文档库 最新最全的文档下载
当前位置:文档库 › 存储器介绍

存储器介绍

存储器介绍
存储器介绍

一. 的特

则是 存储器的种2.其中的“特性;在计算是硬盘。

种类

“易失/非易

算机中易失 易失”是指存

失性存储器最 存储器

存储器断电

最典型的代电后,它存储

代表是内存储的数据内,

非易失性内容是否会丢

性存储器的代

丢失代表

二.R R 1动态无电定期1)根否需图据。DRA 2) D 区别据,沿及时钟方式当

多个RAM

RAM 可随读.动态随机存态随机存储电荷代表 期刷新操作SDRAM

根据 DRAM 需要使用时 22‐3 是一由于使用AM 被称为DDR SDRAM DDR SDRAM 别,但 SDR 在 1个时及下降沿各钟频率同样式并没有区当前个人计个DDRIII

SD 读取其内部存储器 DR 储器 DRAM 0,代表 1 作,这就是M 的通讯方式时钟信号来区一种利用时时钟同步的为 SDRAM(Sy M

M 存储器(D RAM 只在上时钟周期内,各表示一个数样的情况下,别,主要是计算机常用的DRAM

芯片任意地址的AM(Dynam 的存储单元的电容会放“动态(Dyn 式,又分为区分。

时钟进行同步的通讯速度ynchronous Double Data 上升沿表示有,只能表示数据,也就是提高了一倍是通讯同步的内存条是。

的数据,时mic RAM)

元以电容的放电,代表amic)”一词为同步和异步的通讯时度更快,所以s DRAM)。

aRate SDRA 有效数

示 1 个有数是说在 1 个倍的速度。步时钟的频率是 DDRIII

SD 时间都是相同电荷来表示 0的电容会词所形容的特

步两种,这时序,它在时以同步 DRA M),它的存数据;而 DD 个时钟周期至于 DDR 率提高了。RAM

存储器同的

示数据,有会吸收电荷特性。

这两种方式时钟的上升AM 使用更存储特性与DR SDRAM 期内可以表示RII 和 DDRII

器,

在一个电荷代表 荷,因此它需根据通讯时升沿表示有效更为广泛,这与 SDRAM 没在时钟的上示 2 数据II ,它们的通

个内存条上包1,需要时是

效数这种 没有上升,在通讯

包含

2。静态同3.DR 可更低而S DRA

R

RAM 其中一旦组成01.D 这是位作问题2~402.S 静态个位静态随机存态随机存储样地,SRA RAM 与 SR 可知 DRAM 低,且集成 DRAM 中RAM 一般只AM ;

RAM(Random M 的特点是中,并且随时可旦系统断电,成元件的不同DRAM (Dyn 是最普通的作为一个电荷题,因此必须ms 。因为成SRAM (Sta 态,指的是内位存储单元,存储器 SRA 储器 SRAM AM 根据其RAM 的应用M 的结构简成度更高;

中的电容结构只用于 CPU m Access M :电脑开机时可以对存放在存放在里面同,RAM 内存namic RAM RAM ,一个荷保存在位存须每几微秒就要成本比较便宜tic RAM ,静内存里面的数因为没有电容AM(Static RA 的存储单元通讯方式也用场合

简单得多,所构则决定了U 内部的高emory ,随机时,操作系统在里面的数据面的所有数据和存又分为以下,动态随机存个电子管与一个存储单元中,用要刷新一次宜,通常都用作静态随机存取数据可以长驻容器,因此无AM)

元以锁存器也分为同步所以生产相了它的存取高速缓存(Ca 机存取存储器统和应用程序据进行修改和和程序都会自下十八种:

存取存储器)个电容器组成用电容的充放,否则数据会用作计算机内的取存储器)

驻其中而不需无须不断充电器来存储数据步(SSRAM)和相同容量的存速度不如 ache),而外器)

序的所有正在和存取。它的工自动清空掉)

成一个位存储放电来做储存会丢失。存取的主存储器需要随时进行电即可正常运据,不需要异步 SRAM 存储器,DR SRAM ;

外部扩展的内在运行的数据工作需要由持,并且再也无储单元,DRA 存动作,但因取时间和放电。

行存取。每6运作,因此它要定时刷新充

M

RAM 的成本内存一般使据和程序都会持续的电力提无法恢复。 根RAM 将每个内因电容本身有电时间一致,颗电子管组它可以比一般充电

本要使用 放置提供,根据内存有漏电约为组成一般的动

态随机处理内存处理速度更快更稳定,往往用来做高速缓存。

03.VRAM(Video RAM,视频内存)

它的主要功能是将显卡的视频数据输出到数模转换器中,有效降低绘图显示芯片的工作负担。它采用双数据口设计,其中一个数据口是并行式的数据输出入口,另一个是串行式的数据输出口。多用于高级显卡中的高档内存。

04.FPM DRAM(Fast Page Mode DRAM,快速页切换模式动态随机存取存储器)

改良版的DRAM,大多数为72Pin或30Pin的模块。传统的DRAM在存取一个BIT的数据时,必须送出行地址和列地址各一次才能读写数据。而FRM DRAM在触发了行地址后,如果CPU需要的地址在同一行内,则可以连续输出列地址而不必再输出行地址了。由于一般的程序和数据在内存中排列的地址是连续的,这种情况下输出行地址后连续输出列地址就可以得到所需要的数据。FPM将记忆体内部隔成许多页数Pages,从512B到数KB不等,在读取一连续区域内的数据时,就可以通过快速页切换模式来直接读取各page内的资料,从而大大提高读取速度。在96年以前,在486时代和PENTIUM时代的初期, FPM DRAM 被大量使用。

05.EDO DRAM(Extended Data Out DRAM,延伸数据输出动态随机存取存储器)

这是继FPM之后出现的一种存储器,一般为72Pin、168Pin的模块。它不需要像FPM DRAM那样在存取每一BIT 数据时必须输出行地址和列地址并使其稳定一段时间,然后才能读写有效的数据,而下一个BIT的地址必须等待这次读写操作完成才能输出。因此它可以大大缩短等待输出地址的时间,其存取速度一般比FPM模式快15%左右。它一般应用于中档以下的Pentium主板标准内存,后期的486系统开始支持EDO DRAM,到96年后期,EDO DRAM开始执行。。

06.BEDO DRAM(Burst Extended Data Out DRAM,爆发式延伸数据输出动态随机存取存储器)

这是改良型的EDO DRAM,是由美光公司提出的,它在芯片上增加了一个地址计数器来追踪下一个地址。它是突发式的读取方式,也就是当一个数据地址被送出后,剩下的三个数据每一个都只需要一个周期就能读取,因此一次可以存取多组数据,速度比EDO DRAM快。但支持BEDO DRAM内存的主板可谓少之又少,只有极少几款提供支持(如VIA APOLLO VP2),因此很快就被DRAM取代了。

07.MDRAM(Multi-Bank DRAM,多插槽动态随机存取存储器)

MoSys公司提出的一种内存规格,其内部分成数个类别不同的小储存库 (BANK),也即由数个属立的小单位矩阵所构成,每个储存库之间以高于外部的资料速度相互连接,一般应用于高速显示卡或加速卡中,也有少数主机板用于L2高速缓存中。

08.WRAM(Window RAM,窗口随机存取存储器)

韩国Samsung公司开发的内存模式,是VRAM内存的改良版,不同之处是它的控制线路有一、二十组的输入/输出控制器,并采用EDO的资料存取模式,因此速度相对较快,另外还提供了区块搬移功能(BitBlt),可应用于专业绘图工作上。

09.RDRAM(Rambus DRAM,高频动态随机存取存储器)

Rambus公司独立设计完成的一种内存模式,速度一般可以达到500~530MB/s,是DRAM

的10倍以上。但使用该内存后内存控制器需要作相当大的改变,因此它们一般应用于专业的图形加速适配卡或者电视游戏机的视频内存中。

10.SDRAM(Synchronous DRAM,同步动态随机存取存储器)

这是一种与CPU实现外频Clock同步的内存模式,一般都采用168Pin的内存模组,工作电压为3.3V。所谓clock同步是指内存能够与CPU同步存取资料,这样可以取消等待周期,减少数据传输的延迟,因此可提升计算机的性能和效率。

11.SGRAM(Synchronous Graphics RAM,同步绘图随机存取存储器)

SDRAM的改良版,它以区块Block,即每32bit为基本存取单位,个别地取回或修改存取的资料,减少内存整体读写的次数,另外还针对绘图需要而增加了绘图控制器,并提供区块搬移功能(BitBlt),效率明显高于SDRAM。

12.SB SRAM(Synchronous Burst SRAM,同步爆发式静态随机存取存储器)

一般的SRAM是非同步的,为了适应CPU越来越快的速度,需要使它的工作时脉变得与系统同步,这就是SB SRAM产生的原因。

13.PB SRAM(Pipeline Burst SRAM,管线爆发式静态随机存取存储器)

CPU外频速度的迅猛提升对与其相搭配的内存提出了更高的要求,管线爆发式SRAM取代同步爆发式SRAM成为必然的选择,因为它可以有效地延长存取时脉,从而有效提高访问速度。

14.DDR SDRAM(Double Data Rate二倍速率同步动态随机存取存储器)

作为SDRAM的换代产品,它具有两大特点:其一,速度比SDRAM有一倍的提高;其二,采用了DLL(Delay Locked Loop:延时锁定回路)提供一个数据滤波信号。这是目前内存市场上的主流模式。

15.SLDRAM (Synchronize Link,同步链环动态随机存取存储器)

这是一种扩展型SDRAM结构内存,在增加了更先进同步电路的同时,还改进了逻辑控制电路,不过由于技术显示,投入实用的难度不小。

16.CDRAM(CACHED DRAM,同步缓存动态随机存取存储器)

这是三菱电气公司首先研制的专利技术,它是在DRAM芯片的外部插针和内部DRAM之间插入一个SRAM作为二级CACHE使用。当前,几乎所有的CPU都装有一级CACHE来提高效率,随着CPU时钟频率的成倍提高,CACHE不被选中对系统性能产生的影响将会越来越大,而CACHE DRAM所提供的二级CACHE正好用以补充CPU一级CACHE之不足,因此能极大地提高CPU效率。

17.DDRII (Double Data Rate Synchronous DRAM,第二代同步双倍速率动态随机存取存储器)

DDRII 是DDR原有的SLDRAM联盟于1999年解散后将既有的研发成果与DDR整合之后的未来新标准。DDRII的详细规格目前尚未确定。

18.DRDRAM (Direct Rambus DRAM)

是下一代的主流内存标准之一,由Rambus 公司所设计发展出来,是将所有的接脚都连结到一个共同的Bus,这样不但可以减少控制器的体积,已可以增加资料传送的效率。

三、ROM

1.MASK ROM

MASK(掩膜) ROM就是正宗的“Read Only Memory”,存储在它内部的数据是在出厂时使用特殊工艺固化的,生产后就不可修改,其主要优势是大批量生产时成本低。

2.OTPROM

OTPROM(One Time Programable ROM)是一次可编程存储器。这种存储器出厂时内部并没有资料,用户可以使用专用的编程器将自己的资料写入,但只能写入一次,被写入过后,它的内容也不可再修改

3.EPROM(已淘汰,要用紫外线擦除,说实话,真滴是麻烦)

EPROM(Erasable Programmable ROM)是可重复擦写的存储器,擦除和写入都要专用的设备(使用紫外线照射芯片内部擦除数据)。现在这种存储器基本淘汰,被 EEPROM 取代

4.EEPROM

EEPROM(Electrically Erasable Programmable ROM)是电可擦除存储器,EEPROM 可以重复擦写,它的擦除和写入都是直接使用电路控制,不需要再使用外部设备来擦写。而且可以按字节为单位修改数据,无需整个芯片擦除。现在主要使用的 ROM 芯片都是EEPROM。

5.FLASH

FLASH 存储器又称为闪存,它也是可重复擦写的存储器,部分书籍会把 FLASH 存储器称为 FLASH ROM,但它的容量一般比 EEPROM 大得多,且在擦除时,一般以多个字节为单位。

而 NOR与 NAND特性的差别,主要是由于其内部“地址/数据线”是否分开导致的。 NOR 的地址线和数据线分开, NAND的数据和地址线共用;

NOR FLASH :一般应用在代码存储的场合,如嵌入式控制器内部的程序存储空间。

NAND FLASH: 一般应用在大数据量存储的场合,包括 SD卡、U盘以及固态硬盘等,都是 NAND FLASH 类型的。

ROM是线路最简单半导体电路,通过掩模工艺,一次性制造,在元件正常工作的情况下,其中的代码与数据将永久保存,并且不能够进行修改。一般应用于PC系统的程序码、主机板上的 BIOS (基本输入/输出系统Basic Input/Output System)等。它的读取速度比RAM慢很多。根据组成元件的不同,ROM内存又分为以下五种:

1.MASK ROM(掩模型只读存储器)

制造商为了大量生产ROM内存,需要先制作一颗有原始数据的ROM或EPROM作为样本,然后再大量复制,这一样本就是MASK ROM,而烧录在MASK ROM中的资料永远无法做修改。它的成本比较低。

2.PROM(Programmable ROM,可编程只读存储器)

这是一种可以用刻录机将资料写入的ROM内存,但只能写入一次,所以也被称为“一次可编程只读存储器”(One Time Progarmming ROM,OTP-ROM)。PROM在出厂时,存储

的内容全为1,用户可以根据需要将其中的某些单元写入数据0(部分的PROM在出厂时数据全为0,则用户可以将其中的部分单元写入1),以实现对其“编程”的目的。

3.EPROM(Erasable Programmable,可擦可编程只读存储器)

这是一种具有可擦除功能,擦除后即可进行再编程的ROM内存,写入前必须先把里面的内容用紫外线照射它的IC卡上的透明视窗的方式来清除掉。这一类芯片比较容易识别,其封装中包含有“石英玻璃窗”,一个编程后的EPROM芯片的“石英玻璃窗”一般使用黑色不干胶纸盖住,以防止遭到阳光直射。

4.EEPROM(Electrically Erasable Programmable,电可擦可编程只读存储器)

功能与使用方式与EPROM一样,不同之处是清除数据的方式,它是以约20V的电压来进行清除的。另外它还可以用电信号进行数据写入。这类ROM内存多应用于即插即用(PnP)接口中。

5.Flash Memory(快闪存储器)

这是一种可以直接在主机板上修改内容而不需要将IC拔下的内存,当电源关掉后储存在里面的资料并不会流失掉,在写入资料时必须先将原本的资料清除掉,然后才能再写入新的资料,缺点为写入资料的速度太慢。

记忆 内存,也称为内存存储器,通常也称为主存储器,是计算机的主要组成部分,与外部存储器不同。 存储器是计算机的重要组成部分之一,是与CPU通信的桥梁。 计算机中的所有程序都在内存中运行,因此存储器的性能对计算机有很大的影响。 内存,也称为内存,用于在CPU中临时存储操作数据,并与硬盘等外部存储器交换数据。 只要计算机在运行,CPU就会把需要计算的数据传送到内存中进行计算,然后在计算完成后,CPU将结果传送出去, 存储器的运行也决定了计算机的稳定运行。存储器由存储器芯片、电路板和金手指组成。 分类 一般来说,微型计算机的存储器包括磁芯存储器和半导体存储器,

微型计算机的存储器是半导体存储器。 半导体存储器可分为随机存取存储器(RAM), 只读存储器也称为读写存储器。 1随机存取存储器 随机存取存储器 随机存取存储器(RAM)是一种可以随机读/写数据的存储器,也称为读/写存储器。Ram有以下两个特点:第一,它可以读写。 读出时原始存储内容不会损坏, 原始存储器的内容只有在写入时才被修改。 其次,RAM只能用于信息的临时存储。一旦电源关闭,就可以读取电源 存储的内容会立即消失,即不稳定。 Ram通常由MOS半导体存储器组成, 根据数据存储机制,可分为动态RAM和静态RAM。

DRAM是高度集成的,主要用于大容量存储。SRAM具有存取速度快的特点,主要用于高速缓冲存储器。 2只读存储器 ROM是只读存储器。顾名思义,它只能阅读原始内容, 用户无法再编写新内容。原始存储内容由制造商使用掩蔽技术编写, 永远保存。它通常用于存储特殊的固定程序和数据。 只读存储器是一种非易失性存储器, 不需要额外的电源来保存信息,并且不会因为电源故障而丢失信息。 根据内容是否可以在线重写,可以分为两类:不能在线重写的ROM和可以在线重写的ROM。 不能在线重写的ROM包括mask ROM、prom和EPROM; 在线可擦只读存储器包括EEPROM和Flash ROM。 三。CMOS存储器(互补金属氧化物半导体存储器)

内存储器和外存储器的区别 内存储器 内存又称为内存储器,通常也泛称为主存储器,是计算机中的主要部件,它是相对于外存而言的。 内存储器是计算机中重要的部件之一,它是与CPU进行沟通的桥梁。 计算机中所有程序的运行都是在内存储器中进行的,因此内存储器的性能对计算机的影响非常大。 内存储器(Memory)也被称为内存,其作用是用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换的数据。 只要计算机在运行中,CPU就会把需要运算的数据调到内存中进行运算,当运算完成后CPU再将结果传送出来, 内存的运行也决定了计算机的稳定运行。内存是由内存芯片、电路板、金手指等部分组成的。 分类 T一般常用的微型计算机的存储器有磁芯存储器和半导体存储器, 微型机的内存都采用半导体存储器。

T半导体存储器从使用功能上分,有随机存储器(Random Access Memory,简称RAM), 又称读写存储器;只读存储器(Read Only Memory,简称为ROM)。 1.随机存储器(Random Access Memory)随机存储器 随机存储器 随机存储器是一种可以随机读∕写数据的存储器,也称为读∕写存储器。 RAM有以下两个特点:一是可以读出,也可以写入。 读出时并不损坏原来存储的内容, 只有写入时才修改原来所存储的内容。 二是RAM只能用于暂时存放信息,一旦断电一旦断电一是可以读出 ,存储内容立即消失,即具有易失性。 RAM通常由MOS型半导体存储器组成, 根据其保存数据的机理又可分为动态(Dynamic RAM)和静态(Static RAM)两大类。 DRAM的特点是集成度高,主要用于大容量内存储器;SRAM的特点是存取速度快,主要用于高速缓冲存储器。 2.只读存储器(Read Only Memory)

MCS-51单片机在物理结构上有四个存储空间: 1、片内程序存储器 2、片外程序存储器 3、片内数据存储器 4、片外数据存储器 但在逻辑上,即从用户的角度上,8051单片机有三个存储空间: 1、片内外统一编址的64K的程序存储器地址空间(MOVC) 2、256B的片内数据存储器的地址空间(MOV) 3、以及64K片外数据存储器的地址空间(MOVX) 在访问三个不同的逻辑空间时,应采用不同形式的指令(具体我们在后面的指令系统学习时将会讲解),以产生不同的存储器空间的选通信号。 程序内存ROM 寻址范围:0000H ~ FFFFH 容量64KB EA = 1,寻址内部ROM;EA = 0,寻址外部ROM 地址长度:16位 作用:存放程序及程序运行时所需的常数。 七个具有特殊含义的单元是: 0000H ——系统复位,PC指向此处; 0003H ——外部中断0入口 000BH —— T0溢出中断入口

0013H ——外中断1入口 001BH —— T1溢出中断入口 0023H ——串口中断入口 002BH —— T2溢出中断入口 内部数据存储器RAM 物理上分为两大区:00H ~ 7FH即128B内RAM 和SFR区。 作用:作数据缓冲器用。 下图是8051单片机存储器的空间结构图 程序存储器 一个微处理器能够聪明地执行某种任务,除了它们强大的硬件外,还需要它们运行的软件,其实微处理器并不聪明,它们只是完全按照人们预先编写的程序而执行之。那么设

计人员编写的程序就存放在微处理器的程序存储器中,俗称只读程序存储器(ROM)。程序相当于给微处理器处理问题的一系列命令。其实程序和数据一样,都是由机器码组成的代码串。只是程序代码则存放于程序存储器中。 MCS-51具有64kB程序存储器寻址空间,它是用于存放用户程序、数据和表格等信息。对于内部无ROM的8031单片机,它的程序存储器必须外接,空间地址为64kB,此时单片机的端必须接地。强制CPU从外部程序存储器读取程序。对于内部有ROM的8051等单片机,正常运行时,则需接高电平,使CPU先从内部的程序存储中读取程序,当PC值超过内部ROM的容量时,才会转向外部的程序存储器读取程序。 当=1时,程序从片内ROM开始执行,当PC值超过片内ROM容量时会自动转向外部ROM空间。 当=0时,程序从外部存储器开始执行,例如前面提到的片内无ROM的8031单片机,在实际应用中就要把8031的引脚接为低电平。 8051片内有4kB的程序存储单元,其地址为0000H—0FFFH,单片机启动复位后,程序计数器的内容为0000H,所以系统将从0000H单元开始执行程序。但在程序存储中有些特殊的单元,这在使用中应加以注意: 其中一组特殊是0000H—0002H单元,系统复位后,PC为0000H,单片机从0000H 单元开始执行程序,如果程序不是从0000H单元开始,则应在这三个单元中存放一条无条件转移指令,让CPU直接去执行用户指定的程序。 另一组特殊单元是0003H—002AH,这40个单元各有用途,它们被均匀地分为五段,它们的定义如下: 0003H—000AH 外部中断0中断地址区。 000BH—0012H 定时/计数器0中断地址区。

非易失性存储器概述 一、介绍 这篇文章论述了非易失性存储器(NVM)基本概况。第1部分介绍了非易失性存储器的主要背景以及一些存储器的基本术语。第2部分主要阐述了非易失性存储器的工作原理(通过热电子注入实现编程)。第3部分包含了非易失性存储器的擦除原理,以及隧道效应。第4部分介绍了用于预测非易失性存储器的编程特性的模型,用“幸运电子”模型来表述热电子注入模式。第5部分主要介绍非易失性存储器可靠性,包括在数据保存、耐受力和干扰影响下的可靠性。 关键词:非易失性,存储器,热电子注入,隧道效应,可靠性,保存,存储干扰,EEPROM,Flash EEPROM。 存储器分为两大类:易失性存储器和非易失性存储器。易失性存储器在掉电后会失去其所存储的数据,故而需要继续不断的电源才能保存数据。大部分的随机存取存储器(RAM)都是易失性的。非易失性存储器则在掉电后不会丢失数据。一个非易失性存储器(NVM)本质上是一个MOS管,由一个源极、一个漏极、一个门极,以及一个浮栅。与常用的MOSFET 不同的是,NVM多了一个浮栅,浮栅与其它部分是绝缘的。非易失性存储器又细分为两个主要的分类:浮栅型和电子俘获型。Kahng 和Sze在1967年发明了第一个浮栅型器件。在这种器件中,电子受隧道效应的影响,通过一个3nm厚的二氧化硅层,从一个浮栅中转移到基层中。通过隧道效应,非易失性存储器可以更容易地被擦除或改写,通常隧道效应只在厚度小于12nm的氧化物中存在。浮栅中存储电子后,可以使得阈值电压被降低或者提高,而阈值电压的高低也就分别代表了逻辑值1或0。 在浮栅型存储器件中,电子(也即是数据)存储在浮栅中,故而掉电后,数据不会丢失。所有的浮栅型存储器件都是一样的存储单元结构,如下图1所示,一个存储单元由门极MOS 管堆叠而成。第一个门是浮栅门,被埋在栅氧化层(Gate Oxide)和内部多晶硅绝缘层(IPD)之间,位于控制门(Control Gate)的下方。内部多晶硅绝缘层将浮栅隔绝起来,它可以是氧化物,或者氧化物-氮化物-氧化物层(ONO)。SiO2绝缘层将MOS管包围起来,作为保护层,使其免受划伤和杂质污染。第二个门极是控制门,这个门是可以被外部所接触到的。浮栅门常用在EPROM里(Electrically Programmable Read Only Memory)和EEPROM 里(Electrically Erasable and Programmable Read Only Memory)。 图1:基本的浮栅门结构

Slide1. SRAM的全称是static random access memory,它是一种最常用的memory,核心部分是两个cross-coulped inverter 组成的bi-stable latching circuit,通常称为flip-flop的电路。SRAM static的特性主要是它不需要像DRAM那样定期对存储的数据进行刷新,只要Vdd 不掉电,数据就可以稳定存储。SRAM最主要的应用就是缓存,缓存的作用是在CPU和内存之间进行数据缓冲。像智能手机这样的一些高端电子产品,SRAM是必不可少的。SRAM之所以可以做缓存是因为它有一个最为重要的优点:speed, SRAM的读写频率可以到几个Giga Hz,比DRAM至少快一个order。SRAM最大的劣势在于density 比较低,用的最多的SRAM是所谓的6T traditional SRAM, 1个bitcell有六个MOSFET组成,与SRAM对应的DRAM只需要一个MOSFET加一个capacitor。bitcell占用面积大导致desity低,density低造成cost 高,具体表现是同样容量的缓存会比内存条造价高很多。 Slide 2. 这是一个目前典型的memory 架构,CPU+3级缓存再加内存条,其中一级缓存经常用8T dual port SRAM,可以用两个port同时读写,速度最高,集成度也最低,三级缓存会用high-density design的SRAM,集成度最高,速度最低。从下面这幅实物图可以清楚看到multi-core 和三级缓存做在一起,stand alone的SRAM已经很少看到,一些低端的电子产品在介绍CPU性能参数的时候不会把缓存的信息单独列出来,但是对于像智能手机这样高端的电子产品,缓存的容量和工作频率绝对是一个重要的性能指标。下面这张图根据价格和读写速度对memory进行一个排列,硬盘速度最低,价格最便宜,内存条其次,缓存速度最高,造价也最高。接下来这张图是SRAM发展的roadmap,绿线对应左边的纵坐标,表示SRAM density的变化情况,每往前推进一个generation, desity翻倍,红点对应右边的纵坐标,表示SRAM 工作频率的变化情况,每推进一个generation, speed 提升15%. 最新的一些信息显示Intel基于22nm tri-gate finfet 工艺的SRAM, 工作频率最高可以达到4.6GHz。最后看一下我们公司SRAM的一个大概的情况,已经进入量产的基

这里要专门说明一下存储器,因为很多手机毛病都和存储有关,而且很多问题都和存储相关,计算机的存储是关键,而手机更始关键,因为计算机有硬盘作为存储,而手机所有的都在存储器里 存储器分为几类,RAM 随即存储器,ROM随即只读存储器还有现在出现一些的闪存,以及电子可编程存储和非易失存储起。一个一个到来 RAM 随机存储器,其中又有SRAM(静态RAM)DRAM(动态RAM), SRAM,只要只要电源开着,就会保存,我们打电话,有些最后拨打的号码,暂时是存在SRAM 中的,不会立刻写入通话记录。只有正常关机,才会写入,如果取电池的话,是不会写入手机的通话记录的,如果在通话记录中出现了已经拨打电话,但是没有记录的情况,那么有可能和这个存储器有关, 可能是你的软件上错误,也可能是硬件。 DRAM在手机上用的不多,因为保留数据时间很短, 从价格上看,SRAM是非常昂贵的,而DRAM相比很便宜。 ROM也有几种,PROM可编程ROM 和EPROM可擦除可编程ROM两者区别是,PROM是一次性的,也就是软件灌入后,这个就完蛋了,这种是早期的产品,现在已经不可能使用了,而E PROM 则是通用的存储器,这些存储器不符和手机软件产品,一般使用ROM少 其他FLASH 这是近来手机采用最多的存储器,这种存储起结合了ROM和RAM的长处,但是不属于RAM 也不属于ROM 手机大量采用的NVRAM 非易失存储器和SRAM属性差不多,EEPROM 电子可擦出可编程存储器,闪存,ROM的后代。手机软件一般放在EEPROM中,EPROM是通过紫外光的照射,擦出原先的程序,而EEPROM是通过电子擦出,当然价格也是很高的,而且写入时间很长,写入很慢,所以前面提到的电话号码,一般先放在S RAM中,不是马上写入EEPROM,因为当时有很重要工作要做——通话,如果写入,漫长的等待是让用户忍无可忍的。 NVRAM 是一个很特别的存储器,它和SRAM相类似,但是价格却高很多,由于一些数据实在重要,断电后必须保持这些数据,所以只能存放在这里,一般和个人信息有关的数据会放在这里,比如和S IM卡相关数据。容量大小也只有几百字节。 闪寸存储器是所有手机的首选,综合了前面的所有优点,不会断电丢失数据(NVRAM)快速读取,电气可擦出可编程(EEPROM)所以现在手机大量采用, 说了这么多存储器,可能比较糊涂了,这么多存储器,究竟采用哪中呢,在手机发展中,各种存储器都用过,至于现在,各种手机采用的存储器是不同的,这个和成本相关,各种存储器价格不一样,本着性价比最优组合,由设计者决定,有些是可选的,有些是必须的,是手机方案决定的,我们了解只是各种存储性能,特点,在测试中判断错误原因。

第三章内存储器 教学提示: 本章主要介绍了内存的概念和发展,了解内存的性能指标和结构,学会识别区分各种内存,掌握内存条的选购和测试。 教学目标: A级:(基本要求) 1. 了解内存的基本知识和性能指标。 2. 掌握内存的安装和基本设置。 B级:(较高要求) 1. 了解识别内存条的基本方法。 2. 掌握条据需要选购内存条的方法。 3. 对内存进行测试和维护。 历史回顾: 计算机内存的诞生。世界上第一台数字计算机可以追溯到上个世纪30 年代宋到40 年代初,约翰阿塔纳索夫和他的学生贝瑞在美国艾奥瓦州立大学组装出了世界上第一台数字计算机。该计算机具备了许多现代计算机的设计思想.包括使用二进制数字、可再生存储器、并行计算以及将计算单元和存储单元分离开来等。约翰阿塔纳索夫计算机的存储系统使用的是一个大的磁鼓,这也是计算机内存储器的雏形。

图3-1 早期的计算机的存储系统使用的是一个大的磁鼓内存储器(内存)是微型计算机主机的组成部分,用来存放当前正在使用的或随时要使用的程序。 在计算机的存储系统中内存储器直接决定CPU的工作效率,它是CPU与其它部件进行数据传输的纽带。内存储器是计算机中仅次于CPU的重要部件,内存的容量及性能是影响计算机性能主要因素之一。因此配置和维护计算机就要了解和掌握内存储器的基本知识。 知识补充: 内部存储器按存储信息的功能可分为只读存储器(ROM )、可改写的只读存储器EPROM和随机存储器RAM三大类。存放在RAM上的数据既可以快速写入,也能快速读出。“中转仓库”一般就是用RAM来搭建的。因此,如果不是特别说明,内存一般指的就是RAM。 3.1 基础知识:认识内存储器 内存储器有很多种类,通常所说的内存就是指内存条,下面就逐步介绍内存条。 3.1.1 认识内存条 1.内存的工作原理 当CPU 在工作时,需要从硬盘等外部存储器上读取数据,但由于硬盘这个“仓库”太大,加上离CPU 也很“远”,运输“原料”数据的速度就比较慢,会使CPU 的生产效率降低。为了解决这个问题,在CPU 与外部存储器之间,建了一个“小仓库”:内存。内存虽然容量不大,一般只有几十MB 到几百MB ,但中转速度非常快,当CPU 需要数据时,事先可以将部分数据存放在内存中,这样提高了CPU的工作效率,同时也减轻了硬盘的负担。由于内存只是一个“中转仓库”,因此它并不能用来长时间存储数据,当突然断电时,内存中的所有数据都会丢失。内存的工作如图3-2所示。

第四章存储器结构 4.3 存储器容量扩展 微机系统中主存储器通常由若干存储芯片及相应的存储控制组织而成,并通过存储总线(数据总线、地址总线和控制总线)与CPU及其他部件相联系,以实现数据信息、控制信息的传输。由于存储器芯片的容量有限,实际应用中对存储器的字长和位长都会有扩展的要求。 一、存储器字扩展 *字扩展是沿存储字向扩展,而存储字的 位数不变。 *字扩展时,将多个芯片的所有地址输入 端、数据端、读/写控制线分别并联 在一起,而各自的片选信号线则单独 处理。 *4块内存芯片的空间分配为: 第一片,0000H-3FFFH 第二片,4000H-7FFFH 第三片,8000H-BFFFH 第四片,C000H-FFFFH 二、存储器位扩展 *存储器位扩展是沿存储字的位向扩展, 而存储器的字数与芯片的字数相同。 *位扩展时 将多个芯片的所有地址输入端都连接 在一起; 而数据端则是各自独立与数据总线连 接,每片表示一位 *片选信号线则同时选中多块芯片,这些 被选中的芯片组成了一个完整的存储 字。

三、存储器位字扩展 *存储器需要按位向和字向同时扩展,称存储器位字扩展 *对于容量为 M×N 位的存储器,若使用 L×K 位的存储芯片, 那么,这个存储器所需的芯片数量为:(M/L)×(N/K) 块。 P160图4-3-3表示了一个用2114芯片构成的4KB存储器。如下图: *2114芯片是1K×4R 芯片 *用2块2114芯片构成1组(1K×4×2=1K×8) *再有4组构成4K×8(1K×8×4)位的存储器 *共计需用8块2114芯片 这4个组的选择: *使用A0和A11作地址线:经译码后选择4个分组 *使用A0~A9作为组内的寻址信号 *数据总线为D0~D7 ◆存储器容量的扩展方法总结: 字扩展(将多个芯片的所有地址输入端、数据端、读/写控制线分别都连接在一起,选片信号单独处理) 位扩展(数据线独立处理,选片信号选中多块芯片) 字位扩展(分组,每组又有多个芯片),见(PAGE 161)

1.内存储器主要分为哪两类?它们的主要区别是什么? 内存储器分为随机存取存储器RAM(Radom Access Memory)和只读存储器ROM(Read Only Memory)两类。 RAM中信息可以按地址读出,也可以按地址写入。RAM具有易失性,掉电后原来存储的信息全部丢失,不能恢复。 ROM 中的信息可以按地址读出,但是在普通状态下不能写入,它的内容一般不能被改变。ROM具有“非易失性”,电源关闭后,其中的信息仍然保持。 2.说明SRAM、DRAM、MROM、PROM和EPROM的特点和用途。 SRAM:静态RAM,读写速度快,但是集成度低,容量小,主要用作Cache或小系统的内存储器。 DRAM:动态RAM,读写速度慢于静态RAM,但是它的集成度高,单片容量大,现代微型计算机的“主存”均由DRAM构成。 MROM:掩膜ROM,由芯片制作商在生产、制作时写入其中数据,成本低,适合于批量较大、程序和数据已经成熟、不需要修改的场合。 PROM:可编程ROM,允许用户自行写入芯片内容。芯片出厂时,所有位均处于全“0”或全“1”状态,数据写入后不能恢复。因此,PROM只能写入一次。 EPROM:可擦除可编程只读存储器,可根据用户的需求,多次写入和擦除,重复使用。用于系统开发,需要反复修改的场合。 3.已知一个SRAM芯片的容量为8K×8,该芯片有一个片选信号引脚和一个读/写控制 引脚,问该芯片至少有多少个引脚?地址线多少条?数据线多少条?还有什么信号线? 根据存储芯片地址线数量计算公式,k=log2(1024*8)= log2(213)=13,即总计有13根地址线。另有8根数据线、2根电源线。所以该芯片至少有25(=13+8+1+1+2)根引脚。 4.巳知一个DRAM芯片外部引脚信号中有4根数据线,7根地址线,计算它的容量。 根据存储容量计算公式S=2k×I,可得该芯片的存储容量为:214*4=16K×4bit(位),也可表示为64Kb=8KB(字节)。 5.32M×8的DRAM芯片,其外部数据线和地址线为多少条? 根据存储芯片地址线数量计算公式,k=log2(1024*1024*32)= log2(225)=25,即需要25根地址线。但是,由于DRAM芯片的地址采用分时输入的方法,所以实际需要的地址线只有理论值的一半,此处为13根。数据线8根。 6.DRAM为什么需要定时刷新? DRAM靠MOS管极间电容存储电荷的有无决定所存信息是0还是1,由于漏电流的存在,它存储的信息不能长时间保存,需要定时重新写入,称为“刷新”。 7.74LS138译码器的接线如图2.28所示,写出0Y、2Y、4Y、6Y所决定的内存地址范 围。 从图看出,该存储系统的片内地址线有13根 (A12-A0),是一个由8KB存储芯片组成的存储系 图 2.28 译码

存储系统概述 第3章存储系统第3章存储系统3.1存储器概述3.2半导体读写存储器3.3半导体只读存储器和闪速存储器3.4主存储器与CPU的连接3.5并行存储器3.6高速缓冲存储器(Cache)3.7虚拟存储器3.8外存储器典型习题与解答 3.1存储器概述 3.1.1存储器分类 3.1.2存储系统的设计及分级结构 3.1.3主存储器的性能指标 3.1.1存储器分类存储器:计算机硬件系统中用于存放程序和数据等二进制信息的部件。 1、按存储介质分类 2、按存取方式分类 3、按在计算机中的功能分类 4、其他分类1、按存储介质分类(1)由半导体器件组成的半导体存储器; (2)由磁性材料做成的磁表面存储器,例如磁盘存储器和磁带存储器; (3)由光介质构成的光介质存储器,一般做成光盘。 2、按存取方式分类(1)随机存取存储器RAM(Random Access Memory) 存储单元都能按地址访问,而且存取时间与存储单元的物理位置无关的存储器,称为RAM。 例如半导体读写存储器

主要用途:主存、Cache、外设缓存。 (2)顺序存取存储器SAM(Sequential Access Memory) 信息按顺序写入或读出的存储器,称为SAM。以记录块为单位编址。例如:磁带存储器 特点:存储容量大,位价格低廉,存取速度慢。 主要用途:辅助存储器。 (3)直接存取存储器DAM(Direct Access Memory) 首先按存取信息的区域随机访问,然后在指定区域用顺序方式存取的存储器,称为DAM。例如:磁盘存储器 特点:容量较大,速度和位价格介于SAM和RAM之间 主要用途:辅助存储器。 3、按在计算机中的功能分类(1)主存储器(主存) 用于存放计算机运行期间的大量程序和数据的存储器,CPU能直接访问。 由动态MOS存储器构成 (2)高速缓冲存储器Cache Cache:介于CPU和主存之间的高速小容量存储器,用于存放最活跃的程序块和数据。特点:速度快,但容量小。(3)辅助存储器(外存储器)存放当前暂不参与运行的程序和数据,需要时再与主存成批交换 信息的存储器。 组成:磁表面存储器,光盘存储器。 特点:容量大,可存放大量的程序和数据,但速度慢。 外存的信息需要调入主存后才能被CPU使用。(4)控制存储器CM

内存储器和外存储器的区别: 内存储器是指我们常说的内存。内存储器是计算机中重要的部件之一,它是与CPU进行沟通的桥梁。计算机中所有程序的运行都是在内存储器中进行的,因此内存储器的性能对计算机的影响非常大。内存储器(Memory)也被称为内存,其作用是用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换的数据。只要计算机在运行中,CPU就会把需要运算的数据调到内存中进行运算,当运算完成后CPU再将结果传送出来,内存的运行也决定了计算机的稳定运行。内存是由内存芯片、电路板、金手指等部分组成的。内存储器速度更快、容量较小、成本较高。 内存储器 外储存器是指除计算机内存及CPU缓存以外的储存器,此类储存器一般断电后仍然能保存数据。常见的外存储器有硬盘、软盘、光盘、U盘等。外存通常是磁性介质或光盘,像硬盘,软盘,磁带,CD等,能长期保存信息,并且不依赖于电来保存信息,但是由机械部件带动,速度与CPU相比就显得慢的多。外存储器则速度较慢、容量较大、成本较低。 外储存器 内存储器和外储存器区别:

内存储器只是用来交换数据一旦重启电脑,数据马上就没了。而外储存器是用来存储数据,即是是关闭了计算机后数据依然存在。这两个是完全不同的概念! 内存储器有哪些? rom 咱们正常家里机器里的内存就是你所说的内存储器.还有cpu里面有个一级二级的缓寸也是内存储起.速度比较快.一但没有加电.里面就没数据. 外存储器又有哪些? 现在的营盘啊,光盘啊,u盘.软盘都是外存储器.他们储存的东西多.但速度没有内存快 他们的用途特点是什么? 内存:特点不没电就没数据.运行速度快,主要在cpu与外存储器之间.起到过度作用 外存.相反么.存储量大.造价便宜

单片机存储器类型详解 分为两大类RAM和ROM,每一类下面又有很多子类: RAM:SRAM SSRAM DRAM SDRAM ROM:MASK ROM OTP ROM PROM EPROM EEPROM FLASH Memory RAM:Random Access Memory随机访问存储器 存储单元的内容可按需随意取出或存入,这种存储器在断电时将丢失其存储内容,故主要用于存储短时间使用的程序。它的特点就是是易挥发性(volatile),即掉电失忆。我们常说的电脑内存就是RAM的。 ROM:Read Only Memory只读存储器 ROM 通常指固化存储器(一次写入,反复读取),它的特点与RAM相反。 RAM和ROM的分析对比: 1、我们通常可以这样认为,RAM是单片机的数据存储器,这里的数据包括内部数据存储器(用户RAM区,可位寻址区和工作组寄存器)和特殊功能寄存器SFR,或是电脑的内存和缓存,它们掉电后数据就消失了(非易失性存储器除外,比如某些数字电位器就是非易失性的)。 ROM是单片机的程序存储器,有些单片机可能还包括数据存储器,这里的数据指的是要保存下来的数据,即单片机掉电后仍然存在的数据,比如采集到的最终信号数据等。而RAM 这个数据存储器只是在单片机运行时,起一个暂存数据的作用,比如对采集的数据做一些处理运算,这样就产生中间量,然后通过RAM暂时存取中间量,最终的结果要放到ROM的数据存储器中。如下图所示:

2、ROM在正常工作状态下只能从中读取数据,不能快速的随时修改或重新写入数据。它的优点是电路结构简单,而且在断电以后数据不会丢失。缺点是只适用于存储那些固定数据的场合。 RAM与ROM的根本区别是RAM在正常工作状态下就可以随时向存储器里写入数据或从中读取数据。 SRAM:Static RAM静态随机访问存储器 它是一种具有静止存取功能的内存,不需要刷新电路即能保存它内部存储的数据。不像DRAM内存那样需要刷新电路,每隔一段时间,固定要对DRAM刷新充电一次,否则内部的数据即会消失,因此SRAM具有较高的性能,但是SRAM也有它的缺点,即它的集成度较低,相同容量的DRAM内存可以设计为较小的体积,但是SRAM却需要很大的体积,所以在主板上SRAM存储器要占用一部分面积。 优点:速度快,不必配合内存刷新电路,可提高整体的工作效率。 缺点:集成度低,功耗较大,相同的容量体积较大,而且价格较高,少量用于关键性系统以提高效率。 DRAM:Dynamic RAM动态随机访问存储器 DRAM 只能将数据保持很短的时间。为了保持数据,DRAM使用电容存储,所以必须隔一段时间刷新(refresh)一次,如果存储单元没有被刷新,存储的信息就会丢失。 既然内存是用来存放当前正在使用的(即执行中)的数据和程序,那么它是怎么工作的呢? 我们平常所提到的计算机的内存指的是动态内存(即DRAM),动态内存中所谓的“动态”,

第三章内存储器 一、教学目的: 1、了解内存储器的概念和发展、结构和性能指标。 2、掌握内存条的区分、选购和测试。 二、教学重点、难点: 掌握内存条的区分、选购和性能测试。 三、教具使用: 计算机一台,多媒体幻灯片演示,内存条若干 四、教学方法: 分析法和问题讨论法,引导学生分析内存条的结构、选购方法,以及如何测试内存条。 五、教学过程: 导入:由人的大脑、书、纸张对比引入到内存储器的知识学习。 幻灯片或板书课题:第三章内存储器 一、基础知识-认识内存储器 提问:仓库对现代化工厂中的流水线的影响? 学生看书、思考并回答; 教师归纳总结并由仓库的作用引入内存条的工作原理,并进一步介绍内存条的的组成、分类及主要性能参数。 1. 内存条的工作原理(作用):中转数据 2. 内存条的组成: 内存条主要由印刷电路板、内存颗粒、SPD芯片、金手指等组成。 3. 内存条的分类和区别 讲解主流三种内存条引脚和定位键(缺口) 4. 内存的封装和技术指标 二、制定选购方案-选购原则及分析 提问:计算机运行需要什么类型、多大内存才能够发挥最佳性能? 学生思考看书进行回答; 教师归纳、引导学生根据计算机实际使用条件确定计算机内存的各项参数,进行进一步的分析和选购。 1. 确定内存容量 影响内存容量的要素:操作系统、使用模式、硬件设备和用户类型 2. 确定内存带宽 应保证内存带宽与主板和CPU前端总线一致 3. 确定内存种类和条数 根据主板内存插槽(定位键)或说明书确定所需内存条种类;应确保使用的内存条数最少,避免多条内存之间出现兼容性故障,方便内存扩充 三、实战:内存储器的选购 提问:如何购买内存条? 教师引导学生思考,并利用幻灯片介绍各种内存颗粒和内存条的鉴别与选择。

记忆 内存,也称为内存存储,通常也称为主内存,是计算机的主要组件,它相对于外部内存。 内存是计算机的重要组成部分之一,是与CPU通信的桥梁。 计算机中的所有程序都在内存中运行,因此内存的性能对计算机有很大的影响。 内存,也称为内存,用于将操作数据临时存储在CPU中,并与诸如硬盘之类的外部存储器交换数据。 只要计算机在运行,CPU就会将需要计算的数据传输到内存中进行计算,然后在计算完成后,CPU会传输结果, 内存的运行还决定了计算机的稳定运行。内存由内存芯片,电路板和金手指组成。 分类 通常,微型计算机的存储器包括磁芯存储器和半导体存储器, 微型计算机的存储器是半导体存储器。

T半导体存储器可以分为随机存取存储器(RAM), 只读存储器(ROM)也称为读写存储器。 1.随机存取存储器 随机存取存储器 随机存取存储器(RAM)是一种可以随机读取/写入数据的存储器,也称为读取/写入存储器。 Ram具有以下两个特征:一是它可以读写。 原始存储的内容在读出时不会损坏, 原始存储的内容仅在写入时才被修改。 其次,RAM只能用于信息的临时存储。电源一旦关闭,电源就可以读出 存储内容立即消失,即易失。 Ram通常由MOS半导体存储器组成, 根据数据存储的机制,它可以分为动态RAM和静态RAM。

DRAM具有高度集成的特点,主要用于大容量存储器。SRAM的特点是访问速度快,主要用于高速缓冲存储器。 2.只读内存 ROM是只读存储器。顾名思义,它只能读取原始内容, 用户不能再写新内容。原始存储内容由制造商使用遮罩技术编写, 并永远保留下去。它通常用于存储特殊的固定程序和数据。 只读存储器是一种非易失性存储器, 无需额外的电源来保存信息,并且不会因电源故障而丢失信息。 根据内容是否可以在线重写,可以分为两种类型:不能在线重写的ROM和可以在线重写的ROM。 不能在线重写的ROM包括mask ROM,prom和EPROM; 在线可擦写ROM包括EEPROM和Flash ROM。 3. CMOS存储器(互补金属氧化物半导体存储器)

下面关于内存储器(也称为主存)的叙述中,正确的是(d). A、RAM和ROM在断电后信息将全部丢失 B、内存储器与外存储器相比,存取速度慢、价格便宜 C、内存储器和外存储器是统一编址的,字是存储器的基本编址单位 D、内存储器与外存储器相比,存取速度快、价格贵 把计算机分为巨型机、大型机、小型机和微型机、工作站和服务器本质上是按(a)来区分的. A、计算机的规模和处理能力 B、计算机的存储容量 C、CPU的集成度 D、计算机的体积 微机中的PCI是(c). A、产品型号 B、微处理器型号 C、总线标准 D、微机系统名称 所有汉字的字型以点阵字模的形式存储在(b ) A、CPU B、字模库文件里 C、上述均不是 D、内存里 计算机中的数有浮点表示和定点表示两种,浮点表示的数,通常由(b)两部分组成. A、尾数和小数 B、阶码和尾数 C、指数和基数 D、整数和小数 显示器必须与(d)配合使用. A、声卡 B、打印机 C、光驱 D、显示卡 从1993年开始人们在互联网上既可以看到文字,又可以看到图片、听到 声音,使得网上的世界变的美丽多彩,这主要归功于(d ) A、Telnet B、FTP C、E-mail D、WWW 电子邮件地址格式为:wangjun@hostname,其中hostname为(d). A、某国家名 B、某公司名 C、用户地址名 D、ISP某台主机的域名 在网页中使用图象主要应考虑(c )问题. A、以下都不是 B、文件格式与颜色

C、下载速度与文件格式 D、下载速度与颜色 在Windows中,要将当前窗口的内容存入剪贴板,应同时按下(a )键. A、Alt+PrintScreen B、Ctrl+Alt+PrintScreen C、Ctrl+PrintScreen D、Print+Screen 在Windows操作系统中,正确是(c). A、在根目录下允许建立多个同名的文件或文件夹 B、同一文件夹中可以建立两个同名的文件或文件夹 C、同一文件夹中不允许建立两个同名的文件或文件夹 D、在不同的文件夹中不允许建立两个同名的文件或文件夹 Windows中,文件名中不能包括的符号是(d). A、~ B、# C、; D、> 下面关于表的说法中错误的是(b)。 A、可以将其他数据库的表导入当前数据库中 B、表的数据视图只用于显示数据 C、数据表是Access数据库中的重要对象之一 D、表的设计视图的主要工作是设计表的结构 删除幻灯片的选项在(d)菜单中. A、插入 B、格式 C、工具 D、编辑 Excel是一个 (d )应用软件,它可用于数据组织、数据处理和数据分析. A、数据表格 B、数据库 C、通用制表 D、电子表格 计算机主要是由(abcdef)等器件组成。 A、输出部件 B、内存储器 C、控制器 D、外存储器 E、输入部件 F、运算器 计算机中的运算器能在控制器的指挥下,实现(ab)。 A、逻辑运算 B、算术运算 C、代数运算

【产品知识】S7 300 各类存储器及CPU的简单介绍 1.S7300存储区概述 S7-300PLC的存储区可以划分为四个区域:装载存储器(Load Memory)、工作存储器(Work Memory)、系统存储器(System Memory)和保持存储区(Non-Volatile memory) 1、系统存储器: 系统存储器用于存放输入输出过程映像区(PII,PIQ)、位存储器(M)、定时器(T)和计数器(C))、块堆栈和中断堆栈以及临时存储器(本地数据堆栈)。 2、工作存储器: 工作存储器仅包含运行时使用的程序和数据。RAM 工作存储器集成在CPU中,RAM中的内容通过电源模块供电或后备电池保持。除了S7 417-4 CPU可以通过插入专用的存储卡来扩展工作存储器外,其他PLC的工作存储器都无法扩展。 3、装载存储器: 装载存储器是用于存放不包含符号地址分配或注释(这些保留在编程设备的存储器中)的用户程序。装载存储器可以是存储器卡、内部集成的RAM或内部集成的EPROM. 4、保持存储器: 保持存储器是非易失性的RAM,通过组态可以在PLC掉电后即使没有安装后备电池的情况下,保存一部分位存储器(M)、定时器(T)、计数器(C)和数据块(DB)。在设置CPU参数时一定要指定要保持的

区域。(注意:由于S7-400 PLC没有非易失性RAM,即使组态了保持区域,再掉电时若没有后备电池,也将丢失所有数据。这是S7-300PLC与S7-400PLC的重要区别) 1)当在step7中执行下装(download)时,会把编程设备中的用户程序下装到CPU的装载存储区,同时会把运行时使用的程序和数据写入工作存储区(如OB1和数据块)。 2)若CPU没有后备电池,当系统断电时,在工作存储器中定义了保持特性的数据块会把数据写入保持存储器中,上电后保持存储器会把断电时的数据写入到工作存储区,保证了运行数据断电不丢失。 3)若CPU没有后备电池,当系统断电时,系统存储区中定义n的保持位存储器(M)、定时器(T)和计数器(C))断电时也会写入保持存储器,恢复上电时断电时的数据重新写入,保证了运行数据断电不丢失。2、S7-300CPU的分类 按照CPU的装载存储器来分类:新型S7-300CPU、标准型S7-300CPU、带内置EPROM的S7300CPU,具体描述如下: 2.1 新型S7-300CPU 新型S7-300CPU是指使用MMC卡作为其装载存储器的CPU,此类CPU不用安装后备电池,免维护。由于新型S7300-CPU它不含内置的装载存储器,因此必须使用MMC卡。新型的S7-300 CPU包括紧凑型(即CPU31xC系列)和由标准型更新的新型CPU。任何程序的下载方式都直接保存到卡中,没有MMC卡,是无法把程序下载到CPU中的。 北京天拓四方科技有限公司

ROM存储器内涵EPROM2716存储器的介绍

课堂教学实施方案 授课时间:

课 题:只读存储器ROM 、主存储器的设计 5.3 只读存储器ROM 指在微机系统的在线运行过程中,只能对其进行读操作,而不能进行写操作的一类存储器,在不断发展变化的过程中,ROM 器件也产生了掩模ROM 、PROM 、EPROM 、EEPROM 等各种不同类型。 一、掩模ROM 如图4-11所示,是一个简单的4×4位的MOS ROM 存储阵列,采用单译码方式。这时,有两位地址输入,经译码后,输出四条字选择线,每条字选择线选中一个字,此时位线的输出即为这个字的每一位。 此时,若有管子与其相连(如位线1和位线4),则相应的MOS 管就导通,这些位线的输出就是低电表平,表示逻辑“0”;而没有管子与其相连的位线(如位线2和位线3),则输出就是高电平,表示逻辑“1”。 二、可编程的ROM 掩模ROM 的存储单元在生产完成之 后,其所保存的信息就已经固定下来了,这给使用者带来了不便。为了解决这个矛盾,设计制造了一种可由用户通过简易设备写入信息的ROM 器件,即可编程的ROM ,又称为PROM 。 PROM 的类型有多种,我们以二极管破坏型PROM 为例来说明其存储原理。 这种PROM 存储器在出厂时,存储体中每条字线和位线的交叉处都是两个反向串联的二极管的PN 结,字线与位线之间不导通,此时,意味着该存储器中所有的存储内容均为“1”。如果用户需要写入程序,则要通过专门的PROM 写入电路,产生足够大的电流把要写入“1”的那个存储位上的二极管击穿,造成这个PN 结短路,只剩下顺向的二极管跨连字线和位线,这时,此位就意味着写入了“1”。读出的操作同掩模ROM 。 除此之外,还有一种熔丝式PROM ,用户编程时,靠专用写入电路产生脉冲电流,来烧断指定的熔丝,以达到写入“1”的目的。 对PROM 来讲,这个写入的过程称之为固化程序。由于击穿的二极管不能再正常工作,烧断后的熔丝不能再接上,所以这种ROM 器件只能固化一次程序,数据写入后,就不能再改变了。 P + P + A l S i O 2S D 浮空多 晶硅栅 N 基体 字线 EPROM (a) (b) 位线

半导体存储器分类介绍 § 1. 1 微纳电子技术的发展与现状 §1.1.1 微电子技术的发展与现状 上个世纪50年代晶体管的发明正式揭开了电子时代的序幕。此后为了提高电子元器件的性能,降低成本,微电子器件的特征尺寸不断缩小,加工精度不断提高。1962年,由金属-氧化物-半导体场效应晶体管(MOSFET)组装成的集成电路(IC)成为微电子技术发展的核心。 自从集成电路被发明以来[1,2],集成电路芯片的发展规律基本上遵循了Intel 公司创始人之一的Gordon Moore在1965年预言的摩尔定律[3]:半导体芯片的集成度以每18个月翻一番的速度增长。按照这一规律集成电路从最初的小规模、中规模到发展到后来的大规模、超大规模(VLSI),再到现在的甚大规模集成电路(ULSI)的发展阶段。 随着集成电路制造业的快速发展,新的工艺技术不断涌现,例如超微细线条光刻技术与多层布线技术等等,这些新的技术被迅速推广和应用,使器件的特征尺寸不断的减小。其特征尺寸从最初的0.5微米、0.35 微米、0.25 微米、0.18 微米、0.15 微米、0.13 微米、90 纳米、65 纳米一直缩短到目前最新的32纳米,甚至是亚30纳米。器件特征尺寸的急剧缩小极大地提升了集成度,同时又使运算速度和可靠性大大提高,价格大幅下降。随着微电子技术的高速发展,人们还沉浸在胜利的喜悦之中的时候,新的挑战已经悄然到来。微电子器件等比例缩小的趋势还能维持多久?摩尔定律还能支配集成电路制造业多久?进入亚微米领域后,器件性能又会有哪些变化?这一系列的问题使人们不得不去认真思考。20世纪末

期,一门新兴的学科应运而生并很快得到应用,这就是纳电子技术。 §1.1.2 纳电子技术的应用与前景 2010年底,一篇报道英特尔和美光联合研发成果的文章《近距离接触25nm NAND闪存制造技术》[4],让人们清楚意识到经过近十年全球范围内的纳米科技热潮,纳电子技术已逐渐走向成熟。电子信息技术正从微电子向纳电子领域转变,纳电子技术必将取代微电子技术主导21世纪集成电路的发展。 目前,半导体集成电路的特征尺寸已进入纳米尺度范围,采用32纳米制造工艺的芯片早已问世,25纳米制造技术已正式发布,我们有理由相信相信亚20纳米时代马上就会到来。随着器件特征尺寸的减小,器件会出现哪些全新的物理效应呢? (1)量子限制效应。当器件在某一维或多维方向上的尺寸与电子的徳布罗意波长相比拟时,电子在这些维度上的运动将受限,导致电子能级发生分裂,电子能量量子化,出现短沟道效应、窄沟道效应以及表面迁移率降低等量子特性。 (2)量子隧穿效应。当势垒厚度与电子的徳布罗意波长想当时,电子便可以一定的几率穿透势垒到达另一侧。这种全新的现象已经被广泛应用于集成电路中,用于提供低阻接触。 (3)库仑阻塞效应。单电子隧穿进入电中性的库仑岛后,该库仑岛的静电势能增大e2/2C,如果这个能量远远大于该温度下电子的热动能K B T,就会出现所谓的库仑阻塞现象,即一个电子隧穿进入库仑岛后就会对下一个电子产生很强的排斥作用,阻挡其进入。 以上这些新的量子效应的出现使得器件设计时所要考虑的因素大大增加。目

相关文档