文档库 最新最全的文档下载
当前位置:文档库 › 有关驻波比测试相关问题解答

有关驻波比测试相关问题解答

有关驻波比测试相关问题解答
有关驻波比测试相关问题解答

有关驻波比测试相关问题解答

就9月2日辽宁天馈优化及巡检开工会中,辽宁邮电工程局提出的驻波比测试VSWR 值W 1.4的问题究竟是按照频段测试为基准还是以故障定位测试为基准这个问题,根据资料及系统VSW ffl试标准依据《移动通信基站行业标准》

YD/T1059-2004的要求:在基站工作频段890-960MHZ时VSWR1.4,海天公司

是应邀参加制定行业标准的企业之一。

下来就工作频段驻波与故障定位驻波的差异解释如下:

首先我们要了解什么是驻波?

当馈线和天线匹配时,高频能量全部被负载吸收,馈线上只有入射波,没有反射波。馈线上传输的是行波,馈线上各处的电压幅度相等,馈线上任意一点的阻抗都等于它的特性阻抗。

而当天线和馈线不匹配时,也就是天线阻抗不等于馈线特性阻抗时,负载就不能

全部将馈线上传输的高频能量吸收,而只能吸收部分能量。入射波的一部分能量反射回

来形成反射波。

在不匹配的情况下,馈线上同时存在入射波和反射波。两者叠加,在入射波

和反射波相位相同的地方振幅相加最大,形成波腹;而在入射波和反射波相位相反的地方振幅相减为最小,形成波节。其它各点的振幅则介于波幅与波节之间。这种合成波称为驻波。反射波和入射波幅度之比叫作反射系数。

反射波幅度

入射波幅度(Z + Z 0)

驻波波腹电压与波节电压幅度之比称为驻波系数,也叫电压驻波比(VSWR)

工作频段驻波测量包括驻波比(VSW)回波损耗(RL)馈线损耗(CL)测量。工作频段驻波比则是反映整个天馈系统中包括(天线、7/8馈线、馈线接头、避雷器、室内/室外1/2跳线)每一个点的入射波和反射波的反射系数之比,天

线端的与接头处反射系数会出现矢量叠加,对于一个给设定的频率,当输入端接头到馈线终端天线处的距离为N M/2 (即反射波来回的路程为波长整数倍)时,天线和接头的反射系数同向相加,出现驻波的极大值;而当输入端接头到馈线终端天线处的距离为(2N+1)沖/4 (即反射波来回的路程为半波长的奇数倍)时天线和接头的反射系数反向相减,出现驻波的极小值;因此出现了波腹与波节电压,在一个频带范围内,驻波比曲线会随着频率的变化成为周期变化的波浪线,对存在外部干扰的频段驻波可根据不正常的驻波图判断出干扰点频段范围,这一点是故障距离定位而无法做到的。

距离域测量通常称为(DTF故障定位,顾名思义它仅是在工作频段驻波测

试不正常时进行故障点判断的一种手段和方式,它可以有回波损耗(RL和驻波比(VSWR两种表示形式。两者都可用来找出故障点,但馈线损耗(CL不

会出现在距离域,所以说故障距离定位仅仅是反映天馈系统中故障点的最大反射波,也就是说主要是用来判断接头之间的匹配性,并不能判断出在整个工作频段内是否存在外来干扰及工作频段内电压驻波比的稳定性。

以下举例说明:

假设馈线长度为50米时如果跳线接头的驻波比分别为下表SX线所列各值,

我们可以得到馈线长50米时的天馈系统终端最大驻波比为表中SZ中所示。并且其驻波比曲线将随着馈线的长短不同呈现密度不同的近似等周期的波浪线形式。

图1—1

工作频段驻波比890—960MHz

1 .5

VSWR

SMCI Ml: 1^

1 .4

1 .3

1 .2

HMSA

eeo eoo eio 620 630 640

Frequency (390.0 - 9&0 J O MH为

eso9 so

Rj&solutioii: 517 Date; 08/15/2005 Meek 1: SJ31D

CAL:ON(COA 北)

TiKWL 15*1:00

Serial 飙00349033

CW:ON

图1 —

2

故障距离定位驻波比:

D istan ce -

to^feult

SMCl 1

1,5

-/ A -1\

V V A

/IxJ—kJ--1-J -kJ.J—j L J—xJ--k L-J—i—KJ—

/ \

/ 、T 4-4-4.-

14

1 ,3

1 .2

1 .

0354050

20 25 30

Distance Q.O - 50 0 Meter)

5 1 0

Rj&solution; 5 17 Date; OS/1 SZ2005 Model- E 33 ID

CALOW(COAK)

Time: 15:42:13

Ser阳I#; 0034&033

CW: ON

Tns.Lo5S:0.000dB/m

Prop.V 亡l;Q,&00

从上图形象的说明如果馈线跳线接头的驻波比超过 1.10以后,即使经过50 米馈线的衰耗馈天线馈线终端的驻波比仍可能超过 1.3

营口九寨丁屯基站频段驻波与故障定位驻波比较:

TRX 工作频段驻波图:

517

Date: 0ejG2JG005 Mod^l:E331D CAL ;OHO

Time: 12:21:37

Serial #: 03349032

cw : ow

Ins.Loss:0 .000 dB/m

Prop.VekO .300

IJI M I 旧Sb JO

MH :

1 .

5

1 .4

1 .3

1 _2

1 JO

VSWR

JZDT 1

L

eoo

eia 920 930 940

Fpequenc/(J800.0 - 060 0 MHz)

eeo

Resolution: 517 Da

特:0S/22f2aQ5

MadflrS331D

UkL:ON(COA3Q

Titn?: 13:HC:羽 Serial 00 34^032

CW: ON

TRX 故障距离定位驻波图:

Distatice-to-ijilUt

JZDTll

Distance (D.O - 1 OO.O Mete^i

20

Re solution: 517 Da.te: 08<22/2005 Model S331D

CALON(COAX)

Tims. 12:33:08

S eml 00349032

CW: ON

Ins^L oss:0.000dB/m

Prop.V el:0,SOO

RX 工作频段驻波

、召WR

JEDT2

910 920 930 940

Frequency (^90.0 - 960.0 WlHz)

360 RX故障距离定位驻波图:

eo100 13

10

690

Utz 936^01

IF.THZ

900 950

CW;ON

CAL;ONQ

Time: 12:37:22

Serial#. 00349033

Re solutioti^ i 17

Date: 06^2^005

Model;S33lD

JZDT22

70 90

30 40 50 60

Distancs (;□.□ - 1 00.0

Meter)

检查发现主要故障图片:

爼迸

寥卜“8^变

..... .... ............

从上图不难看出故障距离定位驻波图中是反映天馈系统中每个故障点的最

大反射波,也就是说主要是用来判断每个接头之间的匹配性,并不能判断出在

整个工作频段内馈线上所有反射点的综合叠加值,故障定位(DTF驻波比)不能判定工作频段内电压驻波比的稳定性,因此对于馈线的损坏不能做出判断。

由此可以说明驻波比测试是以工作频段内驻波电压的稳定

性来判断天馈系统工作正常与否的重要依据,工作频段驻波比反映得是天馈系统中各个反射点的反射波到达机柜顶时的叠加总值,是天馈系统驻波比的真实反映,故障定位驻波比是每个反射点的反射波在该点形成的驻波比,是一个离散量,不能反映整个天馈系统驻波比的真实值。所以建议以《移动通信基站行业标准》

YD/T1059-2004 的要求,在基站工作频段890-960MHz 时,测试工作频段驻波比VSW庵1.5 。

西安海天天线科技股份有限公司

辽宁优化项目组2005-9-3

天线驻波比测试方法

天线xx测试方法 SX-400驻波比功率计是日本第一电波工业株式会社的“钻石天线”系列产品,它是一种无源驻波比功率计,将它连接在电台与天线之间,通过简单的操作可测量电台发射功率、天线馈线与电台不匹配引起的反射功率及驻波比,此外在单边带通信中本功率计还可作为峰值包络功率监视器。本仪表作为电信、军队、铁路(无线检修所)等无线通信部门的常用仪表被广泛使用,由于使用说明书为日文,阅读不便,为便于现场人员正确使用,现将使用方法和注意事项介绍如下。 1仪表表头、开关、端口功能 仪表表头、开关、端口位置见图1 ①表头: 用于指示发射功率、反射功率、驻波比及单边带应用时峰值包络功率的数值。 表头上共有5道刻度。从上往下,第 1、2道刻度为驻波比刻度值,第一道刻度右侧标有“H”,当电台输出功率大于5W时,应从该刻度上读取驻波比值;第二道刻度右侧标有“L”,当电台输出功率小于5W时,应从该刻度上读取驻波比值;第 3、4、5道刻度为功率值刻度,分别对应功率值满量程200W、20W、5W 档位。 ②RANGE(量程开关 选择功率测量量程,共三档,分别为200W、20W、5W。 ③FUNCTION(测量功能选择开关 置于“POWER”时,进行发射功率(FWD)、反射功率(REF)测量。'置于“CAL”时,进行驻波比(SWR)测量前的校准。

置于“SWR”时,进行驻波比(SWR)测量 ④CAL(校准旋钮) 进行驻波比(SWR)测量前(被测电台处于发射状态下),用此旋钮进行校准,应将指针调到表头第一道刻度右侧标有“”处。⑤POWER(功率测量选择开关 置于“FWD”时,进行电台发射功率测量。 置于“REF”时,进行反射波功率测量。 置于“OFF”时,停止对电台各种功率的测量。 ⑥AVG、PEPMONI(平均值或峰值包络功率测量选择开关)测发射功率、反射波功率、驻波比时,该开关应弹起,呈“■”状态,此时表头所指示的是功率的平均值(AVG)。 作为单边带峰值包络功率(PEPMONI)监视器时,该开关应按下,呈“━”状态。 ⑦零点调整螺钉 用于表头指针的机械调零,测量前调整该螺钉可使指针指示到零位。 ⑧TX(与电台发射机相连端口)可同时参见图1及图 用50Ω同轴电缆将该端口与电台天线端(ANT)相连。 ⑨ANT(与电台使用的天馈线连接端口) 将电台实际使用天馈线的馈线(50Ω)端口(或50Ω阻性的标准负债)与该端口相连。 ⑩DC138V(表头照明直流电源输入端口) 表头照明直流电源输入端口,直流电源电压范围为11~15V,红线接电源“+”,黑线接电源“-”,主要是用于夜间的野外场合。测试方法 2.1连接方法(参见图2)

实验五天线的输入阻抗与驻波比测量

实验五天线的输入阻抗与驻波比测量 一、实验目的 1.了解单极子的阻抗特性,知道单极子阻抗的测量方法。 2.了解半波振子的阻抗特性,知道半波振子阻抗与驻波比的测量方法。 3.了解全波振子的阻抗特性,知道全波振子阻抗与驻波比的测量方法。 4.了解偶极子的阻抗特性,知道偶极子阻抗与驻波比的测量方法。 二、实验器材 PNA3621及其全套附件,作地用的铝板一块,待测单极子3个,分别为Φ1,Φ3,Φ9,长度相同。短路器一只,待测半波振子天线一个,待测全波振子天线一个,待测偶极子天线一个。 三、实验步骤 1.仪器按测回损连接,按【执行】键校开路; 2.接上短路器,按【执行】键校短路; 3.拔下短路器,插上待测振子即可测出输入阻抗轨迹。 4.拔下短路器,接上待测半波振子天线,按菜单键将光标移到【移+0.000m】处,设置移参数据约0.184m,再将光标上移到【矢量】处,按【执行】键。 5.拔下短路器,接上待测全波振子天线,按菜单键将光标移到【移+0.000m】处,设置移参数据约0.133m,再将光标上移到【矢量】处,按【执行】键。 6.拔下短路器,接上待测偶极子天线,按菜单键将光标移到【移+0.000m】处,设置移参数据约0.074m,再将光标上移到【矢量】处,按【执行】键。 四、实验记录

单极子?3: 单极子?2: 单极子?1: 偶极子: 半波振子: 全波振子: 五、实验仿真 以下为实验仿真及其结果: 六、实验扩展分析 单极子天线是在偶极子天线的基础上发展而来的。最初偶极子天线有两个臂,每个臂长四分之一波长,方向图类似面包圈;研究人员利用镜像原理,在单臂下面加一块金属板,变得到了单极子天线。单极子天线很容易做成超宽带。至于其他方面的电性能,基本与偶极子天线相似。 上图左边为单极子,右边为偶极子。虚线根据地面作为等势面镜像而来,单极子是从中心馈电点处切去一半并相对于地面馈电的偶极子。单极子是从中心馈电点处切去一半并相对于地面馈电的偶极子。因此可以理解为:上半个偶极子+对称面作为接地=单极子。由于单极子接地面就是偶极子的对称面,因此单极子馈电部分输入端的缝隙宽度只有偶极子的一半,根据电压等于电场的线积分,这导致输入电压只有偶极子的一半。又因为对称性,单极子和偶极子的电流大小相同,因此单极子的输入阻抗是偶极子的一半。同理,辐射电阻或辐射功率也是偶极子的一半。 由于单极子只辐射上半空间,而偶极子辐射整个空间,因此单极子的方向性是偶极子的

BIRD(鸟牌驻波比分析仪)使用方法

SITE ANALYZER? 无线系统的线缆和天线测试仪操作指南 适用型号: SA-1700, SA-1700-P SA-2500A, SA-4000

一、安全预防措施 遵循一般的安全预防措施。不允许用非专业人士打开仪器。必须确保接入仪器的主电源有可靠的接地。如果没有很好的接地,有可能对使用人员造成伤害。 二、手册简介 手册说明: 我们已经尽力确保该手册是准确的。如果你们发现任何错误,或有什么改进的建议可以与我们联系。这本手册可能周期性地被更新。如果询问对这本手册的更新时,可以参考目录或关于标题页的修订版。 手册的主要章节: 仪器简介――-描述鸟牌分析仪的特点。 校准―――列出校准步骤(在进入驻波分析模式,故障定位模式前必须进行校准)驻波分析模式―――列出驻波分析的步骤,介绍该模式下出现的各种功能。 故障定位模式―――列出故障定位的步骤,介绍该模式下的所有功能。 存储与回放―――描述在驻波分析及故障定位模式下如何存储及回放波形轨迹。 能量分析模式―――列出能量分析的步骤,介绍该模式下出现的各种功能。 应用程序―――描述应用程序的使用。 计算机软件―――提供安装指导,介绍鸟牌分析仪的计算机软件的功能。 维修―――列出该分析仪的日常维护任务,解决普通问题的方法。 附录―――介绍该分析仪的按键及接头,提供普通测试的步骤。

三、定位分析仪的按键 定位分析器上的按键分为两类。 第一类型是指有一种特殊功能的硬按键。功能显示在按键上或按键旁。例如回车键。 第二类型的键是软按键。每个软按键(在左侧有5个此类按键)都有改变当前支持模式的功能。按键的名称出现在屏幕的左侧。例如范围键。 如下图示, 驻波分析 故障定位 能量分析按MEASURE MATCH 软按键 应用程序 按MODE 模式键 按UP 箭头 用数字键盘输入一个值然后按ENTER

天线驻波比测试方法

天线驻波比测试方法 SX-400驻波比功率计是日本第一电波工业株式会社的“ 钻石天线” 系列产品,它是一种无源驻波比功率计,将它连接在电台与天线之间,通过简单的操作可测量电台发射功率、天 线馈线与电台不匹配引起的反射功率及驻波比,此外在单边 带通信中本功率计还可作为峰值包络功率监视器。本仪表作 为电信、军队、铁路(无线检修所)等无线通信部门的常用仪表被广泛使用,由于使用说明书为日文,阅读不便,为便于现 场人员正确使用,现将使用方法和注意事项介绍如下。 1 仪表表头、开关、端口功能 仪表表头、开关、端口位置见图 1 ①表头:用于指示发射功率、反射功率、驻波比及单边带应 用时峰值包络功率的数值。 表头上共有5道刻度。从上往下,第 1、 2道刻度为驻波比刻度值,第一道刻度右侧标有“ H” ,当电台输出功率大于5W时,应从该刻度上读取驻波比值;第二道刻度右侧标有“ L” ,当电台输出功率小于5W时,应从该刻度上读取驻波比值;第 3、4、5道刻度为功率值刻度,分别对应功率值满量程200W、20W、5 W档位。 ②RANGE(量程开关 选择功率测量量程,共三档,分别为200W、 20W、 5W。 ③FUNCTION(测量功能选择开关 置于“ POWER” 时,进行发射功率(FWD)、反射功率(REF)测量。' 置于“ CAL” 时,进行驻波比(SWR)测量前的校准。 置于“ SWR” 时,进行驻波比(SWR)测量 ④CAL(校准旋钮) 进行驻波比(SWR)测量前(被测电台处于发射状态下),用此旋钮进行校准,应将指针调到表头第一道刻度右侧标有“ ” 处。

⑤POWER(功率测量选择开关 置于“ FWD” 时,进行电台发射功率测量。 置于“ REF” 时,进行反射波功率测量。 置于“ OFF” 时,停止对电台各种功率的测量。 ⑥AVG、PEP MONI(平均值或峰值包络功率测量选择开关) 测发射功率、反射波功率、驻波比时,该开关应弹起,呈“ ■” 状态,此时表头所指示的是功率的平均值(AVG)。 作为单边带峰值包络功率(PEP MONI)监视器时,该开关应按下,呈“ ━” 状态。 ⑦零点调整螺钉 用于表头指针的机械调零,测量前调整该螺钉可使指针指 示到零位。 ⑧TX(与电台发射机相连端口)可同时参见图1及图 用50Ω 同轴电缆将该端口与电台天线端(ANT)相连。 ⑨ANT(与电台使用的天馈线连接端口) 将电台实际使用天馈线的馈线(50Ω )端口(或50Ω 阻性的标准 负债)与该端口相连。 ⑩DC13 8V(表头照明直流电源输入端口) 表头照明直流电源输入端口,直流电源电压范围为11~15V,红线接电源“ +” ,黑线接电源“ -” ,主要是用于夜间的野外场合。

驻波测量线的调整与电压驻波比测量

实验一驻波测量线的调整 一、实验目的 1、熟悉测量线的使用及探针的调谐。 2、了解波到波导波长的测量方法。 二、实验原理 1、微波测量系统的组成 微波测量一般都必须在一个测试系统上进行。测试系统包括微波信号源,若干波导元件和指示仪表三部分。图1是小功率微波测试系统组成的典型例子。 图1 小功率波导测试系统示意图 进行微波测量,首先必须正确连接与调整微波测试系统。信号源通常位于左侧,待测元件接在右侧,以便于操作。连接系统平稳,各元件接头对准,晶体检波器输出引线应远离电源和输入线路,以免干扰。如果连接不当,将会影响测量精度,产生误差。 微波信号源的工作状态有连续波、方波调制和锯齿波调制三种信号通过同轴—波导转换接头进入波导系统(以后测试图中都省略画出同轴—波导转换接头)。隔离器起去耦作用,即防止反射波返回信号源影响其输出功率和频率的稳定。可变衰减器用来控制进入测试系统的功率电平。频率计用来测量信号源的频率。驻波测量线用来测量波导中驻波的分布。波导的输出功率是通过检波器进行检波送往指示器。 若信号为连续波,指示器用光点检流计或直流微安表。若信号输出是调制波,检波得到的低频信号可通过高灵敏度的选频放大器或测量放大器进行放大,或由示波器数字电压表、功率计等来指示。后一种测量方法的测量精度较高,姑经常采用调制波作被测信号,测试系统的组成应当根据波测对象作灵活变动。 系统调整主要指信号源和测量线的调整,以及晶体检波器的校准。信号源的调整包括振谐频率、功率电平及调谐方式等。本实验讨论驻波测量线的调整和晶体检波器的校准。 2、测量线的调整及波长测量 (1)驻波测量线的调整 驻波测量线是微波系统的一个常用测量仪器,它在微波测量中用处很广,如测驻波、阻抗、相位、波长等。

SiteMaster驻波比测试方法

两种测量方式的目的是不同的,第一种是测试GSM频段内那个频点范围存在驻波过大问题,而第二种测试的目的是在已知天馈部分存在问题情况下找出具体的故障点。这两种方法是相辅相成的。一般首先测试频段内是否存在驻波偏大的问题,如果没有,标明天馈驻波指标合格,如果存在某一频点范围内驻波偏大,则利用第二种方法找出具体的故障点。 测试步骤如下: 步骤1:选择主菜单中OPT选项。 步骤2:按B1和UP/DOWN选择选择要测试的项目(SWR,RL,CL),按ENTER确认。 步骤3:按B5选择计量单位(METRIC或ENGLISH) 步骤4:按B8调整显示对比度。其他选项说明在功能篇中已有叙述。 步骤5:选择主菜单中FREQ,则出现下级菜单;按F1,可以用数字键输入扫描起始频率或用上/下键改变其值。按F2,输入扫描截止频率,按ENTER键确定。 步骤6:按START CAL 键对系统进行校正,系统会提示在CAL A和CAL B之间选择,选择相应频率段按ENTER开始校准。(用短路器、开路器以及匹配负载进行校准); 步骤7:通过测试电缆连接要测试的设备。 步骤8:可以通过按AUTO SCALE 键,自动调整显示比例;或通过选择主菜单下SCALE,手动输入TOP,BOTTOM和LIMIT值,改变显示比例。 步骤9:按FREQ菜单下的MKRS键,打开一个MKRS,选择EDIT ,用上/下键改变频率值,读取相应SWR值,或按MORE 键,选择PEAK查看SWR最大值。假如所测驻波比大于1。5,那么就要用故障定位功能(DTF),选择主菜单中DIST项,设置D1,D2值,然后选择MKRS下一个MRKS(确定已打开),再按PEAK键,系统会显示驻波比最大值所在的位置。 本章提供一个有关电缆和天线分析仪测量的说明,包括传输线扫描基本原理 和传输线扫描测量的过程,当Site Master处于频率模式或DTF模式下时,这 些基本原理和过程是适用的。 传输线扫描基本原理 在无线电通信中,发射和接收天线是通过一条发射传输线而连接到无线电设备 上的。这个发射传输线通常是一条同轴电缆或波导。这种连接系统被称为一个 天馈线系统。图4-1 显示一个典型的天馈线系统的举例。

实验二 驻波比的测量

实验四 驻波比的测量 【实验目的】 掌握测量驻波比的原理和常用方法。 【实验内容】 在测量线系统中,选用合适的方法测量给定器件的电压驻波系数。 【实验框图与仪器】 网络分析仪 被测件信号源 被测件 频谱仪 b. c. 图1 驻波比测量系统图 【实验原理】 测试微波传输系统内电磁场的驻波分布情况,包括场强的最大点、最小点的幅度及 其位置,从而得到驻波比(或反射系数)和波导波长。由于驻波比(或反射系数)能表 征电磁场的分布规律,所以它们时微波设备和元器件的一项重要指标,因此驻波测量是微波测量中最基本和最重要的内容之一,通过驻波测量可以测出阻抗、波长、相位和Q 值等其它参量。 产生驻波的原因是由于负载阻抗与波导特性阻抗不匹配。因此,通过对驻波比的测量,就能检查系统的匹配情况,进而明确负载的性质。 在测量时,通常测量电压驻波系数,即波导中电场最大值与最小值之比: min max E E = ρ (1-14) 其中,max E 和min E 分别是微波传输系统电场的最大值和最小值。一固定长度的探针感应的电动势正比于场强,因此对平方律检波,有

式中,m ax I 和m in I 分别是电场为最大和最小时指示器的读数。对于直线律检波有 m in m ax I I = ρ (1-16) 如果不知道检波律,必须用晶体检波特性曲线求出场强和指示器读数的关系再求得 ) 151(min max min max -== I I E E ρ

min max min max I I E E == ρ (1-2) 一般都是在小信号状态下进行测量,为此检波晶体二极管都是工作在平方律检波区域(检波电流I ∝E 2),故应有: min max I I = ρ 当电压驻波系数在1.05<ρ<1.5时,驻波的最大值和最小值相差不大,且不尖锐,不易测准,为了提高测量准确度,可采用节点偏移法。 节点偏移法测量驻波比的测试系统如图5示。 测量方法:逐点改变短路活塞的位置(读数S ),在测量线上用交叉读数法跟踪测得某一波节点的位置(读数为D ),作出S 和(D+S )+KS 的关系曲线,其中12 1 -= λλK ,1λ是取下待测元件,固定短路活塞位置,移动测量线探针测得的测量线中的波长;2λ是固定测量探针,移动短路活塞,用交叉读数法在短路活塞上测得的波长。由所得实验曲线求得最大偏移量?,按下式求出驻波比 ) sin(1)sin( 11 1 λπλπρ?-?+= (1-18) 当?很小时,可近似为 1 21λπρ? + ≈ (1-19) 当测量线标尺从左到右读数时,应以(D-S )-KS 为纵坐标,以S 为横坐标曲线,驻波比仍用式(1-18)或(1-19)计算。 注:节点偏移法是测量驻波比的重要方法,它适合于测量任意大小的驻波比。

驻波测试仪使用方法

SITE MASTER 使用方法: 1、频率—驻波比校验部分: 第一步:按面板上的ON/OFF开关键开机。 第二步:按ENTER键继续。 按MODE键,用上下箭头选择频率—驻波比,ENTER键确认。 第三步:选择频率或距离。 (1)按FREQ/DIST键 (2)按F1键 (3)用数字键或上下箭头键输入要求的起始频率 (4)按ENTER键设置F1为要求的频率 (5)按F2键 (6)用数字键或上下箭头键输入要求的截止频率 (7)按ENTER键设置F2为要求的频率 检查显示的起始、截止频率是否和要求的一致。 (8)按AMPLITUDE键 (9)按底线键 (10)用数字键或上下箭头键输入要求的起始频率 (11)按ENTER键设置底线为要求的频率 (12)按顶线键 (13)用数字键或上下箭头键输入要求的截止频率 (14)按ENTER键设置顶线为要求的频率 检查显示的起始、截止频率是否和要求的一致。 第四步:在测试端口插上校准器 第五步:按数字3键检验 第六步:按ENTER键进行检验确认 第七步:查看屏幕左上角是否出现“CAL ON”信息,以确认检验是否正确完成,如屏幕左上角显示“CAL OFF”信息,即说明SITE MASTER还没有校准。校验完成后,即可在测试端口连接扇区收、发端口测试频率—驻波比。 第八步:按数字9键(SAVE DISPLAY)来命名该测试的曲线,然后按ENTER确认。? 2、故障定位—驻波比校验部分: 按MODE键,用上下箭头选择故障定位—驻波比,ENTER键确认。 第一步:选择频率或距离。 (15)按FREQ/DIST键 (16)按D1键 (17)用数字键或上下箭头键输入要求的起始距离 (18)按ENTER键设置D1为要求的频率 (19)按D2键 (20)用数字键或上下箭头键输入要求的截止频率 (21)按ENTER键设置D2为要求的频率 检查显示的起始、截止频率是否和要求的一致。 (22)按AMPLITUDE键 (23)按底线键 (24)用数字键或上下箭头键输入要求的起始频率 (25)按ENTER键设置底线为要求的频率

实验二_驻波比的测量

实验二_驻波比的测量 实验四驻波比的测量 【实验目的】 掌握测量驻波比的原理和常用方法。 【实验内容】 在测量线系统中,选用合适的方法测量给定器件的电压驻波系数。【实验框图与仪器】 选频 a.放大器 信号源隔离器频率计衰减器测量线被测件 图1 驻波比测量系统图 b.c. 网络分析仪信号源被测件频谱仪【实验原理】 测试微波传输系统内电磁场的驻波分布情况,包括场强的最大点、最小点的幅度及 被测件其位置,从而得到驻波比(或反射系数)和波导波长。由于驻波比(或反射系数)能表征电磁场的分布规律,所以它们时微波设备和元器件的一项重要指标,因此驻波测量是微波测量中最基本和最重要的内容之一,通过驻波测量可以测出阻抗、波长、相位和Q值等其它参量。 产生驻波的原因是由于负载阻抗与波导特性阻抗不匹配。因此,通过对驻波比的测量,就能检查系统的匹配情况,进而明确负载的性质。 在测量时,通常测量电压驻波系数,即波导中电场最大值与最小值之比: Emax (1,14) ,,Emin

其中,和分别是微波传输系统电场的最大值和最小值。一固定长度的探针感EEmaxmin 应的电动势正比于场强,因此对平方律检波,有 EI maxmax,,,(1,15) EIminmin 式中,和分别是电场为最大和最小时指示器的读数。对于直线律检波有IImaxmin Imax (1,16) ,,Imin 如果不知道检波律,必须用晶体检波特性曲线求出场强和指示器读数的关系再求得。测量驻波系数的方法与仪器种类很多,本实验中将学习用测量线测量驻波系数的几, 种方法。 驻波比的测量,应根据驻波比的大小采用不同的方法,以保证测量的精度。 1、直接法(小驻波比的测量 1.05<ρ<1.5) 3 直接法测量驻波系统框图如图示。 测量放大 器 被测器可变衰微波信隔离器 件减器号源 波导测量线 3 图直接法测量驻波系统框图 图,1,直接法测量驻波系数直接测量沿线驻波的最大点与最小点场强如图4所示,从而求得驻波系数的方法称为直接法。使用测量线测试驻波比,可直接由测量线探针分别处于波腹及波节位置时的电流表读出Imax和Imin,求出驻波比。但是

天线驻波比的测量方法

频通过式功率计的应用 在传统的通信系统中,通常采用AM,FM或PM调制方式。这些发射机的射频功率测量可以用线性连续波(CW)功率计完成。在现代通信系统中,广泛采用了数字调制方式,其射频功率的测试方法也随之改变了。 在本文中,首先讨论了通过式功率计的工作原理,及数字调制信号的射频功率的定义,理解了这些定义将有助于射频功率的正确测量。然后例举了通过式功率计在通信系统中的应用。 一、通过式功率计的工作原理 射频功率可由两类仪器来测量:热偶式功率计和通过式功率计。 1.1 热偶功率计 热偶式测试法是先将射频功率转换为热能,测出其所产生的能量的总和,再将其转换为相应的功率读数(瓦特)。 在热偶式测量法中,其测试结果基本上不受信号波形的影响。但热偶式功率计的成本,物理尺寸,测试响应时间,所需的附件设备,电缆和交流电源都决定了它不能得到广泛的应用。 1.2 通过式功率计 在1952年,BIRD公司的创始人J.Raymond Bird发明了通过式功率计原理Thruline@ 技术。从此,通过式功率测量法成为射频功率测量的工业标准一直至今。在工程应用及工程计量中,通过式功率计的作用是任何其它功率测试手段所无法替代的。 Thruline?通过式功率测量法的原理如下(见图1): 通过式射频功率计实际上是一种信号激励装置,采用了一个无源的二极管射频传感器。在同轴线的一侧装有一个定向的,半波二极管检波电路,并将其接到一个已校正的表头以读出有效值功率。检波电路与传输线通过介质耦合,并根据置于传输线旁的传感器的方向取样出正向和反射功率。

图1、通过式功率测量法 Thruline@功率计的代表产品是BIRD公司的43型功率计(见图2),它自发明以来已经有超过25万台在全世界范围得到应用。43采用了无源线性二极管检波技术,可以测量单载频的FM,PM和CW信号的功率,或者与校准信号的峰均功率比完全一致的信号。 图2、连续波(CW)功率计的代表产品——BIRD 43 二、模拟调制和数字调制的射频信号 不同的射频调制信号的功率测量方法是不同的,让我们首先来比较一下不同的调制信号各有什么特点。 2.1 连续波(CW )和模拟调制信号 图3所示为连续波(CW)信号的波形,其特点是峰值包络是恒定的,FM和PM信号也同样。

驻波比测试仪使用指南

驻波比测试仪使用指南 注意事项:本设备不能接任何带功率的设备,包括BTS和天馈对接,仅用于测试我们自己做的馈线的驻波比。在接天馈的馈线时,务必要保证天馈的两根馈线与BTS设备完全断开,否则即会击穿测试仪模块(在不能确认是否已断开的情况下,请不要接入,否则请承担一切后果)。模块被击穿的现象是:按键变得不灵敏,测试速度非常缓慢。刚刚已经在不知情的情况下被击穿过一次,下次再维修,卖家就要收费。 一、全图及配件:

二、键盘: 电源开关键;确认键;取消键;背光灯键和数字1键是同 一个键;仪器校准开始键和数字3键是同一个键;测试暂停键; 上下调整键。其他按键暂不需要,是存储测试数据,调出测试数据,打印测试数据等。可参看移动的文档。 三、开机: 1、按开机键; 2、开机后会进行自检,检验成功后,有提示,如图: ,如接外接电源,在电池电量不足的情况下,会显示电量不足: 。 开机界面:

开机后的正常界面: 四、设置测试频率: G网的测试频率范围在885MHz--960 MHz; C网的测试频率范围从820 MHz开始; 1、进入频率设置界面: 按图标下的按钮进入,进入后如图所示: 2、按下面的按键,设置起始频率为885,可以直接按数字键进行设置; 3、按下面的按键,设置终止频率为960,可以直接按数字键进行设置; 4、按下面的按键,回到主界面; 五、设置测试功率:

1、在主界面按下的按键进入,进入后如图显示: ; 2、按图标下面的按键,进入到功率测试范围上限的设置,设置到1.5。 可用数字键,也可以用上下键调整,再按一次图标下面的按键,确认。 3、按图标下面的按键,进入到功率测试范围下限的设置,设置到1.0。可用数字键,也可以用上下键调整,再按一次图标下面的按键,确认。 4、按图标下面的按键,进入到功率测试告警线的设置,可用数字键, 也可以用上下键调整,再按一次图标下面的按键,确认。正常会发现屏幕上有一横虚线,随着此数值的调整,上下移动,通常设置为1.3,超过这个值,就要检查所做的馈线,是否有铜削或是馈线头没有拧紧,或是拧偏。 六、校表: 1、按进入,进入后的界面如图所示: , 用上下键选择,按确认; 2、开始开路器校表:

驻波比测量方法

SX-200/SX-400驻波比功率计使用方法 作者:佚名文章来源:网络点击数:4018 更新时间:2006-4-14 (或50Ω 阻性的标准负债)与该端口相连。 ⑩表头照明直流电源输入端口) 表头照明直流电源输入端口,直流电源电压范围为11~15V,红线接电源“ +” ,黑线接电源“ -” ,主要是用于夜间的野外场合。 测试方法 2.1 连接方法(参见图2) ①将电台的“ ANT” 端口与本仪表的“ TX” 端口相连,本仪表的“ ANT” 端口与电台实际使用天馈线的馈线端口(50Ω )相连,一定要做到连接可靠、紧固。 ②表头需照明时,在仪表背面端口接入规定电压范围的直流电源。 2.2 电台发射功率的测量 ①FUNCTION开关置于“ POWER” 位置。 ②POWER开关置于“ FWD” 位置。 ③RANGE开关置于所测电台发射功率相适应的量程上 ④被测电台置于发信状态,表头指针指示即为电台发射功率,从相应刻度上读出发射功率值。

⑤作为单边带峰值包络功率(PEP MONI)监视器时,应将A VG/PEP MONI开关按下,呈“ ━” 状态,此时对着麦克风发声或输入调制信号,表头将动态地指示单边带峰值包络功率。 2.3 天馈线反射波功率的测量 ①FUNCTION开关置于“ POWER” 位置。 ②POWER开关置于“ REF” 位置。 ③RANGE开关开始应置于“ 20W” 量程上。 ④被测电台置于发信状态,表头指针指示即为电台反射波功率,若反射波功率小于5W,将RANGE开关置于“ 5W” 量程上,从刻度上读出反射波功率值。 2.4 驻波比的测量 ①FUNCTION开关置于“ CAL”位置。 ②将CAL旋钮逆时针旋到底,置于“ MIN” 位置。 ③被测电台置于发信状态,顺时针旋转CAL旋钮,使指针指示到表头第一道刻度线右侧“ ” 处。 ④FUNCTION开关置于“ SWR” 位置,表头指针指示即为驻波比值,当电台输出功率大于5W时,应从第一道刻度上读取驻波比值,当电台输出功率小于5W时,应从第二道刻度上读取驻波比值。 3 使用注意事项 ①仪表内部为无源高频电路结构,一般仪器不能进行校准,使用过程中不能打开外壳,触摸内部元器。 ②当电波类型为FM(调频波)、CW(连续波)、FAX(传真信号)、RTTY(电传机信号)时,电台连续输出最大功率不得超过以下数值:

驻波比测试仪操作说明书

驻波比测试仪:Bird 鸟牌SA-2500EX Site Analyzer 操作说明书 一:Mode:主菜单 Measure Match:驻波分析(驻波比要求控制在1.5以内,1.5以上需要处理) Fault Location:故障定位(确定在几米处有好大的驻波,一般先处理接头处) Measure Power:能量分析(基本上不用) Utility:应用程序 二、Mode的子菜单 Measure Match:驻波分析 Save/Recall:保存/回放 Auto Scale:自动刻度(不要动它,不小心碰到了的话,要么重新设置要么以后每次测试看不到波形时再次点击) Limit:限制测试(一般设置在1.5) Test On:开启 Test OFF:关闭 Test Aud:自动 HOLD/RUN:测试运行与测试驻留之间切换 Print:打印 Fault Location:故障定位 Save/Recall:保存/回放 Auto Scale:自动刻度 Limit:限制测试 Test On:开启 Test OFF:关闭 Test Aud:自动 HOLD/RUN:测试运行与测试驻留之间切换 Print:打印 三:Mode/Measure Match/Config:驻波分析的设置 Freq:频率设置 Start:开始频率 Stop:终止频率 Center:中心频率 Span:带宽 Band List:波段列表 Scale:刻度及单位设置 Min:最小值 Max:最大值 Auto Scale:自动刻度 Units:单位 Cbl Loss:线损(一定要断开天线)

Rtn Loss:回波损耗 VSWR:电压驻波比 Disp:显示(Graph Display 图形显示管) Envelope:包络线 Minimum:最小刻度 Maximum:最大刻度 Limit Line:限制线(限制线用于帮助使用者识别数据是否达到指标) Cable Loss:线损测试/取消线损测试(测量线损时,被测线的远端应该断开) 四:Mode/Measure Match或Fault Location /Calibrate:校准 Open:开路标准 Short:短路标准 Load:50欧姆负载 ※每次重新设置参数之后都要进行校准,校准器的三个接口分别校准 五:Mode/Fault Location/Config:故障定位模式的设置 故障定位的设置在测试之前必须设置频率带宽,馈线类型及进行校准 频率带宽=35,000*相对速率(%)/线长(m)---在Measure Match下设置 Freq:频率设置 Start:开始频率(890M) Stop:终止频率(960M) Center:中心频率 Span:带宽 Band List:波段列表 Scale:刻度及单位设置 Min:最小值(1) Max:最大值(5) Auto Scale:自动刻度(根据波形大小自动调整可都是波形显示到窗口) Units:单位 Cbl Loss:线损 Rtn Loss:回波损耗 VSWR:电压驻波比(一般都选择驻波比,其他的要换算成驻波,比较麻烦) Disp:显示(Graph Display 图形显示管) Envelope:包络线 Minimum:最小刻度 Maximum:最大刻度 Limit Line:限制线(限制线用于帮助使用者识别数据是否达到指标) Cbl Type:设置馈线的类型(改变馈线类型或传播速率需要重新设置距离参数,通常是在设置距离参数之前设置馈线的类型) Vel. Prop:传播速度 Loss:线损 Cable List:馈线类型 Distance:设置距离 Start:开始距离(0米) Stop:终止距离(大于馈线的长度,一般不用变) Max:最大距离

02 电压驻波比测量 实验报告

近代物理实验报告 指导教师: 得分: 实验时间:2009年10月26日, 第九周, 周一, 第5-8节 实验者: 班级 材料0705 学号 200767025 姓名 童凌炜 同组者: 班级 材料0705 学号 2007670 姓名车宏龙 实验地点: 综合楼 406 实验条件: 室内温度 ℃, 相对湿度 %, 室内气压 实验题目: 微波系统中电压驻波比的测量 实验仪器:(注明规格和型号) 导波管(BJ-100)、隔离器、衰减器、谐振式频率计、晶体检波器、驻波测量线(DH364A00)、匹配负载 实验目的: (1) 了解驻波导测量系统,熟悉基本微波原件的作用; (2) 掌握驻波测量线的正确使用方法; (3) 掌握大、中、小电压驻波系数的测量原理和方法。 实验原理简述: 1. 微波的基本知识 1.1 电磁波的基本关系 ρ=??D 0=??B t B E ??- =??t D j H ??+=??(3-1-1) E D ε=,H B μ=,E J γ=(3-1-2) 如上所示, 方程组(3-1-1)为Maxwell 方程组,方程组(3-1-2)描述了介质的性质对场的影响。 1.2 矩形波导中波的传播 在微波波段,随着工作频率的升高,导线的趋肤效应和辐射效应增大,使得普通的双导线不能完全传输微波能量,而必须改用微波传输线。本实验中使用的是矩形波导管,同时对应使用的是在矩形波导中常用的微波TE 10 1.2.1 TE 10型波。 一个均匀、无限长和无耗的矩形波导。(图3-1-3)经过计算可以得到波导波长2 )2( 1a g λ λ λ-=

特点: 1,存在一个临界波长c λ=2a ,只有波长c λλ<的电磁波才能在波导管中传播 2,导波波长g λ>自由空间波长λ 3,电场只存在横向分量,电力线从一个导体壁出发,终止在另一个导体壁上,并且始终平行于导波的窄边 4,磁场既有横向分量,也有纵向分量,磁力线环绕电力线 5,电磁场的波导的纵方向(z )上形成行波 下图所示,为TE10型波的电磁场结构 1.2.2导波的工作状态 如果导波终端负载是匹配的,传播到终端的电磁波的所有能量被吸收,这时波导中呈现的是行波。当导波终端不匹配时,就是一部分波被反射,波导中的任何不均匀性也会产生反射,形成所谓混合波。为了描述电磁波,引入反射系数与驻波比的概念,反射系数Γ定义为 φj i r e E E ||/Γ==Γ 驻波比ρ定义为min max E E = ρ(3-1-6),其中式中,max E 和min E 分别为波腹和波节点电场E 的大小 不难看出:对于行波,1=ρ;对于驻波,∞=ρ;而当∞<<ρ1,是混合波(如上图所示) 2. 电压驻波比的测量 驻波测量是微波测量中最基本和最重要的内容之一。在测量时,通常测量电压驻波系数,即波导中电场最大与最小之比

最新实验一 晶体检波及驻波比测量

实验一晶体检波及驻 波比测量

实验一 驻波比测量与检波晶体二极管检波律测定 一、 实验目的与意义 1、熟悉测量线的使用方法; 2、驻波测量是微波测量中最基本和最重要的内容之一,几乎在所有的微波测量中都涉及驻波比测量的,因此必须熟练掌握测量中小驻波、大中驻波的常用方法。 二、 实验原理与方法 1、驻波比定义: 一个微波元件插入均匀波导以后,即会产生反射波,不同性能的元件引起反射波的大小和相位都不相同,它与入射波合成后产生的驻波状态也不相同。在驻波分布图形上有驻 E 图1. 驻波的形成 波波腹和驻波波节,波腹点的电场最大值为Emax ,波节点的电场最小值为Emin 。电压驻波比是传输线中电场最大值与最小值之比,表示为 m in m ax E E = ρ (1) 传输线上波的传播状态也可用反射系数表示,即 )2(d Ei Er Ei Er β?-∠== Γ (2) (2)式中:?为双口网络的反射角; d 为双口网络输入端到左侧第一个驻波节点的距离; g λπβ/2=是相位常数,其中g λ是波导波长。 驻波比ρ与反射系数Γ之间的关系式为 Γ -Γ+= 11ρ (3)

1 1 +-= Γρρ (4) 用测量线测量驻波系数的方法有很多,如下表所示: 本实验中只介绍最基本的直接法和等指示度法。 2、检波晶体二极管特性的测定与定标 要准确测得待测件的驻波比,首先要正确调整和使用信号源和测量线(信号源在实验时已由指导教师调好),其次要了解测量线探头中所使用的检波晶体二极管的检波特性。 由测量线结构可知,是开槽线使探针拾取探针所在位置的电场,感应出与场强成正比的电动势加到探头内的检波晶体上,晶体检波后的检波电流接到适当的仪表上,指示出沿线分布的驻波大小。一般来说,晶体二极管是非线性元件,通常加在检波二极管上的电压u 正比于探针所在位置的场强E ,而检波电流i 与检波电压u 的一般关系式为 n i cu = (5) 式中c 为常数,n 为检波律,u 为检波电压。晶体管的检波律n 随检波电压u 而改变,通常在低电压范围n 近似等于2(平方律),在高电压范围n 近似等于1(直线律)。n 的数值可以由定标曲线求出,如图二(a )所示。 * 晶体定标曲线的测量方法是:将测量线输出端短路,根据传输线内的驻波分 布规律测出。当输出端短路时,波导内电场驻波的分布纵向分布如图二(b )所示,其表示式为 2sin E Em d g πλ= (6) 相对值为

矢量网络分析仪测驻波方法

如何使用矢量网络分析仪测量天线的驻波比? 1、打开网络分析仪,然后按下‘PRESET’键,准备进行设置。 2、设置监视的频率范围:按下‘FREQ’键,按下‘CENTER’软键,使用数字键输入扫频段的中心频率,例如144,然后按下‘MHz’软键。 3、按下‘SPAN’软键,输入测量带宽,使用数字键输入‘10’,然后按下‘MHz’软键。 4、选择测量端口:按下‘CHAN 1’键,然后再按下‘TRANSMISSION’软键。 5、选择测量类型:按下‘FORMAT’键,然后从菜单选择‘SWR’。 6、按下‘REFERENCE POSITION’软键,在屏幕菜单上选择‘9’,然后按下‘ENTER’软键。 7、设置测量标记为113MHz和115MHz:按下‘MARKER’键,然后在屏幕菜单上输入‘1’。使用数字键盘输入‘113’,然后按下‘MHz’软键。然后在屏幕菜单上输入‘2’。使用数字键盘输入‘115’,然后按下‘MHz’软键。 8、在‘REFLECTION’菜单下,按下‘CAL’,然后选择‘ONE PORT’。 9、在网络分析仪的RF OUT端,安装开路校准设备。 10、按下‘MEASURE STANDARD’,等一会儿,直到出现‘CONNECT SHORT’为止。 11、在网络分析仪的RF OUT端,安装短路校准设备,按下‘MEASURE STANDARD’,等一会儿,直到出现‘CONNECT OPEN’为止。 12、在网络分析仪的RF OUT端,安装50Ω的终端电阻,按下‘LOAD’,等一会儿,直到出现‘CONNECT LOAD’为止。 13、将天线电缆连接到在网络分析仪的RF的输出端。 14、在网络分析仪上,按下‘MARKER’,显示测量标记。 15、在‘REFLECTION’菜单下,按下‘MEAS’,即可显示出天线在144MHz的驻波比。

相关文档