文档库 最新最全的文档下载
当前位置:文档库 › 大学物理化学实验报告---酸碱中和热

大学物理化学实验报告---酸碱中和热

大学物理化学实验报告---酸碱中和热
大学物理化学实验报告---酸碱中和热

在纵坐标(温度)里输入-2到2,时间输入60,再点击“确定”

深圳大学学生实验报告用纸

2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。

溶解热的测定实验报告

溶解热测定 姓名 学号 班级 实验日期 1 实验目的 (1)了解电热补偿法测定热效应的基本原理。 (2)用电热补偿法测定硝酸钾在水中的积分溶解热,通过计算或作图求出硝酸钾在水中的微分溶解热、积分溶解热和微分冲淡热。 (3)掌握用微机采集数据、处理数据的实验方法和实验技术。 2 实验原理 溶解热:恒温恒压下,物质的量为2n 的溶质溶于物质的量为1n 的溶剂(或溶于某浓度溶液)中产生的热效应,用Q 表示。 积分溶解热:恒温恒压下,1mol 溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。用s Q 表示。 微分溶解热:恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以1 2n n Q ???? ????表示。 冲淡热:恒温恒压下,一定量的溶剂A 加到某浓度的溶液使之稀释所产生的热效应。 积分冲淡热:恒温恒压下,在含有1mol 溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液的过程中产生的热效应,以d Q 表示。 微分冲淡热:恒温恒压下,1mol 溶剂加入到某一浓度无限量的溶液中所发生的热效应, 以21n n Q ???? ????或2 0n s n Q ???? ????表示。 它们之间关系可表示为: s Q n Q =2 令021n n n = 2 1002n s n s n Q n n Q Q ???? ????+???? ????= ()()0201n s n s d Q Q Q -= 积分溶解热s Q 可由实验测得,其他三种热效应则可通过0n Q s -曲线求得,曲线某点的切线的斜率为该浓度下的摩尔微分稀释热,切线与纵坐标的截距,为该浓度下的摩尔微分溶解热 (即OC )。显然,图中A 点的摩尔溶解热与B 点的摩尔溶解热之差为该过程的摩尔积分稀释热(即BE )。

大学物理化学实验报告---液体饱和蒸汽压的测定

纯液体饱和蒸汽压的测量 目的要求 一、 明确纯液体饱和蒸气压的定义和汽液两相平衡的概念,深入了解纯液体饱 和蒸气压与温度的关系公式——克劳修斯-克拉贝龙方程式。 二、 用数字式真空计测量不同温度下环己烷的饱和蒸气压。初步掌握真空实验 技术。 三、 学会用图解法求被测液体在实验温度范围内的平均摩尔气化热与正常沸 点。 实验原理 通常温度下(距离临界温度较远时),纯液体与其蒸气达平衡时的蒸气压称为该温度下液体的饱和蒸气压,简称为蒸气压。蒸发1mol 液体所吸收的热量称为该温度下液体的摩尔气化热。 液体的蒸气压随温度而变化,温度升高时,蒸气压增大;温度降低时,蒸气压降低,这主要与分子的动能有关。当蒸气压等于外界压力时,液体便沸腾,此时的温度称为沸点,外压不同时,液体沸点将相应改变,当外压为1atm (101.325kPa )时,液体的沸点称为该液体的正常沸点。 液体的饱和蒸气压与温度的关系用克劳修斯-克拉贝龙方程式表示: 2 m vap d ln d RT H T p ?= (1) 式中,R 为摩尔气体常数;T 为热力学温度;Δvap H m 为在温度T 时纯液体的摩尔 气化热。 假定Δvap H m 与温度无关,或因温度范围较小,Δvap H m 可以近似作为常数,积分上式,得: C T R H p +??-=1 ln m vap (2) 其中C 为积分常数。由此式可以看出,以ln p 对1/T 作图,应为一直线,直线的斜率为 R H m vap ?- ,由斜率可求算液体的Δvap H m 。 静态法测定液体饱和蒸气压,是指在某一温度下,直接测量饱和蒸气压,此 法一般适用于蒸气压比较大的液体。静态法测量不同温度下纯液体饱和蒸气压,有升温法和降温法二种。本次实验采用升温法测定不同温度下纯液体的饱和蒸气压,所用仪器是纯液体饱和蒸气压测定装置,如图1所示: 平衡管由A 球和U 型管B 、C 组成。平衡管上接一冷凝管,以橡皮管与压

北京理工大学物理化学A(南大版)上册知识点总结

物理化学上册公式总结 第一章.气体 一、理想气体适用 ①波义耳定律:定温下,一定量的气体,其体积与压力成反比 pV=C ②盖·吕萨克定律:对定量气体,定压下,体积与T成正比 V t=C`T ③阿伏伽德罗定律:同温同压下,同体积的各种气体所含分子数相同。 ④理想气体状态方程式 pV=nRT 推导:气体体积随压力温度和气体分子数量改变,即: V=f(p,T,N) 对于一定量气体,N为常数dN=0,所以 dV=(?V/?p)T,N dp+(?V/?T)p,N dT 根据波义耳定律,有V=C/P,∴(?V/?p)T,N=-C/p2=-V/p 根据盖·吕萨克定律,V=C`T,有(?V/?T)p,N=C`=V/T 代入上式,得到 dV/V=-dp/p+dT/T 积分得 lnV+lnp=lnT+常数

若所取气体为1mol,则体积为V m,常数记作lnR,即得 pV m=RT 上式两边同时乘以物质的量n,则得 pV=nRT ⑤道尔顿分压定律:混合气体的总压等于各气体分压之和。 ⑥阿马格分体积定律:在一定温度压力下,混合气体的体积等于组成该气体的各组分分体积之和。 ⑦气体分子在重力场的分布 设在高度h处的压力为p,高度h+dh的压力为p-dp,则压力差为 dp=-ρgdh 假定气体符合理想气体状态方程,则ρ=Mp/RT,代入上式, -dp/p=Mgdh/RT 对上式积分,得lnp/p0=-Mgh/RT ∴p=p0exp(-Mgh/RT) ρ=ρ0exp(-Mgh/RT)或n=n0exp(-Mgh/RT) 二、实际气体适用 ①压缩因子Z Z=pV m/RT 对于理想气体,Z=1,对实际气体,当Z大于1,表明同温度同压力下,实际气体体积大于理想气体方程计算所得结果,即实际气体的可压缩性比理想气体小。当Z小于1,情况则相反。 ②范德华方程式

中和反应反应热的测定实验报告

中和反应反应热的测定 定义:在稀溶液中,酸和碱发生中和反应,生成1mol水时的反应热,叫中和热。 一、实验目的 测定强酸与强碱反应的反应热。(热效应) 二、实验用品 大烧杯(500 mL)、小烧杯(100 mL)、温度计、量筒(50mL)两个、泡沫塑料或纸条、泡沫塑料板或纸条、泡沫塑料板或硬纸板(中心有两个小孔)、环形玻璃搅拌棒。 0.50 mol/L 盐酸、0.55 mol/L NaOH溶液。 三、实验步骤 1.在大烧杯底垫泡沫塑料(或纸条),使放入的小烧杯杯口与大烧杯杯 口相平。然后再在大、小烧杯之间填满碎泡沫塑料(或纸条),大烧杯上用泡 沫塑料板(或硬纸板)作盖板,在板中间开两个小孔,正好使温度计和环形玻 璃搅拌棒通过,以达到保温、隔热、减少实验过程中热量损失的目的,如图 所示。该实验也可在保温杯中进行。 2.用一个量筒量取50mL0.50mol/L盐酸,倒入小烧杯中,并用温度计 测量盐酸的温度,记入下表。然后把温度计上的酸用水冲洗干净。 3.用另一个量筒量取50mL 0.55 mol/L NaOH溶液,并用温度计测量NaOH溶液的温度,记入下表。 4.把温度计和环形玻璃搅拌棒放入小烧杯的盐酸中,并把量筒中的NaOH溶液一次(防止造成热量损失)倒入小烧杯(注意不要洒到外面)。用环形玻璃搅拌棒轻轻搅动溶液,并准确读取混合溶液的最高温度,记为终止温度,记入表格中。 5.重复实验步骤2~4三次 6.根据实验数据计算中和热。 四、实验数据处理 1、三次测量所得数据的平均值,作计算依据。 3、计算反应热 Q =mcΔt Q:中和反应放出的热量m:反应混合液的质量c:反应混合液的比热容Δt:反应前后溶液温度的差值Q=(V酸ρ酸+V碱ρ碱)·c·(t2-t1) V酸=V碱=50 mL ρ酸=ρ碱=1 g/cm3 c=4.18 J/(g·℃) Q=0.418(t2-t1)kJ 生成1molH2O时的反应热为:△H=-0.418(t2-t1)/0.025=50.4 kJ/mol c酸=0.50 mol/L c碱=0.55 mol/L

物理化学实验报告_溶解热的测定

物理化学实验报告 溶解热的测定 实验时间:2018年4月日 姓名:刘双 班级: 学号: 1.实验目的 (1)了解电热补偿法测量热效应的基本原理。 (2)用电热补偿法测定硝酸钾在水中的积分溶解热,通过计算或者作图求出硝酸钾在水中的微分溶解热、积分冲淡热和微分冲淡热。 (3)掌握微机采集数据、处理数据的实验方法和实验技术。 2.实验原理 物质溶解于溶剂过程的热效应称为溶解热,物质溶解过程包括晶体点阵的破坏、离子或分子的溶剂化、分子电离(对电解质而言)等过程,这些过程热效应的代数和就是溶解过程的热效应,溶解热包括积分(或变浓)溶解热和微分(或定浓)溶解热。把溶剂加到溶液中使之稀释,其热效应称为冲淡热。包括积分(或变浓)冲淡热和微分(或定浓)冲淡热。 溶解热Q:在恒温、恒压下,物质的量为n2的溶质溶于物质的量为n1的溶剂(或溶于某浓度的溶液)中产生的热效应。 积分溶解热Qs:在恒温、恒压下,1mol溶质溶于物质的量为n1的溶剂中产生的热效应。 微分溶解热(ee ee2)e 1 :在恒温、恒压下,1mol溶质溶于某一确定浓度的无限量的溶液中 的热效应。 冲淡热:在恒温、恒压下,物质的量为n1的溶剂加入到某浓度的溶液中产生的热效应。 积分冲淡热Q d:在恒温、恒压下,把原含1mol溶质和n02mol溶剂的溶液冲淡到含溶剂为n01mol时的热效应,为某两浓度的积分溶解热之差。 微分冲淡热(ee ee1) e2 或(eee ee0 ) e2 :在恒温、恒压下,1mol溶剂加入到某一确定浓度的无 限量的溶液中产生的热效应。 它们之间的关系可表示为:

dQ=(ee ee1) e2 ee1+( ee ee2 ) e1 ee2 上式在比值e1 e2 恒定下积分,得: e=(ee ee1 ) e2 e1+( ee ee2 ) e1 e2 ee2=ee,令:e1 n2 =e0,则有: ( ?Q ?n1 )=[ ?(n2Q s ?(n2n0) ]=( ?Q s ?n0 ) Q d=(ee)e01?(ee)e02 其中积分溶解热ee可以直接由实验测定,其他三种可以由ee?e0曲线求得。 欲求溶解过程中的各种热效应,应先测量各种浓度下的的积分溶解热。可采用累加的方法,先在纯溶剂中加入溶质,测出热效应,然后再这溶液中再加入溶质,测出热效应,根据先后加入的溶质的总量可计算出n0,而各次热效应总和即为该浓度下的溶解热。本实验测量硝酸钾溶解在水中的溶解热,是一个溶解过程中温度随反应的进行而降低的吸热反应,故采用电热补偿法测定。先测定体系的初始温度T,当反应进行后温度不断降低时,由电加热法使体系复原到起始温度,根据所耗电能求出热效应Q。 3.仪器和试剂 反应热测量数据采集接口装置: NDRH-1型,温度测量范围0~40℃,温度测量分辨率0.001℃,电压测量范围0~20V,电压测量分辨率0.01V,电流测量范围0~2A,电流测量分辨率0.01A。 精密稳流电源:YP-2B型。 微机、打印机。 量热计(包括杜瓦瓶,搅拌器,加热器,搅拌子)。 称量瓶8只,毛笔,研钵。 硝酸钾(A.R.) 4.实验操作 (1)取8个称量瓶,分别编号。 (2)取KNO3于研钵中,研磨充分。 (3)分别称量约 2.5、1.5、2.5、3.0、3.5、4.0、4.0、4.5g 研磨后的硝酸钾,放入 8 个称量瓶中,并精确称量瓶子与药品的总质量。记录下所称量的数据。

物理化学实验报告.

《大学化学基础实验2》实验报告 课程:物理化学实验 专业:环境科学 班级: 学号: 学生姓名:邓丁 指导教师:谭蕾 实验日期:5月24日

实验一、溶解焓的测定 一、实验名称:溶解焓的测定。 二、目的要求:(1)学会用量热法测定盐类的积分溶解焓。 (2)掌握作图外推法求真实温差的方法。 三、基本原理: 盐类的溶解通常包含两个同时进行的过程:一是晶格的破坏,为吸热过程;二是离子的溶剂化,即离子的水合作用,为放热过程。溶解焓则是这两个过程热效应的总和,因此,盐类的溶解过程最终是吸热还是放热,是由这两个热效应的相应大小所决定的。影响溶解焓的主要因素有温度、压力、溶质的性质以及用量等。热平衡式: △sol H m=-[(m1C1+m2C2)+C]△TM/m2 式中, sol H m 为盐在溶液温度及浓度下的积分溶解焓, J·mol , m1 , m2 分别为水和溶质的质量, M 为溶质的摩尔质量,kg·mol -1 ;C1 ,C 2 分别为溶剂水, kg; 溶质的比热容,J·kg -1;T 为溶解过程中的真实温差,K;C 为量热计的热容, J·K- 1 ,也称热量计常数.本实验通过测定已知积分溶解焓的标准物质 KCl 的 T ,标定出量热计热容 C 的值. 四、实验主要仪器名称: NDRH-2S型溶解焓测定实验装置1套(包括数字式温度温差测量仪1台、300mL简单量热计1只、电磁搅拌器1台);250mL容量瓶1个;秒表1快;电子 ;蒸馏水 天平1台;KCl;KNO 3 五、实验步骤: (1)量热计热容 C 的测定 ( 1 ) 将仪器打开 , 预热 . 准确称量 5.147g 研磨好的 KCl , 待用 . n KCl : n水 = 1: 200 (2)在干净并干燥的量热计中准确放入 250mL 温室下的蒸馏水,然后将温度传感器的探头插入量热计的液体中.打开搅拌器开关,保持一定的搅拌速度,待温差变化基本稳定后,读取水的温度 T1 ,作为基温. (3)同时, 每隔30s就记录一次温差值,连续记录8 次后, 将称量好的 5.174g KCl 经漏斗全部迅速倒入量热计中,盖好.10s记录一次温度值,至温度基本稳定不变,再每隔 30s记录一次温度的数值,记录 8 次即可停止. (4)测出量热计中溶液的温度,记作 T2 .计算 T1 , T2 平均值,作为体系的温度.倒出溶液,取出搅拌子,用蒸馏水洗净量热计. KNO3 熔解热的测定:标准称量 3.513g KNO3 ,代替 KCl 重复上述操作.

天津大学版物理化学复习提纲

物理化学复习提纲 一、 热力学第一定律 1. 热力学第一定律:ΔU = Q -W (dU=δQ -δW ,封闭体系、静止、无 外场作用) *热Q,习惯上以系统吸热为正值,而以系统放热为负值;功W ,习惯上以系统对环境作功为正值,而以环境对系统作功为负值。 **体积功 δW=(f 外dl =p 外·Adl )=p 外dV=nRT ?21/V V V dV =nRTlnV 2/V 1=nRTlnp 1/p 2 2. 焓:定义为H ≡U+pV ;U ,H 与Q ,W 区别(状态函数与否?) 对于封闭体系,Δ H= Qp, ΔU= Qv, ΔU= -W (绝热过程) 3. Q 、W 、ΔU 、ΔH 的计算 a. ΔU=T nCv.md T T ?21= nCv.m(T 2-T 1) b. ΔH=T nCp.md T T ?21= nCp.m(T 2-T 1) c. Q :Qp=T nCp.md T T ?21;Qv=T nCv.md T T ?2 1 d. T ,P 衡定的相变过程:W=p (V 2-V 1);Qp=ΔH=n ΔH m ;ΔU=ΔH -p(V 2-V 1) 4. 热化学 a. 化学反应的热效应,ΔH=∑H(产物)-∑H (反应物)=ΔU+p ΔV (定压反应) b. 生成热及燃烧热,Δf H 0m (标准热);Δr H 0m (反应热)

c. 盖斯定律及基尔戈夫方程 [G .R.Kirchhoff, (?ΔH/?T)=C p(B) -C p(A)= ΔCp] 二、 热力学第二定律 1. 卡诺循环与卡诺定理:η=W/Q 2=Q 2+Q 1/Q 2=T 2-T 1/T 2,及是 (Q 1/T 1+Q 2/T 2=0)卡诺热机在两个热源T 1及T 2之间工作时,两个热源的“热温商”之和等于零。 2. 熵的定义:dS=δQr/T, dS ≠δQir/T (克劳修斯Clausius 不等式, dS ≥δQ/T ;对于孤立体系dS ≥0,及孤立系统中所发生任意过程总是向着熵增大的方向进行)。 熵的统计意义:熵是系统混乱度的度量。有序性高的状态 所对应的微观状态数少,混乱度高的状态所对应的微观状态数多,有S=kln Ω, 定义:S 0K =0, 有 ΔS=S (T)-S 0K =dT T Cp T ??/0 3. P 、V 、T 衡时熵的计算: a. ΔS=nRlnP 1/P 2=nRlnV 2/V 1(理气,T 衡过程) b. ΔS=n T T nCp.md T T /21?(P 衡,T 变) c. ΔS=n T T nCv.md T T /21?(V 衡,T 变) d. ΔS=nC v.m lnT 2/T 1+ nC p.m lnV 2/V 1(理气P 、T 、V 均有变化时) 4. T 、P 衡相变过程:ΔS=ΔH 相变/T 相变 5. 判据: a. ΔS 孤{不能实现可逆,平衡不可逆,自发 00 0?=? (ΔS 孤=ΔS 体+ΔS 环, ΔS 环=-Q 体/T 环)

中和反应反应热的测定实验报告

《中和反应反应热的测定》实验报告 班别:姓名: 定义:在稀溶液中,强酸和强碱发生中和反应,生成1mol水时的反应热,叫中和热。 一、实验目的 测定强酸与强碱反应的反应热。(热效应) 二、实验用品 大烧杯(500 mL)、小烧杯(100 mL)、温度计、量筒(50mL)两个、泡沫塑料或纸条、泡沫塑料板或纸条、泡沫塑料板或硬纸板(中心有两个小孔)、环形玻璃搅拌棒。 0.50 mol/L 盐酸、0.55 mol/L NaOH溶液。 三、实验步骤 1.在大烧杯底垫泡沫塑料(或纸条),使放入的小烧杯杯口与大烧杯杯 口相平。然后再在大、小烧杯之间填满碎泡沫塑料(或纸条),大烧杯上用 泡沫塑料板(或硬纸板)作盖板,在板中间开两个小孔,正好使温度计和环 形玻璃搅拌棒通过,以达到保温、隔热、减少实验过程中热量损失的目的, 如图所示。该实验也可在保温杯中进行。 2.用一个量筒量取50mL0.50mol/L盐酸,倒入小烧杯中,并用温度计 测量盐酸的温度,记入下表。然后把温度计上的酸用水冲洗干净。 3.用另一个量筒量取50mL 0.55 mol/L NaOH溶液,并用温度计测量NaOH溶液的温度,记入下表。 4.把温度计和环形玻璃搅拌棒放入小烧杯的盐酸中,并把量筒中的NaOH溶液一次(防止造成热量损失)倒入小烧杯(注意不要洒到外面)。用环形玻璃搅拌棒轻轻搅动溶液,并准确读取混合溶液的最高温度,记为终止温度,记入表格中。 5.重复实验步骤2~4三次 6.根据实验数据计算中和热。 四、实验数据处理 1 3、计算反应热

五、实验分析 1、中和热与反应热的区别与联系? 答: 2、本实验中若把50 mL 0.50 mol/L的盐酸改为50 mL 0.50 mol/L醋酸,所测结果是否会有所变化?为什么? 答: 3、若改用100 mL 0.50 mol/L的盐酸和100 mL 0.55 mol/L的NaOH溶液,所测中和热的数值是否约为本实验结果的二倍(假定各步操作没有失误)? 答: 4、用相同浓度和体积的氨水代替NaOH50 mL 0.50mol/L NaOH 5、是什么原因使中和热测定结果往往偏低? 答: 6、离子方程式H++OH-=H2O代表了酸碱中和反应的实质,能否用此代表所有中和反应的离子方程式?答: 7、为什么中和热测定中要用稍过量的碱?能不能用过量的酸? 答: 8、为什么要用环形玻璃棒搅拌?若用铁丝取代环行玻璃棒会不会有影响? 答:

大学物理化学实验报告-络合物的磁化率的测定

物理化学实验报告 院系化学化工学院 班级化学 061 学号 13 姓名沈建明

实验名称 络合物的磁化率的测定 日期 同组者姓名 史黄亮 室温 ℃ 气压 kPa 成绩 一、目的和要求 1、掌握古埃(Gouy )法磁天平测定物质磁化率的基本原理和实验方法; 2、通过对一些络合物的磁化率测定,推算其不成对电子数,判断这些分子的配键类型 二、基本原理 物质的磁性一般可分为三种: 顺磁性, 反磁性和铁磁性。 a .反磁性是指磁化方向和外磁场方向相反时所产生的磁效应。反磁物质的χD < 0(电子的拉摩进动产生一个与外磁场方向相反的诱导磁矩,导致物质具有反磁性)。 b. 顺磁性是指磁化方向和外磁场方向相同时所产生的磁效应,顺磁物质的 Xp > 0。(外磁场作用下,粒子如原子、分子、离子,中固有磁矩产生的磁效应)。 c. 铁磁性是指在低外磁场中就能达到饱和磁化,去掉外磁场时,磁性并不消失,呈现出滞后现象等一些特殊的磁效应。 d. 摩尔磁化率: 古埃法测定物质的摩尔磁化率( )的原理 通过测定物质在不均匀磁场中受到的力,求出物质的磁化率 。 把样品装于园形样品管中,悬于两磁极中间,一端位于磁极间磁场强度最大区域 H ,而另一端位于磁场强度很弱的区域 H 0,则样品在沿样品管方向所受的力F 可表示为: M χH F mH Z χ?=?P P D M χχχχ≈+=

其中:m 为样品质量,H 为磁场强度, 为沿样品管方向的磁场梯度。 本实验用摩尔氏盐(六水合硫酸亚铁铵)标定外磁场强度H 。测定亚铁氰化钾 和硫酸亚铁的摩尔磁化率,求金属离子的磁矩并考察电子配对状况。 三、仪器、试剂 MB-1A 磁天平(包括电磁铁,电光天平,励磁电源) 1套 软质玻璃样品管 1只 角匙 1只 漏斗 1只 莫尔氏盐(NH 4)2SO 4·FeSO 4·6H 2O (分析纯) FeSO 4·7H 2O (分析纯) K 4Fe(CN)6·3H 2O (分析纯) 四、实验步骤 1. 磁场强度(H )的测定 : 用已知摩尔磁化率的莫尔氏盐标定某一固定励磁电流时的磁场强度(H ).励磁电流变化0A →3A →→4A →→3A →0A ,分别测定励磁电流在各值下的天平的读数(4A 的值可以不读,持续2分钟左右,消磁),用同一仪器在同等条件下进行后续的测定。 具体操作如下: (1)把样品管悬于磁场的中心位置,测定空管在加励磁电流前,后磁场中的重 量。求出空管在加磁场前,后的重量变化管 ,重复测定三次读数,取平均值。 (2)把已经研细的莫尔氏盐通过小漏斗装入样品管,样品高度约为8m (此时样 品另一端位于磁场强度H=0处)。读出样品的高度,要注意样品研磨细小,装样均匀不能有断层。测定莫尔氏盐在加励磁电流前,后磁场中的重量。求出在加磁场前后的重量变化样品+管,重复测定三次读数,取平均值。 2.样品的莫尔磁化率测定: 把测定过莫尔氏盐的试管擦洗干净,把待测样品 ,分别装在样品管中,按着上述步骤(1) ,(2)分别测定在加磁场前,后的重量。求出重量的变化(管和样品+管),重复测定三次读数,取 H Z ??[]462()3K Fe CN H O ?4 2 7FeSO H O ?

中和反应中反应热的测定

中和反应的反应热测定 【教学目标】1、理解中和反应反应热测定的实验原理 2、掌握中和反应反应热测定的操作步骤、注意事项、数据处理及误差分析【教学重点】 1.中和热的测定原理和方法。 2.培养学生分析问题的能力。 【实验目的】 1.测定强酸、强碱反应的中和热,加深理解中和反应是放热反应。 2.培养学生设计实验的能力。 3.提高学生的思维能力和分析问题的能力。 4.培养学生严谨求实的科学作风。 【实验用品】 大烧杯(500 mL)、小烧杯(100 mL)、温度计、量筒(50 mL)两个、碎纸条、硬纸板(中心有两个小孔)、环形玻璃搅拌棒。 0.50 mol/L 盐酸、0.55 mol/L NaOH溶液 【教学过程】 [引言]上节课我们刚刚认识了中和热,本节课我们就来亲自测一下强酸强碱反应的中和热。 [板书]中和反应的反应热测定 [设问]我们利用什么原理来测定酸、碱反应的中和热呢? [板书]实验原理 [问]中和热与反应热是否相同?它们之间有什么区别和联系? [学生讨论后回答] 本节课,我们取一定量的盐酸和氢氧化钠溶液发生中和反应,哪些数据可以帮助我们测出它们的反应热呢?请大家讨论回答。 [学生讨论后回答] [教师板书] Q=mcΔt ① Q:中和反应放出的热量。 m:反应混合液的质量。 c:反应混合液的比热容。 Δt:反应前后溶液温度的差值。 [问]我们如何得到上述数据呢? [生]m的质量为所用酸、碱的质量和,测出参加反应的酸、碱质量相加即可;c需要查阅,Δt可用温度计测出反应前后的温度相减得到。 [问]酸、碱反应时,我们用的是它的稀溶液,它们的质量应怎样得到? [生]量出它们的体积,再乘以它们的密度即可。 [师]如此说来,上述计算Q的式子可表示为 [板书]Q=(V酸ρ酸+V碱ρ碱)·c·(t2-t1) ② [讲解]本实验中,我们所用一元酸、一元碱的体积均为50 mL,它们的浓度分别为0.50 mol/L和0.55 mol/L。由于是稀溶液,且为了计算简便,我们近似地认为,所用酸、碱溶液的密度均为1 g/cm3,且中和后所得溶液的比热容为 4.18 J/(g·℃) [板书]V酸=V碱=50 mL。

物理化学实验报告-BZ振荡反应

物理化学实验报告 BZ 振荡反应 1.实验报告 (1)了解BZ 反应的基本原理。 (2)观察化学振荡现象。 (3)练习用微机处理实验数据和作图。 2. 实验原理 化学振荡:反应系统中某些物理量随时间作周期性的变化。 BZ 体系是指由溴酸盐,有机物在酸性介质中,在有(或无)金属离子催化剂作用下构成的体系。有苏联科学家Belousov 发现,后经Zhabotinski 发现而得名。 本实验以 +4 ~ CH 2(COOH)2 ~ H 2SO 4作为反映体系。该体系的总反应为: 体系中存在着下面的反应过程。 过程A : 2 3 过程B : 4 5 6 Br - 的再生过程: 当[Br - ]足够高时,主要发生过程A ,2反应是速率控制步骤。研究表明,当达到准定态 当[Br -]低时,发生过程B ,Ce +3 被氧化。4反应是速率控制步骤。4.5反应将自催化产生HBrO 2

可以看出:Br - 和 HbrO 2的。当K 3 [Br - ]>K 4时,自催化过程不可能发生。自催化是BZ 振荡反应中必不可少的步骤,否则该振荡不能发生。研究表明,Br - 的临界浓度为: 若已知实验的初始浓度,可由上式估算[Br - ]crit 。 体系中存在着两个受溴离子浓度控制的过程A 和过程B ,当[Br - ]高于临界浓度[Br - ]crit 时发生过程A ,当[Br - ]低于[Br -]crit 时发生过程B 。[Br - ]起着开关的作用,他控制着A,B 之间的变化。这样体系就在过程A 、过程B 间往复振荡。 在反应进行时,系统中[Br - ]、[HbrO 2]、[Ce +3 ]、[Ce +4 ]都随时间作周期性的变化,实验中,可以用溴离子选择电极测定[Br - ],用铂丝电极测定[Ce +4 ]、[Ce +3 ]随时间变化的曲线。溶液的颜色在黄色和无色之间振荡,若再加入适量的FeSO 4邻菲咯啉溶液,溶液的颜色将在蓝色和红色之间振荡。 从加入硫酸铈铵到开始振荡的时间为t 诱 ,诱导期与反应速率成反比。 即 并得到 本实验使用的BZ 反应数据采集接口系统,并与微型计算机相连。通过接口系统测定电极的电势信号,经通讯口传送到PC 。自动采集处理数据。 3.实验仪器与试剂 BZ 反应数据采集接口系统 恒温槽 溴酸钾0.25 mol ·dm -3 磁力搅拌器 硫酸3.00 mol ·dm -3 丙二酸0.45mol ·dm -3 硫酸铈铵4×10-3 mol ·dm -3 微型计算机 反应器 4.实验步骤

大学物理化学下册(第五版傅献彩)知识点分析归纳-(1)

第八章电解质溶液

、 第九章 1.可逆电极有哪些主要类型每种类型试举一例,并写出该电极的还原反应。对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题 答:可逆电极有三种类型: (1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s) (2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m),AgCl(s)+ e- = Ag(s)+Cl-(m) (3)氧化还原电极如:Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2) 对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。 》 2.什么叫电池的电动势用伏特表侧得的电池的端电压与电池的电动势是否相同为何在测电动势时要用对消法 答:正、负两端的电势差叫电动势。不同。当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。 3.为什么Weslon标准电池的负极采用含有Cd的质量分数约为~的Cd一Hg齐时,标准电池都有稳定的电动势值试用Cd一Hg的二元相图说明。标准电池的电动势会随温度而变化吗答:在Cd一Hg的二元相图上,Cd的质量分数约为~的Cd一Hg齐落在与Cd一Hg固溶体的两相平衡区,在一定温度下Cd一Hg齐的活度有定值。因为标准电池的电动势在定温下只与Cd一Hg 齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。 4.用书面表示电池时有哪些通用符号为什么电极电势有正、有负用实验能测到负的电动势吗

中和热的测定实验方案

学生实验中和热的测定 实验目的 测定强酸与强碱反应的中和热,加深理解中和反应是放热反应。 实验用品 大烧杯(500 mL)、小烧杯(100 mL)、温度计、量筒(50mL)两个、泡沫塑料或纸条、 泡沫塑料板或硬纸板(中心有两个小孔)、环形玻璃搅拌棒。 mol/L 盐酸、mol/L NaOH 溶液①。 实验步骤 1 ?在大烧杯底垫泡沫塑料(或纸条),使放入的小烧杯杯口与大烧杯杯口相平。然后再在大、小烧杯之间填满碎泡沫塑料(或纸条),大烧杯上用泡沫塑料板(或硬纸板)作盖板,在板中间开两个小孔,正好使温度计和环形玻璃搅拌棒通过,以达到保温、隔热、减少实验过程中热量损失的目的,如图所示。该实验也可在保温杯中进行。 碎泡沫塹飄 圏中和热的测定 2 ?用一个量筒量取L盐酸,倒入小烧杯中,并用温度计测量盐酸的温度,记入下表。然后把温度计上的酸用水冲洗干净。

3. 用另一个量筒量取50mL mol/L NaOH溶液,并用温度计测量NaOH溶液的温度,记入下表。 4. 把温度计和环形玻璃搅拌棒放入小烧杯的盐酸中,并把量筒中的NaOH溶液一次倒入小烧杯(注意不要洒到外面)。用环形玻璃搅拌棒轻轻搅动溶液,并准确读取混合溶液的最高温度,记为终止温度,记入下表。 5. 重复实验两次,取测量所得数据的平均值作为计算依据 6. 根据实验数据计算中和热 为了使计算简便一些,我们近似地认为: ⑴mol/L盐酸和LNaOH溶液的密度都是1g/cm3,所以50mL L盐酸的质量m1=50g, 50mL mol/L NaOH 溶液的质量m2=50 g。 ⑵中和后生成的溶液的比热容c= J/(g「C ),由此可以计算出,50mL mol/L盐酸与50mL mol/L NaOH溶液发生中和反应时放出的热量为: (m1+m2) ? c ? (t2-t1)=(t2-t1) kJ 又因50 mol/L盐酸中含有mol的HCI,mol的HCI与mol NaOH发生中和 反应,生成molH2O,放出的热量是(t2-t1) kJ,所以,生成1molH2O时放出的 热量即中和热为: A H =0.418(t a- tj 0.025 kJ / mol

冰的熔解热的测定实验报告

实验名称测定冰的熔解热 一、前言 物质从固相转变为液相的相变过程称为熔解。一定压强下晶体开始熔解时的温度称为该晶体在此压强下的熔点。对于晶体而言,熔解是组成物质的粒子由规则排列向不规则排列的过程,破坏晶体的点阵结构需要能量,因此,晶体在熔解过程中虽吸收能量,但其温度却保持不变。物质的某种晶体熔解成为同温度的液体所吸收的能量,叫做该晶体的熔解潜热。 二、实验目的 1、学习用混合量热法测定冰的熔解热。 2、应用有物态变化时的热交换定律来计算冰的溶解热。 3、了解一种粗略修正散热的方法——抵偿法。 三、实验原理 本实验用混合量热法测定冰的熔解热。其基本做法如下:把待测系统A和一个已知热容的系统B混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统C (C=A+B).这样A(或B)所放出的热量,全部为B(或A)所吸收。因为已知热容的系统在实验过程中所传递的热量Q,是可以由其温度的改变△T 和热容C计算出来,即Q = C△T,因此待测系统在实验过程中所传递的热量也就知道了。 实验时,量热器装有热水(约高于室温10℃,占内筒容积1/2),然后放入适量冰块, 冰溶解后混合系统将达到热平衡。此过程中,原实验系统放热,设为Q 放 ,冰吸热溶成水, 继续吸热使系统达到热平衡温度,设吸收的总热量为Q 吸 。 因为是孤立系统,则有Q 放= Q 吸 (1) 设混合前实验系统的温度为T1,其中热水质量为m1(比热容为c1),内筒的质量为m2(比热容为c2),搅拌器的质量为m3(比热容为c3)。冰的质量为M(冰的温度和冰的熔点均认为是0℃,设为T0),数字温度计浸入水中的部分放出的热量忽略不计。设混

大学物理化学知识点归纳只是分享

大学物理化学知识点 归纳

第一章 气体的pvT 关系 一、 理想气体状态方程 pV=(m/M )RT=nRT (1.1) 或pV m =p (V/n )=RT (1.2) 式中p 、V 、T 及n 的单位分别为P a 、m 3、K 及mol 。V m =V/n 称为气体的摩尔体积,其单位为m 3·mol 。R=8.314510J ·mol -1 ·K -1称为摩尔气体常数。 此式适用于理想,近似于地适用 于低压下的真实气体。 二、理想气体混合物 1.理想气体混合物的状态方程 (1.3) pV=nRT=(∑B B n )RT pV=mRT/M mix (1.4) 式中M mix 为混合物的摩尔质量,其可表示为 M mix def ∑B B y M B (1.5) M mix =m/n= ∑B B m /∑B B n (1.6) 式中M B 为混合物中某一种组分B 的摩尔质量。以上两式既适用于各种混合气体,也适用于液态或固态等均匀相混合系统平均摩尔质量的计算。 2.道尔顿定律 p B =n B RT/V=y B p (1.7) P=∑B B p (1.8) 理想气体混合物中某一种组分B 的分压等于该组分单独存在于混合气体的温度T 及总体积V 的条件下所具有的压力。而混合气体的总压即等于各组分单独存在于混合气体的温度、体积条件下产生压力的总和。以上两

式适用于理想气体混合系统,也近似适用于低压混合系统。 3.阿马加定律 V B * =n B RT/p=y B V (1.9) V=∑V B * (1.10) V B *表示理想气体混合物中物质B 的分体积,等于纯气体B 在混合物的温度及总压条件下所占有的体积。理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。以上两式适用于理想气体混合系统,也近似适用于低压混合系统。 三、临界参数 每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把这个温度称为临界温度,以T c 或t c 表示。我们将临界温度T c 时的饱和蒸气 压称为临界压力,以p c 表示。在临界温度和临界压力下,物质的摩尔体积称为临界摩尔体积,以V m,c 表示。临 界温度、临界压力下的状态称为临界 状态。 四、真实气体状态方程 1.范德华方程 (p+a/V m 2)(V m -b)=RT (1.11) 或(p+an 2/V 2)(V-nb)=nRT (1.12) 上述两式中的a 和b 可视为仅与气体种类有关而与温度无关的常数,称为范德华常数。a 的单位为Pa ·m 6 ·mol ,b 的单位是m 3mol.-1。该 方程适用于几个兆帕气压范围内实际气体p 、V 、T 的计算。 2.维里方程 Z(p ,T)=1+Bp+Cp+Dp+… (1.13) 或Z(V m, ,T)=1+B/V m +C /

物化实验报告:溶解热的测定-KCl、KNO3

华南师范大学实验报告 课程名称 物理化学实验 实验项目 溶解热的测定 【实验目的】 1.用量热计简单测定硝酸钾在水中的溶解热。 2.掌握贝克曼温度计的调节和使用。 【实验原理】 盐类的溶解往往同时进行着两个过程:一是晶格破坏,为吸热过程;二是离子的溶剂化,为放热过程。溶解热是这两种热效应的总和。最终是吸热还是放热,则由这两种热效应的相对大小来决定。 本实验在定压、不做非体积功的绝热体系中进行时,体系的总焓保持不变,根据热平衡,即可计算过程所涉及的热效应。 T C C W C W W M H m sol ??++-=?][322111 )( (3.1) 式中: m Sol H ?为盐在溶液温度和浓度下的积分溶解热,单位:kJ ·mo1–1; 1W 为溶质的质量,单位:kg ; T ?为溶解过程的真实温差,单位:K ; 2W 为水的质量,单位:kg ; M 为溶质的摩尔质量,单位:kg ·mo1–1 ; 21C C 、分别为溶质和水的比热,单位:11--?K kg kJ ; 度升 3C 为量热计的热容(指除溶液外,使体系温高1℃所需要的热量) ,单位:kJ 。 实验测得W 1、W 2、ΔT 及量热计的热容后,即 可按 图3.1溶解热测定装配图 1.磁力搅拌器; 2.搅拌磁子; 3.杜瓦瓶; 4.漏斗; 5.传感器; 6.SWC —IIC 数字贝克曼温度仪.

(3.1)式算出熔解热m Sol H 。 【仪器与药品 】 溶解热测量装置一套(如图3.1所示);500ml 量筒一个;KCl(A.R.) ;KNO 3(A.R.) 【实验步骤】 1.量热计热容的测定: 本实验采用氯化钾在水中的溶解热来标定量热计热容3C 。为此,先在干净的量热计中装入500m1蒸馏水,将与贝克曼温度计接好的传感器插入量热计中,放在磁力搅拌器上,启动搅拌器, 保持60-90转/分钟的搅拌速度,此时,数字显示应在室温附近,至温度变化基本稳定后,每分钟准确记录读数一次,连续8次后,打开量热计盖,立即将称量好的10克氯化钾(准确至0.01克)迅速加入量热计中,盖上盖,继续搅拌,每分钟记录一次读数,读取12次即可停止。然后用普通水银温度计测出量热计中溶液的温度,倒掉溶液。 2.硝酸钾溶解热的测定:用硝酸钾代替氯化钾重复上述实验,区别是称取硝酸钾的质量为7克(准确至0.01g)。完成一次实验后,溶液不倒掉。同样连续读数8次后,再向溶液中加入7克硝酸钾,再读取12次温度完成第二次测量。实验结束,倒掉溶液 【数据的处理】 1.各样品溶解前后温差的雷诺校正图

大学物理化学实验报告

年月日评定: 姓名:学号: 年级:专业: 室温:大气压: 一、实验名称:BET容量法测定固体的比表面积 二、实验目的: 三、实验原理: 四、实验数据及处理: 五、讨论思考: 1. 氮气及氢气在该实验中的作用是什么? 2. 若用Langmuir方法处理测量得到的数据,样品的比表面偏大还是偏 小?

年月日评定:姓名:学号: 年级:专业: 室温:大气压: 一、实验名称:恒温水浴的组装及其性能测试 二、实验目的: 三、实验原理: 四、实验数据及处理: 请完成下表: 表1 恒温槽灵敏度测量数据记录

五、作图: 以时间为横坐标,温度为纵坐标,绘制25℃和30℃的温度—时间曲线,求算恒温槽的灵敏度,并对恒温槽的性能进行评价。 六、讨论思考: 1. 影响恒温槽灵敏度的主要因素有哪些,试作简要分析? 2. 欲提高恒温槽的控温精度,应采取哪些措施?

年月日评定: 姓名:学号: 年级:专业: 室温:大气压: 一、实验名称:最大泡压法测定溶液的表面张力 二、实验目的: 三、实验原理: 四、实验数据及处理 1.以纯水的测量结果计算仪器毛细管常数K′,纯水的表面张力σ查书附录。 ?p1=?p2=?p3= 平均值:?p=K′=σ /?p 2.计算各溶液的σ值(K′=σ /?h) 表1 各溶液的表面张力σ c/mol· L-1 σ /N·m-1 3.做σ-c图,并在曲线上取十个点,分别做出切线,求得对应的斜率(dσ -d c)r,求算各浓度的吸附量Γ,附图。

表2 各溶液的吸附量 4. 做(c /Γ)-c 图,由直线斜率求其饱和吸附量∞Γ,并计算乙醇分子的横 截面积σB ,附图。 表3 c /~c 数据表 斜率= ,∞Γ= , σB =1/∞ΓL = 五、讨论思考: 1. 与文献值(见书中附录)对照,检验你的测定结果,并分析原因。 2. 增(减)压速率过快,对测量结果有何影响?表面张力测定仪的清洁与 否和温度之不恒定对测量结果有何影响?

中和热及测定实验

编号:2-4 认真做事只能把事做对,用心做事才能把事做好! 课题:第二章 化学反应与能量 (第4课时中和热) 制作人:周英姿 【学习目标】理解中和热的含义,会测定中和反应的反应热 【重 点】测定中和反应反应热的原理 【难 点】测定中和反应反应热的原理 【预备知识】 1、中和热定义:酸和碱发生中和反应,生成1molH 2O 时所释放的热。 2、在稀溶液中,2molHCl 与2molNaOH 反应,放出114.6KJ 的热量,写出表示中和热的热化学 方程式。 【基础知识】阅读教材P4——P6 1、实验目的? 2、实验药品? 3、实验装置如图 4、实验原理 反应热的计算公式:Q=m ·c ·△t 注:1、△t :温度差 2、c=0.418 kJ ·K -1·g -1 3、△H= —Q/n(H 2O) 4、m 为溶液的总质量 5、数据处理 【思考】①确定初始温度、计算△t 及△t 的平均值。填入上表。 ②若把所用盐酸和氢氧化钠溶液的密度近似看做1g/mL,则反应混合液的质量m=? ③反应生成的水的物质的量为多少? ④△H= 6、注意事项 (1)碎泡沫塑料(或纸条)及泡沫塑料板的作用是什么? (2)量取盐酸后为什么要将温度计用水冲洗干净?冲洗后的溶液能否倒入小烧杯?为什么? (3)氢氧化钠溶液为什么是一次性倒入盐酸溶液中,而不是缓缓加入? (4)实验所用的酸碱的体积均为50ml ,但氢氧化钠溶液的浓度略大于盐酸浓度,目的是什么? (5)用环形玻璃搅拌棒搅拌的目的? 【思考】①若将实验中的稀盐酸换成稀醋酸,对测得的中和热数值有何影响? ②若将实验中的稀氢氧化钠溶液换成稀氨水,对测得的中和热数值有何影响? ③若将实验中的稀盐酸换成浓硫酸,对测得的中和热数值有何影响? ④若用稀硫酸和稀氢氧化钡溶液做实验,对测得的中和热数值有何影响? 【归纳小结】 在溶液中, 酸与 碱反应生成盐和水的中和热为“57.3kJ/mol ” 或“△H= —57.3 kJ/mol ” 【课堂练习】 已知H (aq)+OH (aq) = H 2O(1) △H = — 57. 3kJ/mol,计算下列中和反应中放出的热量。 用20gNaOH 配稀溶液跟足量稀盐酸反应放出____kJ 的热量. 【疑点反馈】通过本节的学习、作业后你还有哪些知识不懂?请记录下来。

溶解热实验报告

溶解热的测定 名字:程伊伊学号:06 班级:药学日期:2016.3.15 (一)实验原理 1.溶解热概念溶质溶解于溶剂的过程由溶质晶格破坏、电离的吸热过程和溶质溶剂化的放热过程组成,总的热效应取决于两者之和,可能是吸热的,也可能是放热的。在一定温度和压力下,热效应的大小与溶质和溶剂的相对量有关,例如硝酸钾溶解在水中的热效应(吸热)随溶剂水的量增加而增加。 2.电热补偿法原理硝酸钾溶解于水的过程是吸热过程,反应热可以用电热补偿法来进行测定。其基本做法是,在反应前确定系统的温度,在反应中,给予系统电加热,直到反应结束后,系统的温度恢复到起始状态,计算电热量即为反应热。 △Hm=Cp*△T1*M/m Cp=Q/△T2 Q=IVt (二)实验步骤 (1)在分析天平上称取1份重量为8.2345g的硝酸钾样品,放在干燥器中待用。 (2)将蒸馏水加入干燥的保温杯中,同时记录水温,作为实验温度。 (3)插上电源,搭好装置,开启磁力搅拌器,调整转速。观察数字贝克曼温度计,记录初始温度T1,每1min观察1次,记录3次,直至恒温。 (4)将预先称好的硝酸钾8.2345g迅速、全部倒入保温杯中,盖好瓶盖,磁力搅拌器均匀地搅拌,由于硝酸钾溶解为吸热过程,溶解时温度下降,每30s读取温度一次,直至温度不变,即为T2。T2每1min观察1次,记录3次。 (5)开启电源,接上加热器,调整功率(电压约10V,电流约1A),准确记录电流电压值。当贝克曼温度计度数上升0.5℃时,记作标记温度,并按下秒表开始计时。 (6)计时的同时,观察温度上升,直至接近T1,取下加热器,记录温度T3,每1min 观察1次,记录3次。 (三)数据记录和处理 实验温度的测定 通电时间:3min14s 电流:1.435A 电压:10.46V 实验温度:13.92℃ 每1min记录1次第1次第2次第3次 T1 13.93 13.93 13.93 T2 11.16 11.14 11.13 T3 14.18 14.22 14.26

相关文档
相关文档 最新文档