理解这样的结果。

2.拐点前(80℃及以下)碳纤维导线弧垂随温度的变化比较大,拐点后(80℃以上)碳纤维导线弧垂随温度的变化比较小。产生这一结果的原因是,在拐点处碳纤维导线弹性系数增大,线膨胀系数减小(实际上根据物体热胀冷缩的性质,导线弧垂不可能在拐点处发生突变,而是一个渐变的过程,本文理论计算时不考虑渐变)。

2.3.重量轻

碳纤维复合芯材料的密度小(1.9g/cm 3),约为普通钢芯密度(7.8g/cm 3

)的1/4。在铝截面基本相同的情况下, 碳纤维导线单位长度重量约为常规ACSR 导线的80%左右。根据文献[2]对照钢芯铝绞线标准GB1179-83,将两种导线铝截面基本相同的情况进行比较,结果如表2-4。

表2-4 铝截面基本相同时碳纤维导线与钢芯铝绞线重量比较表 导线型号 铝截面(mm 2

) 总截面(mm 2

) 单位重量(kg/km ) 重量比%(ACCC/ACSR ) LGJ-150/25 148.86 173.11 601.0 77.54 JRLX/T-150/28 150.00 178.00 466.0 LGJ-185/25 187.04 211.29 706.1 79.73 JRLX/T-185/28 185.00 213.00 563.0 LGJ-240/30 244.29 275.96 922.2 75.92 JRLX/T-240/28 240.00 268.00 700.0 LGJ-800/55 814.3 870.60 2690.0 85.87

JRLX/T-800/60

796.40

856.70

2310.0

但是两种导线外径完全相同时,ACCC 碳纤维导线并不一定比钢芯铝绞线轻,这是因为

ACCC 碳纤维导线铝和碳纤维复核芯截面比例变化引起的。两种导线外径完全相同的情况比较结果,如表2-5。

表2-5 铝截面基本相同时碳纤维导线与钢芯铝绞线重量比较表

导线型号 导线外径(mm )

单位重量(kg/km )

重量比%(ACCC/ACSR )

LGJ-150/25 17.10 601.0 93.68 JRLX/T-185/28 563 LGJ-210/10 19.00 650.70 107.58 JRLX/T-240/28 700.00 LGJ-300/15 23.00

939.8 108.32

JRLX/T-350/40

1018

2.4.允许工作温度高、载流量大

电力线路上碳纤维导线设计运行温度165℃,钢芯铝绞线设计运行温度80℃。在相同的载流量时,碳纤维导线ACCC/TW比钢芯铝绞线ACSR温度低、弧垂小,因此可以承载更大的电流;在相同的运行温度时,其载流量比ACSR大[1]。例如我院原设计的220千伏线路尊平线路改造中,比较了碳纤维导线JRLX/T-310/40和钢芯铝绞线2XLGJ-300/40两种导线的载流量,结果见表2-6.

表2-6 碳纤维导线与钢芯铝绞线载流量比较[1][3]

温度℃

60 80 100 120 140 160

导线型号

JRLX/T-310/40 507 731 892 1022 1134 1235

LGJ-300/40 550 730

表2-6计算条件:环境温度30℃、风速0.5m/s、辐射系数0.9、日照强度1000W/m2.

从上表可知,碳纤维导线JRLX/T-310/40和钢芯铝绞线LGJ-300/40截面基本相同,碳纤维导线我们拟选运行温度160℃下的载流量,比钢绞线允许温度80℃时大1.69倍。

3.工程应用

对于现有老线路增容改造,只需把原线路上的钢芯铝绞线更换成铝截面基本相同的碳纤维导线,即可达到增容60—100%的目的。一般老线路改造换线施工期15-20天,建设周期比新建线路大大缩短。我院原设计的220千伏线路尊平线路改造工程,线路处于市区,线路重建难度很大,原导线为LGJ-300/40,安全系数2.5,增容设计推荐将原导线更换为碳纤维导线JRLX/T-310/40,安全系数2.72,经校验原线路杆塔强度、导线弧垂均满足要求,输送容量提高61%,比导线更换为钢芯铝绞线2XLGJ-300/40,杆塔拆除重建方案,节约造价45%。所以碳纤维导线用于老线路增容改造的优势是十分明显的。

从2006年第一条碳纤维复合芯导线挂网运行以来,全国已经有近50条110~220kV碳纤维复合芯导线线路投入运行,积累了一定施工、运行经验。目前制约其推广的一个重要原因是碳纤维复合芯依赖进口、价格比较高。随着使用范围的扩大,价格也会相应降低。总之碳纤维导线在老线路改造工程中的应用前景还是很好的。

参考文献:

1.董国伦,龚坚刚,余虹云,等编,碳纤维复合芯软铝绞线设计施工运行与检修[M],北京,中国电力出版社,2009年9月。

2.JRLX/T(ACCC)碳纤维导线产品样本,远东复合技术有限公司[z],2009。

3.马国栋编著,电线电缆载流量[M],北京,中国电力出版社,2003年10月。

作者简介:韩国聚(1971-),男,高级工程师,从事输电线路设计工作。

生物质燃料燃烧特性

生物质燃料燃烧特性 Prepared on 22 November 2020

生物质燃料燃烧特性 生物质由C、H、O、N、S等元素组成,是空气中CO2、水和阳光通过光合作用的产物,且有挥发份高,炭活性高、S、N含量低(%%,%--3%,)灰分低(%%)等特点,生物质燃料中可燃部分主要为纤维素、半纤维素、木质素、按质量计量,纤维素占40%--50%,半纤维素20%--40%,木质素占10%--20%。 由于与化石燃料特性不同,生物质燃料的燃料机理、反应速度及燃料产物成分与化石燃料的相比都有较大的差别。生物质燃料的燃烧过程主要分为挥发份的析出,燃烧和残余焦炭的燃烧、燃尽两个独立阶段。其燃烧过程的特点: ①水分含量多,燃料需要较高的干燥温度和较长的干燥时间,产生的烟气体积较大,排烟损失较高。 ②燃料的密度小,结构松散,迎风面积大,易吹起,悬浮段燃 烧份额较大。 ③发热量低,灰熔点低,炉内温度水平低,组织稳定的燃烧比 较困难。 ④由于挥发份高,燃料着火温度较低,一般在250—350℃温度下挥发份便大量析出并开始剧烈燃烧,此时若空气量不足,会增大化学不完全燃烧损失。 ⑤会犯分析出燃尽后,受到灰烬包裹和空气渗透困难的影响,焦炭颗粒燃尽困难,燃烧过度缓慢,如不采取适当的必要措施,将会导致灰烬中残留较多的余碳,增大机械不完全燃烧损失。 ⑥秸秆等部分生物质燃料含氯量较高,因此需要对床层部分结构和运行工况加以特殊考虑,防止其对床层部分的腐蚀。 由此可见,生物质燃烧设备的设计和运行方式的选择应从不同种类生物质燃料特性出发才能保证生物质燃料设备运行的经济性和可靠性,提高生物质开发利用的效率。

导线机械特性曲线绘制

电气化届架空线路课程设计机械特性曲线绘制设计 学生姓名 学号 所属学院 专业农业电气化与自动化 班级 指导教师 日期

前言 建设一条架空线输电线路,必须符合经济合理、安全适用的原则,既要充分利用材料的强度,又要保证安全运行。 对于悬挂在架空线路杆塔上的导线,外界温度变化将引起导线的伸长或缩短,而导线上的荷载变化将引起导线的弹力变形,这两种现象都使导线的长度发生变化。通过计算可知:档距一定时,导线长度的微小变化也会导致导线应力和弧垂的很大变化。导线长度的缩短,将使导线应力增大,弧垂减小;反之,导线伸长,将使导线应力减小,弧垂增大。显然,在线路设计时,必须计算导线的应力和弧垂,确定和掌握导线在各种气象条件下的应力和弧垂的变化情况,并保证当导线应力最大时,其值不超过导线强度允许值,而当弧垂最大时,要保证导线的对地安全距离,从而保证线路设计经济合理、运行安全可靠。 本次设计是要绘制导线的机械特性曲线,在线路设计过程中,为了设计计算的方便,总是首先计算导线在各种不同气象条件下和不同代表档距时的应力和弧垂,并把计算结果以横坐标为代表档距,纵坐标为应力或弧垂绘制成各种气象条件时代表档距和应力或弧垂的关系曲线,这些曲线就称为导线的应力或弧垂曲线,简称导线机械特性曲线。

目录 工程概况 (3) 1.导线型号的确定 (3) 2.各气象条件时的比载确定 (3) 3.安全系数及防振措施的确定 (4) 4.临界档距计算及辨别 (4) 4.1计算数据 (4) 4.2临界档距计算 (4) 4.3有效临界档距辨别 (5) 4.4结论 (5) 5.机械特性应力特计算 (5) 6.绘制机械特性曲线 (7) 致谢 (8) 参考文献 (9)

生物质燃料燃烧特性

生物质燃料燃烧特性 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

生物质燃料燃烧特性 生物质由C、H、O、N、S等元素组成,是空气中CO2、水和阳光通过光合作用的产物,且有挥发份高,炭活性高、S、N含量低(%%,%--3%,)灰分低(%%)等特点,生物质燃料中可燃部分主要为纤维素、半纤维素、木质素、按质量计量,纤维素占40%--50%,半纤维素20%--40%,木质素占10%--20%。 由于与化石燃料特性不同,生物质燃料的燃料机理、反应速度及燃料产物成分与化石燃料的相比都有较大的差别。生物质燃料的燃烧过程主要分为挥发份的析出,燃烧和残余焦炭的燃烧、燃尽两个独立阶段。其燃烧过程的特点: ①水分含量多,燃料需要较高的干燥温度和较长的干燥时间,产生的烟气体积较大,排烟损失较高。 ②燃料的密度小,结构松散,迎风面积大,易吹起,悬浮段燃 烧份额较大。 ③发热量低,灰熔点低,炉内温度水平低,组织稳定的燃烧比 较困难。 ④由于挥发份高,燃料着火温度较低,一般在250—350℃温度下挥发份便大量析出并开始剧烈燃烧,此时若空气量不足,会增大化学不完全燃烧损失。 ⑤会犯分析出燃尽后,受到灰烬包裹和空气渗透困难的影响,焦炭颗粒燃尽困难,燃烧过度缓慢,如不采取适当的必要措施,将会导致灰烬中残留较多的余碳,增大机械不完全燃烧损失。 ⑥秸秆等部分生物质燃料含氯量较高,因此需要对床层部分结构和运行工况加以特殊考虑,防止其对床层部分的腐蚀。 由此可见,生物质燃烧设备的设计和运行方式的选择应从不同种类生物质燃料特性出发才能保证生物质燃料设备运行的经济性和可靠性,提高生物质开发利用的效率。

Smith预估控制算法设计仿真实验

Smith 预估控制算法设计仿真实验 实验目的 在控制算法学习的基础上,根据给定对象特性设计Smith 预估控制器算法,并利用Matlab 软件进行仿真实验,同时与PID 控制算法进行比较,加深对该控制算法的掌握和理解。 实验内容和要求 设广义被控对象为: 1011()()()1Ts s s e e H s G s G s e s T s ττ----==?+ 控制系统框图为: T 取T=1、τ=2、T 1=2.88,经采样(T=1s )保持后,其广义对象z 传递函数为 00.2934 ()0.7066 G z z = -, 而2s e -转换为2个单位迟延。 控制器参数:Kp=0.5,Ki=0.2,Kd=0。 实验要求: (1) 设计Smith 预估控制算法,作给定值扰动和外部扰动响应实验,并绘制控制器输出P 和系统输出y 响应曲线。 (2)被控对象不变,采用理想PID 进行给定值扰动和外部扰动响应实验,并绘制控制器输出P 和系统输出y 响应曲线。 思考和讨论 (1)分析两类控制算法对带迟延对象的控制效果。 (2)根据实验分析Smith 预估控制算法的优点是什么,若采用PID 算法解决同 类问题效果如何? Matlab 辅助设计软件

具体操作步骤: 1、 启动Matlab ; 2、单击工具栏中的Simulink 仿真图标 ,进入Simulink 仿真环 境 3、新建仿真结构图,寻找模块,拖动到新建仿真结构图中 新建 模块库

所涉及模块的位置: 加法器Sum:在Simulink/Math Operations子库中。 离散PID控制器:在SimPowerSystems/Extra Library/DiscreteControl Blocks子库中。 离散传递函数Discrete Transfer Fcn:在Simulink/Discrete子库中。 示波器Scope:在Simulink/Sinks模型库中。 阶跃信号Step:在Simulink/Sources模型库中。 4、修改模块参数。双击模块,在出现的窗口中设置参数。 5、连接模块。将光标移到一个模块的输出端(>)按下鼠标左键拖动鼠标到另一个模块的输 入端(>),松开鼠标左键就可以完成两个模块的连接。 6、设置仿真参数,进行仿真。

导体的伏安特性曲线

根据部分电路欧姆定律,下列判断正确的有 ( ) A.导体两端的电压越大,电阻就越大 B.导体中的电流越大,电阻就越小 C.比较几只电阻的I -U 图象可知,电流变化相同时,电压变化较小的图像是属于阻值较大的那个电阻的 D.由I =U R 可知,通过一段导体的电流跟加在它两端的电压成正比 答案:D 以下给出几种电学元件的电流与电压的关系图象,如图所示,下列说法中正确的是( ) A.这四个图象都是伏安特性曲线 B.这四种电学元件都是线性元件 C.①②是线性元件,③④是非线性元件 D.这四个图象中,直线的斜率都表示了元件的电阻 答案:C 为探究小灯泡L 的伏安特性,连好图示的电路后闭合开关,通过移动变阻器的滑片,使小灯泡中的电流由零开始逐渐增大,直到小灯泡正常发光.由电流表和电压表得到的多组读数描绘出的U-I 图象应是( ) 答案:C 一个阻值为R 的电阻两端加上电压U 后,通过电阻横截面的电荷量q 随时间变化的图象如图所示,此图象的斜率可表示为 ( ) A.U B.R C.U R

D.1 R 答案:C 某同学对四个电阻各进行了一次测量,把每个电阻两端的电压和通过它的电流在U—I坐标系中描点,得到了图中a、b、c、d四个点.比较这四个电阻值的大小,其中正确的是() A.Ra>Rb=Rc>Rd B.Ra>Rb>Rc>Rd C.Ra<Rb=Rc<Rd D.Ra<Rb<Rc<Rd 答案:A 某同学做三种导电元件的导电性能实验,他根据所测量数据分别绘制了三种元件的I-U图象,如图所示,则下述判断正确的是() A.只有乙图正确 B.甲、丙图的曲线肯定是偶然误差太大 C.甲、丙不遵从欧姆定律,肯定不可能正确 D.甲、乙、丙三个图都可能正确,并不一定有较大误差 答案:D 如下图所示,是某晶体二极管的伏安特性曲线,下列说法正确的是() A.加正向电压时,二极管电阻较小,且随着电压的增大而增大 B.加反向电压时,二极管电阻较大,无论加多大电压,电流都很小 C.无论是加正向电压还是加反向电压,电压和电流都不成正比,所以二极管是非线性元件 D.二极管加正向电压时,电流随电压变化是一条直线 答案:C

可燃气体燃爆特性MicrosoftWord文档(2)(精)

可燃气体燃爆特性 凡是遇火,受热或与氧化剂接触能着火或爆炸的气体,统称为可燃气体。 燃烧形式气体的燃烧与液体和固体的燃烧不同,它不需要经过蒸发、熔化等过程,气体在正常状态下就可具有燃烧条件,所以比液体和固体都容易燃烧。有扩散燃烧和动力燃烧两种形式。 (1)扩散燃烧。如果可燃气体与空气的混合是在燃烧过程中进行的,则发生稳定式的燃烧,称为扩散燃烧,燃烧速度一般小于0.5m/s。由于可燃气体与空气是逐渐混合的,并逐渐燃烧消耗掉,因而形成稳定式燃烧,只要控制得当,就不会造成火灾。如火炬、气焊的火焰、燃气加热等属于这类扩散燃烧。 (2)动力燃烧。如果可燃气体与空气是在燃烧之前按一定比例均匀混合的,形成预混气,遇火源则发生爆炸式燃烧,称动力燃烧。在预混气的空间里,充满了可以燃烧的混合气,一处点火,整个空间立即燃烧起来,发生瞬间的燃烧,即爆炸现象。 此外,如果可燃气体处于压力而受冲击、摩擦或其他着火源作用,则发生喷流式燃烧。像气井的井喷火灾,高压气体从燃气系统喷射出来时的燃烧等。对于这种喷流燃烧形式的火灾,较难扑救,需较多救火力量和灭火剂,应当设法断绝气源,使火灾彻底熄灭。 分类按照爆炸下限分为两级。 (1)一级可燃气体的爆炸下限≤10%,如氢气、甲烷、乙烯、乙炔、环氧乙烷、氯乙烯、硫化氢、水煤气、天然气等绝大多数气体均属此类。 (2)二级可燃气体的爆炸极限>10%,如氨、一氧化碳、发生炉煤气等少数可燃气体属于此类。 (3)在生产或贮存可燃气体时,将一级可燃气体划为甲类火灾危险,二级可燃气体划为乙类火灾危险。 影响爆炸极限的因素可燃气体(蒸气)的爆炸极限受诸多因素的影响,主要有下列几种因素: (1)温度。混合物的原始温度越高,则爆炸下限越低,上限提高,爆炸极限范围扩大,爆炸危险性增加。这是因为混合物温度升高,其分子内能增加,引起燃烧速度的加快,而且,由于分子内能的增加和燃烧速度的加快,使原来含有的过量空气(低于爆炸下限)或可燃物高于爆炸上限,而不能使火焰蔓延的混合物浓度变成为可以使火焰蔓延的浓度,从而改变了爆炸极限范围。 (2)氧含量。混合物中含氧量增加,爆炸极限范围扩大,尤其爆炸上限提高得更多。例如氢与空气混合的爆炸极限为4%~75%,而氢与纯氧混合的爆炸极限为4%~95%。 (3)惰性介质。如若在爆炸混合物中掺入不燃烧的惰性气体(如氮、二氧化碳、水蒸气、氩、氦等),随着惰性气体的百分数增加,爆炸极限范围则缩小,惰性气体的浓度提高到某一数值,亦可以使混合物变成不可爆炸。一般情况下,惰性气体对混合物爆炸上限的影响较之对下限的影响更为显著,因为惰性气体浓度加大,表示氧的浓度相对减小,而在上限中氧的浓度本来已经很小,故惰性气体稍为增加一点,即产生很大影响,而使爆炸上限剧烈下降。 (4)压力。混合物的原始压力对爆炸极限有很大影响,压力增大,爆炸极限范围也扩大,尤其是爆炸上限显著提高。 值得重视的是当混合物的原始压力减小时,爆炸极限范围缩小,压力降至某一数值时,下限与上限合成一点,压力再降低,混合物即变成不可爆。爆炸极限范围缩小为零的压力称为爆炸的临界压力。临界压力的存在表明,在密闭的设备内进行减压操作,可以免除爆炸的危险。 (5)容器或管道直径。容器或管道直径越小,火焰在其中越难蔓延,混合物的爆炸极限范围则越小。当容器直径小到某一数值时,火焰不能蔓延,可消除爆炸危险,这个直径称为临界直径。如甲烷的临界直径为0.4~0.5mm,氢和乙炔为0.1~0.2mm等。 容器直径大小对爆炸极限的影响,可以用链式反应理论解释。燃烧是自由基产生的一系列链锁反应的结果,管径减小时,游离基与管壁的碰撞几率相应增大,当管径减小到一定程度时,即因碰撞造成游离基的销毁的反应速度大于游离基产生的反应速度,燃烧反应便不能继续进行。

常见八种金属材料及其加工工艺

常见八种金属材料及其加工工艺 1、铸铁——流动性 下水道盖子作为我们日常生活环境中不起眼的一部分,很少会有人留意它们。铸铁之所以会有如此大量而广泛的用途,主要是因为其出色的流动性,以及它易于浇注成各种复杂形态的特点。铸铁实际上是由多种元素组合的混合物的名称,它们包括碳、硅和铁。其中碳的含量越高,在浇注过程中其流动特性就越好。碳在这里以石墨和碳化铁两种形式出现。 铸铁中石墨的存在使得下水道盖子具有了优良的耐磨性能。铁锈一般只出现在最表层,所以通常都会被磨光。虽然如此,在浇注过程中也还是有专门防止生锈的措施,即在铸件表面加覆一层沥青涂层,沥青渗入铸铁表面的细孔中,从而起到防锈作用。金属加工微信,内容不错,值得关注。生产砂模浇注材料的传统工艺如今被很多设计师运用到了其他更新更有趣的领域。 材料特性:优秀的流动性、低成本、良好的耐磨性、低凝固收缩率、很脆、高压缩强度、良好的机械加工性。 典型用途:铸铁已经具有几百年的应用历史,涉及建筑、桥梁、工程部件、家居、以及厨房用具等领域。 2、不锈钢——不生锈的革命 不锈钢是在钢里融入铬、镍以及其他一些金属元素而制成的合金。其不生锈的特性就是来源于合金中铬的成分,铬在合金的表面形成了一层坚牢的、具有自我修复能力的氧化铬薄膜,这层薄膜是我们肉眼所看不见的。我们通常所提及的不锈钢和镍的比例一般是18:10。 20世纪初,不锈钢开始作为元才来噢被引入到产品设计领域中,设计师们围绕着它的坚韧和抗腐蚀特性开发出许多新产品,涉及到了很多以前从未涉足过的领域。这一系列设计尝试都是非常具有革命性的:比如,消毒后可再次使用的设备首次出现在医学产业中。 不锈钢分为四大主要类型:奥氏体、铁素体、铁素体-奥氏体(复合式)、马氏体。家居用品中使用的不锈钢基本上都是奥氏体。 材料特性:卫生保健、防腐蚀、可进行精细表面处理、刚性高、可通过各种加工工艺成型、较难进行冷加工。 典型用途:奥氏体不锈钢主要应用于家居用品、工业管道以及建筑结构中;马氏体不锈钢主要用于制作刀具和涡轮刀片;铁素体不锈钢具有防腐蚀性,主要应用在耐久使用的洗衣机以及锅炉零部件中;复合式不锈钢具有更强的防腐蚀性能,所以经常应用于侵蚀性环境。

碳纤维导线的特性及应用

碳纤维导线的特性及应用 韩国聚1赵功展2齐文灿1、2 (1.平顶山电力设计院;2.平顶山供电公司;河南平顶山市,467001) 摘要:主要论述了碳纤维导线的特性及在老线路改造工程中的应用。 关键词:碳纤维导线特性拐点 ACCC/TW ACSR Properties and Applications of Aluminum Conductor Composite Core HAN Guo-ju et al (Pingdingshan Electric Power Design Institute, Pingdingshan467001,Henan Province,China) Abstract: This paper discusses the characteristics of Aluminum Conductor Composite Core and the transformation of the old-line engineering Keywords:Aluminum Conductor Composite Core Features Knee ACCC/TW ACSR 0引言 随着我国电力需求的不断增长,许多电力线路面临增容的压力。线路增容最经济的办法之一是利用原有杆塔只更换导线。而利用原有杆塔的前提条件是,更换的导线荷载不能超过原有杆塔的设计条件。为此,新更换的导线一般不能采用普通的钢芯铝绞线ACSR(Aluminum Conductor Steel Reinforced),而是采用新型的增容导线。这种新型导线一般具备这样三个特点:一是弧垂随温度的变化小;二是质量轻、外径小;三是具有输送大电流的能力。而碳纤维复合芯软铝绞线(以下简称碳纤维导线)ACCC/TW(Aluminum Conductor Composite Core/Trapezoidal Wire)是典型的品质优良的增容导线品种之一。 1.碳纤维导线的结构 碳纤维导线ACCC/TW的结构独特,内部是一根由碳纤维为中心层和玻璃纤维包覆制成的复合芯,外层由一系列呈梯形截面的软铝线绞合而成。碳纤维复核芯承担导线总的力学性能,具有强度高、密度小、膨胀系数小、耐腐蚀等特点。外层软铝具有导电率高、电阻小、自阻尼性能强的特点。碳纤维复合芯与软铝线绞制而成的导线,便具有优良的性能:导线重量轻,电阻小,表面光滑不易舞动,拉力质量比大,弧垂随温度的变化小等[1]。因此,可作为电力部门老旧线路改造、电力增容导线使用。其结构如图1-1所示。 外层软铝 碳纤维复核芯 图1-1碳纤维导线结构 2.碳纤维导线的特性 2.1.抗拉强度高 目前各设计院广泛采用的钢芯铝绞线基本上仍为GB1197-83标准中的型式,该标准导线中使用的钢芯绞合后强度为1244N/mm2,而碳纤维导线ACCC/TW的复合芯抗拉强度最小值可

常见金属材料特性

45—优质碳素结构钢{最常用中碳调质钢} 主要特性最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 应用举例 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。(焊接件注意焊前预热,焊后消除应力退火)。 Q235A(A3钢){最常用中碳素结构钢} 主要特性具有高的塑性、韧性和焊接性能、冷却性能,以及一定的强度,好的冷弯性能。 应用举例广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构。 40Cr{合金结构钢} 主要特性经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊接前应预热100~150℃,一般在调质状态下室使用,还可以进行碳氮共参和高频表面淬火处理。

应用举例调质处理后用于制造中速,中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等。调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等。经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等。经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮 等。 HT150{灰铸铁} 应用举例 齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等。 35{各种标准件、紧固件的常用材料} 主要特性强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调 质后使用。 应用举例适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固 件。

半导体的导电特性(精)

自然界的各种物质就其导电性能来说,可以分为导体、绝缘体和半导体三大类。 半导体的导电能力介于导体和绝缘体之间,如硅、锗等,它们的电阻率通常在之间。半导体之所以得到广泛应用,是因为它的导电能力受掺杂、温度和光照的影响十分显著。如纯净的半导 体单晶硅在室温下电阻率约为,若按百万分之一的比例 掺入少量杂质(如磷)后,其电阻率急剧下降为,几乎降低了一百万倍。半导体具有这种性能的根本原因在于半导体原子结构的特殊性。 1.1.1 本征半导体 图1.1.1 硅原子的简化模型 常用的半导体材料是单晶硅(Si)和单晶锗(Ge)。所谓单晶,是指整块晶体中的原子按一定规则整齐地排列着的晶体。非常纯净的单晶半导体称为本征半导体。

1.本征半导体的原子结构 半导体锗和硅都是四价元素,其原子结构示意图如图1.1.1所示。它们的最外层都有4个电子,带4个单位负电荷。通常把原子核和内层电子看作一个整体,称为惯性核。惯性核带有4个单位正电荷,最外层有4个价电子带有4个单位负电荷,因此,整个原子为电中性。 2.本征激发 在本征半导体的晶体结构中,每一个原子与相邻的四个原子结合。每一个原子的价电子与另一个原子的一个价电子组成一个电子对。这对价电子是每两个相邻原子共有的,它们把相邻原子结合在一起,构成所谓共价键的结构,如图1.1.2所示。 图 1.1.2 本征硅共价键结构 一般来说,共价键中的价电子不完全象绝缘体中价电子所受束缚那样强,如果能从外界获得一定的能量(如光照、升温、电磁场激发等),一些价电子就可能挣脱共价键的束缚而成为自由电子,将这种物理现象称作为本征激发。 理论和实验表明:在常温(T=300K)下,硅共价键中的价电子只要获得大于电离能E G(=1.1eV)的能量便可激发成为自由电子。本征锗的电离能更小,只有0.72eV。 当共价键中的一个价电子受激发挣脱原子核的束缚成为自由电子的同时,在共价键中便留下了一个空位子,称“空穴”。当空穴出现时,相邻原子的价电子比较容易离开它所在的共价键而填补到这个空穴中来使该价电子原来所在共价键中出现一个新的空穴,这个空穴又可能被相邻原子的价电子填补,再出现新的空穴。价电子填补空穴的这种运动无论在形式上还是效果上都相当于带正电荷的空穴在运动,且运动方向与价电子运动方向相反。为了区别于自由电子的运动,把这种运动称为空穴运动,并把空穴看成是一种带正电荷的载流子。 在本征半导体内部自由电子与空穴总是成对出现的,因此将它们称作为电子-空穴对。当自由电子在运动过程中遇到空穴时可能会填充进去从而恢复一个共价键,与此同时消失一个“电子-空穴”对,这一相反过程称为复合。 在一定温度条件下,产生的“电子—空穴对”和复合的“电子—空穴对”数量相等时,形成相对平衡,这种相对平衡属于动态平衡,达到动态平衡时,“电子-空穴对”维持一定的数目。 可见,在半导体中存在着自由电子和空穴两种载流子,而金属导体中只有自由电子一种载流子,这也

各种金属材料的特点

各种金属材料的特点

————————————————————————————————作者:————————————————————————————————日期: ?

各种金属材料的特点 铝材类 铝材属于金属类别中有色金属之一,由于应用较广,单独介绍如下:常用有铝型材和压铸铝合金两种。其中主要由纯度高达92%以上的铝锭为主要原材料,同时添加增加强度、硬度、耐磨性等性能金属元素,如碳、镁、硅、硫等,组成多种成分“合金”。 1.1铝型材 铝型材常见如屏风、铝窗等。它是采用挤出成型工艺,即铝锭等原材料在熔炉中熔融后,经过挤出机挤压到模具流出成型,它还可以挤出各种不同截面的型材。主要性能即强度、硬度、耐磨性均按国家标准GB6063。优点有:重量轻仅2.8,不生锈、设计变化快、模具投入低、纵向伸长高达10米以上。铝型材外观有光亮、哑光之分,其处理工艺采用阳极氧化处理,表面处理氧化膜达到0.12m/m厚度。铝型材壁厚依产品设计最优化来选择,不是市场上越厚越好,应看截面结构要求进行设计,它可以在0.5~5mm不均。外行人认为越厚越强硬,其实是错误的看法。 铝型材表面质量也有较难克服的缺陷:翘曲、变形、黑线、凸凹及白线。设计者水平高者及模具设计及生产工艺合理,可避免上述缺陷不太明显。检查缺陷应按国家规定检验方法进行,即视距40~50CM来判别缺陷。 铝型材在家具中用途十分广泛:屏风骨架、各种悬挂梁、桌台脚、装饰条、拉手、走线槽及盖、椅管等等,可进行千变万化设计和运用! 铝型材虽然优点多,但也存在不理想的地方: 未经氧化处理的铝材容易“生锈”从而导致性能下降,纵向强度方面比不上铁制品.表面氧化层耐磨性比不上电镀层容易刮花.成本较高,相对铁制品成本高出3~4倍左右。 1.2压铸铝合金 压铸合金和型材加工方法相比,使用设备均不同,它的原材料以铝锭(纯度92%左右)和合金材料,经熔炉融化,进入压铸机中模具成型。压铸铝产品形状可设计成像玩具那样,造型各异,方便各种方向连接,另外,它硬度强度较高,同时可以与锌混合成锌铝合金。 压铸铝成型工艺分: 1、压铸成型 2、粗抛光去合模余料 3、细抛光 另一方面,压铸铝生产过程,应有模具才能制造,其模具造价十分昂贵,比注塑模等其它模具均高。同时,模具维修十分困难,设计出错误时难以减料修复。 压铸铝缺点: 每次生产加工数量应多,成本才低。抛光较复杂生产周期慢产品成本较注塑件高3~4倍左右。螺丝孔要求应大一点(直径4.5mm)连接力才稳定 适应范围:台脚、班台连接件、装饰头、铝型材封口件、台面及茶几顶托等,范围十分广泛。 (2)五金类 “五金”概念属通俗说法,标准分类应划分为黑色金属和有色金属两大类,它在家具中运用有管状、棒状、板状、线、角状几种。 2.1黑色金属件

碳纤维导线的特性及应用

碳纤维复合芯导线的特性及应用 魏国彬 (华晋焦煤公司山西吕梁 033000) 摘要:主要论述了碳纤维导线的特性及在老线路改造工程中的应用。 关键词:碳纤维导线特性线路增容、 ACCC/TW Properties and Applications of Aluminum Conductor Composite Core Wei Guo-bin (Huajin Coking Coal Co.,Ltd.,Luliang 033000,Shanxi Province,China) Abstract: This paper discusses the characteristics of Aluminum Conductor Composite Core and the transformation of the old-line engineering Keywords: Aluminum Conductor Composite Core Features Line-compatibilizing ACCC/TW 0.引言 长期以来,架空输电线路导线主要采用钢芯铝绞线以及相关产品,电力工业的飞速发展对架空输电线路导线提出了更高的要求,促使各国科技人员研发各种新型导线。上世纪90年代末,人们开始尝试用复合材料代替金属材料来制作导线的承载部件,改善导线的弧垂特性,采用软铝型线代替硬铝圆单丝,提高填充率和导电率,以达到提高线路输送容量的目的。远东控股集团于2002年开始跟踪和研究导线领域这一新发展,并于2006年成功专门从事复合芯软铝绞线的研发、生产和销售,经过近几年的产品质量提升及市场化。碳纤维复合芯导线在电力行业中得到了广泛的应用。 碳纤维复合芯软铝绞线的型号为JRLX/T(J-架空导线,RL-软铝,X-型线,T-碳纤维复合材料),规格用软铝型线标称截面和复合芯标称截面表示;国际上的通用型号为ACCC/TW (Aluminum Conductor Composite Core/Trapezoidal wire)。 碳纤维复合芯导线由于复合芯的强度足够高,不再需要铝承担受力作用,导电的铝就可以采用退火状态的软铝,软铝的截面设计成瓦型,可大幅减少导线的外径。 随着我国各行业电力需求的不断增长,部分老旧输电线路输送能力不足,面临增容改造的压力。线路改造中,投资最大的项目是杆塔的更换,最棘手的问题是村民的土地问题,一种新型的导线“碳纤维复合芯导线”的产生,使老线路在不更换杆塔的前提下达到增容的目的。从节能、降低成本、增加输送容量、提高电网安全运行等方面综合看,推广应用具有很大的经济和社会效益。有助于构造安全,经济,环保,高效输电网络。 1.碳纤维导线的结构 碳纤维导线ACCC/TW的结构独特,内部是一根由碳纤维为中心层和玻璃纤维包覆制成的复合芯,外层由一系列呈梯形截面的软铝线绞合而成。碳纤维复核芯承担导线总的力学性能,具有强度高、密度小、膨胀系数小、耐腐蚀等特点。外层软铝具有导电率高、电阻小、自阻尼性能强的特点。碳纤维复合芯与软铝线绞制而成的导线,便具有优良的性能:导线重量轻,电阻小,表面光滑不易舞动,拉力质量比大,弧垂随温度的变化小等。因此,可作为电力部门老旧线路改造、电力增容导线使用。其结构如图1-1所示。 外层软铝 碳纤维复核芯

导线种类与导线选择--3

一.导线种类 说明: 用作电线电缆的导电材料,通常有铜和铝两种。铜材的导电率高,50℃时的电阻系数。铜为0.0206Ω·mm2/m,铝为0.035Ω·mm2/m;载流量相同时,铝线芯截面约为铜的1.5倍。采用铜线芯损耗比较低,铜材的机械性能优于铝材,延展性好,便于加工和安装。抗疲劳强度约为铝材的1.7倍。但铝材比重小,在电阻值相同时,铝线芯的质量仅为铜的一半,铝线、缆明显较轻。 固定敷设用的布电线一般采用铜线芯。 1.导线分类: 1.1 按材质分类:聚氯乙烯(PVC)绝缘电线,橡皮绝缘电缆,低烟低卤,低烟无卤,硅橡胶导线,四氟乙烯线等类型。 1.2 按防火要求分类:普通,阻燃类型。 1.3 按线芯分类:BV,BVR(单股0.5mm左右),RV线(单根0.3mm左右)。 1.4 按温度分类:普通70度,耐高温105度。 1.5 按颜色分类:黑线,色线,优先推荐使用黑色线。 1.6 按电压分类:额定电压值---300/500V ,450/750V ,600/1000V ,1000V以上。 2.导线具体细节: 2.1普通电缆选择 1)聚氯乙烯(PVC)绝缘电线、电缆(BV 450/750V一般用途单芯硬导体无护套电缆,RV 450/750V 一般用途单芯软导体无护套电缆,BVR 450/750V铜芯聚氯乙烯绝缘电缆)。线芯长期允许工作温度70℃,短路热稳定允许温度300mm2及以下截面为160℃,300mm2以上为140℃。 特点: 耐油、耐酸碱腐蚀,虽然有一定的阻燃性能但在燃烧时,散放有毒烟气。 缺点是对气候适应性能差,低温时变硬发脆。适用温度范围为+60~-15℃之间。低于-15℃的严寒地区应选用耐寒聚氯乙烯电缆。高温或日光照射下,增塑剂易挥发而导致绝缘加速老化,因此,在未具备有效隔热措施的高温环境或日光经常强烈照射的场合,宜选用相应的特种电线、电缆,如耐热聚氯乙烯线缆。线芯长期允许工作温度达90℃及105℃等,适应在环境温度50℃以上环境使用。 2)交联聚乙烯绝缘(XLPE)电线、电缆。线芯长期允许工作温度90℃,短路热稳定允许温度250℃。6~35KV交联聚乙烯绝缘聚氯乙烯护套电力电缆,广泛采用。 特点: 普通的交联聚乙烯材料不含卤素,不具备阻燃性能,但燃烧时不会产生大量毒气及烟雾,用它制造的电线、电缆称为“清洁电线、电缆”。若要兼备阻燃性能,须在绝缘材料中添加阻燃剂,但这样会使机械及电气性能下降。采用辐照工艺可提高机械及电气性能,又可使绝缘耐温提高至125~135℃。 3)橡皮绝缘电力电缆。线芯长期允许工作温度60℃,短路热稳定允许温度200℃。 特点: A.橡皮绝缘电缆弯曲性能较好,能够在严寒气候下敷设,特别适用于水平高差大和垂直敷设的场合。它不仅适用于固定敷设的线路,也可用于定期移动的固定敷设线路。移动式电气设备的供电回路应采用橡皮绝缘橡皮护套软电缆(简称像套软电缆);有屏蔽要求的回路,如煤矿采掘工作面供电电缆应具有分相屏蔽。普通橡胶遇到油类及其化合物时,很快就被损坏,因此在可能经常被油浸泡的场所,宜使用耐油型橡胶护套电缆。普通橡胶耐热性能差,允许运行温度较低,故对于高温环境又有柔软性要求的回路,宜选用乙丙橡胶绝缘电缆。 B.乙丙橡胶(EPR)的全称是交联乙烯—丙烯橡胶,具有耐氧、耐臭氧的稳定性和局部放电的稳定性,也具有优异的耐寒特性,即使在-50℃时,仍保持良好的柔韧性。此外,它还有优良的抗风化和光照的稳定性。特别是它不含卤素,又有阻燃特性,采用氯磺化聚乙烯护套的乙丙橡皮绝缘电缆,适用于要求阻燃的场所。乙丙橡胶绝缘电缆在我国尚未广泛应用,但在国外特别是欧洲早已大量应用。

大纯滞后过程特性Smith预估控制

过程控制系统课程设计题目之十三 大纯滞后过程特性Smith 预估控制 对于一个大纯滞后过程特性的对象:s PC e s s s G 10) 12)(3(1 )(-++= ,试设计一 个Smith 预估控制系统,并用SIMULINK 和MATLAB 程序仿真实现。当系统设定值R(s)为1时,调整PI 参数,使过渡过程尽可能满意。(假设检测变送环节的传递函数为1);比较在预估模型有偏差时,在相同的输入条件下,与预估模型无偏差情况的仿真结果;如果系统有扰动信号F(s)为单位阶跃信号或SINS 信号时,比较系统的仿真结果;如有可能,再试设计一种改进的Smith 预估器。 实验报告要求: 1、供系统仿真图; 2、按照题目要求,给出每个实验的仿真结果图; 3、根据以上仿真结果,分析)(s G PC 有滞后与无滞后情况下,PI 参数整定的特点。

大纯滞后过程特性Smith预估控制 摘要:Matlab 是一套高性能的数值计算和可视化软件。它集数值分析、矩阵计算、信号分析与图形显示为一体,构成的一个方便的、界面友好的用户环境。历经二十几年的发展和竞争,现已成为国际公认的最优秀的科技应用软件。Matlab 最突出的特点就是简洁、它用直观的、符合人们思维习惯的代码、代替C 语言和FORTRAN 语言的冗长代码。为此,Matlab 获得了对应用学科的极强适应力。在国内外高校、Matlab 已成为大学生,硕士生、博士生必须掌握的基本技能。在设计研究学位和工业部门,Matlab 已经成为研究和解决各种具体工程问题的一种标准软件。Matlab 软件广泛用于数字信号分析,系统识别,时序分析与建模,神经网络、动态仿真等方面有着广泛的应用。利用Matlab 这个最优秀的科技软件,把计算机技术与信号分析紧密地结合起来,对信号进行分析处理仿真研究,经实例验证,取得了非常好的效果,具有一定的实用价值。本文控制系统为研究主体,提出一种Smith 预估控制算法,通过设计自适应非线性反馈回路来自适应调节参数,从而满足对象参数大幅度变化的要求。 关键词:Matlab;纯滞后;Smith 预估控制器;Simulink Pure time-delay system control algorithm of Smith Abstract:Matlab is a software.of high performance of numerical calculation and visualization It get numerical analysis, calculation and signal analysis and graphic display together, constitute a convenient, interface, user friendly environment. After 20 years of development and competition, has become internationally recognized the best technology application software. The most prominent feature of Matlab is concise, it use the people's thinking and habits of the visual code, instead of C language and FORTRAN language lengthy code.So, Matlab acquire the subject of application for science. Matlab,has become acollege students’, masters’ or doctors’ basic skills which must be grasp of both at home and abroad ,. In the design research degree and industrial department, Matlab has become the research and solve specific engineering problems are a standard software. Matlab software widely used in digital signal analysis, system identification, timing analysis and modeling, neural network, dynamic simulation, etc in a wide range of applications. The best use of Matlab software technology, computer technology and signal analysis closely together, the signal analysis simulation, and achieved very good results since it has certain practical value. This control system as a main body of research, and put forward a II

碳纤维复合芯导线的特性及应用

碳纤维复合芯导线的特性及应用 文章主要论述了碳纤维导线的特性及在老线路改造工程中的应用。希望能够为相关行业的发展提供一些借鉴,并且为保护环境,节能减排,改善人类生态环境等方面做出应有的贡献。 标签:碳纤维导线;特性;线路增容;ACCC/TW 引言 长期以来,架空输电线路导线主要采用钢芯铝绞线以及相关产品,电力工业的飞速发展对架空输电线路导线提出了更高的要求,促使各国科技人员研发各种新型导线。上世纪90年代末,人们开始尝试用复合材料代替金属材料来制作导线的承载部件,改善导线的弧垂特性,采用软铝型线代替硬铝圆单丝,提高填充率和导电率,以达到提高线路输送容量的目的。远东控股集团于2002年开始跟踪和研究导线领域这一新发展,并于2006年成功专门从事复合芯软铝绞线的研发、生产和销售,经过近几年的产品质量提升及市场化。碳纤维复合芯导线在电力行业中得到了广泛的应用。 碳纤维复合芯软铝绞线的型号为JRLX/T(J-架空导线,RL-软铝,X-型线,T-碳纤维复合材料),规格用软铝型线标称截面和复合芯标称截面表示;国际上的通用型号为ACCC/TW(Aluminum Conductor Composite Core/Trapezoidal wire)。 碳纤维复合芯导线由于复合芯的强度足够高,不再需要铝承担受力作用,导电的铝就可以采用退火状态的软铝,软铝的截面设计成瓦型,可大幅减少导线的外径。 随着我国各行业电力需求的不断增长,部分老旧输电线路输送能力不足,面臨增容改造的压力。线路改造中,投资最大的项目是杆塔的更换,最棘手的问题是村民的土地问题,一种新型的导线“碳纤维复合芯导线”的产生,使老线路在不更换杆塔的前提下达到增容的目的。从节能、降低成本、增加输送容量、提高电网安全运行等方面综合看,推广应用具有很大的经济和社会效益。有助于构造安全,经济,环保,高效输电网络。 1 碳纤维导线的结构 碳纤维导线ACCC/TW的结构独特,内部是一根由碳纤维为中心层和玻璃纤维包覆制成的复合芯,外层由一系列呈梯形截面的软铝线绞合而成。碳纤维复核芯承担导线总的力学性能,具有强度高、密度小、膨胀系数小、耐腐蚀等特点。外层软铝具有导电率高、电阻小、自阻尼性能强的特点。碳纤维复合芯与软铝线绞制而成的导线,便具有优良的性能:导线重量轻,电阻小,表面光滑不易舞动,拉力质量比大,弧垂随温度的变化小等。因此,可作为电力部门老旧线路改造、

燃烧特性试验作业指导书

1.目的 通过明确燃烧特性试验检测作业方法,确保试验检测的标准作业以及检测结果的正确性和有效性。 2. 适用范围 适用于SGM项目相关产品燃烧特性性能的试验检测。 3.名称、定义及引用文件 GMW3221 4. 标准内容 4.1 样件要求 根据GMW3221要求从部件上裁取合适的试片进行检测。 试验前样件需要在23℃±2℃和50%RH±5%RH环境下放置至少24h。或者根据要求试样先进行如下的老化处理:在(+40 ± 3) °C ,(93 ± 5)% 放置(48 ± 1) h 然后在(+90 ± 3) °C 下放置(168 ± 1) h 至少完成5个样件试验。 4.2 样件标识 将检测编号写在样品标识卡上,将其贴在样件上,用以区分样件的状态 4.3 样件准备 随机挑选5件或以上样件进行测试 4.4 试验步骤 步骤1:产品准备或者产品上取样; 步骤2:预处理; 步骤3:将预处理过的试样取出,把表面起毛或簇绒的试样平放在平整的台面上,用规定的 金属梳在起毛面上沿绒毛相反方向梳两次; 步骤4:在燃气灯的空气进口关闭状态下点燃燃气灯,将火焰按火焰高度标志板调整,使火焰高度为38 mm 在开始第一次试验前,火焰应在此状态下至少稳定地燃烧1 min,然后熄灭; 步骤5:将试样暴露面朝下装入试样支架。安装试样使其两边和一端被U形支架夹住,自由端与U 形支架开口对齐。当试样宽度不足,U形支架不能夹住试样,或试样自由端柔软和易弯曲会造成不稳定燃烧时,才将试样放在带耐热金属线的试样支架上进行燃烧试验; 步骤6:将试样支架推进燃烧箱,试样放在燃烧箱中央,置于水平位置。在燃气灯空气进口关闭状态下点燃燃气灯,并使火焰高度为38 mm,使试样自由端处于火焰中引燃15s,然后熄掉火焰(关闭燃气灯阀门); 步骤7:火焰从试样自由端起向前燃烧,在传播火焰根部通过第一标线的瞬间开始计时。注意观察燃烧较快一面的火焰传播情况,计时以火焰传播较快的一面为准。 步骤8:当火焰达到第二标线或者火焰达到第二标线前熄灭时,同时停止计时,计时也以火焰传播较快的一面为准。若火焰在达到第二标线之前熄灭,则测量从第一标线起到火焰熄灭时的燃烧距离。

相关文档
相关文档 最新文档