文档库 最新最全的文档下载
当前位置:文档库 › 酶学与酶工程复习资料

酶学与酶工程复习资料

酶学与酶工程复习资料
酶学与酶工程复习资料

酶学与酶工程复习资料

上一届考试试题

一、名字解释

1、酶的活性中性:酶分子中直接与底物结合,并和酶催化作用直接有关的区域叫酶的活性中心,参与构成酶的活性中心和维持酶的特定构象所必需的基团为酶的必需基团。

2、米式方程及各字母的意义:米氏方程表示一个酶促反应的起始速度v与底物浓度S关系的速度方程,v=V max·S/(K m+S)。其中K m值称为米氏常数,V max是酶被底物饱和时的反应速度,[S]为底物浓度。由此可见K m值的物理意义为反应速度(v)达到1/2V max时的底物浓度(即K m=[S]),单位一般为mol/L,只由酶的性质决定,而与酶的浓度无关。

3、别构效应:一个蛋白质与其配体(或其他蛋白质)结合后,蛋白质的空间结构发生改变,使它适用于功能的需要,这一类变化称为别构效应或变构效应。

4、遗传密码:遗传密码决定蛋白质中氨基酸顺序的核苷酸顺序,由3个连续的核苷酸组成的密码子所构成。

5、盐析:增加中性盐浓度使蛋白质、气体、未带电分子溶解度降低的现象。是蛋白质分离纯化中经常使用的方法,最常用的中性盐有硫酸铵、硫酸钠和氯化钠等。

6、内囊性包埋法:系利用天然的或合成的高分子材料(统称为囊材)作为囊膜壁壳,将固态或液态药物包裹成为的药库型微型胶囊。

7、固定化酶:水溶性酶经物理或化学方法处理后,成为不溶于水的但仍具有酶活性的一种酶的衍生物。在催化反应中以固相状态作用于底物。

8、必需水:维持酶分子完整的空间构象所必需的最低水量。

二、问答题

1、温度对酶促反应的影响及原因。

答:温度对酶促反应的影响包括两方面:一方面是当温度升高时,反应速度也加快,这与一般化学反应相同。另一方面,随温度升高而使酶逐步变性,即通过减少有活性的酶而降低酶的反应速度。在低于最适温度时,前一种效应为主,在高于最适温度时,则后一种效应为主,因而酶活性丧失,反应速度下降。

2、操纵子的定义及组成。

答:操纵子:指启动基因、操纵基因和一系列紧密连锁的结构基因的总称,基因表达的协同单位,转录的功能单位。很多功能上相关的基因前后相连成串,由一个共同的控制区进行转录的控制,包括结构基因以及调节基因的整个DNA 序列。操纵子通常由2个以上的编码序列与启动序列、操纵序列以及其他调节序列在基因组中成簇串联组成。

3、蛋白质合成过程当中的主要物质。

答:主要为mRNA、tRNA、氨基酸、核糖核蛋白体以及有关的酶和辅助因子。蛋白质合成是以mRNA为模板,以氨基酸为底物,在核糖体上通过各种tRNA、酶和辅助因子的作用,合成多肽链的过程。

4、酶生物合成模式有哪几种及其特点?简述其接近理想模式的方法?

答:1、同步合成型:酶的生物合成与细胞生长同步进行的一种酶生物合成模式。该类型酶的

生物合成速度与细胞生长速度紧密联系,又称为生长偶联型。2、延续合成型:酶的生物合成在细胞的生长阶段开始,在细胞生长进入平衡期后,酶还可以延续合成一段较长时间。3、中期合成型:酶在细胞生长一段时间以后才开始,而在细胞生长进入平衡期以后,酶的生物合成也随着停止。4、滞后合成型:酶是在细胞生长一段时间或者进入平衡期以后才开始其生物合成并大量积累,又称为非生长偶联型,许多水解酶的生物合成都属于这一类型。

在酶的发酵生产中,为了提高产酶率和缩短发酵周期,最理想的合成模式应是延续合成型。属于延续合成型的酶,在发酵过程中没有生长期和产酶期的明显差别。细胞一开始生长就有酶产生,直至细胞生长进入平衡期以后,酶还可以继续合成一段较长的时间。对于其他合成模式的酶,可以通过基因工程\细胞工程等先进技术,选育得到优良的菌株,并通过工艺条件的优化控制,使他们的生物合成模式更加接近于延续合成型。其中对于同步合成型的酶,要尽量提高其对应的mRNA的稳定性,为此适当降低发酵温度是可取的措施;对于滞后合成型的酶,要设法降低培养基中阻遏物的浓度,尽量减少甚至解除产物阻遏或分解代谢物阻遏作用,使酶的生物合成提早开始;而对于中期合成型的酶,则要在提高mRNA的稳定性以及解除阻遏两方面考虑,使其生物合成的开始时间提前,并尽量延迟其生物合成停止的时间。

答:一、植物细胞培养的工艺流程:外植体→细胞的获取→细胞培养→分离纯化→产物。植物细胞培养产酶的工艺过程——大蒜细胞培养生产超氧化物歧化酶(SOD):1、大蒜愈伤组织的诱导:打破休眠的大蒜蒜瓣,去除外皮消毒在无菌条件下,将蒜瓣切成0.5cm3左右的小块,植入培养基中,25℃、600lux、12h/d光照的条件下培养18d,诱导得到愈伤组织。2、大蒜细胞悬浮培养:愈伤组织在无菌条件下转入培养基中,加入灭菌玻璃珠,25℃、600lux、12h/d的光照条件下震荡培养10~12d,使愈伤组织分散成为小细胞团或单细胞筛网将小细胞团或单细胞转入新培养基中,光照培养。3、超氧化物歧化酶的分离纯化:收集细胞,经过细胞破碎,用pH7.8的磷酸缓冲液提取、有机溶剂沉淀等,分离得到超氧化物歧化酶。

二、动物细胞培养产酶的工艺过程——人黑色素瘤细胞培养生产组织纤溶酶原活化剂:1、人黑色素瘤细胞培养基。2、人黑色素瘤细胞培养:(1)细胞的种子细胞用胰蛋白酶消化处理:细胞分散、洗涤、记数、稀释成细胞悬浮液。(2)接种浓度为(1~3)×103个细胞/mL,于37℃的CO2培养箱中,通入含5%CO2的无菌空气,培养至长成单层致密细胞。(3)倾去培养液,用pH7.4的磷酸缓冲液洗涤细胞2~3次。(4)换入一定量的无血清Eagle培养液,继续培养。(5)每隔3~4d,取出培养液进行tPA的分离纯化。(6)再向反应器中加入新鲜的无血清Eagle培养液,继续培养,以获得大量tPA。3、组织纤溶酶原活化剂的分离纯化:在获得培养液中加入一定量的蛋白酶抑制剂和表面活性剂,过滤去沉淀,适当稀释后,采用亲和层析技术进行分离(以tPA抗体为配基,以溴化氰活化的琼脂糖凝胶为母体制成亲和层析剂,上柱、洗涤后用3mol/LKSCN溶液洗脱,分部收集),得到tPA溶液。经过浓缩、葡聚糖G-150凝胶层析、冷冻干燥,得到精制tPA干粉。

6、简述各种层析方法及其原理。

答:

就能破茧成蝶。

Lecture1 酶学与酶工程 1、酶的概念,命名、酶的活性中心 1)酶是由活细胞产生的,具有催化活性和高度转移性的特殊蛋白质,是一类生物催化剂。 酶工程:将酶学理论与化工技术相结合,研究酶的产生和应用的一门新的技术性学科,包括了酶制剂的制备、酶的固定化、酶的修饰与改造及酶反应器等方面。 主要:酶的生产、酶的分离纯化、酶的固定化和酶生物反应器。 化学酶工程:用化学手段修饰、改造、模拟天然酶,使其更适合人们的需要,主要包括天然酶、化学修饰酶、固定化酶以及化学人工合成酶的研究与应用。 生物酶工程:用生物学的方法,特别是基因工程、蛋白质工程和组合库筛选法改造天然酶,创造性能优异的新酶,主要是抗体酶、杂合酶、进化酶和核酸酶的研究与应用。 2)命名:系统命名法!! 催化下列反应酶的命名:ATP+D—葡萄糖→ADP+D—葡萄糖-6-磷酸 该酶的正式系统命名是:ATP:葡萄糖磷酸转移酶,表示该酶催化从ATP中转移一个磷酸到葡萄糖分子上的反应。 它的分类数字是:E.C.2.7.1.1 E.C代表按国际酶学委员会规定的命名 第1个数字(2)代表酶的分类名称(转移酶类) 第2个数字(7)代表亚类(磷酸转移酶类) 第3个数字(1)代表亚亚类(以羟基作为受体的磷酸转移酶类) 第4个数字(1)代表该酶在亚-亚类中的排号(D葡萄糖作为磷酸基的受体) 3)活性中心 必需基团:酶分子中氨基酸残基侧链的化学基团中,一些与酶活性密切相关的基因 酶的活性中心:必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。 2、酶的分类、组成、结构特点和作用机制 分类:按酶促反应的性质分类(六大类):氧化还原酶、转移酶、水解酶、裂解酶类、异构酶类、合成酶类 全酶=酶蛋白+辅因子 辅因子包括:有机辅因子(辅酶非共价结合/辅基非共价结合或共价结合)和金属辅因子(金属酶/金属激活酶) 3、酶作为催化剂的显著特点 强大的催化能力:可以加快至1017倍; 没有副反应,酶在较温和的条件下催化反应的进行; 高度的专一性,各种酶都有专一性但是专一程度的严格性上有所差别; 可调节性,包括了抑制剂和激活剂的调节、反馈抑制调节、共价修饰调节和变构调节等;

酶工程的应用及发展前景 生物技术一班 41208220 杨青青

酶工程的应用及发展前景 杨青青 (陕西师范大学生命科学学院生物技术专业1201班) 摘要:酶工程是现代生物技术的重要组成部分,它作为一项高新技术将为各工业的发展起重要推动作用。本文概要介绍了酶工程的概念,酶工程在农产品加工、医药工业、食品工业、污染治理工业、蛋白质高值化加工等方面的应用以及探讨了在各个工业中的发展前景。 关键词:酶工程、应用、发展前景 一、酶工程的概念 酶是由生物体产生的具有催化活性的蛋白质,它能特定的促成某个化学反应而本身却不参加反应,且具有反应率高、反应条件温和、反应产物污染小、能耗低、反应容易控制等特点。这些特点比传统的化学反应具有较大的优越性。酶的应用不仅可以增强产量,提高质量,降低原材料和能源消耗,改善劳动条件,降低成本,而且可以生产出用其他方法难得到的产品,促进新产品、新技术和新工艺迅速发展。随着现代生物技术的兴起,酶工程技术应运而生,并在制药、食品工业和农产品加工显示出强大的生命力。酶工程就是利用酶催化作用,

通过适当的反应器工业化的生产人类所需的产品或是达到某一目的,它是酶学理论与化工技术相结合而形成的一种新技术。酶工程包括自然酶的开发和利用、固定化酶、固定化细胞、多酶反应器(生物反应器)、酶传感器等。 二、酶工程的应用以及发展前景 1、酶工程在农产品加工上的应用与前景 以前,人们认为氨基酸是人体吸收蛋白质的主要途径。随着研究的发现,蛋白质经消化道中的酶水解后,主要以小肽的形式被吸收,比完全游离的氨基酸更易吸收利用。这一发现启发了科研工作者采用酶工程技术用蛋白质生产生物活性肽的新思路。生物活性肽是蛋白质中20种天然氨基酸以不同排列组合方式构成的从二肽到复杂的线性或环形结构的不同肽类的总称,是源于蛋白质的多功能化合物。活性肽具有多种人体代谢和生理调节功能。主要是通过酶法降解蛋白质而制得。 目前已经从大豆蛋白、玉米蛋白、牛奶蛋白、水产蛋白的酶解物中制得一系列功能各异的生物活性肽。因为各类蛋白质存在的差异性,所以在生产活性肽方面有略微的不同。不论哪种方法,都会用到一定的酶类水解蛋白质。比如:文献报道采用中性蛋白酶、木瓜蛋白酶水解大豆蛋白,配合活性炭的吸附处理、超滤、真空浓缩和喷雾干

第一章 1.酶工程:是生物工程的重要组成部分,是随着酶学研究迅速发展,特别是酶的推广应用,使酶学和工程学相互渗透、结合、发展而成的一门新的技术科学,是酶学、微生物学的基本原理与化学工程有机结合而产生的边缘科学技术。 2.化学酶工程:指自然酶、化学修饰酶、固定化酶及化学人工酶的研究和应用 3.生物酶工程:是酶学和以基因重组技术为主的现代分子生物学技术结合的产物,亦称高级酶工程。 4.酶工程的组成部分? 答:酶工程主要指自然酶和工程酶(经化学修饰、基因工程、蛋白质工程改造的酶)在国民经济各个领域中的应用。内容包括:酶的产生;酶的分离纯化;酶的改造;生物反应器。5.酶的结构特点? 答:虽然少数有催化活性的RNA分子已经鉴定,但几乎所有的酶都是蛋白质,因而酶必然具有蛋白质四级结构形式。其中一级结构是指具有一定氨基酸顺序的多肽链的共价骨架;二级结构为在一级结构中相近的氨基酸残基间由氢键的相互作用而形成的带有螺旋、折叠、转角、卷曲等细微结构;三级结构系在二级结构基础上进一步进行分子盘区以形成包括主侧链的专一性三维排列;四级结构是指低聚蛋白中各折叠多肽链在空间的专一性三维排列。具有低聚蛋白结构的酶(寡聚酶)必须具有正确的四级结构才有活性。具有活性的酶都是球蛋白,即被广泛折叠、结构紧密的多肽链,其氨基酸亲水基团在外表,而疏水基团向内。 6.酶活性中心:是酶结合底物和将底物转化为产物的区域,通常是整个酶分子中相当小的一部分,它是由在线性多肽链中可能相隔很远的氨基酸残基形成的三维实体。 7.酶作用机制有哪几种学说? 答:锁和钥匙模型、诱导契合模型 8.酶催化活力的影响因素? 答:底物浓度、酶浓度、温度、pH等。 9.酶的分离纯化的初步分离纯化的步骤? 答:(一)材料的选择和细胞抽提液的制备 1.材料的选择:目的蛋白含量要高,而且容易获得 2.细胞破碎方法及细胞抽提液的制备。为了确保可溶性细胞成分全部抽提出来,应当使用类似于生理条件下的缓冲液。动物组织和器官要尽可能除去结缔组织和脂肪、切碎后放人捣碎机中。完全破碎酵母和细菌细胞。 3.膜蛋白的释放:膜蛋白存在于细胞膜或有关细胞器的膜上。按其所在位置大体可分为外周 蛋白和固有蛋白两种类型 4.胞外酶的分离:胞外酶是在微生物发酵时分泌到发酵液中的。发酵后可通过离心或过滤将菌体从发酵液中分离弃去,所得发酵清液通常要适当浓缩,然后再作进一步纯化。目前常用的浓缩方法是超滤法。 (二)蛋白质的浓缩和脱盐 浓缩方法主要有:沉淀法、吸附法、干胶吸附法、渗透浓缩法、超滤浓缩法

●首先对酶进行了命名 1878年库尼首先把这种物质称为酶。 1896年巴克纳兄弟发现酵母的无细胞抽提液也能将糖发酵成酒精。 1982年 Cech 、1983年Altman等分别发现核酶。 ●什么是酶工程?酶的生产与应用的技术过程成为酶工程。 酶工程的主要内容包括:微生物细胞发酵产酶、动植物细胞培养产酶,酶的提取与分离纯化,酶分子修饰,酶、细胞和原生质体固定化、酶的非水相催化、酶反应器和酶的应用。 酶工程的主要任务是经过预先设计,通过人工操作,获得人们所需的美,并通过各种方法使酶充分发挥其催化功能。 ●酶的化学本质已知大多数酶的化学本质是蛋白质核酶是核糖酶 酶的专一性(特异性) 是指在一定的条件下,一种酶只能催化一种或一类结构相似的底物进行某种类型反应的特性。1.绝对专一性 一种酶只能催化一种底物进行一种反应,这种高度的专一性称为绝对专一性。例如,乳酸脱氢酶催化丙酮酸进行加氢反应生成L-乳酸;而D-乳酸脱氢酶却只能催化丙酮酸加氢生成D-乳酸。 2.相对专一性 一种酶能够催化一类结构相似的底物进行某种相同类型的反应,这种专一性称为相对专一性。例如,酯酶可催化所有含酯键的酯类物质水解生成醇和酸。 ●测定酶活力,应测定酶促反应的初速率。(即底物消耗量<5%时测得的反应速度) 测酶活的步骤 (1)根据酶的专一性,选择适宜的底物 (2)确定反应条件 (3)在一定的条件下,将一定量的酶液与底物混合均匀,记下开始反应的时间。 (4)反应到一定的时间,取出适量的反应液,运用各种生化检测技术,测定产物的生成量或底物的减少量,计算酶的活力。 ●终止酶反应的方法 ●酶的活力单位 酶活力单位:是指在特定条件下,在1min内能转化1微摩尔底物的酶量,或转化底物中1微摩尔有关基团的酶量。 ●酶的比活力——是指在特定的条件下。每毫克酶蛋白所具有的酶活力单位数。 ●酶的分类 (1)从化学组成上看,分为两类: ?单纯酶(单成分酶)和结合酶(双成分酶) ?结合酶:全酶=酶蛋白+辅因子 ?辅因子:辅基、辅酶。辅基与酶蛋白结合的更牢固 (2)根据酶蛋白的结构特点:单体酶和寡聚酶 (3)根据酶在代谢中所处的地位、含量与活性情况,将酶分为:恒态酶和调节酶恒态酶:是指构成代谢途径和物质转化体系的基本组成成分,在细胞中的含量相对恒定,其活性仅受反应动力学系统本身的组成因素调节。 调节酶又分为潜态酶、别构酶、同工酶和多功能酶 潜态酶:是指通常以无活性的酶原状态存在,而在机体需要时再转变为活性状态的酶。 别构酶:在结构上除了具有能和底物相结合、并催化底物进行反应的活性中心外,还具有能和效应物

酶的定义:酶是具有生物催化功能的生物大分子,按分子中起催化作用的主要任务不同,自然界中天然存在的酶可以分为蛋白类酶和核酸类酶。 模拟酶:又称人工酶,酶模型,是在分子水平上模拟酶活性部分的形状、大小及微环境等特征以及酶的作用机理和立体化学等特征的一门科学。 生物印迹:一种通过酶与配体间的相互作用、诱导,从而改变酶的构象的方法。 酶:活细胞产生的、能在细胞内外起作用(催化)的生理活性物质。 酶工程:酶的生产性与与应用的技术过程。 酶工程的主要任务:经过预先设计,通过人工操作获得人们所需要的酶,并通过各种方法使酶的催化特性得以改进充分发挥其催化的功能。 酶的活性中心:酶分子中能同底物结合并催化反应的空间部位。 提起分离法:采用微生物细胞、植物细胞或动物细胞的生命活动而获得人们所需酶的技术过程同步合成型:酶的生物合成在细胞的生长阶段开始,而在细胞生长进入平衡期后,酶的生物合成也随之停止。 滞后合成型:酶在细胞生长一段时间或者进入平衡期以后才开始其生物合成并大量积累,又称为非生长偶联型。 固定化酶:固定在一定水不溶性载体上并在一定的空间范围内进行催化反应的酶。 固定化细胞:固定在载体上并在一定的空间范围内进行生命活动(生长、繁殖、新陈代谢)的细胞、也称为固定化活细胞或固定化增殖细胞。 定向进化:是模拟自然进化的过程、进行人工随机突变,并子啊特定的环境条件下进行选择,使进化朝着人们所以需方向发展的技术过程。 酶反应器:用于酶进行催化反应的容器机器附属设备。 共价调节酶:由于其他酶对其结构进行了共价修饰,使其能在非活性与活性形式之间相互转变的酶,也是调节酶的一种类型。 分子印迹:合成对其某种特异选择性结合的高分子聚合物技术。 酶原的激活:酶原在一定条件下经过适当的切割肽键,可以转变为有活性的酶。 酶活力:又称为酶活性,是指酶催化某一化学反应的能力,可在一定条件下,酶催化某一化学反应的反应速率表示。 酶反应动力学;是研究反应速度及各种因素对酶反应速度影响的学科。 诱导型操纵子:在无诱导物的情况下,其基因的表达水平很低或不表达,只有在诱导物存在的条件下,才能转录生成mRNA,进而合成酶。 阻遏型操纵子:在无阻遏的情况下,其基因正常表达,当有阻遏物存在时,转录受到阻遏二次生长现象(葡萄糖效应):细菌在含有葡萄糖和乳糖的培养基上生长,优先利用葡萄糖,待葡萄糖耗尽后才开始利用乳糖,产生了两个对数生长期中间隔开一个生长延滞期。酶原:有些酶在细胞内合成时是无活性的,这种无活性的酶是有活性的前体,叫做酶原 别构酶:又称变构酶,是调节物酶的一种类型,这种酶分子上除有与底物结合的活性中心以外还有一个与调节物结合的别构中心。 同工酶:催化同一种化学反应而酶蛋白本身的分子结构和组成都有所不同的一组酶。 诱导酶:细胞中一般情况下不存在或含量很小,而在加入特定诱导物产生的酶。 抗体酶:它是抗体的高度选择性和酶的高效催化能力巧妙结合的产物,本质上是一类具有催化活性的免疫球蛋白,在其可变区赋予了没的属性。 酶生物合成的反馈阻遏作用:指在酶催化反应的产物或代谢途径的末端产物使酶的生物合成受 到阻遏的现象。 酶生物合成的诱导作用:加入某些物质使酶的生物合成开始或加速进行的现象,检测诱导作用。酶活力单位:在特定条件下,每1min催化1umol的底物转化为产物的酶量国际单位是IU 另一个酶活力单位:卡特(kat)。

酶工程电子教案 第一章绪论 1、酶的基本概念 酶的概念:具有生物催化功能的生物大分子,按照其化学组成,可以分为蛋白类酶(P酶)和核酸类酶(R酶)两大类别。 酶工程:酶的生产与应用的技术过程。 酶工程的主要内容包括:微生物细胞发酵产酶,动植物细胞培养产酶,酶的提取与分离纯化,酶分子修饰,酶、细胞、原生质体固定化、酶的非水相催化、酶反应器和酶的应用等。 2、酶的发展史 19世纪以前: 4000 多年前的夏禹时代就已经掌握了酿酒技术。 3000多年前的周朝,就会制造饴糖、食酱等食品。 2500多年前的春秋战国时期,就懂得用麴来治疗消化不良等疾病。 19 世纪30年以来: 1833年,佩恩(Payen)和帕索兹(Persoz)从麦芽的水抽提物中用酒精沉淀得到淀粉酶(Diastase)。 19 世纪中叶,巴斯德( Pasteur)认为在活酵母细胞内有一种可以将糖发酵生成酒精的物质。1878年昆尼(Kunne)首次将酵母中进行酒精发酵的物质称为酶(Enzyme ),这个词来自希腊文,其意思是“在酵母中”。 1896年,巴克纳(Buchner)兄弟发现酵母的无细胞抽提液也能将糖发酵成酒精。 1902年,亨利(Henri)根据蔗糖酶催化蔗糖水解的实验结果,提出中间产物学说。 k1k2 E +S ======== ES ========E +P

K-1 1913年,米彻利斯(Michaelis )和曼吞(menten )米氏方程: V m [S] v == K m + [S] “酶是生物体产生的具有生物催化功能的物质”。但是尚未搞清楚究竟是哪一类物质? 1920年,德国化学家威尔斯塔特(Willstater)将过氧化物酶纯化12 000倍。 1926年,萨姆纳(Sumner)首次从刀豆提取液中分离纯化得到脲酶结晶,并证明它具有蛋白质的性质。 1960年,雅各(Jacob)和莫诺德(Monod)提出操纵子学说,阐明了酶生物合成的基本调节机制。 1982年,切克(Thomas Cech)等人发现四膜虫(Tetrahynena)细胞的26 S rRNA前体具有自我剪接功能(Self-splicing)。并将这种具有催化活性的RNA 称为ribozyme。1983年,阿尔特曼(Sidney Altman)等人发现核糖核酸酶P(RNase P)的RNA部分M1 RNA 具有核糖核酸酶P 的催化活性。 由此引出“酶是具有生物催化功能的生物大分子(蛋白质或RNA)”的新概念。 3、酶催化作用的特点 3.1酶催化作用的专一性强 酶的专一性是指在一定的条件下,一种酶只能催化一种或一类结构相似的底物进行某种类型反应的特性。 酶的专一性按其严格程度的不同,可以分为绝对专一性和相对专一性两大类。

第一章 1、蛋白质工程的产生: 1,最早的蛋白工程是福什特(Forsht)等在1982-1985年间对酪氨酰-t-RNA合成酶的分子改造工作。2,佩里(Perry)1984年通过将溶菌酶中Ile(3)改成Cys(3),并进一步氧化生成Cys(3)-Cys(97)二硫键,使酶热稳定性提高,显著改进了这种食品工业用酶的应用价值。3,1987年福什特通过将枯草杆菌蛋白酶分子表面的Asp(99)和Glu(156)改成Lys,而导致了活性中心His(64)质子pKa从7下降到6,使酶在pH=6时的活力提高10倍。 二,蛋白质工程的内容 1、定义:广义上来说,蛋白质工程是通过物理、化学、生物和基因重组等技术改造蛋白质或设计合成具有特定功能的新蛋白质。 2、内容:确定蛋白质的化学组成、空间结构与生物功能之间的关系。根据需要合成具有特定氨基酸序列和空间结构的蛋白质 三,蛋白质工程的程序 蛋白质分子设计基因改造方案基因成或突变 分离纯化蛋白质结构蛋白质分子基因克隆与表达 目的基因和功能测定 改造的蛋白质分子 四,酶工程的应用范围 (1)对生物宝库中存在天然酶的开发和生产; (2)自然酶的分离纯化及鉴定技术; (3)酶的固定化技术(酶和细胞固定化); (4)酶反应器的研制和应用; (5)与其他生物技术领域的交叉和渗透。 其中固定化酶技术是酶工程的核心。实际上有了酶的固定化技术,酶在工业生产中的利用价值才真正得以体现。 五,医用药物酶应用的问题:1)异体蛋白引起免疫反应;2)酶不纯,引起各种副作 3)酶在体内降解,时间短; 4)药物无法定向分布。 解决办法: 1) 制成微胶囊; 2) 制成衍生物;3) 制成脂质体包埋与免疫系统隔开(酶蛋白);4) 酶上引入一定基团,起导向作用。 五,分子酶学与酶工程 1、酶——由活细胞产生的具有催化功能的蛋白质(或其它类型的生物大分子),是生物体进行代谢、维持生命活动的必需物质,没有酶就没有生命,因此研究酶的结构与功能、性质与作用机理,对于阐明生命现象的本质具有重要意义。

习题: 1、根据分子中起催化作用的主要组分的不同,酶可以分为_______和_______两大类别。 2、核酸类酶分子中起催化作用的主要组分是________,蛋白类酶分子中起催化作用的主要组分是___________。 3、进行分子内催化的核酸类酶可以分为_______,_______。 4、酶活力是_____的量度指标;酶的比活力是__________的量度指标;酶转换数是________的量度指标。 5、某酶的分类编号是,其中EC是指_______。此酶属于_______类型。 6、醇脱氢酶参与的反应表明无氧气参与() 7、酶工程是_____________的技术过程。 8、酶的转换数是指() A、酶催化底物转化为产物的数量 B、每个酶分子催化底物转化为产物的分子数 C、每个酶分子每分钟催化底物转化为产物的分子数 D、每摩尔酶催化底物转化为产物的分子数 9、酶的改性是指____________________________. 第二章 1、名词解释 转录、组成型酶、酶的反馈阻遏、分解代谢物阻遏、生长偶联型 2、微生物产酶模式可以分为同步合成型________、中期合成型、________。 3、可以通过添加()使分解代谢物阻遏作用解除。 A、诱导物 B 激活剂 C、cAMP D、ATP 4、在酶发酵过程中添加表面活性剂可以 A、诱导酶的生物合成 B、阻遏酶的生物合成 C、提高酶活力 D、提高细胞通透性 5、为什么滞后合成型的酶要在细胞生长一段时间甚至进入平衡期以后才开始合成 6、操纵子是由_________、_______和启动基因组成的。 7______________和______是影响酶生物合成模式的主要因素。 8、RNA前体的加工是指____________ 6、从如下实验方法和结果分析酶生物合成的调节作用。 实验方法:将大肠杆菌细胞接种于营养肉汤培养基中,于37°C振荡培养,当OD550为时,经培养液分装到4个小三角瓶中,每瓶17ml培养液。于4个三角瓶分别添加 (A)3ml无菌水 (B)1ml乳糖溶液(L)和2ml无菌水 (C)1ml乳糖溶液(L)、1ml葡萄糖溶液(L)和1ml无菌水 (D) 1ml乳糖溶液(L)、1ml葡萄糖溶液(L)和1mlcAMP钠盐溶液然后在相同的条件下于37°C振荡培养2h,分别取样测定β-半乳糖苷酶的活力。 实验结果(A)和(C)瓶的β-半乳糖苷酶的活力为0,(B)瓶和(D)瓶β-半乳糖苷酶的活力为1000U/ml左右

第一章酶工程基础 1.名词解释:酶工程、比活力、酶活力、酶活国际单位、酶反应动力学 ①酶工程:由酶学与化学工程技术、基因工程技术、微生物学技术相结合而产生的一门新技术,是工业上有目的地设计一定的反应器和反应条件,利用酶的催化功能,在常温常压下催化化学反应,生产人类所需产品或服务于其它目的地一门应用技术。 ②比活力:指在特定条件下,单位质量的蛋白质或RNA所拥有的酶活力单位数。 ③酶活力:也称为酶活性,是指酶催化某一化学反应的能力。其大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高。 ④酶活国际单位: 1961年国际酶学会议规定:在特定条件(25℃,其它为最适条件)下,每分钟内能转化1μmol底物或催化1μmol产物形成所需要的酶量为1个酶活力单位,即为国际单位(IU)。 ⑤酶反应动力学:指主要研究酶反应速度规律及各种因素对酶反应速度影响的科学。 2.说说酶的研究简史 酶的研究简史如下: (1)不清楚的应用:酿酒、造酱、制饴、治病等。 (2)酶学的产生:1777年,意大利物理学家 Spallanzani 的山鹰实验;1822年,美国外科 医生 Beaumont 研究食物在胃里的消化;19世纪30年代,德国科学家施旺获得胃蛋白酶。1684年,比利时医生Helment提出ferment—引起酿酒过程中物质变化的因素(酵素);1833年,法国化学家Payen和Person用酒精处理麦芽抽提液,得到淀粉酶;1878年,德国 科学家K?hne提出enzyme—从活生物体中分离得到的酶,意思是“在酵母中”(希腊文)。 (3)酶学的迅速发展(理论研究):1926年,美国康乃尔大学的”独臂学者”萨姆纳博士从 刀豆中提取出脲酶结晶,并证明具有蛋白质的性质;1930年,美国的生物化学家Northrop 分离得到了胃蛋白酶、胰蛋白酶、胰凝乳蛋白酶结晶,确立了酶的化学本质。 3.说说酶工程的发展概况 I.酶工程发展如下: ①1894年,日本的高峰让吉用米曲霉制备淀粉酶,酶技术走向商业化: ②1908年,德国的Rohm用动物胰脏制得胰蛋白酶,皮革软化及洗涤; ③1911年,Wallerstein从木瓜中获得木瓜蛋白酶,用于啤酒的澄清; ④1949年,用微生物液体深层培养法进行 -淀粉酶的发酵生产,揭开了近代酶工业的序幕; ⑤1960年,法国科学家Jacob和Monod提出的操纵子学说,阐明了酶生物合成的调节机制,通过酶的诱导和解除阻遏,可显著提高酶的产量; ⑥1971年各国科学家开始使用“酶工程”这一名词。 II.在酶的应用过程中,人们注意到酶的一些不足之处,如:稳定性差,对强酸碱敏感,只 能使用一次,分离纯化困难等,解决的方法之一是固定化。 固定化技术的发展经历如下历程: ①1916年,Nelson和Griffin发现蔗糖酶吸附到骨炭上仍具催化活性; ②1969年,日本千佃一郎首次在工业规模上用固定化氨基酰化酶从DL-氨基酸生产L-氨基酸; ③1971年,第一届国际酶工程会议在美国召开,会议的主题是固定化酶。 4. 酶的催化特点 酶催化作用特性有: ①极高的催化效率:在37℃或更低的温度下,酶的催化速度是没有催化剂的化学反应速率 的1012-1020倍;

名词解释 第一章酶学与酶工程 酶:生物体内进行新陈代谢不可缺少的受多种因素调节控制的具有催化能力的生物催化剂。 酶工程:是酶学和工程学相互渗透结合形成的一门新的技术科学。从应用目的出发研究酶,在一定的生物反应装置中利用酶的催化性质,将相应原料转化成有用的物质。 单体酶(monomeric enzyme):由一条多肽链组成,如溶菌酶;由多条肽链组成,肽链间二硫键相连构成一整体。 寡聚酶(oligomeric enzyme):由两个或两个以上的亚基组成的酶。 多酶复合体(multienzyme complex):由几种酶非共价键彼此嵌合而成。 催化转换数:每个酶分子每分钟催化底物转化的分子数。 酶活力(酶活性):指酶催化一定化学反应的能力。 酶活力的大小:一定条件下所催化的某一化学反应的反应速度, 酶反应速度:单位时间内底物的减少量或产物的增加量。 酶的活力单位(U,activity unit):酶活力的大小及酶含量的多少。 酶单位:在一定条件下,一定时间内将一定量的底物转化为产物所需要的酶量。这样酶的含量可以用每克酶制剂或每毫升酶制剂含有多少酶单位来表示(U/g或U/ml)。 Katal(Kat)单位:一个katal单位是指在最适反应条件下,1秒钟催化1moL底物转化为产物所需要的酶量。 酶的比活力(specific activity):代表酶的纯度,比活力用每mg蛋白质所含有的酶活力单位数表示。对同一种酶比活力愈大,纯度愈高。 酶的转换数:以一定条件下每秒钟每个酶分子转换底物的分子数来表示酶的催化效率。 酶动力学:是研究酶促反应的速度以及影响此速度的各种因素的科学。 抑制剂:任何分子直接作用于酶使他的催化速度降低即称为~。 不可逆抑制作用:抑制剂与酶的必需基团以共价键结合而引起酶活性丧失,不能用透析,超滤或凝胶过滤等物理方法去除抑制剂而使酶复活。 可逆抑制作用:抑制剂与酶以非共价键结合而引起酶活性的降低或丧失,能用物理的方法除去抑制剂而使酶复活。 第二章酶的发酵生产 酶的生物合成:生物体在一定的条件下都能产生多种多样的酶。酶在生物体内产生的过程,称为~。 酶的发酵生产:经过预先设计,通过人工操作控制,利用细胞的生命活动,产生人们所需要的酶的过程,称为酶的发酵生产——是现在酶生产的主要方法。 固体发酵法(麸曲培养法):以麸皮和米糠为主要原料,添加谷糠、豆饼,无机盐和适量水分,制成固体或半固体状态,经灭菌、冷却后,供微生物生长和产酶用。 液体表面发酵法:将已灭菌的液体培养基接种后,装入可密闭的发酵箱内的浅盘中,液体厚约1~2cm,然后向盘架间通入无菌空气,维持一定的温度进行发酵。 液体深层发酵法:采用液体培养基,置于发酵罐中,经灭菌、冷却后接入产酶细胞,在一定条件下进行发酵。 保藏:性能优良的产酶细胞选育出来后,必须尽可能保持其生长和产酶特性不变异,不死亡,不被杂菌污染等。 细胞活化:保藏细胞在使用前必须接种于新鲜的斜面培养基上,在一定的条件下进行培养,以恢复细胞的生命活动能力,这叫做~。

?Lecture 1 酶学与酶工程 ?酶的概念:酶(enzyme)是一类由活细胞产生的,具有催化活性和高度专一性的特殊蛋白质,是一类生物催化剂。 ? ?酶的分类(6类)、组成、结构特点?和作用机制? 组成:单体酶、寡聚酶、多酶复合体 Note:一个酶蛋白可有多种催化活性,相当于多个酶(关注原核和真核生物的差别) 除水解酶和连接酶外,其他酶在反应时都需要特定的辅酶。 金属在酶催化中的作用:稳定酶构象、参与酶的催化作用(如激活底物)、电子传递体 ?酶作为催化剂的显著特点: 强大的催化能力:加快反应速度可高达1017倍; 没有副反应; 高度的专一性:各种酶都有专一性,但专一程度的严格性上有所差别; 可调节性; ?同工酶的概念:同一种属中由不同基因或(复)等位基因编码的多肽链所组成的单体、纯聚体或杂交体,其理化及生物学性质不同而能催化相同反应的酶称同工酶。 同一基因生成的不同mRNA所翻译出来的酶蛋白也列入同工酶的范畴。 酶蛋白合成后经不同类型的共价修饰(如糖基化等)而造成的多种酶分子形式,严格来说不属于同工酶而称为synzyme,但也有人称其为次生性同工酶(secondary isozyme)。 不同种属中催化相同反应的酶称为xenozyme,也不属于同工酶。

?酶的活性中心 指必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物 必需基团(essential group):酶分子中氨基酸残基侧链的化学基团中,一些与酶活性密切相关的基团。 活性中心内的必需基团:结合基团(与底物相结合)和催化基团(催化底物转变成产物) 活性中心外的必需基团:维持酶活性中心应有的空间构象所必需; 构成酶活性中心的常见基团:His的咪唑基、Ser的-OH、Cys的-SH、Glu的γ-COOH。 ?酶的作用机制 ?酶活力的调节 ?酶的应用 食品加工方面:生物技术在食品工业中应用的代表就是酶的应用,目前已经有几十种酶成功用于食品工业。如葡萄糖、饴糖、果葡糖浆的生产、蛋白质制品加工、果蔬加工、食品保鲜以及改善食品品质与风味等。 常用的酶制剂主要有:淀粉酶、糖化酶、蛋白酶、葡萄糖异构酶、果胶酶、脂肪酶、纤维素酶葡萄糖氧化酶等。 酶在轻工业方面的应用:用酶进行原料处理(发酵原料、淀粉原料、纤维素原料、含戊聚糖的植物原料的处理、纺织原料、造纸原料的制浆、生丝的脱胶处理、羊毛的除垢),用酶生产各种产品(L-氨基酸、核苷酸、酱油或豆酱、制革),用酶增强产品的使用效果(加酶洗涤剂;加酶牙膏、牙粉和嗽口水) 酶在医学中的应用:主要的医药用酶、用酶进行疾病的诊断、用酶治疗各种疾病、用酶制造各种药物 ?酶与食品质量安全 酶制剂作为食品添加剂进入食品的潜在危害 酶催化有毒物质的产生 酶作用导致食品中营养组分的损失 潜在的产毒素性 潜在的致病性 对策:安全菌株,体外基因毒理学测试,酶制剂的安全评价,酶制剂来源安全性的评估标准 ?Lecture 2 基因工程的酶学基础 ?核酶(Ribozyme):概念:具有生物催化功能的RNA。 看课件 ?基因工程的酶学基础 ?基因克隆表达的过程 基因克隆常用的酶,有什么应用,注意事项(补充后两者)

酶学与酶工程复习资料 上一届考试试题 一、名字解释 1、酶的活性中性:酶分子中直接与底物结合,并和酶催化作用直接有关的区域叫酶的活性中心,参与构成酶的活性中心和维持酶的特定构象所必需的基团为酶的必需基团。 2、米式方程及各字母的意义:米氏方程表示一个酶促反应的起始速度v与底物浓度S关系的速度方程,v=V max·S/(K m+S)。其中 K m值称为米氏常数,V max是酶被底物饱和时的反应速度,[S]为底物浓度。由此可见K m值的物理意义为反应速度(v)达到1/2V max时的底物浓度(即K m=[S]),单位一般为mol/L,只由酶的性质决定,而与酶的浓度无关。 3、别构效应:一个蛋白质与其配体(或其他蛋白质)结合后,蛋白质的空间结构发生改变,使它适用于功能的需要,这一类变化称为别构效应或变构效应。 4、遗传密码:遗传密码决定蛋白质中氨基酸顺序的核苷酸顺序,由3个连续的核苷酸组成的密码子所构成。 5、盐析:增加中性盐浓度使蛋白质、气体、未带电分子溶解度降低的现象。是蛋白质分离纯化中经常使用的方法,最常用的中性盐有硫酸铵、硫酸钠和氯化钠等。 6、内囊性包埋法:系利用天然的或合成的高分子材料(统称为囊材)作为囊膜壁壳,将固态或液态药物包裹成为的药库型微型胶囊。 7、固定化酶:水溶性酶经物理或化学方法处理后,成为不溶于水的但仍具有酶活性的一种酶的衍生物。在催化反应中以固相状态作用于底物。 8、必需水:维持酶分子完整的空间构象所必需的最低水量。 二、问答题 1、温度对酶促反应的影响及原因。 答:温度对酶促反应的影响包括两方面:一方面是当温度升高时,反应速度也加快,这与一般化学反应相同。另一方面,随温度升高而使酶逐步变性,即通过减少有活性的酶而降低酶的反应速度。在低于最适温度时,前一种效应为主,在高于最适温度时,则后一种效应为主,因而酶活性丧失,反应速度下降。 2、操纵子的定义及组成。 答:操纵子:指启动基因、操纵基因和一系列紧密连锁的结构基因的总称,基因表达的协同单位,转录的功能单位。很多功能上相关的基因前后相连成串,由一个共同的控制区进行转录的控制,包括结构基因以及调节基因的整个DNA 序列。操纵子通常由2个以上的编码序列与启动序列、操纵序列以及其他调节序列在基因组中成簇串联组成。 3、蛋白质合成过程当中的主要物质。 答:主要为mRNA、tRNA、氨基酸、核糖核蛋白体以及有关的酶和辅助因子。蛋白质合成是以mRNA为模板,以氨基酸为底物,在核糖体上通过各种tRNA、酶和辅助因子的作用,合成多肽链的过程。 4、酶生物合成模式有哪几种及其特点?简述其接近理想模式的方法? 答:1、同步合成型:酶的生物合成与细胞生长同步进行的一种酶生物合成模式。该类型酶的 生物合成速度与细胞生长速度紧密联系,又称为生长偶联型。2、延续合成型:酶的生物合成在细胞的生长阶段开始,在细胞生长进入平衡期后,酶还可以延续合成一段较长时间。3、中期合成型:酶在细胞生长一段时间以后才开始,而在细胞生长进入平衡期以后,酶的生物合成也随着停止。4、滞后合成型:酶是在细胞生长一段时间或者进入平衡期以后才开始其生物合成并大量积累,又称为非生长偶联型,许多水解酶的生物合成都属于这一类型。 在酶的发酵生产中,为了提高产酶率和缩短发酵周期,最理想的合成模式应是延续合成型。属于延续合成型的酶,在发酵过程中没有生长期和产酶期的明显差别。细胞一开始生长就有酶产生,直至细胞生长进入平衡期以后,酶还可以继续合成一段较长的时间。对于其他合成模式的酶,可以通过基因工程\细胞工程等先进技术,选育得到优良的菌株, 并通过工艺条件的优化控制, 使他们的生物合成模式更加接近于延续合成型。其中对于同步合成型的酶,要尽量提高其对应的mRNA的稳定性,为此适当降低发酵温度是可取的措施;对于滞后合成型的酶,要设法降低培养基中阻遏物的浓度,尽量减少甚至解除产物阻遏或分解代谢物阻遏作用,使酶的生物合成提早开始;而对于中期合成型的酶,则要在提高mRNA的稳定性以及解除阻遏两方面考虑,使其生物合成的开始时间提前,并尽量延迟其生物合成停止的时间。

第一章绪论 一、名词解释 1、酶:是具有生物催化功能的生物大分子 2、酶工程:酶的生产与应用的技术过程称为酶工程。它是利用酶的催化作用进行物质转化的技术,是将酶学理论与化工技术、微生物技术结合而形成的新技术,是借助工程学手段利用酶或细胞、细胞器的特定功能提供产品的一门科学 3、核酸类酶:为一类具有生物催化功能的核糖核酸分子。它可以催化本身RNA 剪切或剪接作用,还可以催化其他RNA,DNA多糖,酯类等分子进行反应 4、蛋白类酶:为一类具有生物催化功能的蛋白质分子,它只能催化其他分子进行反应。 5、酶的生产:是指通过人工操作获得所需酶的技术过程。主要包括微生物发酵产酶,动植物培养产酶,酶提取和分离纯化等 6、酶的改性是通过各种方法改进酶的催化特性的技术过程,主要包括酶分子的修饰,酶固定化,酶非水相催化等 7、酶的应用:是通过酶的催化作用获得人们所需要的物质或者不良物质的技术过程,主要包括酶反应器的选择和设计以及酶在各领域的应用等。 8、酶的专一性:又称为特异性,是指酶在催化生化反应时对底物的选择性,即在一定条件下,一种酶只能催化一种或一类结构相似的底物进行某种类型反应的特性。亦即酶只能催化某一类或某一种化学反应。 9、酶的转换数:酶的转换数Kp。又称为摩尔催化活性,是指每个酶分子每分钟催化底物转化的分子数 二、填空题 1、根据分子中起催化作用的主要组分的不同,酶可以分为_________和____________两大类。 2、核酸类酶分子中起催化作用的主要组分是__________,蛋白类酶分子中起催化作用的主要组分是________________。 3、进行分子内催化作用的核酸类酶可以分为________________,_________________。 4、酶活力是_______________的量度指标,酶的比活力是_______________的量度指标,酶的转换数的主要组分是________________的度量指标。 5、非竞争性抑制的特点是最大反应速度Vm__________________,米氏常数Km______________。 三、选择题 1、酶工程是()的技术过程。 A、利用酶的催化作用将底物转化为产物 B、通过发酵生产和分离纯化获得所需酶 C、酶的生产与应用 D、酶在工业上大规模应用 2、核酸类酶是()。 A、催化RNA进行水解反应的一类酶 B、催化RNA进行剪接反应的一类酶

第一章 酶学与酶工程 1、酶学(Enzymology)研究酶的理论(basic principle, biosynthesis, property, modification-up stream process)。研究酶的结构与功能、酶的催化机制、酶反应动力学、酶的生物合成以及调节机制等的理论学科。 酶工程(Enzyme engineering)研究酶的生产与应用(production and application)。 2、酶工程研究的热点 a.基因工程和蛋白质工程 基因工程与蛋白质工程构建酶是十分诱人的领域:在30亿年生物进化中,只发现了1055种功能蛋白和酶,经计算300个氨基酸可组成不同序列的蛋白质有约10390种,因而在自然界,绝大多数新蛋白或酶仍未产生,有待人类去进行人工定向进化,创造开发新酶类,其中对大量天然蛋白质的DNA测序,建立大量蛋白质功能基因库,为杂交提供重要信息,通过计算机模拟,从头设计及合成全新的非天然有用酶已成为可能。此外,利用天然酶的多样性,通过靶子基因的定点突变噬菌体展示技术,结合化学修饰技术,赋予酶的新结构,新特性,改进酶的催化功能,可使酶制剂工业进入一个崭新的时代。 b.人工合成酶 人工合成酶(Synzyme)是合成具有催化功能的高聚物分子,目前使用分子印迹和生物印迹技术制备人工酶,原理与抗体酶过渡态理论大致相同,已经初步制备了具有蛋白酶功能,氧化还原酶催化功能的人工酶,人工酶亦可用于手性药物及化合物的分离纯化及生物传感器的分子识别,目前人工酶的催化转换数仍很低,需要多学科配合,对酶催化分子机理的深入了解,才会有可能在特殊反应中优于天然酶。 c.酶的定向固定化技术 优点:进一步研究蛋白质结构;且不影响酶的活性和催化功能 d.非水酶学(nonaqueous enzymology) 特点:绝大多数有机物在非水体系溶解度较高;与水中相比,非水系统内酶的稳定性较高;从非水体系内回收产物比水中容易。 e.糖生物学(glucobiology)和糖基转移酶(glucosyltransferase) f.极端环境微生物的新酶种 已发现的极端生命形式包括嗜热菌(thermophiles)、嗜冷茵(psychrophiles)、嗜碱菌(alkaliphiles)、嗜酸菌(acidophiles)、嗜盐苗(halophiles)、嗜压菌(barophiles)等,来自极端微生物的极端酶(extremozymes),可在苛刻条件下行使功能,将极大地拓展酶的应用空间,并是建立高效率、低成本生物技术加工过程的新基础,PCR技术中的高温Taq DNA聚合酶、洗涤剂中的碱性酌等都具代表意义。 g.不可培养微生物的新酶种 3、国内外酶制剂生产应用差异 a.规模:国外多公司重组;国内重复建设、效益低 b.投入:国外开发经费高达15%;国内研究开发投入仅占销售额的1% c.开发重点:国外大力研制、开发新酶种和新用途;国内品种少,剂型少 对我国酶制剂生产的建议:走集约化、规模化经营;加大科研能力;发展具有自己知识产权的新技术;调整产品结构、大力开发新品种。 第二章 1、名词解释

第一章 酶学与酶工程 第一节 酶工程概述 一.酶工程定义: 通过预先设计,经人工操作而获得大量所需的酶,并利用各种方法使酶发挥最大的催化 功能。 二.酶学与酶工程研究简史 1.1783 意大利 斯巴兰让 胃具有化学消化的功能 2.1833 payen person 麦芽的水抽提物→酒精沉淀→淀粉水解(淀粉酶制剂) 3.1878 德国 kuhne Enzyme 4.1878 德国 Buchner 兄弟 酵母无细胞提取液(石英砂)→酒精发酵 5.1926 美 Sumner 脲酶结晶(纯品) 酶是蛋白质 6.各种酶的发现 酶工程: ①1894 日本 高峰让吉 曲米霉→淀粉酶(用于工业上) 固体发酵 ②1908 德国 胰酶→皮革软化(工业) ③1949 液体的深层发酵(培养)技术 7.1950s 固定化酶 60s 固定化细胞 1953 聚氨苯乙烯树脂 淀粉酶等 1969 日本 千田一郎 工业化固定氨基酸酰化酶(DL-氨基酸拆分) 80s 以后出现新技术 三.酶工程的研究内容 1.1971第一届国际酶工程会议 研究内容:酶的生产,纯化,固定化,反应器 2.21世纪酶工程发展主题 新酶:研究与开发 酶的优化生产 酶的高效应用(固定化,化学修饰,非水酶学) (一)新酶 1.核酶 2.人工酶:人工合成的非蛋白质类酶 3.抗体酶: 抗体通过化学修饰或者突变或重组 催化中心 酶 结合中心 催化中心 4.端粒酶:延长端粒 端粒复制时会变短 复制50-60次 生殖细胞 干细胞 癌细胞(端粒活性很高) 5.极性环境微生物新酶 Taq 聚合酶(嗜热) 6.不可培养微生物新酶 在常规条件下,无法得到的微生物的纯化培养体(99%-95%不可培养) 7.杂交酶 不同结构域串联 包埋 获得

2-4酶的分子结构 一、酶的化学组成 酶按其分子组成可分成单纯蛋白酶和结合蛋白酶(全酶)两类。前者酶分子全部由氨基酸组成,如蛋白酶、脂肪酶、淀粉酶等。结合蛋白酶的分子组成除含蛋白质部分(称酶蛋白)外,还含有非蛋白质部分(称辅助因子)。 根据与酶蛋白结合的牢固程度不同又可分为辅基和辅酶。辅助因子由金属离子、B族维生素衍生物等组成。酶蛋白与辅酶(辅基)的关系是:一种酶蛋白只能与一种辅酶(辅基)结合生成一种全酶,催化一种反应,而一种辅酶(辅基)可与多种酶蛋白结合生成不同全酶,催化不同的反应。因而酶蛋白决定反应专一性,辅酶则具体参加反应。酶蛋白与辅酶单独存在时均无活性,只有结合成全酶,才有活性。 大多数维生素(特别是B族维生素)是组成许多酶的辅酶或辅基的成分(见下表)。体内酶的种类很多,而辅酶(基)的种类却较少,通常一种酶蛋白只能与一种辅酶结合,成为一种特异的酶,但一种辅酶往往能与不同的酶蛋白结合构成许多种特异性酶。酶蛋白在酶促反应中主要起识别底物的作用,酶促反应的特异性、高效率以及酶对一些理化因素的不稳定性均决定于酶蛋白部分。 维生素辅酶形式主要作用 硫胺素(B1)硫胺素焦磷酸酯(TPP)α-酮酸氧化脱羧反应 硫辛酸6,8-二硫辛酸α-酮酸氧化脱羧反应 泛酸辅酶A(CoA)酰基转换作用 核黄素(B2)黄素单核苷酸(FMN)氢原子转移

黄素腺嘌呤二核苷酸(FAD)氢原子转移 尼克酰胺(PP) 尼克酰胺腺嘌呤二核苷酸(NAD+) 尼克酰胺腺嘌呤二核苷酸磷酸(NADP+)氢原子转移氢原子转移 吡哆素(B6)磷酸吡哆醛氨基酸代谢 生物素生物素羧化作用 叶酸四氢叶酸一碳单位转移 二、酶的活性中心 酶的分子中存在有许多功能基团例如,-NH2、-COOH、-SH、-OH等,但并不是这些基团都与酶活性有关。一般将与酶活性有关的基团称为酶的必需基团。有些必需基团虽然在一级结构上可能相距很远,但在空间结构上彼此靠近,集中在一起形成具有一定空间结构的区域,该区域与底物相结合并将底物转化为产物,这一区域称为酶的活性中心,对于结合酶来说,辅酶或辅基上的一部分结构往往是活性中心的组成成分。 构成酶活性中心的必需基团可分为两种,与底物结合的必需基团称为结合基团,促进底物发生化学变化的基团称为催化基团。活性中心中有的必需基团可同时具有这两方面的功能。还有些必需基团虽然不参加酶的活性中心的组成,但为维持酶活性中心应有的空间构象所必需,这些基团是酶的活性中心以外的必需基团。范围集中在酶分子某个表面处的裂缝或凹陷区域。

相关文档
相关文档 最新文档