文档库 最新最全的文档下载
当前位置:文档库 › 金风直驱变流器SWICTH、VERTECO、FREQCON区别

金风直驱变流器SWICTH、VERTECO、FREQCON区别

金风直驱变流器SWICTH、VERTECO、FREQCON区别
金风直驱变流器SWICTH、VERTECO、FREQCON区别

全功率变流器(金风直驱1500全功率变流器)

金风1500风力发电机组拥有SWICTH、VERTECO、FREQCON三种变流器,其中VERTECO变流器在金风1500装机中占有比重最大。FREQCON变流器在2008年国产化项目组在原有设计(德国Vensys公司)的基础上,进行了重新设计、选型改造等技术工作。

SWITCH变流器主电路原理图

VERTECO变流器主电路原理图

以上是SWITCH变流器和VERTECO变流器原理图,可以看出两种变流器原理和控制方式(SVPWM空间矢量控制)基本相同,整个电路可分为两个部分:整流和逆变。通过整流将发电机发出的不稳定的交流电(电机转速0~17.3rpm,电机电压0~690Vac,电压频率0~12.7Hz)变换成相对稳定的直流电;再通过逆变单元,把直流电逆变成与电网电压、频率、相位相匹配的交流电送入电网。

U1为网侧逆变功率模块,2U1和3U1为发电机侧整流功率模块,4U1为DC CHOPPER制动功率模块,3H1是预充电整流模块,电抗器2L1、电容器2C1(如果在处理故障中将机侧电容器断开,由于转速不稳定,定子发电波纹就不稳定,会产生很多电压尖峰,会烧毁功率单元,使母线电压偏高,所以不建议断开,可以选择性的断开几组)和发电机定子绕组(呈感性)组成LCL滤波器,滤波效果更好,电抗器1L1(网侧滤波电抗器比机侧滤波电抗器容量大)、电容器1C1变压器漏感构成LCL滤波,有效地滤除高次谐波,降低变流器对电网的高次谐波污染。

风机并网前3K11吸合,通过整流模块3H1整流后对直流母线进行充电,防止风机并网时对母线和功率单元有电流冲击,损坏元器件,发电机定子两路绕组出来连接两组整流模块2U1、3U1,采用双绕组发电机选用两组整流器(采用主动整流方式,整流部分采用可控的IGBT整流),相对来说减少单个功率单元和其他元件的容量,虽然双PWM背靠背方案全控器件数量较多,控制电路复杂,成本较高,但具有较高的效率,电流通过PWM控制逆变器1U1以后其实是脉宽波,再经过1L1、1C1滤波以后电流为正弦波,送入电网。制动功率模块4U1则是在某种原因使得直流母线上的电能无法正常向电网传递(电网电压跌落)或直流母线电压过高时,将多余的电能在电阻4R1和5R1上通过发热消耗掉,以避免直流母

线电压过高造成器件的损坏。

G

发电

机侧

主空

功补电容

二极管整流斩波升压制动单元网侧逆变

网侧主空开

变压器

预充电回路

35KV~

620V~

IGBT1IGBT2IGBT3IGBT4IGBT5IGBT6IGBT7IGBT8IGBT9IGBT10 Diode1Diode2

滤波电容

电流变送器

以上是FREQCON变流器原理图,整个电路也分为两个部分:整流和逆变。

在闭合网侧空开之前,需要给直流母排进行预充电,因为直流母排上带有大

容量电容器,若不预充电,则在闭合网侧空开时会对系统造成很大的电流冲击,在此过程中,与网侧IGBT反并联的二极管起到整流二极管(不可控整流)的作用。在母线电压达到+/-420Vac,网侧主空开闭合预充电完成,发电机转速达到并网要求时,电能经过二极管整流模块,采用两套三相全桥不可控整流方式(不可控整流的特点就是结构简单,造价低廉,电路中杂散电感(du/dt)几乎为0),将发电机发出的电压和频率不稳定的交流电变换成直流电,与全桥并联的电容起到滤波和稳压的作用,整流后的电压随着发电机转速和直流电流的变化而变化,为了获得相对稳定的直流电压1200Vdc,采用boost直流升压斩波电路(斩波升压三支IGBT模块,只有下桥臂和上桥臂反并联的二极管起作用)。斩波升压输出侧直接与网侧逆变直流侧相连,并联三重斩波(斩波相位相差120°)方式减小了发电机侧和逆变侧的电流波动,并联的支撑电容中点接地,将直流母线电压分成+/-600Vdc降低了变流器的绝缘等级,然后电能经过逆变单元(三相全桥有源逆变,SPWM控制方式)。将斩波升压得到的稳定直流电,转变成频率为50Hz电压为620V,相位与电网同相位的稳定的交流电,再经过变压器与电网相连,网侧六支IGBT模块构成三相,每相两支通过网侧电抗器相连。

制动单元:当直流母线上的电压过高(超过+/-650Vdc),制动单元工作,通过制动电阻、IGBT4模块下桥臂(上桥臂不作用),释放直流母线上过多的能量,维持母线电压。

放电回路:放电回路是在变流器停机后将母线上残留的能量通过放电电阻消

耗掉,保护机械设备和人身安全,其实就是给母线上的电容放电,在运行期间不起作用。

FREQCON变流器与VERTECO(SWITCH)变流器区别

1、工作方式有区别:

FREQCON变流器采用被动整流的方式,整流部分采用不可控的二极管桥式整流的方式,而VERTECO变流器采用主动整流方式,整流部分采用可控的IGBT 整流。

2、核心部件有区别:

(1)、 FREQCON变流器的核心部件为IGBT单元,10只IGBT单元结构完全一样,优点是结构简单,相互可以互换,拆卸比较方便,备品备件的种类较少。缺点是稳定性和抗干扰性能差。

(2)、VERTECO变流器的核心部件为变流器,应用已广泛,技术成熟,可靠性和稳定性优于IGBT单元。缺点是备品备件的种类有所增多(两种不同类型的变流器),不利因素是各个器件更加高度的整合,使得变流技术要求更高,而且更换一台变流器比更换一个IGBT的成本要高很多。

3、通讯方式的区别:

VERTECO变流器单元之间采用了光纤通信的交换数据,变流器和主控系统采用PROFIBUS总线的通信,除此以外变流器间又冗余了一条CAN BUS总线。而FREQCON变流器全部采用模拟信号,和主控系统也采用模拟信号通信方式,这从总线抗干扰性能考虑VERTECO变流器通信安全性和可靠性是高于FREQCON变流器。

4、冷却方式不同:

FREQCON变流器采用风冷的方式,VERTECO变流器采用水循环冷却方式,水冷的优点是水的比热系数大,同样体积的水和空气,在同样温升下,水吸收的热量大,同时,柜体采用散热管道铺设方式散热,有利于集中把热量排出塔架,也解决了塔架内部噪声大的问题。缺点是柜体结构较复杂,制造成本大,漏水可能引起故障和烧毁功率单元。风冷方式优点是结构简单,缺点是散热效率低。

5、柜体结构不同:

FREQCON变流器采用IGBT单元叠起来布置,FREQCON变流器这种设计的优点是节约空间,结构紧凑,节约材料。缺点是一旦一个元器件故障,比如发生击穿放电,有可能在物理上把临近的IGBT也烧坏,另外,缺少对直流母线电压的保护,容易发生雪崩效应,一个单元故障,其它单元容易发生连续损坏。VERTECO 变流器的变流器采用并排安装的方式,在结构上优于FREQCON变流器。

总体来说,全功率变流系统与电网的兼容性好,具有更宽范围内的无功功率调节能力和对电网电压的支撑能力。同时,变流系统先进的控制策略和特殊设计的制动单元使风机系统具有很好的低电压穿越能力,可不增加任何设备。通过独到的信号采集技术、接口技术等提高了变流装置系统的电磁兼容性,如直流环节的均压接地措施,有效减少了干扰。但是由于全功率变流器是双馈型的三倍左右,存在较高的功率损耗,技术要求极高,功率器件和冷却设备损耗也比较大,而双馈异步发电机只处理转差能量就可以控制电机的力矩和无功功率,变流器的最大容量仅为总机组容量的1/3左右,降低了变流器的造价,降低控制系统成本、

减少系统损耗,提高效率,低风速时能够根据风速变化,在运行中保持最佳叶尖速比以获得最大风能;高风速时储存或释放风能量,提高传动系统的柔性,使功率输出更加平稳,在最大输出功率时,转子和定子共同发出电能,变速恒频技术大幅延长了核心部件的使用寿命,同时显著提高发电量,但是对电网电压波动非常敏感,实现低电压穿越需要增加硬件升级软件,从电网友好型风机方面来看,全功率变流器应该是未来的一个主方向。

风力发电变流器水冷系统的优化设计

风力发电变流器水冷系统的优化设计 兆瓦级风力发电机变流器的散热一般采用空气冷却和水冷却两种方式。水冷有体积小、散热效率高和各器件易更换等优势,一般大兆瓦变流器都采用水冷方式。文章以某1.5MW风力发电机组为例,根据水冷系统运行出现的问题进行优化设计,并阐述了设备的优化选型思路,最后对关键问题的验证手段进行了分析。 标签:变流器;水冷系统;优化设计 前言 目前,在1.5MW和2MW机型上,约有65%的风机变流器使用水冷。在大兆瓦机型上,几乎全部采用水冷。从2005年开始,国内大多数风电整机厂家开始引进国外兆瓦级风力发电技术,而国内厂家直接采用进口水冷产品与进口变流器进行配套使用。由于国内风电整机厂家并未对水冷给予足够的关注,同时进口水冷产品厂家没有充分考虑国内、外使用环境的差异性,直接套用国外经验和产品,以致运行期间出现温度调节功能失效、温度压力突变等问题,基于此对系统进行设计优化和选型优化。 1 水冷系统出现的问题及优化设计研究 1.1 针对温度调节功能失效问题的优化设计 国外主流产品通常在水泵进口处设置温控阀,该温控阀是机械式自励调节。随着温度的逐步上升开始逐步导通水-风冷却器循环回路,使得其中一部分水直接回水泵,另一部分水则进入水-风冷却器进行循环;随着温度的升高,通过水-风冷却器的流量逐渐增加,直接回水泵的流量减少,直至最后冷却介质全部通过水-风冷却器循环。由于系统温升(降)波动大,机械式的温度调节速度无法与电动调节的方式配比,而且由于内部结构的限制,机械式温控阀往往容易出现受异物堵塞的问题。 针对上述现象,优化设计的思路是在与空气换热器的进口管路连接的循环管路上设置一电动三通阀,且该电动三通阀的一支路与和空气换热器出口管路连接的循环管路连通,从而控制流经空气换热器回路的流量。根据水温的变化,三通阀在一定温度范围内自动调节阀门工作角度从而控制流经换热器的流量比列,当水温过低时,使一部分从被冷却器件中过来的热水不经过空气换热器降温,直接回到主循环泵的入口,从而使循环水温回升。优化后的工艺流程图详见图1。 1.2 针对温度、压力突变问题的优化设计 国外主流产品通过隔膜式膨胀罐、安全阀的组合作为缓冲单元,罐内预充一定气体压力,通过膨胀罐把液压能转化成弹性势能储存起来并维持泵出口压力的稳定。当泵出口压力出现波动时,膨胀罐释放或储存能量参与系统的调节,当系

风电变流器简介

风电变流器简介 风能作为一种清洁得可再生能源,越来越受到世界各国得重视,我国风能资源丰富,近几年来国家政策也大力扶持风电产业。我公司自06年成功研制第一台风电变流器以来,不断寻求技术革新严把质量关,目前已实现规模化得生产。 本文将针对市场上主流得双馈型风电变流器进行简介。 QHVERT-DFIG型风电变流器系统功能 变流器通过对双馈异步风力发电机得转子进行励磁,使得双馈发电机得定子侧输出电压得幅值、频率与相位与电网相同,并且可根据需要进行有功与无功得独立解耦控制。 变流器控制双馈异步风力发电机实现软并网,减小并网冲击电流对电机与电网造成得不利影响。 变流器提供多种通信接口,如Profibus, CANopen等(可根据用户要求扩展),用户可通过这些接口方便得实现变流器与系统控制器及风场远程监控系统得集成控制。 变流器配电系统提供雷击、过流、过压、过温等保护功能。 变流器提供实时监控功能,用户可以实时监控风机变流器运行状态。变流器可根据海拔进行特殊设计,可以按客户定制实现低温、高温、防尘、防盐雾等运行要求。 QHVERT-DFIG型风电变流器基本原理 变流器采用三相电压型交-直-交双向变流器技术,核心控制采用具有快速浮点运算能力得“双DSP得全数字化控制器”;在发电机得转子侧

变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网与最大功率点跟踪控制功能。功率模块采用高开关频率得IGBT功率器件,保证良好得输出波形。这种整流逆变装置具有结构简单、谐波含量少等优点,可以明显地改善双馈异步发电机得运行状态与输出电能质量。这种电压型交-直-交变流器得双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪得发电机有功与无功得解耦控制,就是目前双馈异步风力发电机组得一个代表方向。 变流器工作原理框图如下所示: QHVERT-DFIG型风电变流器系统构成

风电变流器简介

风电变流器简介 快速浮点运算能力的“双DSP的全数字化控制器”;在发电机的转子压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网变流器采用三相电压型交-直-交双向变流器技术,核心控制采用具有防尘、防盐雾等运行要求。 变流器可根据海拔进行特殊设计,可以按客户定制实现低温、高温、和最大功率点跟踪控制功能。功率模块采用高开关频率的IGBT功率QHVERT-DFIG型风电变流器基本原理 器件,保证良好的输出波形。这种整流逆变装置具有结构简单、谐波制,是目前双馈异步风力发电机组的一个代表方向。 变流器工作原理框图如下所示: 统,实现了基于风机最大功率点跟踪的发电机有功和无功的解耦控能质量。这种电压型交-直-交变流器的双馈异步发电机励磁控制系含量少等优点,可以明显地改善双馈异步发电机的运行状态和输出电变流器提供实时监控功能,用户可以实时监控风机变流器运行状态。侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电本文将针对市场上主流的双馈型风电变流器进行简介。 型风电变流器系统功能 变流器通过对双馈异步风力发电机的转子进行励磁,使得双馈发电机关,目前已实现规模化的生产。 06年成功研制第一台风电变流器以来,不断寻求技术革新严把质量风能作为一种清洁的可再生能源,越来越受到世界各国的重视,我国变流器配电系统提供雷击、过流、过压、过温等保护功能。 的定子侧输出电压的幅值、频率和相位与电网相同,并且可根据需要风能资源丰富,近几年来国家政策也大力扶持风电产业。我公司自求扩展),用户可通过这些接口方便的实现变流器与系统控制器及风进行有功和无功的独立解耦控制。 机和电网造成的不利影响。 变流器提供多种通信接口,如Profibus, CANopen等(可根据用户要场远程监控系统的集成控制。 变流器控制双馈异步风力发电机实现软并网,减小并网冲击电流对电转子侧逆变器、直流母线单元、电网侧整流器。 原理图如下: 控制器、监控界面等部件。 变流器主回路系统包含如下几个基本单元: QHVERT-DFIG型风电变流器系统构成 变流器由主电路系统、配电系统以及控制系统构成。包括定子并网开关、整流模块、逆变模块、输入/输出滤波器、有源Crowbar电路、功率柜主要由功率模块、有源Crowbar等构成。 功率柜:主要负责转子滑差能量的传递。 并网柜:主要用于变流器与发电机系统和电网连接控制、一些控制信控制柜主要由主控箱、PLC、滤波器、电源模块等组成。 并网柜主要由断路器、接触器、信号采集元件、UPS、加热器、信号变流器控制结构框图如下: 接口部分等构成。 号的采集以及二次回路的配置。 上述各功能分配到控制柜、功率柜、并网柜中: 约了机舱空间,柜中还可提供现场调试的220V电源。 成有并网控制系统,用户无须再配置并网柜,提高了系统集成度,节制指令,控制变流器的运行状态 控制系统由高速数字信号处理器(DSP)、人机操作界面和可编程逻配电系统由并网接触器、主断路器、继电器、变压器等组成,自身集辑控制器(PLC)共同构成。整个控制系统配备不间断电源(UPS),控制柜:控制柜主要对采集回的各种模拟数字信号进行分析,发出控便于电压跌落时系统具有不间断运行能力。 成功满发,截止目前运行状态稳定。 附:北京清能华福风电技术有限公司简介 目前在赤峰、大安等风场正陆续进行变流器吊装施工。 限公司自主研发的1.5MW风电变流器在国电联合动力技术有限公司北京清能华福风电技术有限公司成立于2006年7月,由“国内高压变求。 2009年12月28日经过2天的现场调试,北京清能华福风电技术有及其现场调试所相关技术人员的支持下,已于哲里根图风场全部并网公司坐落于中关村科技园,依托清华大学电力系统国家重点实验室的厚的资金、科研、市场、服务实力,为国家大力鼓励、扶持的风力发电事业,提供其拥有自主知识产权的核心装备——兆瓦级风力发电机变流器及其电控系统。一流技术以及利德华福专业化、规模化、现代化的生产厂房,凭借雄以达到满功率发电和连续运行的要求,系统品质达到了风场应用的要资控股,是专门从事开发、制造风电变流器与控制系统产品的高新技术企业。 频器领域最具影响力的企业”——北京利德华福电气技术有限公司投3月至今,在河北建设投资公司和东方汽轮机有限公司的支QHVERT-DFIG型风电变流器具有以下一些特点: 优异的控制性能 完备的保护功能 少发电机损耗,提高运行效率,提升风能利用率。 风速范围内的变速恒频发电,改善风机效率和传输链的工作状况,减 型风电变流器技术特征 型风电变流器可以优化风力发电系统的运行,实现宽良好的电网适应能力 具备高可靠性,适应高低温、高海拔等恶劣地区运行 变流器在河北海兴风电场成功并网发电,通过240小时验收,目前已无故障连续运行8000多小时。成功经历了夏季高温、冬季降雪后的持下,北京清能华福风电技术有限公司自主研发生产的1.5MW风电QHVERT-DFIG型风电变流器最新动态 模块化设计,组合式结构,安装维护便捷 2丰富的备品备件;专业、快速的技术服务 低温、海边盐雾等运行环境的考验,事实证明了:清能华福变流器可

风电变流器项目申报材料

风电变流器项目 申报材料 规划设计/投资方案/产业运营

摘要说明— 目前,风电作为应用最广泛和发展最快的新能源发电技术,已在全球 范围内实现规模化应用。在风力发电设备中,风电变流器是风力发电机组 不可缺少的能量变换单元,是风电机组的关键部件之一。风电变流器的行 业规模一般以风电机组装机容量衡量。 该风电变流器项目计划总投资14381.39万元,其中:固定资产投资11092.81万元,占项目总投资的77.13%;流动资金3288.58万元,占项目 总投资的22.87%。 达产年营业收入26846.00万元,总成本费用21187.27万元,税金及 附加244.59万元,利润总额5658.73万元,利税总额6683.83万元,税后 净利润4244.05万元,达产年纳税总额2439.78万元;达产年投资利润率39.35%,投资利税率46.48%,投资回报率29.51%,全部投资回收期4.89年,提供就业职位419个。 报告内容:项目总论、投资背景及必要性分析、市场调研预测、产品 规划、项目建设地研究、项目土建工程、工艺先进性分析、项目环保研究、职业保护、风险评价分析、项目节能分析、项目实施计划、项目投资计划 方案、经济效益评估、综合评价结论等。 规划设计/投资分析/产业运营

风电变流器项目申报材料目录 第一章项目总论 第二章投资背景及必要性分析第三章产品规划 第四章项目建设地研究 第五章项目土建工程 第六章工艺先进性分析 第七章项目环保研究 第八章职业保护 第九章风险评价分析 第十章项目节能分析 第十一章项目实施计划 第十二章项目投资计划方案 第十三章经济效益评估 第十四章招标方案 第十五章综合评价结论

FREQCON变流器简介-17页word资料

FREQCON变流简介 ——by郭锐FREQCON变流器总体结构图 各部分简介 变压器支架 620/400V自耦变压器——提供机组动力用电和控制用电。总容量40KVA,副边22.4KVA 提供主控柜,变流柜用电。17.5KVA 提供机舱用电。 IGBT2冷却风扇——风冷系统循环动力 制动电阻 制动电阻箱——消耗直流母线上过高的能量。网侧故障后的能量消耗,低电压穿越。 电抗器支架 网侧空开——风机的并网与脱网控制。过流、短路等保护功能。注意保护后复位按钮弹出需回复。 电流互感器——完成电流变送。变比:1/2000。原理:二次侧短路的特殊变压器,二次侧相当于一个电压源。 3组(六个)交流电抗器——与网侧电容、变压器构成LCL滤波。 3个直流电抗器——直流斩波升压电抗器。 第 1 页

变流柜 变流柜由低压配电柜、主控柜、IGBT柜1、IGBT柜2、电容柜5部分组成。 变流柜背后风道 变流柜模块图 每只IGBT模块包含一个智能半桥模块(半桥由串联的两个IGBT和与之反并联的二极管组成,分别称为上桥臂和下桥臂)、16只支撑电容、4只吸收电容、4只均压电阻、1块过压保护板、直流端2只快熔组成。 构成三相全桥不可控整流。 变流器在整个风机的作用 叶轮系统在风作用下受到气动扭矩Ta,叶轮——发电机系统转动会因轴承滚动摩擦、风阻等受到与选中方向相反的摩擦力矩Tf,叶轮带动发电机转动,转子上的永磁体旋转切割定子绕组产生感应电势,如果如果定子绕组中有电流流过将产生电枢反应,通过磁场的作用产生阻碍转子转动的电磁力矩Te。在这几个扭矩作用下,叶轮——发电机系统刚体动力学方程如如上所示。由方程可知当Ta>Tf+Te时,叶轮——发电机系统将在启动力矩作用下转速上升。反之转速将下降。Tf基本为恒量。因此想要调节叶轮转速可以通过调节Ta、Te。由此产生了两种调节方法:一个是变桨调节起动扭矩;另一个是调节发电机电磁扭矩。因此从控制角度来看,变流器需要具有调节发电机电磁扭矩的作用。从能量角度来看风能转化成叶轮系统旋转机械能再通过发电机转换成电能,变流系统需要将发电机发出电能转换成与电网频率、相位、幅值相对应的交流电。完 第 2 页

变流器

谐振变流器 随着电力电子技术的不断发展和完善,我国开关电源已经得到了本质上的转变,开始由传统电源模式转变为高功率因数和高效率开关,不仅能够消除谐波带来的污染,还能够减少能源浪费,全面推动了开关电池的发展进程。 本次研究过程中主要从交错并联LLC谐振变流器出发,分析其软开关特性对电源系统的影响,在国内外文献资料基础上深入分析交错并联LLC谐振变流器的作用和特征,明确该软开关电路的基本组成和工作原理。结合所学内容,在电流波纹、电压波纹限制条件下设计了一种交错并联LLC谐振变流器的均流方案,通过计算输出电容、开关频率、Boost电感等,实现均流效果的全面调整。 运用仿真软件搭建了单相APFC模型,完成了包括驱动电路、采样电路等硬件设计和控制程序设计,按照计算所得参数对各级谐振回路进行设置,在不同控制条件下验证交错并联LLC谐振变流器的输出波形,分析其是否能够实现LLC交错并联与开关管零电压开通,以验证交错并联LLC谐振变流器的动态相应性能及滤波效果。研究结果显示,交错并联LLC谐振变流器能够有效减小波纹、降低噪声,其满载时功率因数可达0.97,整机效率超过0.8,实验设计具有非常显著的可靠性和有效性。 近年来我国已经加大了开关电源的重视力度,开始从软开关技术出发减少开关电源功率损耗,提升其控制的可靠性、有效性和经济性。软开关技术能够在“在开关管开通或关断之前,将电压或电流降低到零,从而降低开关损耗”,既能够满足稳定控制需求,又能够结合谐振电路消波减耗,已经成为新时期开关电源控制电路发展的核心趋势。 为此,技术人员开始借助PWM技术实现调压滤波,构建了以PWM控制拓扑为核心的开关控制电路。随着软开关技术研究的不断深入,技术人员发现调整谐振变换器控制模式能够从根本上提升功率密度,降低能源损耗。与此同时,这种闭环控制回路结构较为简单,控制可靠性良好。尤其是基于交错并联LLC谐振变流器的控制系统,能够实现超高负载下的二次侧均流,避免了传统谐振变换器控制过程中可能出现的电流波纹和电压波纹,拉开了软开关发展的新序幕。 交错并联LLC谐振变流器主要以在单周期控制为核心,依照小信号模型和频率特性曲线形成对应电路参数和补偿参数,在LLC交错技术全面提升其变换器等级和功率密度。在上述控制优化后,交错并联LLC谐振变流器能够通过简单电路结构减少输出电容的电流应力,在提升开关电源可靠性的基础上,延长了电源的使用寿命。该技术理论上可电流波纹减小一般拓扑的20%且将整机效率提升到0.8以上,远远超过一般开关电源控制回路功率因数,具有非常高的研究价值和意义。 20世纪70年代以来,国内外科学家开始对软开关技术进行研究,在开关电源软开关控制需求基础上研究不同控制回路。进入21世纪后,LLC谐振变换器逐渐被广泛应用,研究人员开始分析该变换器的工作特性,研究其在开关电源软控制中应用效果,并对LLC谐振变换器控制方式进行调整,理论框架逐步完善。 (1)开关电源的研究现状。开关电源理论研究起源于19世纪中后期。该时期电源控制主要通过硬开关实现,控制过程中很容易出现由工作频率过高引起的多次动作,造成开关噪声和能量损耗,见图1-1。 为了降低硬开关对系统能耗的影响,提升开关电源控制性能和效果,19世纪末相关人员调整了开关电源的控制拓扑,在电容、电感等基础元件上形成谐振回路。上述谐振原理能够将栅-源电压逐时段降低到0V,此时驱动开关管后,电路中不存在能量损耗,这是软开关控制的基本原理,见图1-2。(2)LLC谐振变换器研究现状。依照谐振变换器结构的不同,国内外研究人员将其划分为串联谐振变换器、并联谐振变换器、LCC谐振变换器和LLC谐振变换器四种。其中,串联分压模式电压增益<1,在改变谐振元件阻抗调整电压大小时很容易出现频率波动造成的电压不稳,控制效果欠佳;并联均流模式原边电流较大,在运行过程中受原边阻抗影响,系统功能损耗上升,经济性欠佳;LCC在串联分压和并联均流基础上进行调整(见图1-3),在保持原边电流不变的基础上适当提升电压增益,但运行中当输入电压差较大时,开关损耗非常严重,系统可靠性欠佳。

风电变流器简介

风电变流器简介 风能作为一种清洁的可再生能源,越来越受到世界各国的重视,我国风能资源丰富,近几年来国家政策也大力扶持风电产业。我公司自06年成功研制第一台风电变流器以来,不断寻求技术革新严把质量关,目前已实现规模化的生产。 本文将针对市场上主流的双馈型风电变流器进行简介。 QHVERT-DFIG型风电变流器系统功能 变流器通过对双馈异步风力发电机的转子进行励磁,使得双馈发电机的定子侧输出电压的幅值、频率和相位与电网相同,并且可根据需要进行有功和无功的独立解耦控制。 变流器控制双馈异步风力发电机实现软并网,减小并网冲击电流对电机和电网造成的不利影响。 变流器提供多种通信接口,如Profibus, CANopen等(可根据用户要求扩展),用户可通过这些接口方便的实现变流器与系统控制器及风场远程监控系统的集成控制。 变流器配电系统提供雷击、过流、过压、过温等保护功能。 变流器提供实时监控功能,用户可以实时监控风机变流器运行状态。 变流器可根据海拔进行特殊设计,可以按客户定制实现低温、高温、防尘、防盐雾等运行要求。 QHVERT-DFIG型风电变流器基本原理 变流器采用三相电压型交-直-交双向变流器技术,核心控制采用具有快速浮

点运算能力的“双DSP的全数字化控制器”;在发电机的转子侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网和最大功率点跟踪控制功能。功率模块采用高开关频率的IGBT功率器件,保证良好的输出波形。这种整流逆变装置具有结构简单、谐波含量少等优点,可以明显地改善双馈异步发电机的运行状态和输出电能质量。这种电压型交-直-交变流器的双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪的发电机有功和无功的解耦控制,是目前双馈异步风力发电机组的一个代表方向。 变流器工作原理框图如下所示: QHVERT-DFIG型风电变流器系统构成 变流器由主电路系统、配电系统以及控制系统构成。包括定子并网开关、整

简易变流器的设计

简易变流器的设计 一、方案设计 以降压-升压型(Buck-Boost)变换器为主电路,通过单片(89C51)扩展A/D转换器,不断检测输出电压,并根据电源输出(反馈电压)与预设电压差值,修改脉冲占空比,并输出控制功率开关管,以便得到期望的输出电压值,并根据差值调用 PID 算法再次修改脉宽使输出电压稳定. 二、主要原理: (1)主电路的结构及其工作原理: 降压-升压型(Buck-boost)变换型电路主要由开关管,二极管,电感和电容组成(如图 2.1)。其输出电压的极性与输入电压相

反。在T on期间开关管T导通,能量从输入电源流入并储存在电感Lf 中,此时二极管口截止,由滤波电容Cf向负载提供电流;在Toff期间,开关管T截止,由于电感中的电流不能突变,故电感电流流经负载并向电容充电,二极管D导通。可见,在Buck-Boost变换器中,能量首先储存在电感中,然后,由电感向负载释放能量。由电感的充放电过程可以推导出输入/输出关系为: Vo=(Ton/T off)Vi=(D/1-D)V i 由式中可知,改变占空比D,就能改变输出电压,并能等到低于或高于输入电压的输出电压。 当D=0.5时,V o=V i; 当D<0.5时,V o0.5时,V o>V i 为升压型; (2)开关的设计: 开关管采用达林顿管,由于它采用两个三极管进行级联,其放大倍数是两个管子放大倍数的乘积,因而具有很高的放大倍数,通过级联,可获取大的电流输出,对于提高电源的输出功率,有一定的作用.(如图2..2)

(3)反馈电路的设计: 反馈电路使用 ADC0832 采样输出电压,该器件只能转换 0 到 5 伏的电压,超 过了会烧毁芯片,当要采集大的电压时,可以通过电阻分压再采样,在程序中再 乘以一个分压系数,以代表输出电压值.在这里按要求电压调节范围在8~18计算。占空比应该在0.4~0.6之间。也就是说,考虑到输出电压最高可能突变为27V 。由此计算出采样电阻R1和R2比值再进行取值。考虑到对输出电流和功率的影响所以采样 电阻应该远远大于负载电阻。大致图如2-3 图 (4)单片机的选用: 单片机采用89C51型单片机,主要是根据电源输出(反馈电压)与预设电压差值,修改脉冲占空比,并输出控制功率开关管,以便得到期望的输出电压值。由于设计任务要求输出电压为12V ,所以为减少

变流器功能原理

风电变流器原理和功能 风能作为一种清洁的可再生能源,越来越受到世界各国的重视,我国风能资源丰富,近几年来国家政策也大力扶持风电产业。 风电变流器系统功能 变流器通过对双馈异步风力发电机的转子进行励磁,使得双馈发电机的定子侧输出电压的幅值、频率和相位与电网相同,并且可根据需要进行有功和无功的独立解耦控制。 变流器控制双馈异步风力发电机实现软并网,减小并网冲击电流对电机和电网造成的不利影响。 变流器提供多种通信接口,如Profibus(现场总线), CANopen(硬件协议)等(可根据用户要求扩展),用户可通过这些接口方便的实现变流器与系统控制器及风场远程监控系统的集成控制。 变流器配电系统提供雷击、过流、过压、过温等保护功能。 变流器提供实时监控功能,用户可以实时监控风机变流器运行状态。 变流器可根据海拔进行特殊设计,可以按客户定制实现低温、高温、防尘、防盐雾等运行要求。 风电变流器基本原理 变流器采用三相电压型交-直-交双向变流器技术,核心控制采用具有快速浮点运算能力的“双DSP的全数字化控制器”;在发电机的转子侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网和最大功率点跟踪控制功能。功率模块采用高开关频率的IGBT功率器件,保证良好的输出波形。这种整流逆变装置具有结构简单、谐波含量少等优点,可以明显地改善双馈异步发电机的运行状态和输出电能质量。这种电压型交-直-交变流器的双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪的发电机有功和无功的解耦控制,是目前双馈异步风力发电机组的一个代表方向。 变流器工作原理框图如所示: 风电变流器系统构成

基于TOPSwitch的反激变流器反馈电路的优化设计

基于TOPSwitch的反激变流器反馈电路的优化设计 作者:姜 勇, 谢晔源 摘要:介绍了利用TOPSwitch构成的反激变流器.井从传递函数补偿的角度分析了反馈电路的设计方法。通过反馈电路结构和参数的调整,变流器的输出电压纹波大幅度减小,抗干扰性能得到了加强,效率有所提高。 关键词:单片开关电源;反激;反馈:传递函数 0 引言 近年来,中小功率的开关电源向着单片集成化的方向发展。1997年,美国功率集成公司(Power Integration Inc,简称PI公司)推出三端单片电源TOPSwitch-II系列。该系列产品将MOSFET和控制电路集成在一起,不仅提高了电源效率,而且使电源的体积和重量大为减小。 由于TOP系列单片电源的集成度很高,外围电路十分简单,本文在试验的基础上分析并改进了反馈网络,验证了其对电路性能提高的有效性。 1 TOPSwitch开关电源反馈电路设计 TOPSWitch的外围电路主要分为输入整流滤波电路、钳位保护电路、高频变压器、输出整流滤波电路和反馈电路5部分。其中前4部分电路设汁可以在PI公司的网站上找到专用的设计软件进行计算,电路的参数和器件型号都能满足TOPSwitch开关电源的需要。 至于反馈电路,由于PI公司没有专用的工具,所以必须根据电路的实际情况进行设计。单片开关电源的反馈形式虽然有很多,但可以归结为图1所示的4种基本形式。其中图1(a)为基本反馈电路,电路简单但稳压性能较差,负载调整率只能达到S1=±5%;图1(b)为改进型反馈电路,增加了一只稳压管D5,可以使S1改善到±2%;图1(c)为带稳压管的光耦反馈电路,相当于给TOPSwitch增加一级外部误差放大器,再与内部误差放大器配合使用,可以对输出电压进行调整,S1可到达±1%;图1(d)为带TL431的光耦反馈电路,用三端线性稳压管代替图l(c)中的稳压管D5,从而对输出电压进行精细调整,S1=±O.2%。

变流器原理简介

变频器原理介绍 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM 波形,中间直流环节为滤波、直流储能和缓冲无功功率。 变频器选型: 变频器选型时要确定以下几点: 1) 采用变频的目的;恒压控制或恒流控制等。 2) 变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。 3) 变频器与负载的匹配问题; I.电压匹配;变频器的额定电压与负载的额定电压相符。 II. 电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 III.转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。 4) 在使用变频器驱动高速电机时,由于高速电机的电抗小,

高次谐波增加导致输出电流值增大。因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。 5) 变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。 6) 对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量要放大一挡。 变频器控制原理图设计: 1) 首先确认变频器的安装环境; I.工作温度。变频器内部是大功率的电子元件,极易受到工作温度的影响,产品一般要求为0~55℃,但为了保证工作安全、可靠,使用时应考虑留有余地,最好控制在40℃以下。在控制箱中,变频器一般应安装在箱体上部,并严格遵守产品说明书中的安装要求,绝对不允许把发热元件或易发热的元件紧靠变频器的底部安装。 II. 环境温度。温度太高且温度变化较大时,变频器内部易出现结露现象,其绝缘性能就会大大降低,甚至可能引发短路事故。必要时,必须在箱中增加干燥剂和加热器。在水处理间,一般水汽都比较重,如果温度变化大的话,这个问题会比较突出。 III. 腐蚀性气体。使用环境如果腐蚀性气体浓度大,不仅会腐蚀元器件的引线、印刷电路板等,而且还会加速塑料器件的老

风电变流器

风电变流器 摘要:随着智能电网概念的普及,各国开始注重新能源的利用。风能,作为一种清洁的可再生能源,已开始得到大量利用。但是风能的不稳定性,非连续性也是风能利用的一大难题,风力发电要更好地将风电接网利用,必须在风机上有技术性的突破,变流器是风力发电的一大重要技术,随着风电规模的不断扩大,风电变流器也随之不断推陈出新。本文以双馈型和直驱型变流器为例浅析了风电变流器的技术问题。 关键词:智能电网风力发电双馈型变流器直流型变流器 1.智能电网 随着全球资源的逐渐稀缺、环境压力的不断增大、电力市场化进程的不断深入以及用户对电能可靠性和质量要求的不断提升,电力行业正面临着前所未有的挑战和机遇,建设更加安全、可靠、环保、经济的电力系统已经成为全球电力行业的共同目标。在主张低碳经济与可再生能源的浪潮中,风能、太阳能、生物能等将是今后能源来源的重要途径,欧美许多发达国家的电网企业正积极推进技术革新和管理转变,普遍将智能电网作为未来电网的发展目标之一。美国智能电网关注网络基础架构的升级更新,同时最大限度的利用信息技术,实现机器智能对人工的替代。欧洲智能电网关注可再生能源的分布式能源的发展,并带动整个行业发展模式的转变。中国智能电网关注对电力生产和管理信息的数字化获取和整合,促进系统安全可靠性、企业效益和服务水平的持续提高。值得注意的是我国电网公司在积极开展“数字化电网、信息化企业”建设的同时,也在密切关注全球电力行业发展的这一新动向。 智能电网,是以实现地球可持续发展为总目标,维护能源的优化利用和降低碳排放量,从而达到生态平衡和环境稳定。 2.风能及风力发电 在自然界中,风是一种可再生、无污染而且储量巨大的能源。随着全球气候变暖和能源危机,各国都在加紧对风力的开发和利用,尽量减少二氧化碳等温室气体的排放,保护我们赖以生存的地球。在自然界的能源中,风能是极其丰富的。据粗略估计,近期可以利用的风能总功率约为106~107兆瓦,这个数值比全世界可以利用的水力资源大10倍。但是,这笔巨大的自然财富还有待人类去大力开发。风力发电可分为离网型和并网型两种。离网型风力发电规模较小,通过蓄电池等储能装置或与其它能源发电技术相结合(如风电-水电互补系统、风电-柴油机组联合供电系统),可以解决偏远地区的供电问题;并网型风力发电是指接入电力系统运行且规模较大的风力发电场,并网运行的风力发电场可以得到大电网的补偿和支撑,更加充分地开发可利用的风力资源,是风力发电的主要发展方向。

全功率变流器风电机组的工作原理及控制策略

第五章全功率变流器风电机组的工作原理及控制策略 5.1 全功率变流器风电机组的工作原理 (2) 5.1.1全功率变流器风电机组传动链形式 (2) 5.1.2同步发电机 (2) 5.1.3永磁同步风力发电机结构及特点 (5) 5.1.4电励磁同步风力发电机结构及特点 (15) 5.2 全功率变流器风电机组变流器 (16) 5.2.1 电机侧变流器控制策略 (18) 5.2.1 电网侧变流器控制策略 (19)

5.1 全功率变流器风电机组的工作原理 5.1.1全功率变流器风电机组传动链形式 随着现代风电机组的额定功率呈现上升趋势,风轮桨叶长度逐渐增加而转速降低。例如:额定功率为5MW的风电机组桨叶长度超过60米,转子额定转速为10rpm左右。当发电机为两对极时,为了使5MW风力发电机通过交流方式直接与额定频率为50Hz的电网相连,机械齿轮箱变速比应为150。齿轮箱变速比的增加,给兆瓦级风电机组变速箱的设计和制造提出了挑战。风电机组功率及变速箱变速比增大时,其尺寸、重量及摩擦磨损也在增加。作为另外一种选择,风力发电机可以采用全功率变流器以AC/DC/AC的方式与电网相连。 全功率变流器是一种由直流环节连接两组电力电子变换器组成的背靠背变频系统。这两个变频器分别为电网侧变换器和发电机侧变换器。发电机侧变换器接受感应发电机产生的有功功率,并将功率通过直流环节送往电网侧变换器。发电机侧变换器也用来通过感应发电机的定子端对感应发电机励磁。电网侧变换器接受通过直流环节输送来的有功功率,并将其送到电网,即它平衡了直流环节两侧的电压。根据所选的控制策略,电网侧变换器也用来控制功率因数或支持电网电压。 5.1.2同步发电机 发电系统使用的同步发电机绝大部分是三相同步发电机。同步发电机主要包括定子和转子两部分。定子是同步发电机产生感应电动势的部件,由定子铁芯、三相电枢绕组和起支撑及固定作用的机座组成。转子的作用是产生一个强磁场,并且可以由励磁绕组进行调节,主要包括转子铁心、励磁绕组、滑环等。同步发电机的励磁系统一般分为两类,一类是用直流发电机作为励磁电源的直流励磁系统,另一类是用整流装置将交流变成直流后供给励磁的整流励磁系统。发电机容量大时,一般采用整流励磁系统。同步发电机是一种转子转速与电枢电动势频率之间保持严格不变关系的交流电机。 同步发电机的转子基木上是一个大的电磁铁。磁极有凸极和隐极两种结构。凸极转子结

风力发电机组变流器基本原理

1、双馈型风力发电系统的运行原理 双馈型风力发电系统结构图如图1所示,由风轮机、齿轮箱、变桨结构、偏航机构、双馈电机、变流器、变压器、电网等构成。其工作过程为:当风吹动风轮机转动时,风轮机将其捕获的风能转化为机械能再通过齿轮箱传递到双馈电机,双馈电机将机械能转化为电能,再经变流器及变压器将其并入电网。通过系统控制器及变流器对桨叶、双馈电机进行合理的控制使整个系统实现风能最大捕获,同时,通过对变桨机构、变流器及Crowbar 保护电路的控制来应对电力系统的各种故障。 双馈异步发电机的定子与转子两侧都可以馈送能量,由于转子侧是通过变频器接入的低频电流起到了励磁作用,因此又名交流励磁发电机。双馈异步发电机主机结构特点是:定子与一般三相交流发电机定子一样,具有分布式绕组;转子不是采用同步发电机的直流集中绕组,而是采用三相分布式交流绕组,与三相绕线式异步机的转子结构相似。正常工作时,定子绕组并入工频电网,转子绕组由一个频率、幅值、相位都可以调节的三相变频电源供电,转子励磁系统通常采用交-直-交变频电源供电。 图1、双馈风力发电系统结构图 双馈异步发电机在稳态运行时,定子旋转磁场和转子旋转磁场在空间上保持相对静止,此时有如下数学关系表达式: 12 r n n n =±2160f n n f r p ±=

12 11 r n n n s n n ?==±式中,1n 、r n 、2n 分别为定子电流产生磁场的旋转速度、转子旋转速度和转子电流产生磁场相对于转子的旋转速度,1f 、2f 分别为定、转子电流频率,p n 为发电机极对数,s s n n n s ?=为发电机的转差率。由上式可知,当发电机转子转速r n 发生变化时,若调节转子电流频率2f 相应变化,可使1f 保持恒定不变,实现双馈异步发电机的变速恒频控制。当r n <1n 时,电机处于亚同步速运行状态,转子旋转磁场相对于转子的旋转方向与转子旋转方向相同,变频器向转子提供交流励磁,定子向电网馈出电能;当r n >1n 时,电机处于超同步速运行状态,转子旋转磁场相对于转子的旋转方向与转子旋转方向相反,此时定、转子均向电网馈出电能;当r n =1n 时,2f =0,变频器向转子提供直流励磁,此时电机作为普通隐极式同步发电机运行。 双馈电机转子侧接变流器,其调速的基本思想就是要在转子回路上串入附加电势,通过调节附加电势的大小、相位和相序来实现双馈调速。与传统的直流励磁同步发电机相比,双馈异步发电机励磁系统的调节量由一个变为三个,即励磁电流的幅值、频率和相位。所以,调节励磁不仅可以调节发电机的无功功率,还可以调节发电机的有功功率和转子转速。因此,该电机在提高电力系统稳定性、变速运行能力方面有着优良的特性。 2.变速恒频双馈风力发电机运行工况 2.1双馈电机在不同工作状态下的功率分布流程 从上面对双馈电机的分析,我们可以建立双馈电机在不同情况下的运行状态,并且同时分析在该种情况下的功率流程。主要讨论的是定子侧功率1P (向电网输出电能时为正,吸收电网电能时为负),转差功率s P (向电网馈送电能时为正,吸收电网电能时为负)和机械功率mec P (电机吸收机械功率为正,电机输出机械功率时为负)。 1)双馈电机运行于超同步发电机情况下:

光伏逆变器简介(最全)

光伏逆变器的概述: 一:逆变器的概述: 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。

光伏逆变器产品发展历程: SMA是全球最早生产光伏逆变器的生产企业,占全球市场33%左右的市场份额,为全球光伏逆变器领军企业,其产品发展历程具有一定的代表性。 SMA公司光伏逆变器产品发展情况 国内外技术对比分析: 目前我国在小功率逆变器上与国际处于同一水平,在大功率并网逆变器上,合肥阳光电源大功率逆变器2005年已经批量向国内、国际供货。该公司250KW、500KW等大功率产品都取得了国际、国内认证,部分技术指标已经超过国外产品水平,并在国内西部荒漠、世博会、奥运场馆等重点项目上运行,效果良好。

光伏逆变器供应企业 国内逆变器的主要生产企业

光伏逆变器的分类:光伏逆变器按宏观可分为: 1.普通型逆变器 2.逆变/控制一体机 3.邮电通信专用逆变器 4.航天、军队专用逆变器

1.按逆变器输出交流电能的频率分: (1)工频逆变器 工频逆变器的频率为50~60Hz的逆变器 (2)中频逆器 中频逆变器的频率一般为400Hz到十几kHz (3)高频逆变器 高频逆变器的频率一般为十几KHz到MHz。

?按逆变器输出的相数分可分为: (1)单相逆变器 (2)三相逆变器 (3)多相逆变器 ?按照逆变器输出电能的去向分可分为:(1)有源逆变器 (2)无源逆变器 ?按逆变器主电路的形式分可分为:(1)单端式逆变器 (2)推挽式逆变器 (3)半桥式逆变器 (4)全桥式逆变器

相关文档