文档库 最新最全的文档下载
当前位置:文档库 › 碘量法测定六价铬镀液中的三氧化铬和三价铬_郭崇武

碘量法测定六价铬镀液中的三氧化铬和三价铬_郭崇武

碘量法测定六价铬镀液中的三氧化铬和三价铬_郭崇武
碘量法测定六价铬镀液中的三氧化铬和三价铬_郭崇武

?

48 ?

【分析测试】

碘量法测定六价铬镀液中的三氧化铬和三价铬

郭崇武

(广州超邦化工有限公司,广东 广州 510460)

摘要:改进了六价铬镀铬溶液中三氧化铬和三价铬的分析方法。先用碘量法测定三氧化铬的浓度,然后在弱酸性条件下,不加硝酸银作催化剂,用过硫酸铵将三价铬氧化成六价铬,用碘量法测定六价铬的总量,减去镀液中初始六价铬的量,即得到三价铬的质量浓度。该方法与硝酸银催化强酸性氧化后硫酸亚铁铵滴定法的三价铬测定结果基本一致,精度符合实际生产要求,但操作更为简单,标准溶液更稳定,成本更低。

关键词:镀铬溶液;三氧化铬,三价铬;分析;碘量法;硫代硫酸钠

中图分类号:TQ153.11

文献标志码:A

文章编号:1004 – 227X (2012) 11 – 0048 – 02

Iodimetric determination of chromium trioxide and trivalent chromium in hexavalent chromium plating bath // GUO Chong-wu

Abstract: The traditional method for analysis of CrO 3 and Cr(III) in Cr(VI) plating bath was improved. The initial CrO 3 content is determined by iodimetry. The Cr(III) is oxidized to Cr(VI) by (NH 4)2S 2O 8 under a weakly acidic condition without AgNO 3 as catalyst. The total quantity of Cr(VI) is determined by iodimetry, and the content of Cr(III) is calculated by subtracting the initial Cr(VI) content from the total quantity of Cr(VI). The Cr(III) content determined by the method is agreed with that determined by (NH 4)2Fe(SO 4)2 titration after oxidation in a strongly acidic media with AgNO 3 as catalyst. The precision of the method meets the practical production requirement. The method has advantages of simple operation, stable standard solution, and low cost.

Keywords: chromium plating solution; chromium(VI) oxide; trivalent chromium; analysis; iodimetry; sodium hyposulfite

Author’s address: Guangzhou Ultra Union Chemicals Ltd., Guangzhou 510460, China

收稿日期:2012–05–16

修回日期:2012–06–13

作者简介:郭崇武(1960–),吉林辉南人,学士,高级工程师,主要从事电镀工艺研究工作,在国内外发表论文100余篇,《电镀与精饰》杂志编委。

作者联系方式:(E-mail) chongwu.guo@https://www.wendangku.net/doc/ea29496.html, 。

1 前言

六价铬镀铬溶液中三氧化铬的分析一般采用亚铁滴定法[1],分析该镀液中的三价铬时,以硝酸银作催化剂,用过硫酸铵将三价铬氧化成六价铬,再滴定六价铬的总浓度,用差减法得到三价铬的浓度。由于硫酸亚铁铵标准溶液不够稳定,每次使用时都要进行标定,因此该方法比较费时。相比之下,硫代硫酸钠标准溶液比较稳定[2],故碘量法应该比亚铁滴定法更简便。然而由于试液中含有银离子,如果加碘化钾,银离子会与碘离子生成体积较大的棕红色碘化银沉淀,从而影响碘量法测定时的终点判断。所以,分析六价铬镀铬溶液中的三价铬目前还只能使用亚铁滴定法。为了提高工作效率和降低操作成本,制定了在不加硝酸银的情况下以过硫酸铵氧化三价铬[3],并用碘量法分析六价铬含量的方法[4]。

2 分析方法

2. 1 方法要点

在酸性条件下,六价铬与碘化钾反应定量生成碘分子,用氟氢化铵掩蔽铁,以淀粉作指示剂,用硫代硫酸钠滴定碘,从而得到三氧化铬的质量浓度。

在弱酸性条件下,用过硫酸铵将三价铬完全氧化成六价铬,过量的过硫酸铵经煮沸后分解成硫酸铵、硫酸和氧气。然后测定六价铬的总浓度,从六价铬总浓度中减去镀液中六价铬的初始浓度,即得到镀液中三价铬的浓度。 2. 2 试剂

(1+3)硫酸:V (H 2SO 4)∶V (H 2O )= 1:3。 过硫酸铵:固体。

淀粉指示剂:10 g/L 淀粉的水溶液。 碘化钾溶液:80 g/L 。 氟化氢铵:固体。

硫代硫酸钠标准溶液:0.1 mol/L 。

碘量法测定六价铬镀液中的三氧化铬和三价铬

?

49 ?

2. 3 操作步骤 2.

3. 1

三氧化铬的测定

用移液管吸取镀液5 mL 于100 mL 容量瓶中,加水稀释至刻度,摇匀。用移液管吸取该镀液稀释液10 mL 于250 mL 锥形瓶中,加水50 mL 、氟化氢铵2 g 、(1+3)硫酸10 mL 、碘化钾溶液10 mL ,以硫代硫酸钠标准溶液滴定至试液呈淡黄色,加淀粉指示剂1 mL ,继续滴定至试液由蓝色变成绿色为终点。 2. 3. 2

三价铬的测定

用移液管吸取镀液稀释液10 mL 于250 mL 锥形瓶中,加水50 mL 及过硫酸铵1 ~ 2 g ,煮沸至冒大气泡2 min 左右,冷却,加氟化氢铵2 g 、(1+3)硫酸10 mL 、碘化钾溶液10 mL ,以硫代硫酸钠标准溶液滴定至试液呈淡黄色,加淀粉指示剂1 mL ,继续滴定至试液由蓝色变成绿色为终点。 2. 4 计算

ρ(CrO 3)= 33.33 V 1c / 0.5 (g/L); ρ[Cr(III)]= 17.33 (V 2 ? V 1) c / 0.5 (g/L)。

式中V 1为分析六价铬时消耗的硫代硫酸钠标准溶液的体积(mL ),c 为硫代硫酸钠标准溶液的浓度(mol/L ),常数33.33 = 99.99 ÷ 3(其中99.99为三氧化铬的相对分子质量,3为六价铬被还原成三价铬所得到的电子数)。V 2为分析三价铬时所消耗的硫代硫酸钠标准溶液的体积(mL ),常数17.33 = 52.00 ÷ 3(其中52.00为铬的相对原子质量,3为三价铬被氧化成六价铬所失去的电子数),0.5为吸取镀液的实际体积(mL )。

3 方法探讨

3. 1 与硝酸银催化-亚铁滴定法的对比

配制三价铬质量浓度为6 g/L 的硫酸铬钾溶液,分别吸取1 mL 于2只250 mL 锥形瓶中,1份加水70 mL 、0.1%(质量分数)硝酸银溶液10 mL 、浓硫酸5 mL 、过硫酸铵1 g ,加热至冒大气泡2 min ,冷却后加N –苯基代邻氨基苯甲酸指示剂3滴,用0.101 3 mol/L 硫酸亚铁铵标准溶液滴定,另1份按本法分析。2种方法所得三价铬的的质量浓度分别为5.96 g/L 和5.98 g/L 。由此可见,在弱酸性条件下不加硝酸银催化剂,三价铬也能被完全氧化成六价铬。实践表明,硫代硫酸钠标准溶液存放在棕色磨口瓶中1个月标定一次即可,其稳定性比硫酸亚铁铵标准溶液高得多。 3. 2 试样吸取量

考虑到现在装饰性六价铬镀铬工艺要求镀液中

三价铬的质量浓度较低,以及镀铬溶液向低浓度化方向发展,本法加大了吸取试样量。在文献[1]中,镀液吸取量为0.25 mL ,而本法吸取镀液0.5 mL 。

4 分析结果的精密度

对镀铬溶液进行分析,一个试样平行测定6次,结果列于表1。

表1 测定结果的精密度分析

Table 1 Analysis on precision of the determination result

测定次数

ρ(CrO 3)/ (g/L)

ρ[Cr(III)]/ (g/L)

1 193.4 1.85

2 193.2 1.90

3 193.6 1.87

4 192.7 1.83

5 192.8 1.83

6 193.

7 1.81

平均值/ (g/L)

193.4 1.85 相对平均偏差/ %

0.12

1.4

本法测定三氧化铬的相对平均偏差为0.12%,满足测试的一般要求。由于镀液中三价铬的浓度低,采用滴定法测定三价铬的精密度较低,本法的相对平均偏差为1.4%,相对误差较大。由于实际生产对三价铬的测定精度要求不高,因此本法仍能满足监控镀液的要求。

4 结论

用碘量法测定六价铬镀铬溶液中的三氧化铬和三价铬,所用硫代硫酸钠标准溶液稳定,无需经常标定。在测定三价铬时,不加硝酸银作催化剂,在弱酸性条件下用过硫酸铵将三价铬氧化成六价铬,然后用碘量法测定。与传统方法相比,本法简化了分析过程,并节省了贵金属银。

参考文献:

[1] 武汉材料保护研究所. 常用电镀溶液的分析[M]. 北京: 机械工业出版社, 1974: 3-5.

[2] 天津大学无机教研室. 无机化学(下册)[M]. 北京: 高等教育出版社, 1994: 393, 484.

[3] 郭崇武, 向思杰. 镀铬溶液中三价铬分析方法的改进[J]. 电镀与精饰, 2008, 30 (8): 37-39.

[4]

陈永顺. 浅谈三价铬电镀液使用及维护[C] // 天津市电镀工程学会第十届学术年会论文集, 2006: 94-96.

[ 编辑:温靖邦 ]

国标法测定水溶液六价铬

六价铬的测定二苯碳酰二肼分光光度法 Water quality-Determination of chromium(VI)-1.5Diphenylcarbohydrazide spectrophotometric method 1 适用范围 1.1本标准适用于地面水和工业废水中六价铬的测定。 1.2测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm 处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液。 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5氢氧化锌共沉淀剂 3.5.1硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4·7H2O)8g,溶于100ml水中。 3.5.2氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。3.7 铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg 六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.0

六价铬的检测方法样本

六价铬的检测方法

目次 前言..................................................................... III 引言...................................................................... IV 1 范围 (1) 2 规范性引用文件 (1) 3 X射线荧光光谱法 (1) 3.1 原理 (1) 3.2 试剂和材料 (1) 3.3 仪器和设备 (2) 3.4 样品制备 (2) 3.5 分析步骤 (2) 3.6 结果分析 (3) 4 金属防腐镀层中六价铬定性试验 (3) 4.1 原理 (3) 4.2 试剂和材料 (4) 4.3 仪器和设备 (4) 4.4 样品制备 (4) 4.5 试验 (4) 5 金属防腐镀层中六价铬含量测定 (6) 5.1 原理 (6) 5.2 试剂和材料 (6) 5.3 仪器和设备 (6) 5.4 样品制备 (6) 5.5 分析步骤 (6) 5.6 结果计算 (7)

5.7 精密度 (8) 6 聚合物材料和电子材料中六价铬含量测定 (8) 6.1 原理 (8) 6.2 试剂和材料 (8) 6.3 仪器和设备 (9) 6.4 样品制备 (9) 6.5 分析步骤 (9) 6.6 结果计算 (10) 6.7 精密度 (11) 7 皮革材料中六价铬含量测定 (11) 7.1 原理 (11) 7.2 试剂和材料 (11) 7.3 仪器和设备 (11) 7.4 样品制备 (12) 7.5 分析步骤 (12) 7.6 结果计算 (13) 7.7 回收率和检出限 (14) 8 试验报告 (14) 附录A( 资料性附录) 紧固件镀层表面积计算方法 (15) A.1 紧固件表面积计算公式 (15) A.2 螺栓、螺母表面积计算数据 (15) 附录B( 规范性附录) 聚合物材料和电子材料中六价铬含量测定方法回收率的测定和检出限的确定 (18) B.1 回收率的测定 (18) B.2 检出限的确定 (18)

紫外分光光度计测定水中的六价铬

紫外分光光度计测定水中的六价铬 六价铬为吞入性毒物/吸入性极毒物,皮肤接触可能导致敏感;更可能造成遗传性基因缺陷,吸入可能致癌,对环境有持久危险性。但这些是六价铬的特性,铬金属、三价或四价铬并不具有这些毒性。 铬是生物体必需的微量元素之一。铬的缺乏会导致糖、脂肪等物质的代谢紊乱,但摄入量过高对生物和人类有害。铬的毒性与其存在形态有极大的关系: 三价铬化合物几乎无毒,且是人和动物所必需的; 相反,六价铬化合物具有强氧化性,且有致癌性。一般来说,六价铬的毒性要比三价铬大100倍。我国规定铬在地面水中最高允许浓度: 三价铬为0.5 mg/L,六价铬为0.1 mg/L,生活饮水最高允许浓度( 六价铬) 为0.055 mg/L。因此对六价铬需要一种简单、有效的分析方法。六价铬的测定方法有很多: 如二苯碳酰二肼可见分光光度法、示波极谱滴定法、原子吸收分光光度法、动力学光度法、流动注射光度法等,但大多由于仪器价昂难以普及使用。分光光度法则以仪器价廉,操作简单等优点,目前在我国仍具有广泛的实用价值。本文研究了在碱性条件下对六价铬的测定,碱性条件下六价铬在紫外区有一较强的吸收峰,因此建立了对六价铬的测定方法。 1 主要仪器和试剂配制紫外可见分光光度计,可见分光光度计,酸度计。 六价铬标准溶液: 称取于120℃干燥2 h 的K2Cr2O7( 优级纯) 0.282 9 g,溶于少量水中并稀释定容至1 L,摇匀得浓度为0.100 mg/mL 的储备液。2%(m/V) 氢氧化钾溶液: 称取2 g 氢氧化钾溶于100 mL蒸馏水中。1∶1 硫酸溶液: 将浓硫酸缓慢加入到等体积水中,混合均匀。 所用试剂均为分析纯,实验用水为二次蒸馏水。所用的玻璃器皿均在1 mol /L 的HNO3 溶液中浸泡12 h 以上。 2 方法与结果 2.1 六价铬的吸收光谱准确移取1 mL 铬标准和适量的氢氧化钾溶液置于25 mL 容量瓶中,定容后用1 cm 比色皿在波长200~400 nm 范围内扫描吸收曲线,结果产物的λmax 为372 nm; 故本文选372 nm 作为测试波长。 用移液管分别移取铬标准溶液0.00、0.50、1.00、2.00、3.00、4.00、5.00 mL 于50 mL 容量瓶中,分别加适量氢氧化钾溶液,然后用蒸馏水稀释至刻度,摇匀; 得到Cr(VI) 的浓度分别是0.00、1.00、2.00、4.00、6.00、8.00、10.00 mg/L,用1 cm 比色皿以蒸馏水为参比,在波长372 nm 处测定其吸光度分别为0.002、0.078、0.158、0.309、0.452、0.587、0.745 mg/L,得到六价铬

六价铬的测定方法(二苯碳酰二肼分光光度法)

GB/T 7467 六价铬的测定方法(二苯碳酰二肼分光光度法) 1 适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L 即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4?7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml 容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.00μg六价铬。使用当天配制此溶液。

六价铬测定方法

C r6+的测定(二苯碳酰二肼分光光度法) 1.适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定。 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2.原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3.试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液。 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4·7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。

水中六价铬的测定-二苯碳酰二肼分光光度法

一、实验目的 (1)掌握分光光度法测定六价铬的原理和方法。 (2)熟悉分光光度计的使用。 二、实验原理 在酸性介质中,六价铬与二苯碳酰二肼(DPC)反应,生成紫红色络合物,于540nm波长处进行比色测定。

三、使用仪器规格及实际用量 (1) 分光光度计 (2) 具塞比色管、移液管、容量瓶等。 (1) (1+1)硫酸::将浓硫酸缓慢加入到同体积水中,混匀。 (2) (1+1)磷酸:将浓磷酸缓慢加入到同体积水中,混匀。 (3) 铬标准贮备液(0.100 mg-Cr6+/mL):经120℃烘干2小时的重铬酸钾: 0.2829g溶于水中,定容至1000mL。 (4) 铬标准使用液(1.00 μg-Cr6+/mL):取5 mL铬标准贮备液于500mL容量瓶中,定容。 (5) 二苯碳酰二肼(C13H14N4O)溶液:称取二苯碳酰二肼0.2g溶于50mL丙酮中,加水稀释至100mL. 四、实验步骤 (1) 水样预处理:本试验由于时间限制,将水样作为不含悬浮物、低浊度的清洁地表水,进行直接测定。但在实际环境监测中需要根据不同水样性质进 行预处理。 (2) 标准曲线的绘制:取5支50mL比色管,依次加入0,1,3,5,7 mL铬标准使用液,用水稀释至标线,分别加入(1+1)硫酸0.5 mL和(1+1)磷酸0.5 mL,摇匀。加入2 mL 显色剂溶液摇匀。静置5-10分钟后,放入比色皿中于 540nm处测吸光度值。以加入0 mL铬标准使用液的溶液作为参比。注意: 为了测量准确,测定时应用同一个比色皿,浓度由低到高测定,且每次测 完都应用蒸馏水清洗,再用待测液润洗2-3次。以吸光度为纵坐标,相应六 价铬含量为横坐标绘制标准曲线。 (3) 水样的测定:各取50mL水样和50mL自来水于比色管中,分别加入(1+1)硫酸0.5 mL和(1+1)磷酸0.5 mL,摇匀。加入2 mL 显色剂溶液摇匀。静 置5-10分钟后,放入比色皿中于540nm处测吸光度值。根据所测吸光度从标 准曲线上查得六价铬含量。 (4) 分光光度计的使用: (a) 打开点源,预热30min,将光镜选择杆调到正确位置; (b) 仪器归零:调整波长选择钮至540nm,灵敏度置于“1”,选择开关置于“T”,开盖调“0%T”显示“00.0”,闭盖(装有参比) 调“100%T”显示“100.0”。 (c) 吸光度测定:按MODE键使功能显示为ABSORBANCE,显示吸光度的值,拉动样品室拉杆,将待测液拉入光路,此时显示值即为待 测液的吸光度。注意:每次测量时都应对仪器进行调零。 五、主要结果计算及分析(可另附纸) Cr6+(mg/L)=m/V 式中 m—从标准去线上查得的Cr6+含量(μg); V—水样的体积(mL)

六价铬的测定方法(二苯碳酰二肼分光光度法)

六价铬的测定方法(二苯碳酰二肼分光光度法)GB/T 7467 1 适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为 0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法 的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L 即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm 处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度 的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液

将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4?7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。 称取于110?干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829?0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含 1.00μg六价铬。使用当天配制此溶液。 3.9 铬标准溶液。 称取25.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含5.00μg六价铬。使用当天配制此溶液。 3.10 尿素:200g/L尿素溶液。

水中六价铬的测定分光光度法

水中六价铬的测定—分光光度法 废水中铬的测定常用分光光度法,其原理基于:在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色化合物,其最大吸收波长为540nm,吸光度与浓度的关系符合比尔定律。如果测定总铬,需先用高锰酸钾将水样中的三价铬氧化为六价铬,再用本法测定。 一.实验目的 掌握分光光度法测定六价铬的原理和方法; 二.六价铬的测定 1.仪器 ①分光光度计、比色皿(1cm) ②50mL具塞比色管、移液管、容量瓶等。 2.试剂 (1)丙酮。 (2)(1+1)硫酸。 (3)(1+1)磷酸。 (4) 0.2%(m/V)氢氧化钠溶液。 (5)铬标准贮备液:称取于120℃干燥2h的重铬酸钾(优级纯)0.2829g,用水溶解,移入1000mL容量瓶中,用水稀释至标线,摇匀。每毫升贮备液含0.100mg六价铬。 (6)铬标准使用液:吸取5.00mL铬标准贮备液于500mL容量瓶中,用水稀释至标线,摇匀。每毫升标准使用液含1.00μg六价铬。使用当天配制。 (7) 二苯碳酰二肼溶液:称取二苯碳酰二肼(简称DPC,C13H14N4O)0.2g,溶于50mL丙酮中,加水稀释至100mL,摇匀,贮于棕色瓶内,置于冰箱中保存。颜色变深后不能再用。 3.测定步骤 (1)水样预处理: 对不含悬浮物、低色度的清洁地面水,可直接进行测定。 (2)标准曲线的绘制:取9支50mL比色管,依次加入0、0.20、0.50、1.00、2.00、4.00、6.00、8.00和10.00mL铬标准使用液,用水稀释至标线,加入1+1硫酸0.5mL和1+1磷酸0.5mL,摇匀。加入2mL显色剂溶液,摇匀。5~10min 后,于540nm波长处,用1cm或3cm比色皿,以水为参比,测定吸光度并做空白校正。以吸光度为纵坐标,相应六价铬含量为横坐标绘出标准曲线。 (3)水样的测量:取适量(含Cr6+少于50μg)无色透明或经预处理的水样于50mL比色管中,用水稀释至标线,以下步骤同标准溶液测定。进行空白校正后根据所测吸光度从标准曲线上查得Cr6+含量。 4.计算 Cr6+(mg·L-1)=m/V 式中:m—从标准曲线上查得的Cr6+量,μg; V—水样的体积,mL; 第 1 页共1 页

价铬的测定.doc

实 验 六 六 价 铬 的 测 定 一、实验目的 ( 1)学会六价铬的水样采集保存、预处理及测定方法。 ( 2)学会各种标准溶液的配制方法和标定方法。二、概述 铬( Cr )的化合物常见的价态有三价和六价。在水体中,六价铬一般以 CrO 42 、HCrO 4 二 种阴子形式存在,受水中 pH 值、有机物、氧化还原物质、温度及硬度等条件影响,三价铬和六 价铬的化合物可以互相转化。 铬是生物体所必需的微量元素之一。铬的毒性与其存在价态有关,通常认为六价铬的毒性 比三价铬高 100 倍,六价铬更易为人体吸收而且在体内蓄积。 但即使是六价铬, 不同化合物的毒 性也不相同。当水中六价铬浓度为 1mg/L 时,水呈淡黄色并有涩味,三价铬浓度为 1mg/L 时,水 的浊度明显增加,三价铬化合物对鱼的毒性比六价铬大。 铬的工业来源主要是含铬矿石的加工、金属表面处理、皮革鞣制、印染等行业。 三、水样保存 水样应用瓶壁光洁的玻璃瓶采集。 如测总铬水样采集后, 加入硝酸调节 pH<2 ;如测六价铬, 水样采集后,加 NaOH 使 pH 为 8~ 9;均应尽快测定,如放置不得超过24h 。 四、干扰及清除 含铁量大于 1mg/L 水样显黄色,六价钼和汞也和显色剂反应生成有色化合物,但在本方法 的显色酸度下反应不灵敏。钼和汞达 200mg/L 不干扰测定。钒有干扰,其含量高于 4mg/L 即干 扰测定。但钒与显色剂反应后 10min ,可自行褪色。 氧化性及还原性物质,如: ClO —、 Fe 2+ 、 SO 3 2-、 S 2O 3 2-等,以及水样有色或混浊时,对测定 均有干扰,须进行预处理。 五、方法的选择 铬的测定可采用二苯碳酰二胼分光光度法、 可直接用二苯碳酰二肼分光光度法测六价铬。再用二苯碳酰二肼分光光度法测定。 六、测定方法(二苯碳酰二肼分光光度法) 1. 实验原理 在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色络合物,其最大吸收波长为 540nm ,吸光度与浓度的关系符合比尔定律。反应式如下: NH — NH — C 6H 5 NH — NH — C 6H 5 如果测定总铬,需先用高锰酸钾将水样中的三价铬氧化为六价,再用本法测定。 2. 仪器和试剂。 +Cr 6+→O = C +Cr 3+→紫色络合物 O = C ( 1)仪器 ( 2)试剂 ① 丙酮 容量瓶、可见分光光度计、实验室常用仪N 器=。N —C 6H 5 NH —NH —C 6H 5 二苯碳酰二肼 苯肼羟基偶氮苯 ② 1+1)磷酸溶液 ③( 1+1)磷酸溶液 将磷酸( H 3 PO 4,优级纯, =ml )与水等体积混合。 ④ 4g/L 氢氧化钠溶液。 ⑤ 氢氧化锌共沉淀剂 用时将 100ml 80g/L 硫酸锌( ZnSO 4· 7H 2 O )溶解和 120ml20g/L 氢 氧化钠溶液混合。 ⑥ 40g/L 高锰酸钾溶液 称取高锰酸钾( KMnO 4) 4g ,在加热和搅拌下溶于水,最后稀释 至 100ml 。 原子吸收分光光度法和滴定法。 清洁的水样如测总铬,用高锰酸钾将三价铬氧化成六价铬,

六价铬的测定 二苯碳酰二肼分光光度法

六价铬的测定方法(二苯碳酰二肼分光光度法) 1 适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4?7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.0 0μg六价铬。使用当天配制此溶液。 3.9 铬标准溶液。 称取25.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含5. 00μg六价铬。使用当天配制此溶液。 3.10 尿素:200g/L尿素溶液。 将尿素〔(NH2)2CO〕20g溶于水并稀释至100ml。 3.11 亚硝酸钠:20g/L溶液。

水中六价铬检测方法-比色法

水中六價鉻檢測方法-比色法 NIEA W320.52A 一、方法概要 在酸性溶液中,六價鉻與二苯基二氨脲(1,5-Diphenylcarbazide)反應生成紫紅色物質,以分光光度計在波長540 nm處,量測其吸光度並定量之。 二、適用範圍 本方法適用於飲用水水質、飲用水水源水質、地面水體、地下水、放流水及廢(污)水中六價鉻之檢驗。 三、干擾 (一) 當鐵離子之濃度大於1 mg/L時,會形成黃色Fe+3,雖然在某些波長下會有吸光值,惟干擾 程度不大。六價鉬或汞鹽濃度大於200 mg/L、釩鹽濃度大於六價鉻濃度10倍時,會形成干擾;不過六價鉬或汞鹽在本方法指定的pH範圍內干擾程度不高。另若有上述干擾的六價鉬、釩鹽、鐵離子、銅離子等水樣,可藉氯仿萃取出這些金屬生成的銅鐵化合物 (Cupferrates)而去除之,惟殘留在水樣的氯仿和銅鐵混合物(Cupferron)可用酸分解。 (二) 高錳酸鉀可能形成之干擾,可使用疊氮化物(Azide)將其還原後消除之。 四、設備及材料 (一) pH計。 (二) 分光光度計,使用波長540 nm,樣品槽光徑可選用1或5或10公分,以能檢測出正確數 據為原則。 (三) 玻璃器皿:勿使用以鉻酸清洗過的玻璃器皿。 (四) 分析天平:可精秤至0.1 mg。 (五) 移液管或經校正之自動移液管。 五、試劑 (一) 試劑水:比電阻≧16 MΩ-cm。 (二) 0.5 M硫酸溶液:以蒸餾水稀釋83.3 mL之3 M硫酸溶液至500 mL。

(三) 二苯基二氨脲溶液:溶解0.25 g二苯基二氨脲於50 mL丙酮(Acetone),儲存於棕色瓶, 本溶液如褪色應棄置不用。 (四) 濃磷酸。 (五) 濃硫酸:9 M及3 M。 (六) 鉻儲備溶液:在1000 mL量瓶內,溶解0.1414 g重鉻酸鉀(K2Cr2O7)於蒸餾水,稀釋至刻 度:1.0 mL相當於0.05 mg Cr。或購買經濃度確認並附保存期限說明之市售標準儲備溶液。 (七) 鉻標準溶液:在100 mL量瓶內,稀釋10.0 mL鉻儲備溶液至刻度;1.0 mL相當於0.005 mg Cr。 六、採樣及保存 採集至少300 mL之水樣於塑膠瓶內,於4℃暗處冷藏,保存期限為24小時。 七、步驟 (一) 水樣處理及測定 1、取已經適當稀釋或原水樣47 mL置於適當容器中, 加入約0.12 mL的濃磷酸,再以0.5 M 硫酸溶液及pH計,調整水樣之pH至2.0 ±0.5。 2、加入1.0 mL二苯基二氨脲溶液,混合均勻,倒入50 mL量瓶中,以試劑水稀釋至50 mL。 靜置5~10分鐘後,以分光光度計於波長540 nm處讀取吸光度,以試劑水為對照樣品, 吸光度讀數應扣除製備空白吸光值,並由檢量線求得六價鉻濃度(mg/L)。 <注意>若經上述步驟稀釋至50 mL溶液成混濁狀態,則在加入二苯基二氨脲溶液前讀取吸光度,並自最終顏色溶液之吸光度讀取中扣除而予校正。 (二) 檢量線製備 1、精取適當之鉻標準溶液,配製一個空白和至少五種不同濃度的檢量線標準溶液,其濃度範圍如0至1.0 mg/L,或其他適當範圍。 2、依步驟七(一)操作並讀取吸光度,以標準溶液濃度(mg/L)為X軸,吸光度為Y軸,繪製一吸光度與六價鉻濃度(mg/L)之檢量線,。 八、結果處理

六价铬的测定

实验六 六价铬的测定 一、实验目的 (1)学会六价铬的水样采集保存、预处理及测定方法。 (2)学会各种标准溶液的配制方法和标定方法。 二、概述 铬(Cr )的化合物常见的价态有三价和六价。在水体中,六价铬一般以- 24CrO 、HCrO - 4二种阴子形式存在,受水中pH 值、有机物、氧化还原物质、温度及硬度等条件影响,三价铬和六价铬的化合物可以互相转化。 铬是生物体所必需的微量元素之一。铬的毒性与其存在价态有关,通常认为六价铬的毒性比三价铬高100倍,六价铬更易为人体吸收而且在体内蓄积。但即使是六价铬,不同化合物的毒性也不相同。当水中六价铬浓度为1mg/L 时,水呈淡黄色并有涩味,三价铬浓度为1mg/L 时,水的浊度明显增加,三价铬化合物对鱼的毒性比六价铬大。 铬的工业来源主要是含铬矿石的加工、金属表面处理、皮革鞣制、印染等行业。 三、水样保存 水样应用瓶壁光洁的玻璃瓶采集。如测总铬水样采集后,加入硝酸调节pH<2;如测六价铬,水样采集后,加NaOH 使pH 为8~9;均应尽快测定,如放置不得超过24h 。 四、干扰及清除 含铁量大于1mg/L 水样显黄色,六价钼和汞也和显色剂反应生成有色化合物,但在本方法的显色酸度下反应不灵敏。钼和汞达200mg/L 不干扰测定。钒有干扰,其含量高于4mg/L 即干扰测定。但钒与显色剂反应后10min ,可自行褪色。 氧化性及还原性物质,如:ClO —、Fe 2+、SO 32-、S 2O 32-等,以及水样有色或混浊时,对 测定均有干扰,须进行预处理。 五、方法的选择 铬的测定可采用二苯碳酰二胼分光光度法、原子吸收分光光度法和滴定法。清洁的水样可直接用二苯碳酰二肼分光光度法测六价铬。如测总铬,用高锰酸钾将三价铬氧化成六价铬,再用二苯碳酰二肼分光光度法测定。 六、测定方法(二苯碳酰二肼分光光度法) 1. 实验原理 在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色络合物,其最大吸收波长为540nm ,吸光度与浓度的关系符合比尔定律。反应式如下: 如果测定总铬,需先用高锰酸钾将水样中的三价铬氧化为六价,再用本法测定。 O =C NH —NH —C 6H 5 NH —NH —C 6H 5 二苯碳酰二肼 +Cr 6+→O =C NH —NH —C 6H 5 N = N —C 6H 5 苯肼羟基偶氮苯 +Cr 3+→紫色络合物

六价铬的测定电子教案(精)

单元教学计划

项目五工业废水监测 任务3 六价铬的测定 1.废水中铬的来源及危害 1.1 铬(Cr)的发现 银白色金属。1797年法国化学家沃克兰在西伯利亚红铅矿(铬铅矿)中发现,次年用碳还原得到金属铬。 1.2铬与人类健康的关系 铬是自然界中广泛存在的一种元素,主要分布于岩石、土壤、大气、水及生物体中。土壤中的铬分布极广,含量范围很宽;水体和大气中铬含量较少,动、植物体内则含有微量铬。自然界铬主要以三价铬和六价铬的形式存在。铬人体必需微量元素,正常含量6-7mg,过量会造成中毒。三价铬参与人和动物体内的糖与脂肪的代谢,是人体必需的微量元素;六价铬则是明确的有害元素,能使人体血液中某些蛋白质沉淀,引起贫血、肾炎、神经炎等疾病,长期与六价铬接触还会引起呼吸道炎症并诱发肺癌或者引起侵入性皮肤损害,严重的六价铬中毒还会致人死亡。 2.铬的测定方法 铬的测定可采用:二苯碳酰二肼分光光度法、原子吸收法和硫酸盐亚铁铵滴定法。 3. 环境铬污染 铬的污染来自于铬矿冶炼、耐火材料、电镀、制革、颜料和化工等工业生产以及燃料燃烧排出的含铬废气、废水及废渣等。铬中毒主要来源于六价铬。六价铬通过水、空气和食物进入人体,室内尘埃与土壤中也发现六价铬,它们也会被摄入体内。研究发现,六价铬的化合物不能自然降解,会在生物和人体内长期积聚富集,是一种重污染环境物质。 4.工业废水中六价铬的测定 六价铬的测定二苯碳酰二肼分光光度法(GB7467-87) 4.1 范围 本方法规定了分析EP/TCLP特征提取物和地下水体中六价铬的浓度,在没有干扰物质存在下也可以用于测定生活和工业废物中的六价铬。 本方法可用于分析含六价铬为0.5-50mg/L的样品。 4.2方法提要 稀散的六价铬在没有干扰物质存在下,如钼,钒,汞,可以在酸性介质中和二苯碳酰二肼形成紫红色络合物,在波长540nm处进行分光光度法测定。反应非常灵敏,每克铬原子吸光系数可达40000. 4.3试剂和材料 除非另有说明,在分析中仅使用确认为分析纯的试剂和蒸馏水或去离子水或相当纯度的水。 ①水 ②重铬酸钾储备液:取141.1g干燥重铬酸钾于1L容量瓶中,加水溶解,再定容至1L

固体六价铬的测定方法

FHZHJGF0006 固体废物六价铬的测定二苯碳酰二肼分光光度法 F-HZ-HJ-GF-0006 固体废物—六价铬的测定—二苯碳酰二肼分光光度法 1 范围 本方法规定了固体废物浸出液中六价铬的测定,用二苯碳酰二肼分光光度法。 本方法适用于固体废物浸出液中六价铬的测定。 测定范围:试料为50mL,使用30mm光程比色皿,方法的检出限为0.004mg/L。使用10mm 光程比色皿,测定上限为1.0mg/L。 试液有颜色、混浊,或者有氧化性、还原性物质及有机物等均干扰测定。铁含量大于1.0mg/L 也干扰测定。钼、汞与显色剂生成络合物有干扰,但是在方法的显色酸度下,反应不灵敏。钒浓度大于4.0mg/L干扰测定,但在显色10min后,可自行退色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色络合物。于最大吸收波长540nm 进行分光光度法测定。 3 试剂 本方法所用试剂除另有说明外,均用符合国家标准或专业标准的分析纯试剂和蒸馏水或同等纯度的水; 3.1 丙酮(C3H6O)。 3.2 硫酸(H2SO4),ρ=1.84g/mL 3.3 磷酸(H3PO4),ρ=1.69g/mL。 3.4 重铬酸钾(K2Cr2O7,优级纯)。 3.5 二苯碳酰二肼(C13H14N4O)。 3.6 硫酸溶液,1+1:将硫酸(3.2)缓慢加到同体积的水中,边加边搅,待冷却后使用。 3.7 磷酸溶液,1+1:将磷酸(3.3)与等体积水混匀。 3.8 高锰酸钾(KMnO4),4%。 3.9 脲素溶液,20g/100mL:将脲素[(NH2)2CO] 20g,溶于水中,并稀释至100mL。 3.10 亚硝酸钠,2g/100mL:将亚硝酸钠(NaNO2)2g,溶于水中,并稀释至100mL。 3.11 铬标准贮备淮,0.1000mg Cr6+/mL:称取于120℃烘2h的重铬酸钾(3.4)0.2829g,用少量水溶解后,移入1000mL容量瓶中,用水稀释至标线,摇匀。 3.12 铬标准溶液,1.00μg/mL。吸取5.0mL铬标准贮备溶液(3.11)于500mL容量瓶中,用水稀释至标线,摇匀。用时现配。 3.13 铬标准溶液,5.00μg/mL。吸取25.00mL铬标准贮备溶液(3.11)于500mL容量瓶中,用水稀释至标线,摇匀。 3.14 显色剂1:称取二苯碳酰二肼(3.5)0.2g,溶于50mL丙酮(3.1)中,加水稀释至100mL,摇匀,于棕色瓶中,在低温下保存。 3.15 显色剂2:称取二苯碳酰二肼(3.5)2.0g,溶于50mL内酮(3.1)中,加水稀释至100mL,摇匀,于棕色瓶中,在低温下保存。 注:显色剂颜色变深,则不能使用。 4 仪器 一般实验用仪器及分光光度计。 5 操作步骤 5.1 样品的保存 将浸出液用氢氧化钠调pH值为8。在24h内测定。 5.2 样品的预处理

水中六价铬检测的研究进展

水中六价铬检测的研究进展 摘要::阐述了目前测定水中六价铬的几种方法(分光光度法、荧光猝灭法、示波极谱法、原子光谱法及质谱法、离子色谱法)的特点及适用范围,近年来一些相关发明相继问世,提高了分析速度,为六价铬的现场定量检测提供有效的检测手段。通过仪器联用技术(高效液相色谱与ICP—MS联用,离子色谱与ICP—MS联用)的不断完善,不但可以直接测定出六价铬,还可以对水中成分进行全分析,大大的提高了分析速度和工作效率,降低了分析成本。 关键词:六价铬,检测 铬是一种重要的环境污染物,主要来源于电镀、冶金、制革、印染和化工等行业排放的“三废”中[1]。铬的毒性与其价态有关,在饮用水中以三价铬和六价铬两种形态存在。六价铬的毒性比三价铬高100倍,六价铬更易为人体吸收而且为人体蓄积,并可以引起口角糜烂、恶心、呕吐、腹泻、腹疼和溃疡等病变。铬在水体中可抑制其自净作用[2]。六价铬同时也是最易导致过敏的金属之一,仅次于镍;在国际上,六价铬被列为对人体危害最大的8种化学物质之一,是公认的致癌物质。早在1935年,德国的工厂医师Pfeil发现铬酸盐工人肺癌高发.随后美国、英国、德国、日本、前苏联和意大利等国的流行病学调查研究都予以证实。我国20世纪80年代对2545名铬酸盐工人进行回顾性和前瞻性流行病学调查研究,发现肺癌高发,发病率高达82.08/10万,而对照组为22.79/10万。1990年。国际癌症研究中心明确六价铬化合物为人类致癌物[3]。超标的六价铬在环境中不会自然分解,它将在人体和环境中积累,对其造成危害。另外,人体如果长期接触六价铬将会引起铬鼻病,主要表现为流涕、鼻塞、鼻衄、鼻干燥、鼻灼痛、嗅觉减退等症状及鼻粘膜充血、肿胀、干燥或萎缩等体征[4]。为了保障人民的身体健康,在我国生活饮用水卫生标准[5]和地表水环境质量标准[6]中明确规定水中六价铬的含量不得超过0.05mg/L。目前,饮水中六价铬的测定方法主要有分光光度法、荧光猝灭法、示波极谱法、石墨炉原子吸收法、电感耦合等离子光谱及质谱法和离子色谱法,下面将针对以上几种方法的特点详细阐述。 1 分光光度法 在化学分析法中,分光光度法是元素分析常用的检测方法,同时也是经典

二苯碳酰二肼分光光度法测定六价铬

实验十八二苯碳酰二肼分光光度法测定六价铬 1、实验目的 ① 练习使用721分光光度计。 ② 配制标准色列并测定地表水中六价格。 2﹑实验原理 在酸性溶液中,六价铬遇二苯碳酰二肼反应,生成紫红色化合物,其最大吸收波长为540nm,摩尔吸光系数为4×104。 本方法适用于地面水和工业废水中六价铬的测定。 3﹑药品与仪器 3.1 实验药品: ①铬标准储备液:称取于120℃干燥2hr的重铬酸钾(K2Cr2O7,优级纯) 0.2829g,用水溶解后,移入1000mL容量瓶中,用水稀释至标线,摇匀。每毫升溶液含0.100mg六价铬,即100ppm。 ②铬标准使用液:吸取5.00mL铬标准储备液,置于500mL容量瓶中,用水稀释至标线,摇匀。每毫升溶液含1.00μg六价铬,即1ppm。使用时当天配制。 ③显色剂:称取二苯碳酰二肼(C13H14N4O)0.2g,溶于50mL丙酮中,加水稀释至100mL,摇匀。处于棕色瓶置于冰箱中保存。色变深后不能使用。 ④1+1硫酸 ⑤1+1磷酸

3.2 实验仪器 ①721型分光光度计 ②50mL比色管 ③1cm或3cm比色皿 4﹑实验步骤 4.1 标准曲线的绘制 向一系列50mL比色管中分别加入0、0.20、0.50、1.00、2.00、4.00、 6.00、8.00、10.00mL铬标准使用液,用水稀释至标线。加入1+1硫酸溶液 0.5mL,1+1磷酸溶液0.5mL,摇匀,加入2mL显色剂,摇匀。5—10min之后,于540nm波长处,用3cm比色皿,以水为参比,测定吸光度,绘制标准曲线。 4.2 样品测定 取适量(含六价铬少于50μg)无色透明水样,置于50mL比色管中,用水稀释至标线。以下步骤同标准曲线绘制。 5、注意事项 ①当水样混浊或有色时,应进行预处理。 ②所有玻璃仪器(包括采样瓶),不能用重铬酸钾洗液洗涤,可用硝酸—硫酸混合液或洗涤液洗涤。洗涤后要冲洗干净。玻璃器皿内要求光洁,防止铬被吸附。 6﹑数据处理

分光光度法测定六价铬的研究

4 结语 综合考虑影响实验测定结果的各项因素以及实验室的可操作性,采用光度法测定COD 的最佳测试条件为:在5100ml水样中加入0110g固体HgSO4后,摇匀,再加入浓度为0130mol/L(1/6K2Cr2O7)的重铬酸钾溶液配制的消解液1010ml,摇匀后置150℃干燥箱内,恒温反应2h,待冷却后用20mm或30mm 的比色皿,在波长610nm处测定吸光度。对COD值在1000mg/L以下的废水的测定可获得满意的结果。浓度大于1000mg/L的水样,可作适当稀释后进行测定。按所设条件,水样中Cl-浓度小于1000mg/L时不干扰测定,当超过这一范围,则需稀释至此浓度以下,使之不干扰测定。 参考文献 1 张国勋1环境监测管理与技术11996,8(5):34 2 张国勋等1环境污染与防治11996,18(6):24 收稿日期:1996209214 分光光度法测定六价铬的研究汪军涛 马卫兴① 吕松涛 张 慧 尹 强(江苏省连云港市环境监测站,连云港 222001) 摘 要 本文基于六价铬在稀盐酸介质中将碘离子氧化为I-3,新生的I-3遇淀粉显蓝色,借分光光度法测定了废水中的六价铬。本法简便快速,灵敏度高,其表观摩尔吸光系数ε高达3111×105L?mol-1?cm-1,铬(Ⅵ)量在0~112μg/ 25ml内服从比耳定律,线性相关系数γ为019990。应用于实际废水样中六价铬的测定,结果与二苯碳酰二肼比色法基本一致。 关键词 分光光度法,铬,测定 Study on Spectrophotometric Determination of Chromium(Ⅵ). Wong J un2tao et al(Lianyungang Environmental Monitoring Station,Lianyungang222001):Envi ronmental Monitori ng i n Chi na1997,13(4):30232 Abstract Chromium(Ⅵ)in the waste water was deter mined in dilute HCl medium with spectrophotometry based on chromium oxidizing iodide to form I-3,which can produce blue color as mixing with starch.The method is simple,fast,and sensitivity with the molar absorptivityε3111×105L?mol-1?cm-1and Beer’s law is obeyed in0~112μg chromiun(Ⅵ)per25ml with the linar coeffcientγ019990.The determined results of chromium(Ⅵ)in waste water were in agreement with those of N2diphenylfor mamide spectrophotometry K ey Words spectrophometry,chromium,determination 目前六价铬的测定方法有二苯碳酸二肼比色法〔1〕、流动注射分析法〔2〕、二溴羧基偶氮胂退色光度法〔3〕、示波极谱滴定法〔4〕等。本文提出在稀盐酸介质中六价铬氧化I-产生I-3,进而与淀粉显蓝色,借分光光度法测定废水六价铬的新方法。本法铬(Ⅵ)量在0~112μg/25ml范围内服从比耳定律,线性相关系数γ为019990,其表观摩尔吸光系数ε为3111×105L?mol-1?cm-1,应用于某厂车间废水中六价铬的测定,结果与二苯碳酰二肼比色法基本一致。 1 主要仪器与试剂 721型分光光度计。 按常规方法配制1μg/ml铬(Ⅵ)标准溶液,0105mol/L KI溶液,2%(w/v)的淀粉水溶液,2mol/L的HCl溶液。 2 实验方法 准确移取适量含铬标准液或废水(Cr (Ⅵ)量≤112μg)于25ml比色管中,依次加入115ml KI、710ml HCl,摇匀,5210min内加入淀粉液210ml,用水稀至刻线,摇匀, 10min后以相应的试剂空白作参比在波长570nm处用2cm比色皿测定其吸光度A。 ? 3 ? 中国环境监测 Environmental Monitoring in China1997,13(4) ①该作者工作单位:淮海工学院。

相关文档
相关文档 最新文档