文档库 最新最全的文档下载
当前位置:文档库 › 基于HLA的临近空间飞行器虚拟飞行试验方法

基于HLA的临近空间飞行器虚拟飞行试验方法

基于HLA的临近空间飞行器虚拟飞行试验方法
基于HLA的临近空间飞行器虚拟飞行试验方法

2010年7月刊

人工智能与识别技术

信息与电脑

China Computer&Communication

引言

临近空间(Near space )通常是指20~100km 的高空,由于技术和认识上的原因,临近空间的政治、经济和军事价值直到最近才引起各国的重视,并成为美国、俄罗斯、欧洲等国家和地区近期飞行器技术研究的热点。与其他飞行器不同,临近空间飞行器高速在相当高度的大气层内飞行,各物理场耦合作用特性较强。

临近空间飞行器具有重要政治、经济价值,是一类典型的复杂产品,其研究虽然刚刚起步,但对于我国航天、航空领域建设具有重要意义和深远影响,也是未来几十年内最重要的航天、航空飞行器研究之一。受政治、经济等方面因素的影响,临近空间飞行器的飞行试验不能进行全程验证,难以全面评估飞行性能。虚拟飞行试验在一定的精度下,能够替代真实试验对临近空间飞行器进行性能分析,对真实飞行试验进行预示,并指导方案设计。从而为提升系统的总体设计水平,提高飞行试验成功率,缩短研制周期,降低研制成本和风险等提供技术保障。

与传统航天航空飞行器系统研究中主要进行基于HLA 的航天航空体系仿真及导航、制导与控制闭路的协同仿真不同,临近空间飞行器需要开展多学科、全系统、多物理场耦合过程的协同仿真研究。学科领域的仿真,功能结构复杂,技术含量高,领域间存在着大量的耦合与交互关系,其中一些涉及领域间交互的复杂仿真问题需要多个学科领域的仿真模型、软件相互协作共同完成。协同仿真不需要拆散一个系统,应保持其全貌,使得对系统的分析、设计和评价过程尽可能地接近人们认识系统的方法和习惯;使得分析、设计、实现系统的方法学(原理)与人们认识客观世界的过程尽可能一致。

本文结合临近空间飞行器的各领域模型研究成果,开发了一套能够综合考虑各学科子系统多场耦合作用的跨学科领域的协同建模与仿真的平台,实现基于HLA 的临近空间高超声速虚拟飞行仿真试验,为系统总体性能分析与验证提供有效的技术途径。

1. 临近空间飞行器虚拟试验系统

如图1所示,本文开发的临近空间飞行器虚拟试验软件系统针对结构、强度、控制系统、载荷、热环境、气动力等几个领域的模型,提供其与协同仿真支撑环境相链接的高层模型转换方法来建立起联邦对象模型,并结合上述模型仿真计算所基于的ABAQUS 、MSC 、ANSYS 、MATLAB/SIMULINK 、FORTRAN 等计算工具研制的仿真软件,并提供仿真适配器与领域模型仿真工具的联结,提供各组成邦员之间数据交换的约定,统一各邦员之间可见的仿真对象及属性,定义交互类,按照对象模型模版格式创建,描述邦员间互操作的约定。

各领域仿真模型与应用软件通过异构仿真模型的协同集成软件系统与仿真运行平台相链接。协同集成软件系统与仿真运行平台均按照高层体系结构(High Level Architecture ,HLA )接口规范建立的,是HLA 协同仿真系统进行分层管理控制的工具,也是进行临近空间仿真

技术研究的立足点。HLA 期望通过提供一个采用标准的方法解决联邦模式仿真中存在的固有问题,支持对应用系统的即插即用;支持对未来新技术的充分兼容与应用;支持对不同仿真应用的重用,实现联邦的快速组合与重新配置;支持用户协同地开发复杂仿真应用系统,并最终降低开发新应用系统的成本和时间。基于HLA 的软总线式协同仿真模式克服了其它协同仿真模式的不足,在开放性、灵活性和通用性上都具有很大的优势。

2. 协同仿真运行平台

为便于描述飞行器系统仿真内部逻辑,明确多学科协同仿真运行平台的规划、设计、实施和运行,并提供一个完整通用的参考结构,需要首先从系统的角度对其进行分析和描述。如图2所示的仿真运行框架中,三层体系结构将数据、服务与应用分离开来,便于各种应用软件,包括商用仿真软件的集成,保证了整个系统的灵活性和开放性。

仿真运行服务主要需解决:互操作问题,如何由最高层的应用互操作映射到最底层的网络互操作,以保证整个运行过程的可行性;时间同步问题,如何保证多学科协同仿真系统能够正确的顺利的向前推进,并提供相应的容错机制;运行管理问题,如何实现对协同仿真运行过程进行有效的监视和控制,以增强整个系统的可操作性,实现系统调试、自动优化、用户交互等复杂操作。

协同仿真运行管理器符合HLA1516标准规范,从整体角度对协同

基于HLA的临近空间飞行器虚拟飞行试验方法

铁鸣 胡东飞 王玲 吴旭生 北京临近空间飞行器系统工程研究所,北京 100076

摘要:临近空间飞行器具有重要政治、经济价值,与传统航天飞行器不同,无法进行全程、全飞行走廊的真实飞行试验,其总体性能分析与验证只能基于仿真建模与仿真支撑技术进行虚拟飞行试验,并对飞行过程中控制、气动、结构、飞行器运动学与动力学等多个学科、多物理场的耦合特性进行描述。根据临近空间高超声速飞行器研制的实际需求,开发了一个基于HLA 的临近空间飞行器虚拟试验平台,并提出了全程、全飞行走廊的虚拟飞行试验方法,重点介绍了所开发的软件平台体系、虚拟试验异构模型集成方法、协同仿真运行流程和基于此软件平台进行虚拟飞行试验的方法,为实现临近空间飞行器的总体设计与评估提供了可靠、实用的验证途径。

关键词:临近空间飞行器;虚拟试验;高层体系结构;多物理场耦合;异构仿真模型中图分类号:TP39 文献标识码:A 文章编号:1003-9767(2010)07-0051-02

图1 临近空间飞行器虚拟试验系统及异构仿真模型集成方法

2010年7月刊人工智能与识别技术信息与电脑

China Computer&Communication

仿真系统进行运行管理,包括仿真运行支撑软件的启动/停止,协同

仿真联邦的创建/撤销、仿真进程的启动/暂停/恢复/完成等等。协同仿

真运行管理器基于交互类通信机制,对协同仿真系统的运行过程进行

管理。主要用户界面。仿真运行监控器提供对联邦成员的行为的实时

监控功能,实现仿真过程的可视化并反馈给网络中的各个设计节点,

使得仿真过程更加直观,实时显示仿真联邦的状态,便于用户进行监

视,与仿真运行管理器共同通过相应的权限管理机制来保证系统的安

全性。

仿真运行服务集的核心是仿真引擎,动态载入不同仿真任务相

图2 虚拟飞行仿真运行平台

关的仿真模型后,形成相应的仿真应用系统,实现系统行为调度的形

式化和可视化。支持模型的直接连接与快速运行,非编译模式构建系

统。仿真引擎基于有限状态机算法实现了系统对模型行为的形式化调

度。

3. 虚拟飞行试验

基于本文虚拟试验软件平台进行临近空间飞行器虚拟飞行试验过

程如图3所示。

在全系统的协同仿真试验阶段,所有的模型都参与了仿真试验,

能够充分反映临近空间飞行器飞行过程中各学科的相互耦合关系,能

够完成全程虚拟飞行,具备实现验证总体参数的合理性,验证各学科

模型与虚拟试验系统的匹配性,对真实飞行试验进行预示,并指导飞

行决策和飞行试验方案设计。

4. 结论

与传统航天飞行器系统不同,临近空间飞行器全程飞行的总体性

能分析与验证问题非常复杂,进行各相关学科、领域的一体化协同仿

真来完成虚拟飞行试验是必要的途径。本文开发了基于HLA的临近空

间飞行器虚拟试验系统软件并建立了虚拟飞行试验方法,基于协同仿

真适配器和高层模型转换算法提出实现异构模型协同集成的技术,介

绍了所提出体系中仿真运行平台和支撑平台的构建方法,所提虚拟飞

行试验方法既可体现该复杂系统的整体性,又有效地重用了现有的信

息资源,完成临近空间飞行器全程飞行的总体性能验证,符合目前尖

端飞行器系统虚拟验证的发展趋势。

参考文献:

[1]Stephens H. Near space [J]. Air Force Magazine, 2005, 88(7): 31

[2]孙悦, 赵和鹏. 临近空间飞行器应用分析与展望 [J]. 信号与信息

处理, 2008, 38(10): 26-28

[3]李怡勇, 李智, 沈怀荣. 临近空间飞行器发展与应用分析 [J]. 装备

指挥技术学院学报, 2008, 19(2): 61-65

[4]王君,雷虎民. 中远程地空导弹武器系统作战效能仿真 [J]. 系统

仿真学报, 2010, 22(2): 244-249

[5]丁海燕, 陈建华, 宋剑. 基于HLA的舰空导弹反导仿真系统的设计

与实现 [J]. 系统仿真学报, 2009, 21(18): 167-171

[6]袁胜智,谢晓芳. 巡逻攻击导弹作战仿真系统研究 [J].系统仿真

学报,2009, 21(14): 96-100

[7]?zer Uygun, Ercan ?ztemel, Cemalettin Kubat. Scenario based

distributed manufacturing simulation using HLA technologies [J].

Information science, 2008,

[8]Lu T, Hsu C. Mobile agents for information retrieval in hybrid

environment [J]. Journal of Network and Computer Applications, 2007,

30(1): 244-264

[9]熊光愣,范文慧, 等. 协同仿真与虚拟样机技术 [M]. 2004, 清华

大学出版社

[10] Chen D. A framework for robust HLA-based distributed

simulation [C]. Proceedings of the Workshop on Principles of Advanced and

Distributed Simulation, 2006

基金项目:中国博士后科学基金 (20070420367)

作者简介:铁鸣(1976-), 男,博士,高工,研究方向为复杂系统建

模与仿真;胡东飞(1985-),男,硕士,助工;王玲(1966-),女,研究

员;吴旭生(1977-),男,硕士,工程师

图3 飞行段每帧的仿真时序和数据流

飞行器系统仿真

《飞行器系统仿真与CAD 》学习报告 第一部分仿真(40) 题目1:给定导弹相对于目标的运动学方程组为 q k q V q V q r q V q V r m m ,sin )sin(),cos(cos r(0) = 5km, q(0) = 60deg, (0) = 30deg,V = , V m = , 1Ma = 340m/s, k = 2 (1) 建立系统的方框图模型; (2) 用MATLAB 语言编写S —函数 (3) 用窗口菜单对(1), (2)进行仿真,动态显示结果; (4)用命令行对(1), (2)进行仿真,以图形显示结果 答: (1) (2)用MATLAB 语言编写S 函数 function [sys,x0,str,ts]=CAD1_sfun(t,x,u,flag) switch flag case 0 [sys,x0,str,ts]=mdlInitializeSizes; case 1 sys = mdlDerivatives(t,x,u); case 3 sys = mdlOutputs(t,x,u); case {2,4,9} sys = []; otherwise

error('unhandled flag=',num2str(flag)) end function [sys,x0,str,ts]=mdlInitializeSizes sizes=simsizes; =3; =0; =3; =0; =1; =1; sys=simsizes(sizes); str=[]; x0=[5000,pi/3,pi/6]; ts=[0 0]; function sys=mdlDerivatives(t,x,u) vm=*340; v=*340; k=2; dx(1)=vm*cos(x(2))-v*cos(x(2)-x(3)); dx(2)=(v*sin(x(2)-x(3))-vm*sin(x(2)))/x(1); dx(3)=k*dx(2); sys=dx; function sys=mdlOutputs(t,x,u) sys=x; 调用S函数的模型框图 (3)框图仿真结果:

临近空间用途及发展优势与潜力

一、临近空间的概念 临近空间是指介于普通航空飞行器最高飞行高度和天基卫星最低轨道高度之间的空域。天基卫星的最低轨道约为200km,航空飞机的最大飞行高度约为20km,但从应用上讲,由于100km以下为临近空间飞行器的主要活动区域,故在国内一般定义临近空间为离地球表面约20-120km的空域,美军定义为20-100km的空域。过去所称的“近空间”、“亚轨道”、“空天过渡区”、“亚太空”、“超高空”或“高高空”等区域,都是指临近空间。 图表临近空间区域划分 资料来源:产研智库 二、临近空间飞行器综述 所谓临近空间飞行器,顾名思义是指能够飞行在临近空间执行特定任务的一种飞行器,既能比卫星提供更多更精确的信息(相对于某一特定区域),并节省使用卫星的费用,又能比通常的航空器减少遭地面敌人攻击的机会。临近空间飞行器能快速飞行在敌方战区上空而不易被敌方防空监视系统发现,从而为作战指挥官提供不间断的监视情报,以增强其对战场情况的了解能力。部署这种高空飞行器,成本低、时间快,适合现代战争的需求。 图表临近空间飞行器的设计思想、特点与关键技术 资料来源:产研智库

三、临近空间飞行器发展优势 民用领域以通信监测领域为例,与卫星相比,临近空间飞行器造价明显低于卫星,载荷能力超过卫星的2倍,延迟时间、衰减更小,且可以多次回收、重复利用。 图表临近空间飞行器与通信卫星的比较优势 资料来源:产研智库 除此之外,临近空间飞行器还具有一下优势: (一)持续工作时间长。 传统飞机的留空时间以小时为单位,临近空间飞行器的留空时间则以天为单位,目前正在研制的临近空间平台预定留空时间长达6个月,规划中的后续平台预定留空时间可达1年以上,易于长期、不间断地获得情报和数据,可对紧急事件迅速做出响应,而且人员保障少、后勤负担轻。 (二)覆盖范围广。 临近空间飞行器的飞行高度在传统飞机之上,其侦察覆盖范围比传统飞机要广得多。 (三)生存能力强。 气球或软式飞艇的囊体采用非金属材料而且低速运行,雷达和热反射截面很小,传统的跟踪和瞄准办法不易发现。与传统飞机相比,气球或软式飞艇的缺点是:充灌氦气的时间较长,在充气时需要保持稳固,有时还需要占用机库;在放飞、通过平流层上升、下降、回收和放气的过程中,由于其庞大的体积,容易受到风和湍流的影响。 四、临近空间飞行器军事用途

航天器总体设计答案总结(新)

航天器总体设计 (无平时成绩,考试试卷满分制,内容为21题中抽选13题) 1、航天器研制及应用阶段的划分。 主要划分为工程论证、工程研制、发射、在轨测试与应用四个阶段。 1)工程论证阶段:开展任务分析、方案可行性论证工作。 2)工程研制阶段:包括方案设计阶段、初样设计与研制阶段、正样设计与研制阶段。 3)发射阶段:发射场测试及发射。 4)在轨测试与应用阶段:在轨测试阶段、在轨应用阶段。 2、航天工程系统的组成及各自的任务。 组成:航天工程系统是由航天器、航天运输系统、航天发射场、航天测控网、应用系统组成的完成特定航天任务的工程系统。 任务: 1)航天器:指在地球大气层以外的宇宙空间执行探索、开发和利用太空以及地球以外天体的特定任务飞行器,又称空间飞行器。 2)航天运输系统:指在地球和太空之间或在太空中运送航天器、人员或物资的飞行器系统,包括运载器、运输器、轨道机动飞行器和轨道转移飞行器等。 3)航天发射场:系指发射航天器的基地,包括测试区、发射区、发射指挥控制中心、综合测量设施、勤务保障设施等。 4)航天测控网:系指对航天运输系统、航天器进行跟踪、测量、监视、指挥和控制的综合系统,包括发射指挥控制中心、测控中心、航天指挥控制中心、测控站和多种传输线路及设备。 5)应用系统:系指航天器的用户系统,一般是地面应用系统,如各类应用卫星的地面应用系统、载人航天器的地面应用系统、空间探测器的地面应用系统。 3、航天器总体设计概念及主要阶段划分。 概念:航天器总体设计是指为完成航天任务规定的目标所开展的以航天器为对象的一系列设计活动。 主要阶段划分:主要分为任务分析、总体方案可行性论证、总体方案设计、总体详细设计四个阶段。总体详细设计又分为总体初样设计和总体正样设计。 4、航天器总体设计的基本原则。 满足用户需求的原则、系统整体性原则、系统层次性原则、研制的阶段性原则、创新性和继承性原则、效益性原则。 5、航天器技术从成熟程度上可分为哪四类技术,各自的含义。 1)成熟技术:已经过在轨飞行考验,沿用原有的分系统方案、部件、电路和结构。 2)成熟技术基础上的延伸技术:在成熟技术基础上需要进行少量修改设计的分系统方案、部件、电路和结构。 3)不成熟技术(关键技术):必须经过研究、生产和试验(攻关)后才能在卫星上应用的技术。 4)新技术(关键技术):尚未在卫星上使用过的技术。 6、航天器总体方案设计阶段的主要工作。 1)用户使用要求及技术指标要求的确定。 2)总体方案的确定。 3)总体技术指标的分析、分配及预算。 4)分系统方案及技术指标的确定。

飞行器仿真原理

在无风、无侧滑的情况下,飞行器航迹坐标系下的运动学方程[2]为: cos()sin sin()cos cos cos cos sin()sin sin s v p t p s s t p s s t d m p Q mg d d m p Y mg d d mv p Y d θψαθαγγθθαγγ?=+Φ--????=+Φ+-????-=+Φ+?? (1) 其中m 为飞行器质量;v 为速度;p 为发动机动力;α为迎角;p Φ为发动机安装角;Q 为空间阻力;θ为俯仰角;s γ为滚转角;Y 为升力;s ψ为偏航角。 图1显示了机体坐标系下的飞行器受力情况;图2表示了地面坐标系和航迹坐标系的关系;其中,d d d Ox y z 表示地面坐标系,地面坐标系固定于地面,原点选在 地面的某一点,d y 铅直向上,d x 和d z 在水平面内。h h h Ox y z 表示航迹坐标系,航 迹坐标系原点在飞行器质心,h x 沿飞行器速度向量v ,即飞行器飞行方向,h y 在包含v 的铅垂直平面内,h z 垂直于铅垂平面。 图1 飞行器受力分析 图2 地面坐标系和轨迹坐标系 为了更清晰、简练地描述这些运动学的量,我们令 cos()/sin()cos cos /sin()cos sin /x p y p s s z p s s n p Q mg n p Y mg n p Y mg ααγγαγγ???=+Φ-??????=+Φ+??????=+Φ+???? (2) 称x n 、y n 、z n 为过载,把(2)式代入(1)式得到 []()()()()sin ()()()cos ()()cos ()()s v t z t t y t t x t d n t t g d d v t n t t g d d v t t n t g d θψθθθ?=-??????=-??????-=?? (3) 从式(3)可以明确看出:x n 、y n 、z n 反映了飞行器因主动运动而产生的加速度,而sin θ和cos θ则是由于飞行器的重力产生的加速度。

临近空间低速飞行器螺旋桨技术

临近空间低速飞行器螺旋桨技术 杜绵银,陈培,李广佳,周波 (中国航天空气动力技术研究院,北京 100074) 摘要:临近空间飞行器因其显著特点和潜在的军、民两用价值而成为当前各国研究的热点。螺旋桨推进是低速临近空间飞行器的主要推进动力方式。本文介绍了临近空间发展、螺旋桨的发展及其在低速临近空间飞行器特别是高空飞艇及高空太阳能无人机上的应用,分析了低速临近空间飞行器螺旋桨设计、试验、制造的技术特点及技术难点。 关键词:临近空间;螺旋桨;平流层飞艇;高空长航时无人机 引言 未来战争是空天地海电磁五位一体的体系对抗,空天是重要的战略制高点,图1显示了各个高度范围人类研制和构想的各种空天飞行器。距地面20km以下的范围是传统航空器主要活动区域,100km以上的太空则是航天器的运行空间。而介于两者之间即20~100km的临近空间,该空域大气稀薄、气象活动较弱包括了大气层中对流层顶、平流层、中间层和热层下边界,由于技术和认识上的原因,长期以来是一个相对独立的“和平地带”,各国均未给予太多关注。目前,随着航空航天技术的统一和融合,临近空间作为一个新兴的技术领域,其重要的战略价值日益受到世界各国的高度重视。美国、俄罗斯、欧洲、韩国、英国、日本、以色列等国家纷纷投入大量的经费,积极开展临近空间飞行器的技术与应用研究。但从发展总体水平上看,国外临近空间飞行器技术仍处于关键技术攻关与演示验证阶段,要获得较高的军用价值仍需实现关键技术上的突破[1]。 图1 空间飞行器概念示意图 临近空间飞行器特指能在近空间作持续飞行并完成一定使命的飞行器,具有突防能力强生存力高和应用范围广的特点,能执行快速远程投放、侦察、监视、预警、通信中继、导航和信息干扰等诸多任务[2-3]。按飞行速度,临近空间飞行器可分为高速飞行器和低速飞行器两类。临近空间高速飞行器又可分为超声速和高超声速飞行器,飞行高度涵盖20~100km,一般以火箭或吸气式发动机为动力,主要包括超声速飞机和巡航导弹,高超声速巡航导弹、高超声速滑翔导弹和可重复使用的空天飞行器等,如美国的X-43A(图2)。临近空间低速飞行器主要包括高空气球、平流层飞艇(图3)和高空长航时无人机(图4)等,飞行高度约20~30km,飞行速度为低速和亚声速。 图 2 X-43A 图3 洛马公司的高空飞艇想象图 图4探路者高空长航时无人机 高空气球由于没有动力装置,易受风力影响,无法实现定点和机动,其应用价值有限。平流层飞艇和高空长航时无人机大多以太阳能电池和燃料电池提供能源,驱动螺旋桨产生推力来克服空气阻力。与传统飞机相比,留空时间长,覆盖范围广,制造和运行维护费用低;与卫星相比, 由于临近空间飞行器运行高度低,容易实现高分辨

航天器总体设计作业【哈工大】

2017年《航天器总体设计》课程作业 1.嫦娥三号探测器航天工程系统的组成及各自的任务 嫦娥三号探测器由月球软着陆探测器(简称着陆器)和月面巡视探测器(简称巡视器)组成。 (1)探测器系统:主要任务是研制嫦娥三号月球探测器。嫦娥三号探测器由着陆器和巡视器组成。着陆月面后,在测控系统和地面应用系统的支持下,探测器携带的有效载荷开展科学探测。 (2)运载火箭系统:主要任务是研制长征三号乙改进型运载火箭,在西昌卫星发射中心,将嫦娥三号探测器直接发射至近地点高度200公里、远地点高度约38万公里的地月转移轨道。 (3)发射场系统:主要任务是由西昌卫星发射中心承担嫦娥三号发射任务。发射场系统通过适应性改造,具备长征三号乙改进型火箭的测试发射能力。 (4)测控系统:主要任务是对运载火箭、探测器在各个飞行阶段以及探测器在月面工作阶段的测控、轨道测量、月面目标定位以及落月后着陆器和巡视器的控制。 (5)地面应用系统:主要任务是根据科学探测任务,提出有效载荷配置需求;制定科学探测计划和有效载荷的运行计划,监视着陆器和巡视器有效载荷的运行状态,编制有效载荷控制指令和注入数据,完成有效载荷运行管理。 2.我国载人航天工程系统的组成及各自的任务 (1)航天员系统:主要任务是选拔、训练航天员,并在载人飞行任务实施过程中,对航天员实施医学监督和医学保障。研制航天服、船载医监医保设备、个人救生等船载设备。 (2)空间应用系统:主要任务是研制用于空间对地观测和空间科学实验的有效载荷,开展相关研究及应用实验。 (3)载人飞船系统:主要任务是研制“神舟”载人飞船。“神舟”载人飞船采用轨道舱、返回舱和推进舱组成的三舱方案,额定乘员3人,可自主飞行7天,具有出舱活动和交会对接功能,可与空间实验室和空间站进行对接并停靠飞行半年。 (4)运载火箭系统:主要任务是研制满足载人航天要求的大推力长征二号F型运载火箭,对长征系列

临近空间飞行器特点及用途应用

专业经济研究智库 权威行业研究报告 一.临近空间飞行器基本概述及发展特点 (一)、临近空间的概念 临近空间是指介于普通航空飞行器最高飞行高度和天基卫星最低轨道高度之间的空域。天基卫星的最低轨道约为200km ,航空飞机的最大飞行高度约为20km ,但从应用上讲,由于100km 以下为临近空间飞行器的主要活动区域,故在国内一般定义临近空间为离地球表面约20-120km 的空域,美军定义为20-100km 的空域。过去所称的“近空间”、“亚轨道”、“空天过渡区”、“亚太空”、“超高空”或“高高空”等区域,都是指临近空间。 图表 临近空间区域划分 资料来源:产研智库 (二)、临近空间飞行器综述 所谓临近空间飞行器,顾名思义是指能够飞行在临近空间执行特定任务的一种飞行器,既能比卫星提供更多更精确的信息(相对于某一特定区域),并节省使用卫星的费用,又能比通常的航空器减少遭地面敌人攻击的机会。临近空间飞行器能快速飞行在敌方战区上空而不易被敌方防空监视系统发现,从而为作战指挥官提供不间断的监视情报,以增强其对战场情况的了解能力。部署这种高空飞行器,成本低、时间快,适合现代战争的需求。 图表 临近空间飞行器的设计思想、特点与关键技术

资料来源:产研智库 (三)、临近空间飞行器发展优势 民用领域以通信监测领域为例,与卫星相比,临近空间飞行器造价明显低于卫星,载荷能力超过卫星的2倍,延迟时间、衰减更小,且可以多次回收、重复利用。 图表临近空间飞行器与通信卫星的比较优势 资料来源:产研智库 除此之外,临近空间飞行器还具有一下优势: (一)持续工作时间长。 传统飞机的留空时间以小时为单位,临近空间飞行器的留空时间则以天为单位,目前正在研制的临近空间平台预定留空时间长达6个月,规划中的后续平台预定留空时间可达1年以上,易于长期、不间断地获得情报和数据,可对紧急事件迅速做出响应,而且人员保障少、后勤负担轻。 (二)覆盖范围广。 临近空间飞行器的飞行高度在传统飞机之上,其侦察覆盖范围比传统飞机要广得多。 (三)生存能力强。 气球或软式飞艇的囊体采用非金属材料而且低速运行,雷达和热反射截面很小,传统的跟踪和瞄准办法不易发现。与传统飞机相比,气球或软式飞艇的缺点是:充灌氦气的时间较长,在充气时需要保持稳固,有时还需要占用机库;在放飞、通过平流层上升、下降、回收和放气的过程中,由于其庞大的体积,容易受到风和湍流的影响。 二、临近空间的用途应用

飞行器六自由度仿真

1引言 现在的战争已不是过去大刀长矛的时代,他早已成为国家综合实力的体现,这很大程度取决于军事高科技。这其中导弹作为精确打击的利器关乎国家的战略安全。而研究其包括导弹在内的飞行器精确制导与控制便显得十分的重要。 飞行器最优制导规律研究是进行武器系统总体方案论证和提高制导性能及精度的关键技术之一。而要进行制导规律最优性研究一方面需要研究合适的制导规律,另一方面需要进行接近实际情况的全面的大量的仿真研究。 仿真验证包括建模与仿真两个方面。在大型工程的方案论证阶段甚至包括实际研制的各个阶段,都要进行仿真检验以论证可行性、合理性和最优性。仿真技术在工程应用特别在高端武器系统总体设计和方案论证中具有极为重要的作用。对制导问题的研究在国外倍受重视。在公开发表的文献中,专门讨论制导规律方面的研究论文很多,可见制导规律的研究是非常重要的。但是仅有理论研究是远远不够的,因为设计的所谓最优制导规律大都是把实际系统进行了大量简化情况下推导出来的,因而与实际情况差别较大。也就是说理论上是最优的制导规律或参数在实际系统中不一定是最优的。因此,必须建立接近实际状态的数学模型和仿真软件。通过仿真计算确定出制导系统的最优参数及制导规律的控制效果,才能最终确定制导规律的最优性。 目前国内外这类问题研究主要存在下列三个问题:其一是模型被简化。从众多公开发表的文献资料看,大都是把控制系统简化为一阶、二阶、或三阶等根模型来推导制导规律,并据此模型进行仿真计算。其二是把飞行器的六自由度空间运动状态简化为平面运动状态进行仿真研究,以这种把飞行器运动限制在平面范围内进行仿真计算是有局限性的。其三是在全弹道数字仿真中仅选取几个特征点参数来代表全弹道的气动力参数,这些参数要表征全弹道动态过程是比较片面的,因而仿真结论的可信度是比较差的。 若把飞行器看成一个刚体,则它在空间的运动,可以看做是质心的移动和绕质心的转动的合成运动。质心的移动取决于作用在飞行器上的力,绕质心的转动则取决于作用在飞行器上相对于质心的力矩。在飞行中,作用在飞行器上的力主要有:总空气动力、发动机的推力和重力等。作用在飞行器上的力矩有:空气动力引起的空气动力矩,由发动机推力(若推力作用线不通过飞行器质心时)引起的推力矩等。作用在导弹上的空气动

空间飞行器展开与驱动机构研究进展_马兴瑞

第27卷第6期2006年11月  宇 航 学 报 Journal of Astronautics Vol .27 No .6 November 2006 空间飞行器展开与驱动机构研究进展 马兴瑞1 ,于登云2 ,孙 京2 ,胡成威 2 (1.中国航天科技集团公司,北京100037;2.中国航天科技集团公司五院总体部,北京100094) 摘 要:空间飞行器展开与驱动机构是空间飞行器机构领域的一个重要组成部分。随着我国航天技术的发展,该项技术有了长足进步,对其设计方法和具体工程问题的研究也日渐深入。本文概述了空间飞行器机构的分类与构成,对展开与驱动机构的国内外研究概况进行了分析。结合工程应用,提出了在系统任务分析与设计中的力矩(力)裕度、精度分配、机构非线性、阻尼控制、热匹配、空间润滑、可靠性分析与试验七个典型工程问题。对这些问题逐一分析了其性质、作用及其对系统的影响,探讨了其研究内容和研究方向。展望了我国空间飞行器展开与驱动机构的发展前景。 关键词:空间飞行器;展开机构;驱动机构 中图分类号:V475 文献标识码:A 文章编号:1000-1328(2006)06-1123-09 收稿日期:2006-04-20; 修回日期:2006-09-11 0 引言 随着空间飞行器技术的迅速发展,其构造日趋复杂,功能不断增多,需要采取各种机构来完成多种任务,机构已成为现代空间飞行器中必不可少的重要组成部分。空间飞行器机构是指使得空间飞行器及其部件或附件完成规定动作或运动的机械组件 [1] 。其基本功能是:在空间飞行器发射入轨后实 现各种动作或运动,使空间飞行器或者其部件、附件处于要求的工作状态或工作位置。在此前提下,不同的机构具有不同的具体功能,并且随着航天技术的发展,特别是随着载人航天和深空探测技术的发展,空间飞行器机构的具体功能正在不断变化、发展和扩大。 空间飞行器机构有多种分类方法,其中主要的两种是依据使用状态和依据其功能分类。依据使用状态可以将其划分为两类:一次性工作机构,例如:星箭分离机构、太阳翼压紧释放机构和展开机构等;连续或间歇运动机构,例如天线指向机构,太阳翼驱动机构等 [1] 。依据基本功能可以将其划分为五类, 即:连接分离机构,如包带、爆炸螺栓、对接机构等;锁(压)紧释放机构,如太阳翼压紧释放机构、天线锁紧释放机构等;展开锁定机构,如太阳翼铰链、天线 展开机构等;驱动伺服机构,如雷达伺服机构、天线指向机构、机械臂关节等;阻尼与缓冲机构,如展开阻尼装置,着陆缓冲机构等。通常的空间飞行器机构由三个主要部分构成:动力源、传动副、执行部件。运动需要动力,因此动力源是机构的核心部分。传动副是将动力源输出的能量和运动形式传递、转换到执行部件的部分。执行部件是直接实现机构功能的部件。 本文结合研究组在空间飞行器机构领域的工程研究实践,重点针对展开锁定机构和驱动伺服机构两大机构类型,分析其研究概况与进展,总结并归纳出工程中的若干问题,并提出了相应研究与解决途径。1 空间飞行器展开机构研究进展 空间飞行器展开锁定机构是实现空间飞行器主结构、次结构或某一部件由初始位置或形态,变化到最终位置或形态,并保持该状态的机构。它是伴随着卫星的诞生、发展、成熟,而由简单到复杂逐步发展起来的一个机构领域。早期的卫星靠自旋动力展开杆状天线[2,3] ;展开式太阳翼出现后,折叠式展开 机构成为一直应用到现在的最为典型的展开机 构 [4] ;重力梯度稳定卫星的出现,推动了套筒式展开 机构和轻型桁架式展开机构的发展[5] ;随着航天器

临近空间飞行器

临近空间飞行器 一、临近空间飞行器的基本概念 临近空间(Near space) 通常是指距地表20~100千米处的空域,其下面的空域我们通常称为“天空”,是传统航空器的主要活动空间;其上面的空域就是我们平常说的“太空”,是航天器的运行空间。临近空间区域包括大气平流层(高度12-50千米)的大部分区域,中间大气层区域(高度50-80千米)和部分电离层区域(高度60-100千米)。 临近空间的显著特点包括:空气相对稀薄;环境压力低;环境温度变化复杂;臭氧和太阳辐射强;20-40千米区域平均风速最小。目前“临近空间”这个词只是一个学术概念,还没有公认的“官方定义”,对其的称呼也有很多种,如“近空间”、“亚轨道”或“空天过渡区”,美国也有人称之为“横断区”,而我国学术界过去则有“亚太空”、“超高空”、“高高空”等称呼。 临近空间飞行器是指高于普通飞行器飞行空间,而低于轨道飞行器运行空间区域的飞行器,主要包括能在近空间作长期、持续飞行的低动态飞行器,和具有高动态(马赫数大于1.0)的亚轨道飞行器或在临近空间飞行的高超声速巡航飞行器。 临近空间飞行器具有航空、航天飞行器所不具有的作用,特别是在通信保障、情报收集、电子压制、预警等方面极具发展潜力。 二、临近空间飞行器的特点 临近空间飞行器的应用前景十分广阔。在民用上可以进行高空大气研究、天气预报、环境及灾害监测、交通管制监测、电信和电视服务。在军事上可用于国界巡逻、侦察、通信中继、电子对抗等,在空间攻防和信息对抗中能发挥重要作用,进一步促进空天一体化的发展,

特殊的战略位置将为未来战争开辟了一个新的战场。其发展和应用将可能对未来整个作战体系和作战思维产生重大而深远的影响。 临近空间飞行器在应用上不同于一般的飞机和卫星,具有一些显著的特点,主要表现在以下几个方面: (1)与传统飞机相比,临近空间飞行器持续工作时间长。传统飞机的留空时间以小时为单位,临近空间飞行器的留空时间则以天为单位,目前正在研制的临近空间平台预定留空时间长达6个月,规划中的后续平台预定留空时间可达1年以上,易于长期、不间断地获得情报和数据,可对紧急事件迅速做出响应,而且人员保障少、后勤负担轻。 (2)覆盖范围广。临近空间飞行器的飞行高度在传统飞机之上,其侦察覆盖范围比传统飞机要广得多。 (3)生存能力强。气球或软式飞艇的囊体采用非金属材料而且低速运行,雷达和热反射截面很小,传统的跟踪和瞄准办法不易发现。与传统飞机相比,气球或软式飞艇的缺点是:充灌氦气的时间较长,在充气时需要保持稳固,有时还需要占用机库;在放飞、通过平流层上升、下降、回收和放气的过程中,由于其庞大的体积,容易受到风和湍流的影响。 (4)飞行高度适中。临近空间飞行器由于飞行高度介于飞机和卫星之间,因此在对地观察分辨率、电子对抗效果等方面优于卫星,而在通信服务覆盖范围、侦察视场范围等方面优于飞机。 (5)部署速度快、机动能力强。卫星的发射准备周期长,约40天,机动变轨次数有限。而临近空间飞行器结构简单,可大量部署,准备时间往往不超过一天,实时性好,威胁作用大。(6)低速临近空间飞行器大量采用全复合材料,没有大尺寸高温部件,具有低可探测性,而且飞行速度较高,目前世界上尚缺乏有效对抗临近空间飞行器的武器。 (7)低速临近空间飞行器飞行高度高,视场大;高速临近空间飞行器不仅飞行高度高,而且速度快,突防能力强。因而临近空间飞行器在战场信息控制和快速精确打击等方面具有很强的威慑作用。可实现局部快速响应和持久部署。一些低速临近空间飞行器处于区域气流稳定,平均风速小,可实现红外凝视的监视侦察,在局部区域的时间分辨率方面,是飞机和卫星不可比拟的。 (8)载荷能力强,效费比高。临近空间飞行器可作为卫星廉价的替代品。用于中继通信和侦察。临近空间飞行器的制作和使用费用远低于现有的无人驾驶飞机和卫星。飞行平台的载荷能力大,飞行器可返回,可重复使用,载荷可维修,可更换。与卫星相比,临近空间飞行器具有效费比高、机动性好、有效载荷技术难度小、易于更新和维护。此种飞行器距目标的距离一般只是低轨卫星的1/10~1/20,可收到卫星不能监听到的低功率传输信号,容易实现

临近空间飞行器表面波等离子体推进新原理

临近空间飞行器表面波等离子体推进新原理 荆志波,江滨浩 哈尔滨工业大学电气工程系,哈尔滨(150001) E-mail: jingzhiboqust@https://www.wendangku.net/doc/e812205194.html, 摘要:针对临近空间大气容易实现放电形成等离子体的天然环境条件,根据流体力学伯努利原理、等离子体中的粒子和波之间共振效应和表面波与定向运动等离子体流之间存在着自恰的耦合关系,本文提出临近空间飞行器表面波等离子体推进的新原理。该原理具有响应速度快、推力可调、机动性强等特点。 关键词:临近空间;伯努利原理;表面波等离子体;波-粒子共振效应 中图分类号:O53 1引言 近年来,临近空间特殊的战略价值受到了许多国家的重视。飞艇类浮空器具有驻空时间长、载重量大、生存能力强、预警功能强、侦察视野广、效费比高等优点,各航天大国纷纷开展以飞艇为主的浮空器平台的研究和应用[1]。飞艇所处的平流层环境比较特殊和复杂,一方面大气稀薄,另一方面风速、风向变化频繁[2]。面向我国未来临近空间信息作战平台的需求,为了使飞艇以较高精度实现定点悬停或低速飞行,从而完成较长时间(半年以上)的预警侦察任务,要求推进装置能克服大气阻力,并能根据周围气流变化情况实现推力的连续可调;升浮控制装置能以较快的响应速度使飞艇升降及时避开强气流区;姿控装置能以较高的精度调整飞艇的姿态,以精确调节飞艇的航向及太阳能电池帆板的接收角度。 目前,美国、日本和以色列在平流层飞艇的推进技术等关键技术研究方面处于世界领先地位[3]。所设计的飞艇几乎都采用电动螺旋桨作为主推进器来抵消风力,实现位置修正、姿态调整和巡航飞行;飞艇升浮控制则都是通过调节气囊中主、副舱之间氦气和空气的体积比来实现。如美国洛克希德·马丁公司的高空飞艇采用了四台电动马达驱动的推力矢量大型双螺旋桨作为推进器[4];日本与美国合作于2005年升空的高空通信平台上的充氦飞艇则采用了由尾部和两舷的螺旋桨提供的驱动力来做位置保持[5];以色列飞机工业公司(IAI)研制的巨型侦察飞艇也已经在21km高度试飞成功,通过艇身后部的电动机带动螺旋桨进行巡航飞行[6]。最近,NASA从未来发展的角度发表了论证报告[7],提出在“临近空间”的相对较低高度采用螺旋桨推进比较合适,但是当进一步提高工作高度时使用等离子推进器就相对比较合适,图1表明等离子体推进的适用空域要高于电动螺旋桨的高度,其根本原因在于,当海拔越来越高时,大气变得越来越稀薄,容易实现电离,采用空气动力学的方式推进不如等离子体推进有效。 驻空类临近空间飞行器的主要特点有以下三个: (1)翼展大、表面积大,因而其表面覆盖的太阳能电池帆板供给的电能相对充足,如美国MDA公司设计的试验型高空飞艇表面积约23550m2,提供的最大电功率为75kW,因此其产生的电能供飞艇内部的有效载荷使用后还有较多的剩余[4]。 (2)周围的空气介质非常稀薄,如在30km高空,气压约1200Pa;在40km高空,气压则降到约280Pa[8];低气压条件下容易放电形成等离子体。 (3)相比大气层内飞行器,其工作时间很长,通常达半年以上,平台自重很大。

航空器和航天器分类

航空器是怎样分类的,各类航空器又是如何细分的?航天器是怎样分类的?各类航天器又是如何细分的? 答:一、航空器根据产生向上力的基本原理的不同,航空器可划分为两大类:轻于空气的航空器和重于空气的航空器,前者靠空气静浮力升空,又称浮空器;后者靠空气动力克服自身重力升空。 根据构造特点还可进一步分为下列几种类型:(1)轻于空气的航空器。分为气球和飞艇。轻于空气的航空器的主体是一个气囊,其中充以密度较空气小得多的气体(氢或氦),利用大气的浮力使航空器升空。①气球②飞艇(2)重于空气的航空器。重于空气的航空器。重于空气航空器的升力是由其自身与空气相对运动产生的,分为固定翼航空器、旋翼航空器、扑翼机以及倾转旋翼机.①固定翼航空器。固定翼航空器又分为飞机和滑翔机。飞机是最主要的、应用范围最广的航空器。它的特点是装有提供拉力或推力的动力装置,产生升力的固定,控制飞行姿态的操纵面;滑翔机与飞机的根本区别是,它升高以后不用动力而靠自身重力在飞行方向的分力向前滑翔,虽然有些滑翔机装有小型发动机(称为动力滑翔机),但主要是在滑翔飞行前用来获得初始高度。②旋翼航空器主要由旋转的产生升力,分为直升机和旋翼机。直升机的旋翼是由发动机驱动的,升力和水平运动所需的拉力都由旋翼产生。而旋翼机是一种利用前飞行时的相对气流吹动旋翼自转以产生升力的旋翼航空器。③扑翼机。扑翼机又名振翼机。它是人类早期试图模仿鸟类飞行而制造的一种航空器。它用像飞鸟翅膀那样扑动的翼面产生升力和拉力。④倾转旋翼机,倾转旋翼机是一种同时具有旋翼和固定翼,并在机翼两侧翼梢处各装有一套可在水平与垂直位置之间转动的旋翼倾转系统组件的飞机。 二、航天器是指在地球大气层以外的宇宙空间,基本按照天体力学的规律运动的各类飞行器,又称空间飞行器。航天器分为无人航天器和载人航天器。 按照各自的用途和结构形式,航天器还可以进一步细分。(1)无人航天器。无人航天器包括人造地球卫星和空间探测器。①人造地球卫星。人造地球卫星是数量最多的航天器。按照卫星的用途,又可分为科学卫星、应用卫星和技术试验卫星。②空间探测器。空间探测器是指对月球和月球以外的天体和空间进行探测的无人探测器,也称深空探测器。分为月球探测器以及行星和行星际探测器。(2)载人航天器。载人航天器分为载人飞机、空间站、航天飞机、空天飞机。①载人飞机。载人飞机是载乘航天员的航天器,又称宇宙飞船。按照运行方式的不同,分为卫星式载人飞船和登月载人飞船两类。②空间站。空间站是航天员在太空轨道上生活和工作的基地,又称轨道站和航天站③航天飞机。航天飞机是是世界上第一种也是唯一一种可重复使用的航天运载器,还是一种多用途的载人航天器④空天飞机。 1

本科飞行器设计与工程培养方案#(精选.)

本科生培养方案 专业名称中飞行器设计与工程 Specialty英Flight Vehicle Design and Engineering 专业代码081501 Specialty Code 081501 学院名称航天学院 Section School of Aerospace 培养方案制定人签字年月日Signature of Pogram Designe May,10,2007 年月日院长签字May,10,2007 Signature of Dean 年月日 May,10,2007校长签字年月日Signature of President May,10,2007 西北工业大学 Northwestern Polytechnical University May, 2007

飞行器设计与工程专业本科培养方案 Undergraduate Program for Specialty in Flight Vehicle Design and Engineering 一、培养目标 I. Educational Objectives 本专业培养适应现代化建设需要的德、智、体全面发展,具有基础扎实、知识面宽、能力强、富有创新精神,面向航天、航空、民航技术等重要国民经济领域的高级工程技术人员和研究人员。 本专业毕业生能到航天、航空、兵器及其它国防单位从事飞行器设计工程,包括总体设计、结构设计、结构动力学、飞行力学、气动特性计算、航天器动力学与控制、系统仿真与计算机应用工作,以及国民经济中其它有关部门的设计与技术开发工作。 Flight Vehicle Design and Engineering is a four-year program. Undergraduates will have specialized courses from this unique specialty after they have completed the General Education Courses, Basic Technical Courses and Specialized Courses. Students shall develop balanced qualities among morals, intelligence and physical education and obtain basic qualification for being senior engineers in our college. The graduates will be capable doing a broad range of research activities, such as flight vehicle conceptual design, structure design, structure dynamics analysis, flight mechanics and dynamics, aerodynamic engineering calculation of flight vehicle, spacecraft dynamics and control, system simulation and computer application, automatic control engineering, and doing research and development works in other related field. 二、培养要求 II. Educational Requirements 本专业学生主要学习结构力学/飞行力学、结构设计与飞行器总体设计、结构动力学/空气动力学、导弹和航天器动力学与控制方面的基础理论和专业知识,主要包括计算结构力学与结构动力学、结构设计、飞行器总体设计、导弹和航天器飞行力学、自动控制原理与现代控制理论、导弹和航天器控制等,并且具有较强的计算机应用和软件开发的能力。 毕业生应获得以下几方面的知识和能力: 1. 具有扎实的自然科学基础知识,较好的人文、艺术和社会科学基础及正确运用本国语言文字的表达能力; 2. 较系统地掌握本专业领域宽广的理论基础知识,主要包括计算机系列课程、理论力学、材料力学、电子技术基础、自动控制原理、市场经济及企业管理等基础知识; 3. 具有本专业必需的制图、计算、实验、测试的能力,通过结构设计专业课程设计使学生初步达到飞行器零构件设计、计算等方面的能力;通过气动力工程计算专业课程设计使学生初步达到飞行器气动计算、设计与分析等方面的能力;通过飞行轨迹仿真课程设计使学生具备飞行轨迹设计与控制的能力。同时具有较强的计算机和外语应用能力; 4. 具有本专业领域内所学的专业知识,了解学科前沿及发展趋势;

飞行器系统仿真

《飞行器系统仿真与CAD》学习报告 第一部分仿真(40) 题目1:给定导弹相对于目标的运动学方程组为 r(0) = 5km, q(0) = 60deg, (0) = 30deg,V = , V = , 1Ma = 340m/s, k = 2 m (1)建立系统的方框图模型; (2)用MATLAB语言编写S—函数 (3)用窗口菜单对(1), (2)进行仿真,动态显示结果; (4)用命令行对(1), (2)进行仿真,以图形显示结果 答: (1) (2)用MATLAB语言编写S函数

function [sys,x0,str,ts]=CAD1_sfun(t,x,u,flag) switch flag case 0 [sys,x0,str,ts]=mdlInitializeSizes; case 1 sys = mdlDerivatives(t,x,u); case 3 sys = mdlOutputs(t,x,u); case {2,4,9} sys = []; otherwise error('unhandled flag=',num2str(flag)) end function [sys,x0,str,ts]=mdlInitializeSizes sizes=simsizes;

=3; =0; =3; =0; =1; =1; sys=simsizes(sizes); str=[]; x0=[5000,pi/3,pi/6]; ts=[0 0]; function sys=mdlDerivatives(t,x,u) vm=*340; v=*340; k=2; dx(1)=vm*cos(x(2))-v*cos(x(2)-x(3));

空间飞行器总体设计考点

思考题: 1.1各国独立发射首颗卫星时间: 苏联:1957年10月4日;美国:1958年1月31日;法国:1965年11月26日;日本:1970年2月11日; 中国:1970年4月24日;英国:1971年10月28日;印度:1980年7月18日;以色列:1988年9月19日。 1.2什么是航天器设计: 航天器设计就是解决每一环节的具体设计,主要有:①航天任务分析与轨道设计;②航天器构型设计;③服务与支持分系统的具体设计。 1.3画图说明航天器系统设计的层次关系及各部分的作用:(图前两行可不要,画上的原因是为了全面了解,考试时不画) ↓↓ 航天工程系统发射场运载器航天器系统地面应用系统运载与航天器测控网 有效载荷(有效载荷分系统)航天器平台(保障系统) 航天器结构平台(结构分系统)服务与支持系统 电源分系统姿态控制分系统轨道控制分系统测控与通信分系统热控制分系统数据管理分系统环境↓ 控制与生命保障分系统 ①有效载荷:用来直接完成特定任务;②结构分系统:是航天器各受力和支承构件总成,功能是提供其他系统安装空间、满足各种系统安装方位精度、支承保护设备、满足刚度强度热防护要求、其他功能;③电源分系统:根据物理化学变化,将其他能量转化为电能,储存调节变换,向航天器各系统供电;④测控通信系统:是对航天器进行跟踪、测轨、定位、遥测、遥控、通信;⑤热控系统:合理调配航天器各部分间的热量吸收、储存、传递,对内外能量进行管理控制;实现航天器上废热朝外部空间排散;满足各阶段航天器内结构设备正常工作;⑥姿态轨道控制系统:轨控是导航,控制按预定轨道飞行,姿控是维持姿态稳定与控制;⑦推进系统:功能:轨道转移时控制、星际航行加速、在轨运行;⑧数据管理系统:将航天器遥测、遥控、程控、自主控制、管理等功能综合起来实现;⑨发射场:装配、储存、检测、发射航天器,测量飞行轨道,发射控制指令,接收处理遥测信息;⑩测控网:对运载器、航天器跟踪测量、监视控制、信息交换。 1.4航天器设计的特点: ①由运载器有效载荷引发的设计特点:⒈慎用质量和追求轻质量的特点;⒉追求小尺寸和巧妙安排的设计特点。 ②适应外层空间环境引发的设计特点:要创造必要的、可以模拟真实环境的条件,进行航天器部件、设备、分系统和整体航天器的检测、试验、接收;内容有:环境模拟条件制定、模拟设备选用、设计建造等。 ③由特殊的一次使用性引发的设计特点:航天器一般是一次性的,不存在维修、替换、补给,故对系统可靠性要求更高。 ④由单件生产引发的设计特点:卫星不会批量生产,每次都是单件生产,故每颗卫星都有特殊性。 2.1近地空间环境中对航天活动存在较大影响的环境因素: 太阳电磁辐射、地球中性大气、地球电离层、地球磁场、空间带电粒子辐射、空间碎片、微流星。 2.2航天器在近地轨道中运行受到的环境因素影响、这些因素所影响的分系统: ①地球引力分布不均匀,对航天器运行轨道产生引力摄动(轨道控制分系统); ②重力梯度对航天器产生扰动力矩(姿态控制分系统); ③高层大气密度是影响低地球轨道航天器工作寿命的主要因素(轨道控制分系统); ④空间带电粒子辐射对航天器的电子元器件、功能材料、仪器设备、航天员产生损伤作用; ⑤地球电离层可影响无线电波的传播(测控与通讯分系统); ⑥太阳电磁辐射及地球对其反照,影响航天器光照环境、热设计中外热流标准、对地观测光学背景(热控、姿控分系统); ⑦地磁场影响航天器姿态控制及要求磁净化的设备(姿态控制分系统); ⑧空间碎片及微流星使航天器面临潜在危害(结构分系统)。 2.3太阳辐射对近地轨道航天器的影响: ①对航天器温控系统影响:太阳辐射是主要外热源;②对航天器姿控系统的影响:太阳辐射与地球辐射光压是姿控必须考虑的;③对航天器电源系统影响:影响太阳电池阵功率、控制回路软硬件设计、破坏太阳电池保护层;④对通信系统影响:太阳爆发时,辐射增强,引起电离层扰动,使无线电信号衰落或中断;还引起射电背景噪声增强,干扰通信系统。⑤对航天遥感器、探测器的影响:电磁辐射是航天遥感器设计、数据解释反演的重要光学背景;紫外辐射对绝缘材料、光学材料等存在损伤作用;材料中的气体杂质在高真空环境释放出来,在紫外照射下,对光学遥感系统形成污染。⑥对人体、生物体影响:X 射线、紫外辐射对人体有危害。 2.4电离层对航天活动的影响: ①对航天器通信系统影响:电离层对无线电波存在严重影响,对电磁波产生折射、反射、散射、吸收、色散、法拉第旋航天工程系统

相关文档