文档库 最新最全的文档下载
当前位置:文档库 › 酵母双杂交自激活检验原理

酵母双杂交自激活检验原理

酵母双杂交自激活检验原理

酵母双杂交自激活检验原理是一种利用两个不同基因组的酵母株进行双杂交,使得一个酵母株与另一株酵母株之间的合作关系形成,从而使其中一个杂交和另外一个杂交可以活化它们原本被遗忘的基因。通过这种方法,可以识别出酵母菌的激活基因并鉴定其功能。酵母双杂交自激活检验原理是一种利用两个不同基因组的酵母株进行双杂交,从而形成一个酵母株与另一株之间的合作关系。每个酵母株中都有一个传统上被称为“特异性杂交”(SP)的杂交,以及一个较新的类型的杂交,称为“自激活”(SA)的杂交。在SA杂交中,其中一个杂交可以激活另外一个杂交中被遗忘的基因,使其可以进行正常的生物学功能。通过利用这种双杂交系统,被激活的基因的功能可以通过观察杂交的表型变化而被识别出来。因此,酵母双杂交自激活检验原理是一种非常有效的方法,用于识别出被遗忘的基因以及其功能。它能够发挥其潜在的功能,使研究者可以更好地理解和操控复杂的生物途径和功能。另外,酵母双杂交自激活检验原理也有助于模拟了真实细胞环境中的复杂感应反应,并为许多分子生物学的研究提供新的可能性,以期望发掘到更多未知的基因功能。酵母双杂交自激活检验原理是未来生命科学实验室研究进步的重要工具,将提供基本生命科学以及分子生物学研究的更多新发现,以改善人类的健康和福祉。

酵母双杂(共转)

酵母双杂交的原理及实验步骤 吴健2015.12.25 一酵母双杂交的原理 在酵母细胞中,有半乳糖存在的情况下,GAL4 可以激活半乳糖代谢酶GAL1 的转录。GAL4 蛋白包含两个结构域,单独的N 端的结构域(BD)可以特异地结合DNA 但是不能够激活转录;单独的C 端包含一个激活区域(AD)但是如果不能结 合到17-mer 上游激活序列USA G 也不能激活转录。将来自大肠杆菌的LecA DNA 结合域BD 和酵母的GAL4 转录激活域AD 重组后,在酵母中实现了下游基因的转录激活。说明转录因子的BD 和AD 功能域可相互独立地发挥各自的作用,并且在 重组后仍然具有基因转录的活性(Brent and Ptashne, 1985)。酵母双杂交系统就是在 这一分子基础上开发出来的,GAL4 的BD 和AD,分别与能够互作的蛋白X 和Y 融合表达。由于XY 蛋白的结合,实现了GAL4 的BD 和AD 重组,GAL4 就重新获得了转录活性,转录因子就可以驱动报告基因表达(Fields and Song, 1989)。除了 将两个杂合载体BD-X 或AD-Y 转化入同一酵母细胞外,利用两个不同性别的酵母杂交(mating)也是实现BD 和AD 蛋白重组和蛋白互作检测的有效方法(Bendixen et al., 1994)。 Fig1. 酵母双杂原理图

Fig2. 常用两种酵母菌的基因型 Fig3. 常用两种酵母菌的报告基因

Fig4. 常用AD和BD载体图Fig5. 酵母双杂流程图

二酵母双杂交的基本步骤 1 酵母感受态的制备 配制培养酵母YPAD 培养基,以及筛选和转化酵母的SD 培养基,灭菌备用。 1) 用灭菌的接种环从保存的菌种中挑取一小块,在YPAD 培养基上划线分离单菌 落,在30℃培养箱中倒置培养 3 d 活化菌种; 2) 用灭菌的接种环挑取一个2-3 mm,生长时间小于一个月的单克隆到3 ml 的 YPAD 培养基中,剧烈震荡1 min,打散所有的细胞块,30℃震荡培养8 h; 3) 接种5 μl 的培养物到含有50 ml YPAD 的250 ml 的烧瓶中,30℃,250 r/min 震 荡培养20 h,直到OD 600 =0.3; 4) 700 g 室温离心5 min,去除上清,用100 ml 的YPAD 重悬细胞块,30℃230-250 r/min 震荡培养3-5 h,直到OD 600 =0.4-0.5; 5) 700 g 室温离心5 min,去除上清,用60 ml 的灭菌的dd H2O 重悬细胞块; 6) 700 g 室温离心5 min,去除上清,用3 ml 的1.1×TE/LiAc 溶液重悬细胞块; 7) 将上清分装到2 个无菌的1.5 ml 的离心管,室温13200 g 离心15 sec; 8) 去除上清,用600 μl 1.1×TE/LiAc 溶液悬浮细胞块,感受态制备完成。制好的 感受态细胞应该立即使用(2 h 以内),不能长时间保存。 2 酵母小规模转化 2) 在预冷无菌的1.5 ml 的离心管中依次加入: 质粒DNA 0.5 μg herring testes carrier DNA(10mg/ml) 5 μl (使用前沸水煮5min,立刻放入冰上)感受态细胞50 μl 轻轻震荡混匀; 3) 加入0.5 ml 的PEG/LiAc 溶液,轻轻在振荡器上震荡混匀; 4) 在30℃水浴中孵育30 min,每隔10 min 混匀一次; 5) 加入20 μl 的DMSO(Dimethyl sulfoxide),42℃水浴热休克15 min,每隔5 min 混 匀一次; 6) 最高转速离心15 sec,去除上清,用1 ml YPD plus 液体培养基悬浮细胞块; 7) 30℃震荡培养90 min; 8) 最高转速离心15 sec,去除上清,用1 ml 的0.9%的NaCl 溶液悬浮; 9) 取1:10, 1:100, 1:1000 的稀释度涂皿;或者直接取100 μl涂于相应的SD平板上, 10) 30℃倒置培养直到单克隆长出,统计转化效率。挑取单克隆检测以及保存菌种, 备用。

酵母双杂交原理、操作方法

酵母双杂交系统 1.原理 酵母双杂交系统的建立得力于对真核细胞调控转录起始过程的认识。研究发现,许多真核生物的转录激活因子都是由两个可以分开的、功能上相互独立的结构域(domain)组成的。例如,酵母的转录激活因子GAL4,在N端有一个由147个氨基酸组成的DNA结合域(DNA binding domain,BD),C端有一个由113个氨基酸组成的转录激活域(transcription activation domain,AD)。GAL4分子的DNA 结合域可以和上游激活序列(upstream activating sequence,UAS)结合,而转录激活域则能激活UAS下游的基因进行转录。但是,单独的DNA结合域不能激活基因转录,单独的转录激活域也不能激活UAS的下游基因,它们之间只有通过某种方式结合在一起才具有完整的转录激活因子的功能。 2.试验流程 酵母双杂交系统正是利用了GAL4的功能特点,通过两个杂交蛋白在酵母细胞中的相互结合及对报告基因的转录激活来捕获新的蛋白质,其大致步骤为: 2.1、视已知蛋白的cDNA序列为诱饵(bait),将其与DNA结合域融合,构建成诱饵质粒。 2.2、将待筛选蛋白的cDNA序列与转录激活域融合,构建成文库质粒。2.3、将这两个质粒共转化于酵母细胞中。 2.4、酵母细胞中,已分离的DNA结合域和转录激活域不会相互作用,但诱饵蛋白若能与待筛选的未知蛋白特异性地相互作用,则可激活报告基因的转录;反之,则不能。利用4种报告基因的表达,便可捕捉到新的蛋白质。 3.特点 优点 蛋白--蛋白相互作用是细胞进行一切代谢活动的基础。酵母双杂交系统的建立为研究这一问题提供了有利的手段和方法。 缺点 尽管该系统己被证实为一种非常有效的方法,但它也有自身的缺点和问题。1、它并非对所有蛋白质都适用,这是由其原理所决定的。双杂交系统要求两种杂交体蛋白都是融合蛋白,都必须能进入细胞核内。因为融合蛋白相互作用激活报告基因转录是在细胞核内发生的。2、假阳性的发生较为频繁。所谓假阳性,即指未能与诱饵蛋白发生作用而被误认为是阳性反应的蛋白。而且部分假阳性原因不清,可能与酵母中其他蛋白质的作用有关。3、在酵母菌株中大量表达外源蛋白将产生毒性作用,从而影响菌株生长和报告基因的表达。 使用酵母双杂交技术应注意的问题 真正明了酵母双杂交技术的主要原理及筛选方法是进行酵母双杂交实验的前提,构建成功的诱饵质粒及大量的材料准备是进行酵母双杂交实验的保证。只有明了双杂交的原理,才有可能设计实验进程、才能有目的的进行材料准备,并能对实验结果作出预测与分析,尤其要对具体实验中各种选择性压力培养基的使用目的要十分清楚。大量的材料准备、较长的实验流程是酵母双杂交有别于其他实验的特点,而其操作技术本身并不十分困难。特别应提出的是,一个阳性克隆的编号往往要被反复记录多次,因此,要时时注意编号的正确性。另外,若从公司购得待筛选的酵母cDNA文库,应注意不同的公司有不同的产品,且各公司的

酵母双杂交原理及步骤

酵母双杂交原理及步骤 以酵母双杂交原理及步骤为标题,本文将探讨酵母双杂交的原理和步骤。酵母双杂交是一种常用的分子生物学技术,用于研究蛋白质相互作用、信号转导和基因调控等生物学过程。 酵母双杂交是一种基于酵母菌的遗传系统的实验方法,通过检测两个蛋白质是否相互作用,从而揭示它们之间的相互作用关系。这种方法的核心原理是将两个感兴趣的蛋白质分别与DNA结合域和激活域相连,当这两个蛋白质相互作用时,DNA结合域和激活域会靠近,从而激活报告基因的表达。 酵母双杂交实验的步骤如下: 1. 构建融合基因:首先需要选取两个感兴趣的蛋白质,并将它们的编码序列分别克隆到酵母双杂交载体的DNA结合域和激活域上。DNA结合域和激活域是两个功能区域,当两个蛋白质相互作用时,这两个功能区域会靠近并激活报告基因的表达。 2. 转化酵母菌:将构建好的酵母双杂交载体导入酵母菌中。酵母菌是双杂交实验中常用的宿主,因为它具有简单的遗传系统和易于生长的特点。 3. 筛选阳性克隆:将转化后的酵母菌分别接种在缺失报告基因所需的营养物的培养基上。只有当两个蛋白质相互作用时,DNA结合域

和激活域才能靠近并激活报告基因的表达,从而使酵母菌能够在缺失营养物的培养基上生长。 4. 验证相互作用:通过进一步的实验证实阳性克隆的相互作用。常用的方法包括酵母菌营养物补充实验、酵母菌生长曲线分析和蛋白质互聚实验等。 酵母双杂交技术的优点在于它能够直接在真核细胞中研究蛋白质相互作用,同时具有灵敏度高、结果可靠、重复性好等特点。然而,也需要注意到酵母双杂交实验存在一定的局限性,如假阳性和假阴性结果的可能性,以及蛋白质结构和功能的局限性等。 酵母双杂交是一种常用的分子生物学技术,通过构建融合基因、转化酵母菌、筛选阳性克隆和验证相互作用等步骤,可以研究蛋白质相互作用等生物学过程。在实际应用中,需要综合考虑实验设计、阳性和阴性对照、验证方法等因素,以确保实验结果的准确性和可靠性。

酵母双杂交 原理

酵母双杂交原理 酵母双杂交(Y2H)是一种广泛应用于分子生物学领域的实验技术。它基于酵母细胞内所含的转录因子结合区域分开的与激活区域结合的能力的原理而发展出来。 当把转录因子分成两个区域,一个称为DBD(DNA binding domain),另一个称为AD(activation domain),并使它们相互独立地与相应的配体结合时,它们就可以进行有效的转录激活。通常来说,DBD和AD都不具有激活作用,但它们可以相互结合并发挥起激活作用。因此,当DBD与某一DNA序列结合时,如果另一配体结合于AD,则该复合体就可以被转录激活。 基于这个原理,Y2H技术使用酿酒酵母(Saccharomyces cerevisiae)作为实验系统进行实验。它使用了两个重要的质粒:一个称为“鱼钩”质粒(bait plasmid),它含有DBD和一个感兴趣的基因的DNA序列;另一个称为“猎物”质粒(prey plasmid),它含有AD和另一感兴趣的基因的DNA序列。这两个质粒分别要被转化到两个不同的酿酒酵母分别作为它们的基因组。 当两个酵母的基因组都被转化后,它们被分别引入到含有选择性培养基的平板中去。在这些平板上,只有那些同时表达了成功酯化的双杂交融合DBD和AD的细胞才能成

长起来。因此,这个实验系统几乎可以保证筛选到高亲合力的蛋白质因子。 值得注意的是,由于酿酒酵母是真核生物,与含有DBD和AD的两个质粒的匹配也是在真核生物级别上完成的,而不是简单的受体和配体之间的作用。因此,这种技术可以很好地模拟在真核生物细胞内发生的相互作用。 Y2H技术不仅可以用于蛋白质因子的筛选,也可以用于检测DNA的相互作用。例如,在要求蛋白质-DNA相互作用的特定细胞系上建立的实验系统中,可以使用这种技术来筛选那些与基因诱导子结合的转录因子。因此,该技术可用于分析人类疾病中蛋白质相互作用的发生机制。 总的来说,酵母双杂交技术是一种强大而有效的分子生物学工具,可以用于研究蛋白质之间的相互作用以及转录机制。它不仅可以被用于大规模的筛选,还可以在分子水平上模拟真核生物细胞内的相互作用。在以后的研究中,这种技术还将发挥更广泛的作用,因此我们对它的进一步研究依然很有必要。

酵母双杂实验操作手册和注意事项

酵母双杂(Yeast two-hybrid)实验操作手册和注意事项一. 酵母双杂的原理 1989年,Song和Field建立了第一个基于酵母的细胞内检测蛋白间相互作用的遗传系统。很多真核生物的位点特异转录激活因子通常具有两个可分割开的结构域,即DNA特异结合域(DNA-binding domain,BD)与转录激活域(Transcriptional activation domain ,AD)。这两个结构域各具功能,互不影响。但一个完整的激活特定基因表达的激活因子必须同时含有这两个结构域,否则无法完成激活功能。不同来源激活因子的BD区与AD结合后则特异地激活被BD结合的基因表达。基于这个原理,可将两个待测蛋白分别与这两个结构域建成融合蛋白,并共表达于同一个酵母细胞内。如果两个待测蛋白间能发生相互作用,就会通过待测蛋白的桥梁作用使AD与BD形成一个完整的转录激活因子并激活相应的报告基因表达。通过对报告基因表型的测定可以很容易地知道待测蛋白分子间是否发生了相互作用。 酵母双杂交系统由三个部分组成: (1)与BD融合的蛋白表达载体,被表达的蛋白称诱饵蛋白(bait)。 (2)与AD融合的蛋白表达载体,被其表达的蛋白称靶蛋白(prey)。 (3)带有一个或多个报告基因的宿主菌株。常用的报告基因有HIS3,URA3,LacZ和ADE2等。而菌株则具有相应的缺陷型。双杂交质粒上分别带有不同的抗性基因和营养标记基因。这些有利于实验后期杂交质粒的鉴定与分离。根据目前通用的系统中BD来源的不同主要分为GAL4系统和LexA系统。后者因其BD来源于原核生物,在真核生物内缺少同源性,因此可以减少假阳性的出现。 二.所用的载体及相关信息 1. pGBKT7载体的图谱和相关信息 The pGBKT7 vector expresses proteins fused to amino acids 1–147 of the GAL4 DNA binding domain (DNA-BD). In yeast, fusion proteins are expressed at high levels from the constitutive ADH1promoter (PADH1); transcription is terminated by the T7 and ADH1 transcription termination signals(TT7 & ADH1). pGBKT7 also contains the T7 promoter, a c-Myc epitope tag, and a MCS. pGBKT7replicates autonomously in both E. coli and S. cerevisiae from the pUC and 2 m ori, respectively. Thevector carries the Kan r for selection in E. coli and the TRP1 nutritional marker for selection in yeast.Yeast strains containing pGBKT7 exhibit a higher transformation efficiency than strains carrying other DNA-BD domain vectors (1). b. pGADT7载体的图谱和相关信息

酵母双杂交实验原理及具体步骤

酵母双杂交 原理:酵母双杂交(Yeast two-hybrid,Y2H)是一种常用的蛋白质相互作用研究技术,用于检测蛋白质间的物理相互作用关系。其原理基于转录因子的两个功能域的可拆分性。①转录因子可拆分性:构建酵母诱饵(bait)和猎物(prey)表达载体:将目标蛋白分别将其编码序列分别克隆到两个表达载体中。其中,诱饵载体通常包含一个“催化域”(activation domain,AD),用于连接目标蛋白和转录激活子域;猎物载体通常包含一个“DNA结合域”(DNA binding domain,BD),与转录因子的靶位点序列结合。通过将目标蛋白的相互作用引入到转录因子中,可以重新组装功能域并激活报告基因表达。②目标蛋白的诱饵和猎物构建:将目标蛋白分别克隆到诱饵载体和猎物载体中。诱饵载体中的目标蛋白与BD结合,形成诱饵蛋白-BD复合物;猎物载体中的目标蛋白与AD结合,形成猎物蛋白-AD复合物。③互补的转录因子和报告基因:将诱饵和猎物载体转化到同一酵母细胞中,诱饵蛋白与猎物蛋白发生相互作用后,诱饵蛋白的BD域与猎物蛋白的AD域重新组装为完整的转录因子。该转录因子能够结合到特定的报告基因启动子上,激活报告基因的表达。④报告基因表达和筛选:通过培养在所选的选择性培养基上,只有发生了特定蛋白相互作用的酵母细胞才能生长。选择性培养基可能缺乏某些必需营养物质,当酵母菌株与目标蛋白质发生相互作用时,新的遗传特征和功能产物的表达则能够弥补酵母细胞在选择性培养基上的缺陷。例如,当使用缺乏组氨酸(histidine)的培养基时,只有酵母菌株表达了完整的转录因子,才能够合成组氨酸并正常生长。⑤结果验证:据此可以筛选出具有蛋白相互作用的酵母突变株。验证通常通过进一步的亲和试验(如共免疫沉淀)或其他技术(如荧光共定位)来确认蛋白质相互作用的可靠性。总体来说,酵母双杂交实验通过利用转录因子可拆分性的原理来检测蛋白质的相互作用。 方法:

简述酵母双杂交的原理应用

简述酵母双杂交的原理应用 1. 什么是酵母双杂交? 酵母双杂交(Yeast Two-Hybrid,Y2H)是一种常用的蛋白质相互作用研究方法。它基于酵母细胞内的转录激活反应,实现在活细胞中检测和确认蛋白质相互作用。 2. 酵母双杂交的原理 酵母双杂交实验基于两个关键组件:DNA结合域(DNA binding domain,DBD)和激活域(activation domain,AD)。DBD通常来自于转录因子,具有结合特定DNA序列的功能;AD则包含一个序列,可以与DBD结合并激活下游基因的转录。 在酵母细胞中,一种蛋白质A融合DBD而另一种蛋白质B融合AD。如果蛋白质A和蛋白质B之间存在相互作用,则DBD和AD可以靠近并形成一个功能完整的转录因子,从而激活下游报告基因的转录。 3. 酵母双杂交的应用 3.1 确认蛋白质相互作用 酵母双杂交是一种有效的方法,可用于确认预测的蛋白质相互作用。通过将目标蛋白质与已知相互作用蛋白质的DBD和AD进行融合,可以在酵母细胞中检测到它们之间的相互作用。这有助于理解蛋白质的功能和参与的信号转导途径。 3.2 发现新的蛋白质相互作用 除了确认已知相互作用外,酵母双杂交还可以用于发现新的蛋白质相互作用。通过将多个蛋白质DBD和AD进行融合,并进行大规模筛选,可以识别新的相互作用关系。这有助于揭示蛋白质网络的复杂性和功能。 3.3 确定蛋白质结构域 酵母双杂交还可以用于确定蛋白质中特定结构域的相互作用。通过构建蛋白质的不同片段与DBD和AD进行融合,可以确定特定结构域与其他蛋白质的相互作用。这有助于了解蛋白质结构和功能的关系。

3.4 验证蛋白质相互作用的生理功能 酵母双杂交还可以用于验证和研究蛋白质相互作用的生理功能。通过将多个靶 蛋白质与DBD和AD进行融合,并观察它们在酵母细胞中的相互作用和下游基因 的表达,可以了解蛋白质相互作用在细胞内的作用机制和生理功能。 4. 酵母双杂交的优缺点 4.1 优点 •可以在活细胞中直接检测蛋白质的相互作用 •可以发现和确认新的蛋白质相互作用 •可以研究蛋白质结构和功能的关系 •可以验证蛋白质相互作用的生理功能 4.2 缺点 •可能出现假阳性和假阴性结果 •需要大量的试验操作和时间 •不适用于所有蛋白质相互作用研究 5. 结论 酵母双杂交是一种常用的蛋白质相互作用研究方法,可以用于确认、发现和研 究蛋白质相互作用。它在揭示蛋白质功能、结构和生理功能方面发挥着重要的作用。然而,酵母双杂交也存在一些缺点,需要对结果进行进一步验证和分析。总体来说,酵母双杂交是研究蛋白质相互作用的重要工具之一,对于深入理解细胞信号转导和生物学过程具有重要意义。

酵母双杂交的原理和应用

酵母双杂交的原理和应用 前言 酵母双杂交技术是一种常用的分子生物学实验方法,用于研究蛋白质间相互作用。本文将介绍酵母双杂交的原理和应用,并详细说明相关实验步骤和注意事项。 一、酵母双杂交原理 酵母双杂交利用酵母细胞中的转录因子来检测两个蛋白质是否发生相互作用。 该技术包括两个主要步骤:酵母杂交库的构建和蛋白质相互作用的检测。 1.酵母杂交库的构建 –首先,需要构建一个酵母细胞库,其中包含目标蛋白的编码序列,以及与之它相互作用的蛋白编码序列。 –这些蛋白编码序列被插入一个特殊的酵母表达载体中,该载体包含一个转录因子启动子和一个可变启动子。当目标蛋白与与之相互作 用的蛋白结合时,转录因子被激活,并启动报告基因的表达。 2.蛋白质相互作用的检测 –将酵母杂交库与一个可能与目标蛋白相互作用的蛋白质编码序列进行杂交。 –利用筛选或选择的方法,检测是否存在转录因子的激活,从而判断蛋白质是否发生相互作用。 二、酵母双杂交的应用 酵母双杂交技术在生物学研究中有广泛的应用,主要用于以下方面: 1.蛋白质相互作用的筛选 –酵母双杂交可以用于大规模筛选蛋白质间的相互作用。通过构建酵母杂交库,并与目标蛋白进行杂交,可以鉴定潜在的相互作用蛋白, 从而探索蛋白质间的相互作用网络。 2.功能区域的鉴定 –通过酵母双杂交,可以鉴定特定的蛋白质功能区域。例如,在研究某个转录因子的结构和功能时,可以利用酵母双杂交技术识别其与 其他蛋白质相互作用的功能区域。 3.药物靶点的鉴定 –酵母双杂交可以用于鉴定药物的靶点。通过与已知药物相互作用的酵母杂交库进行筛选,可以发现与特定药物相互作用的蛋白质,进 而确定药物的作用机制和潜在靶点。

酵母双杂交技术

酵母双杂交技术 引言 酵母双杂交技术是一种常用的分子生物学技术,用于研究 蛋白质-蛋白质相互作用。该技术能够检测和分析细胞内发生 的蛋白质-蛋白质相互作用,帮助科学家了解细胞信号传导、 代谢途径和疾病发生机制。本文将介绍酵母双杂交技术的原理、应用和优缺点。 原理 酵母双杂交技术利用酵母细胞(通常是酿酒酵母)作为表 达蛋白质的平台,通过操纵DNA序列,使得感兴趣的两个蛋 白质分别与酵母细胞内的两个杂交域相连。当两个蛋白质相互作用时,通过激活或抑制报告基因的表达来检测相互作用的发生。 具体来说,酵母双杂交技术包括以下几个步骤: 1.构建融合基因表达质粒:将感兴趣的两个蛋白质的 编码序列插入特定的表达质粒中,其中一个蛋白质与活化 域相连,另一个蛋白质与靶向域相连。

2.转化酵母细胞:将构建好的表达质粒导入酵母细胞中,使其能够表达融合蛋白质。 3.遴选正交剪切位点:利用酵母细胞染色质中的正交 剪切位点,确保融合蛋白质能够发挥其相互作用。 4.检测相互作用:通过报告基因(如荧光蛋白)的表 达情况来检测融合蛋白质之间的相互作用程度。一般来说,如果两个融合蛋白质相互作用,则报告基因被激活,表达 结果可通过荧光显微镜观察或酵母细胞生长的特征来检测。应用 1.蛋白质相互作用网络研究:酵母双杂交技术可以帮 助科学家构建蛋白质相互作用网络,了解细胞内不同蛋白 质之间的相互关系和调控机制。 2.疾病相关蛋白质研究:酵母双杂交技术可以用于筛 选和鉴定一些与疾病相关的蛋白质,帮助研究人员深入了 解疾病的发生机制,并开发新的治疗方法。 3.药物靶点筛选:酵母双杂交技术可以用于筛选药物 靶点,帮助研究人员发现新的药物靶点,从而加速药物研 发过程。

酵母双杂交的原理及其应用

酵母双杂交的原理及其应用 1. 引言 酵母双杂交是一种常用的分子生物学技术,可以用于研究蛋白质相互作用、识 别蛋白质结构域、筛选靶蛋白等。本文将介绍酵母双杂交的原理及其在科研和药物研发领域的应用。 2. 酵母双杂交的原理 酵母双杂交利用酵母细胞中的转录激活因子(TF)和DNA结合域(DBD)的 相互作用来探测蛋白质的相互作用。该技术主要包括两个重要组成部分:诱饵(bait)与猎物(prey)。 2.1 诱饵(bait) 诱饵通常是感兴趣蛋白质的DNA结合域(DBD),可以通过基因工程方法将 其与转录激活因子(TF)融合,并构建到酵母细胞中。 2.2 猎物(prey) 猎物是待测蛋白质,可以将其与激活域融合,并构建到酵母细胞中。 2.3 相互作用检测 当诱饵与猎物相互作用时,其融合蛋白质能够形成转录激活复合物。该复合物 能够通过激活报告基因(如LacZ或荧光蛋白)的表达来检测相互作用的发生。 3. 酵母双杂交的应用 酵母双杂交技术在科研和药物研发领域有广泛的应用。 3.1 蛋白质相互作用的研究 酵母双杂交技术可以用于筛选和验证蛋白质相互作用的目标。通过构建不同的 诱饵和猎物,可以识别和验证蛋白质相互作用的蛋白质。 3.2 靶蛋白筛选 酵母双杂交技术可以用于筛选潜在的靶向蛋白质。通过将蛋白质库(library) 与诱饵进行组合,可以筛选出与诱饵相互作用的猎物,进而识别潜在的靶向蛋白质。

3.3 药物研发 酵母双杂交技术可以用于药物研发的初步筛选。通过将化合物库与诱饵进行组合,可以筛选出与诱饵相互作用的化合物,进而确定潜在的药物候选物。 3.4 蛋白质结构域识别 酵母双杂交技术可以用于识别蛋白质的结构域。通过将蛋白质的不同结构域与诱饵进行组合,可以确定某个结构域的相互作用蛋白质。 4. 结论 酵母双杂交是一种有效的蛋白质相互作用研究方法,广泛应用于科研和药物研发领域。通过酵母双杂交技术,可以识别蛋白质相互作用、筛选靶蛋白等,为蛋白质相关研究和药物研发提供了有力的工具。 以上是关于酵母双杂交的原理及其应用的简要介绍,希望对读者有所帮助。 注:本文仅供参考,具体操作请参照相关文献和使用指南。

酵母双杂交sos招募系统原理

酵母双杂交sos招募系统原理 介绍 酵母双杂交(sos)招募系统是一种用于研究蛋白质相互作用的方法。通过该系统, 可以鉴定和研究蛋白质间的相互作用关系。酵母双杂交sos招募系统的原理是将感兴趣的蛋白质作为“诱饵”与“猎物”蛋白质相互作用,从而激活sos信号传导途径。本文将详细介绍酵母双杂交sos招募系统的原理和应用。 酵母双杂交原理 酵母双杂交(sos)招募系统基于酵母细胞的遗传学特性。在这个系统中,诱饵蛋白 质被将水平转录激活模块引出的激活域(sos)连接,形成一个融合蛋白。猎物蛋白 质被与另一个激活域连接的转录激活螺旋融合。当诱饵和猎物蛋白相互作用时,激活域被连接,导致sos信号传导途径被激活。 酵母双杂交方法的步骤 下面是酵母双杂交方法的基本步骤: 1. 构建诱饵和猎物融合蛋白表达载体 首先,需要构建诱饵和猎物蛋白质的融合表达载体。这可以通过克隆目标蛋白的编码序列到适当的载体中来实现。 2. 转化酵母细胞 将构建好的融合表达载体转化到酿酒酵母(Saccharomyces cerevisiae)等合适的酵母细胞中。 3. 检测融合蛋白质的转录活性和生长性状 检测融合蛋白在酵母细胞中的转录活性和生长性状,确保蛋白质的表达和功能正常。

4. 酵母双杂交 将转化的酵母细胞分成两组,一组含有诱饵融合蛋白,另一组含有猎物融合蛋白。将这两组细胞混合培养在适当的培养基上。 5. 选择性培养 将混合培养的酵母细胞转移到含有相应选择性培养基的平板上进行培养。选择性培养基中通常含有一种缺失途径的物质,只有当诱饵和猎物融合蛋白相互作用时,该物质才能被合成,细胞才能生长。 6. 鉴定相互作用 在选择性培养基上生长的细胞可以被孤立并筛选,进一步确认诱饵和猎物融合蛋白是否相互作用。可以使用多种方法,如测定融合蛋白的转录活性、生长性状、酶活性等。 应用 酵母双杂交sos招募系统在蛋白质相互作用研究中具有广泛的应用。以下是该系统的一些应用: 1. 识别蛋白质相互作用伙伴 通过酵母双杂交sos招募系统,可以识别蛋白质的相互作用伙伴。通过构建不同的诱饵和猎物融合蛋白库,并进行筛选和分析,可以鉴定蛋白质间的相互作用关系。 2. 研究信号转导途径 酵母双杂交sos招募系统可以用于研究信号转导途径的活性和调控机制。通过引入与信号分子相关的融合蛋白,可以探索信号传导途径中的蛋白质相互作用和调控机制。 3. 研究蛋白质结构和功能 酵母双杂交sos招募系统可以帮助研究蛋白质结构和功能。通过分析蛋白质相互作用的网状关系,可以了解蛋白质的功能和结构之间的关系,揭示蛋白质相互作用网络的重要性和特点。

(完整版)酵母双杂交原理

(完整版)酵母双杂交 原理 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

酵母双杂交系统原理 酵母双杂交系统(Yeast?Two-hybrid?System)由Fields和Song等首先在研究真核基因转录调控中建立。典型的真核生长转录因子,如GAL4、GCN4、等都含有二个不同的结构域: DNA结合结构域(DNA-binding domain)和转录激活结构域(transcription-activating domain)。前者可识别DNA上的特异序列,并使转录激活结构域定位于所调节的基因的上游,转录激活结构域可同转录复合体的其他成分作用,启动它所调节的基因的转录。二个结构域不但可在其连接区适当部位打开,仍具有各自的功能。而且不同两结构域可重建发挥转录激活作用。酵母双杂交系统利用杂交基因通过激活报道基因的表达探测蛋白-蛋白的相互作用。主要有二类载体: a 含DNA -binding domain的载体; b 含DNA-activating domain的载体。上述二类载体在构建融合基因时,测试蛋白基因与结构域基因必须在阅读框内融合。融合基因在报告株中表达,其表达产物只有定位于核内才能驱动报告基因的转录。例如GAL4-bd具有核定位序列(nuclear-localization sequence),而GAL4-ad没有。因此,在GAL4-ad氨基端或羧基端应克隆来自SV40的T-抗原的一段序列作为核定位的序列。 双杂交系统的另一个重要的元件是报道株。报道株指经改造的、含报道基因(reporter gene)的重组质粒的宿主细胞。最常用的是酵母细胞,酵母细胞作为报道株的酵母双杂交系统具有许多优点: 〈1〉易于转化、便于回收扩增质粒。〈2〉具有可直接进行选择的标记基因和特征性报道基因。〈3〉酵母的内源性蛋白不易同来源于哺乳动物的蛋白结合。一般编码一个蛋白的基因融合到明确的转录调控因子的DNA-结合结构域(如GAL4-bd, LexA-bd);另一个基因融合到转录激活结构域(如GAL4-ad,VP16)。激活结构域融合基因转入表达结合结构域融合基因的酵母细胞系中,蛋白间的作用使得转录因子重建导致相邻的报道基因表达(如lacZ),从而可分析蛋白间的结合作用。 酵母双杂交系统能在体内测定蛋白质的结合作用,具有高度敏感性。主要是由于:①采用高拷贝和强启动子的表达载体使杂合蛋白过量表达。②信号测定是在自然平衡浓度条件下进行,而如免疫共沉淀等物理方法为达到此条件需进行多次洗涤,降低了信号强度。③杂交蛋白间稳定度可被激活结构域和结合结构域结合形成转录起始复合物而增强,后者又与启动子DNA结合,此三元复合体使其中各组分的结合趋于稳定。④通过mRNA产生多种稳定的酶使信号放大。同时,酵母表型,X-Gal及HIS3蛋白表达等检测方法均很敏感。 酵母双杂交筛选原理 双杂交系统的建立得力于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。80年代的工作表明, 转录激活因子在结构上是组件式的(modular), 即这些因子往往由两个或两个以上相互独立的结构域构成, 其中有DNA结合结构域(DNA binding domain, 简称为DB, BD)和转录激活结构域(activation domain, 简称为AD), 它们是转录激活因子发挥功能所必需的。单独的DB虽然能和启动子结合, 但是不能激活转录。而不同转录激活因子的DB和AD形成的杂合蛋白仍然具有正常的激活转录的功能。如酵

相关文档