文档库 最新最全的文档下载
当前位置:文档库 › 单细胞凝胶电泳的原理及特点

单细胞凝胶电泳的原理及特点

单细胞凝胶电泳的原理及特点
单细胞凝胶电泳的原理及特点

单细胞凝胶电泳的原理及特点

单细胞凝胶电泳分析(single cell gel eletrophoresis,SCGE)是由Ostling等(1984)首创,后经Singh等(1988)进一步完善并逐渐发展起来的一种快速检测单细胞DNA损伤的实验方法,适用于多种细胞,能够灵敏地检测DNA断裂,在检测诱变剂、射线等对DNA的损伤、监测环境污染物对机体的遗传损害、研究毒物致癌机制等方面有广泛的应用价值。因其细胞电泳形态颇似彗星,又称彗星实验(comet assay)。有核细胞的DNA分子量很大,DNA超螺旋结构附着在核基质中,用琼脂糖凝胶将细胞包埋在载波片上,在细胞裂解液作用下,细胞膜、核膜及其它生物膜遭到破坏,使细胞内的RNA、蛋白质及其它成分进入凝胶,继而扩散到裂解液中,但核DNA仍保持缠绕的环区附着在剩余的核骨架上,并留在原位。如果细胞未受损伤,电泳时,核DNA因其分子量大停留在核基质中,荧光染色后呈现圆形的荧光团,无脱尾现象。若细胞受损,在中性电泳液(pH=8)中,核DNA 仍保持双螺旋结构,虽偶有单链断裂,但并不影响DNA双螺旋大分子的连续性。只有当DNA双链断裂时,其断片进入凝胶中,电泳时断片向阳极迁移,形成荧光拖尾现象,形似彗星。如果在碱性电泳液(pH>13)中,先是DNA双链解螺旋且碱变性为单链,单链断裂的碎片分子量小可进入凝胶中,电泳时断链或碎片离开核DNA向阳性迁移,形成拖尾。细胞DNA受损愈重,产生的断链或碱易变性断片就愈多,其断链或断片也就愈小,在电场作用下迁移的DNA量多,迁移的距离长,表现为尾长增加和尾部荧光强度增强,因此,通过测定DNA迁移部分的光密度或迁移长度可定量地测定单个细胞DNA损伤的程度。SCGE检测单细胞水平DNA损伤,无须放射性示踪,适用于各种有核细胞,样品用量少,试验周期短,故而灵敏、快速、高效。

SCGE检测原理:

一般认为,在通常情况下,DNA双链以组蛋白为核心盘旋形成核小体,在核小体中DNA 位负超螺旋结构,如果有去污剂进入细胞,核蛋白被浓盐提取,DNA便形成残留的类核,如果;类核中DNA断裂,就会在核外形成一个DNA晕轮,DNA断裂将引起超螺旋松散,电泳时DNA片段向阳性伸展,形成特征性彗星尾,这时彗星尾可能还与头部有秩序的结构以单链相连。

在中性电泳液中,核DNA仍保持双螺旋结构,虽偶有单链断裂,但并不影响DNA双螺旋大分子的连续性。只有当DNA双链断裂时,其断片方进入凝胶中,电泳时断片向阳极迁移,形成荧光拖尾现象,形似彗星。而在碱性电泳液中,DNA双链解螺旋变性为单链,单链断裂的碎片分子量小可进入凝胶中,电泳时断裂或碎片离开核DNA向阳性迁移,形成拖尾。细胞DNA受损愈重,产生断裂或键易变性断片就愈多,其断链或断片也就愈小,在电场作用下迁移的DNA量多,迁移的距离长,表现为尾长增加和尾部荧光强度增强,因此,通过测定DNA迁移部分的吸光度或迁移长度可定量的测定单个细胞DNA损伤的程度。

毛细管电泳的基本原理及应用

毛细管电泳的基本原理及应用 摘要:毛细管电泳法是以弹性石英毛细管为分离通道,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的电泳分离分析方法。该技术可分析的成分小至有机离子、大至生物大分子如蛋白质、核酸等。可用于分析多种体液样本如血清或血浆、尿、脑脊液及唾液等,比HPLC 分析高效、快速、微量。 关键词:毛细管电泳原理分离模式应用 1概述 毛细管电泳(Caillary Electrophoresis)简称CE,是一类以毛细管为分离通道,以高压直流场为驱动力的新型液相分离分析技术。CE的历史可以追溯到1967年瑞典Hjerten最先提出在直径为3mm的毛细管中做自由溶液的区带电泳(Capillary Zone Electro-phoresis,CZE)。但他没有完全克服传统电泳的弊端[1]。现在所说的毛细管电泳(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离。1984年Terabe将胶束引入毛细管电泳,开创了毛细管电泳的重要分支: 胶束电动毛细管色谱(MEKC)。1987年Hjerten等把传统的等电聚焦过程转移到毛细管内进行。同年,Cohen 发表了毛细管凝胶电泳的工作。近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的应用范围。 毛细管电泳和高效液相色谱(HPLC)一样,同是液相分离技术,因此在很大程度上HPCE与HPLC可以互为补充,但是无论从效率、速度、样品用量和成本来说,毛细管电泳都显示了一定的优势毛细管电泳(C E)除了比其它色谱分离分析方法具有效率更高、速度更快、样品和试剂耗量更少、应用面同样广泛等优点外,其仪器结构也比高效液相色谱(HPLC)简单。C E只需高压直流电源、进样装置、毛细管和检测器。 毛细管电泳具有分析速度快、分离效率高、试验成本低、消耗少、操作简便等特点,因此广泛应用于分子生物学、医学、药学、材料学以及与化学有关的化工、环保、食品、饮料等各个领域[2]。

有关中性单细胞凝胶电泳的总结要点

1、辐射生物剂量:此法适于照后短期内的剂量评价,中性条件优于碱性条件; 旁观效应:查阅了许多国外文献,尚无此方法观察旁观效应的研究报道,所以我采用此方法观察了1Gy照后的旁观效应,试验今天上午刚刚结束,结果待分析,粗略看,此法对于旁观效应还是很敏感的,此法的优势在于成本低,操作比较简单。 低剂量照射的适应性反映:本实验室的一个相关课题刚刚结提,论文在法医学与特种医学版的军事医学子版已有上传,感兴趣的可以去看。 凋亡细胞的观察:看过国外此法作出的凋亡细胞彗星图像,很漂亮,用CASP软件分析后,其曲线呈典型的双峰,而正常细胞为单峰。我的一些教训:观察凋亡细胞最好把电压、电流、和电泳时间均调低,否则,凋亡细胞中的DNA片断跑的太块,荧光下根本看不到凋亡细胞的尾巴。 注:我用的是中性条件,20V,200mA,20min, 凋亡细胞观察宜选用10V,100mA,10min。 2、中性单细胞凝胶电泳步骤:(以淋巴细胞为例) 1) 淋巴细胞的提取 ①取各组荷瘤鼠外周血0.2ml,肝素抗凝,加入到等体积淋巴细胞分离液上,3500r/min离心4min。 ②取中间层淋巴细胞并加入PBS至5 ml, 1500r/min离心8min。 ③重复洗涤细胞两次。 2) 琼脂糖玻片的制备 ①制好微型电泳槽。 ②使用两层凝胶法,第一层为100μl 0.75%正常熔点琼脂糖凝胶, 第二层为75μl 0.75%低熔点琼脂糖凝胶和25μl淋巴细胞的混合液。 3) 细胞裂解、电泳 ①好的玻片浸入新配的预冷的(4oC)中性裂解液中裂解1.5h。 ②取出玻片,用双蒸水浸没漂洗。 ③将玻片置于0.5%电泳液中先解旋20分钟,然后电泳20min,电压20V,电流200毫安。 4) 染色 用溴化乙啶(2μg/ml)染色。 用双蒸水冲去多余染液,滤纸洗去多余水分。 5)读片和分析 ①用荧光显微镜(激发波长515-560nm)观察玻片,每张胶随机抓 取100个慧星图像并用数码相机拍照后输入计算机储存。 ②用CASP软件分析系统分析慧星图像。 3、biomed96 :lq6688你好,本人也正要做这个实验,预实验做了两次,但什么都没看到,也不知道是什么问题,望指教。 铺3层胶,第一层100ul1%regular胶,50度烤干,第二层50000个细胞100ul0.5%低熔点胶,第三层100ul 0.5%低熔点胶。 裂解液:EDTA 100mM Nacl 2.5M Tris(10mM)pH10 1%TritonX-100 裂解1小时 解旋液:EDTA1mM NaoH 300mM Ph>13 孵育20分钟。电泳40分钟。 染色:PI 50ug/ml染色15分钟。 结果是什么都看不到,好像一点都没染色。 lq6688:首先,此试验的生物学原理目前还不是很清楚,Sighn和Olive这两个单细胞凝胶电泳的鼻祖首先提出的中性和碱性条件,中性条件检测双链断裂,而碱性条件检测单链断裂,有人曾提出这是为什么,我查阅了大量文献,国外文献没有具体的说明,国内文献更是人云亦云,所以,目前只能按照大家比较默认的:中性--双链,碱性--单链,这不是用软件来区分的,而是你的试验条件决定的,我看了您的裂解

彗星试验步骤

彗星试验步骤 1.5.4 彗星试验(单细胞凝胶电泳试验):参照文献[i],略加改动,进行碱性单细胞凝胶电泳,具体如下。 1.5.4.1 制片 将0.6%的NMPA(用PBS配制)于微波炉中加热融化后,浸泡磨砂玻片,用吸水纸将玻片滑面及四周吸干,自然晾干备用。 1.5.4.2 铺胶 取1.5.3中所备细胞悬液10μl,向其中加入70μl 37℃0.7%LMPA(用PBS配制),混匀后迅速滴于37℃预热的玻片上,立即盖上盖玻片,4℃固化10min。 1.5.4.3 裂解 轻轻取下盖玻片,将玻片浸于新鲜配制并预冷的细胞裂解液中,4℃避光裂解1h。 1.5.4.4 解旋 从裂解液中取出载玻片,用PBS浸泡玻片3×3min。用纸巾吸去玻片上残留的液体,置于水平电泳槽中,加新鲜配制的碱性电泳缓冲液至高于玻片表面3mm 以上,避光解旋30min。 1.5.4.5 电泳 电压25V,调整液面高度使电流达到300mA,电泳25min。 1.5.4.6 漂洗及染色 电泳完毕,取出玻片,用PBS浸泡2×15min,以中和强碱。用纸巾吸去玻片上残留的液体,然后滴加20μg/ml的EB20μl,盖上盖玻片,立即置荧光显微镜下观察。 以上步骤尽量在黄光下或暗处进行,避免其他原因所致的DNA损伤。每一剂量水平制片2张。 1.5.4.7 结果观察 荧光显微镜下200倍观察,激发波长515~560nm,发射波长590nm。每一剂量水平随机观察100个细胞,记录拖尾细胞数。计算拖尾细胞率(以下简称拖尾率),拖尾率=(拖尾细胞数/100)×100%。每一剂量水平用目镜测微尺测量30个拖尾细胞的全长和头长,拖尾细胞尾长(以下简称尾长,tail length,TL)=全

电泳的基本原理

电泳的基本原理 电泳是指带电颗粒在电场的作用下发生迁移的过程。许多重要的生物分子,如氨基酸、多肽、蛋白质、核苷酸、核酸等都具有可电离基团,它们在某个特定的pH值下可以带正电或负电,在电场的作用下,这些带电分子会向着与其所带电荷极性相反的电极方向移动。电泳技术就是利用在电场的作用下,由于待分离样品中各种分子带电性质以及分子本身大小、形状等性质的差异,使带电分子产生不同的迁移速度,从而对样品进行分离、鉴定或提纯的技术。 电泳过程必须在一种支持介质中进行。Tiselius等在1937年进行的自由界面电泳没有固定支持介质,所以扩散和对流都比较强,影响分离效果。于是出现了固定支持介质的电泳,样品在固定的介质中进行电泳过程,减少了扩散和对流等干扰作用。最初的支持介质是滤纸和醋酸纤维素膜,目前这些介质在实验室已经应用得较少。在很长一段时间里,小分子物质如氨基酸、多肽、糖等通常用滤纸或纤维素、硅胶薄层平板为介质的电泳进行分离、分析,但目前则一般使用更灵敏的技术如HPLC等来进行分析。这些介质适合于分离小分子物质,操作简单、方便。但对于复杂的生物大分子则分离效果较差。凝胶作为支持介质的引入大大促进了电泳技术的发展,使电泳技术成为分析蛋白质、核酸等生物大分子的重要手段之一。最初使用的凝胶是淀粉凝胶,但目前使用得最多的是琼脂糖凝胶和聚丙烯酰胺凝胶。蛋白质电泳主要使用聚丙烯酰胺凝胶。 电泳装置主要包括两个部分:电源和电泳槽。电源提供直流电,在电泳槽中产生电场,驱动带电分子的迁移。电泳槽可以分为水平式和垂直式两类。垂直板式电泳是较为常见的一种,常用于聚丙烯酰胺凝胶电泳中蛋白质的分离。电泳槽中间是夹在一起的两块玻璃板,玻璃板两边由塑料条隔开,在玻璃平板中间

单细胞凝胶电泳(SCGE)检测锰损伤神经元DNA

单细胞凝胶电泳(SCGE)检测锰损伤神经元DNA1 陆彩玲,郭松超,鲁力,陈维平,邝晓聪 广西医科大学公共卫生学院,广西南宁(530021) E-mail:lcling78@https://www.wendangku.net/doc/ea4250771.html, 摘要:目的建立体外染锰细胞模型,探讨锰神经毒性的作用机制。方法:以原代培养的成熟皮层神经元为靶,据本室前期试验结果确定低中高不同浓度的锰液(分别为0.2mmol/L,0.6mmol/L,1.0mmol/L),与神经细胞共孵育。显微镜观察各组神经细胞形态学的变化,用单细胞凝胶电泳试验(SCGE)检测神经细胞的DNA损伤,以彗星细胞尾长及彗星样细胞百分率为评价损伤的指标。结果:光镜下可见不同浓度锰孵育后神经细胞形态学发生改变,单细胞凝胶电泳试验显示神经细胞DNA出现不同程度的损伤,彗星尾长及彗星样细胞百分率较对照组明显增加(P<0.01)。尤以高浓度锰组损伤组严重,显著高于中低浓度组(P<0.01)。结论:锰不但能引起体外培养的神经细胞外在的形态学损伤,还可导致神经细胞DNA的损伤。 关键词:锰,单细胞凝胶电泳 (SCGE),DNA损伤 目前,随着生产工艺的改进和预防措施的加强,严重的职业性锰中毒已很少发生,但长期低剂量的锰暴露依然存在,并对接触者的潜在影响仍不可低估。慢性锰中毒是进行性的、不可逆的病变,并且锰对接触者的危害正由临床型向亚临床型转变,因而更为敏感、特异的效应指标,以早期筛检出亚临床中毒者及高危人群,是今后锰神经毒性研究中重点解决的问题。 DNA损伤是遗传毒理学的一个重要研究领域,长期不可逆转的DNA损伤累积可诱导细胞突变、畸变。单细胞凝胶电泳(Singl cells gel eletrophoresis,SCGE)又称彗星试验(comet assay),由Ostling等(1984)首创,后经Singh等(1988)进一步完善并逐渐发展起来的一种快速检测单细胞 DNA损伤的实验方法,适用于多种细胞,广泛应用于检测诱变剂、射线等对DNA的损伤、监测环境污染物对机体的遗传损害、研究毒物致癌机制等方面,具有经济、简捷、灵敏等优点,日益广泛地应用在各种诱变剂的遗传毒性检测上。鉴于此,本研究以此法检测染锰后对神经细胞遗传物质的影响,探讨锰神经毒性的机制,为锰中毒的防治提供研究基础。 1. 材料与方法 1.1 试剂 MnCl2·4H2O(购自上海生化试剂公司, AR级), Dulbcco's Modifed Eagle 培基(DMEM,高糖)及新生小牛血清购自Gibco公司(美国),L-谷氨酰胺与多聚赖氨酸 (PL YS)购自生物工程产品公司(上海).低熔点凝胶(LMPA)及正常熔点凝胶(NMPA)、TritonX-100、乙二胺四乙酸二钠(Na2EDTA)、Tris-HCl、溴乙锭(EB) 购自Sigma 公司(美国)其他所有试剂都达试验用的分析纯级 1.2 皮层神经元的原代培养 制备原代皮层神经元方法参照方法所述[1]. 取新生24小时内Wistar 乳大鼠,消毒后冰层上剥离大脑皮层,解剖显微镜下剔除血管、脑膜及海马组织后转入盛D-Hank’s液的玻璃瓶,机械法分离神经细胞。200um稠布筛网过滤神经细胞悬液,滤后悬液800转/分离心5 1本课题得到国家自然科学基金资助项目(项目批准号:30260095)的资助。

脉冲场凝胶电泳

脉冲场凝胶电泳 脉冲场凝胶电泳近年来,以脉冲场凝胶电泳(Pulsed field gel electrophoresis,PFGE)为代表的分子生物学分型方法日渐受到青睐,其原理为通过一定的方法,直接或间接反映病原体变异分化的本质即DNA序列的改变,从而做到微观变化的宏观显示。电泳结果通常是条带图谱。该方法的发展成熟为监测控制细菌的流行提供了广阔的前景。通过分型可以鉴定比较菌株是否一致,对于细菌性传染病监测、传染源追踪、传播途径调查和识别等暴发调查有着非常重要的意义。一、脉冲场凝胶电泳的原理PFGE与常规电泳的不同之处在于,常规的电泳采用的是单一的均匀电场,DNA分子经凝胶的分子筛作用负极移向正极。而PFGE采用了两个交变电场,即两个电场交替地开启和关闭,使DNA分子的电泳方向随着电

场的变化而改变。正是因为电场方向的交替改变,才使大分子DNA得以分离。图l是根据Carle和Olson最初设计的正交场电泳装置(orth-ogona1 field gel electrophoresis,OFA-GE)绘制的PFGE 示意图。A、B代表两个交替开启和关闭的电场。当A电场开启时,B电场关闭,DNA分子从A电场的负极(A-)向正设(A+ )移动;当B电场开启时,DNA分子改变原来的运行方向,随B电场负极向正极移动。这样,随着电场方向的交替变化DNA分子图1 PGE的原理(OFAGE系统) A、B代表两电场即呈“Z” 字形向前移动。目前的理论和实验研究表明,当某一电场开启时,DNA分子即顺着此电场的方向纵向拉长和伸展,以“蛇行”(reputation)的方式穿过凝胶孔。如果电场方向改变DNA分子将必须先调转头来,才能沿着新的电场方向泳动。这样,随着电场方向反复变化,伸展的DNA分子必须相应地变化移动方向。可以想象,较小的分子能相当快

毒性试验整理

实验一发光细菌的急性毒性评价试验 一、实验器材 1.菌株 明亮发光杆菌(Photobacterium phosphoreum) 2.培养基 酵母膏0.5%,胰蛋白胨或多聚蛋白胨(Polypetone)0.5%,甘油0.3%,NaCl 3%,Na2HPO4 0.5%, KH2PO4 0.1%,pH6.5。固体培养基再加琼脂2%。 3.溶液、试剂及待测物质 酵母粉,蛋白胨,NaCl(AR),Na2HPO4(AR),KH2PO4(AR),甘油(AR),二甲基亚砜(AR),乙酸乙酯(AR),HCl(1M),去离子水。 4.仪器及其他用品 生物毒性测试仪;电热恒温鼓风干燥箱;振荡培养箱;DELTA 320pH计;氮吹仪;镊子,移液枪,三角锥形瓶等。 二、目的要求 1.学习了解发光细菌的急性毒性评价试验的基本原理。 2.掌握发光细菌的急性毒性评价试验的操作要领和评价方法。 三、基本原理 发光细菌是指在正常的生理条件下能够发射肉眼可见的蓝绿色荧光的细菌,这种可见荧光波长在450-490 nm之间,在黑暗处肉眼可见。不同种类发光细菌的发光机理是相同的,都是由特异性的荧光酶(LE),还原性的黄素(FMNH2),八碳以上长链脂肪醛(RCHO),氧分子(O2)所参与的复杂反应,大致历程如下: FMNH2+LE→FMNH2·LE+O2→LE·FMNH2·O2+RCH→LE·FMNH2·O2·RCHO→LE+FMN+ H2O+RCOOH+光 具体来说,生物发光反应由分子氧作用,胞内荧光酶催化,将还原态的黄素单核苷酸(FMNH2)及长链脂肪醛氧化为FMN及长链脂肪酸,同时释放出最大发光强度在波长为 407-409 nm处的蓝绿光。 发光细菌法是利用灵敏的光电测量系统测定毒物对发光细菌发光强度的影响。发光细菌含有荧光素、荧光酶、ATP等发光要素,在有氧条件下通过细胞内生化反应而产生微弱荧光。当细胞活性升高,处于积极分裂状态时,其ATP含量高,发光强度增强。发光细菌在毒物作用下,细胞活性下降,ATP含量水平下降,导致发光细菌发光强度的降低。实验显示,毒物浓度与菌体发光强度呈线性负相关关系,因而,可以根据发光细菌发光强度判断毒物毒性大小,用发光度表征毒物所在环境的急性毒性。

双向凝胶电泳比较三种常用蛋白质提取方法

ISS N 100727626 C N 1123870ΠQ 中国生物化学与分子生物学报 Chinese Journal of Biochemistry and M olecular Biology 2005年10月 21(5):691~694 ?技术与方法? 双向凝胶电泳比较三种常用蛋白质提取方法 翁 瑜1),2), 曾群力2),3), 姜 槐2), 许正平2),3)3 (1)浙江大学生命科学学院;2)浙江大学医学院浙江省生物电磁学重点研究实验室;3)浙江大学医学院环境基因组学研究中心,杭州 310031) 摘要 组织(或细胞)的蛋白质提取效率直接影响蛋白质双向凝胶电泳(22DE)的分辨率.为探索建立适用于人乳腺癌细胞株MCF27蛋白质提取的最佳条件,比较目前在双向凝胶电泳中常用的3种蛋白质提取方法对MCF27细胞总蛋白的提取效率.MCF27细胞经培养后,分别采用M2PER试剂、标准裂解液或含硫脲裂解液提取其总蛋白质,然后进行双向凝胶电泳,并根据凝胶上蛋白质斑点的丰度和分布特点判断所得双向电泳图谱的质量,以确定MCF27细胞蛋白质提取的相对最佳方法.结果显示,M2PER试剂法得到的图谱分辨率较低,蛋白质主要集中分布在分子量15~70kD,pH417~613的范围内;标准裂解液法得到的图谱分辨率有所提高,蛋白质分布比M2PER试剂法得到的图谱广;硫脲裂解液法得到的图谱是三者中分辨率最高的,尤其是高丰度蛋白和高分子量蛋白分离效果比前两者好.结果表明,在3种常用的蛋白质提取方法中,硫脲裂解液对细胞蛋白质的溶解性最佳,相对更适合于提取MCF27细胞的蛋白质,并与双向凝胶电泳条件更兼容. 关键词 蛋白质提取,双向凝胶电泳,MCF27,条件优化 中图分类号 Q503 Comparison of Three Protein Extraction Methods by Tw o2 Dimensional E lectrophoresis WE NG Y u1),2),ZE NG Qun2Li2),3),J I ANG Huai2),X U Zheng2Ping2),3)3 (1)College o f Life Sciences,2)Bioelectromagnetics Laboratory,3)Research Center for Environmental G enomics, Zhejiang Univer sity School o f Medicine,Hangzhou 310031,China) Abstract Protein extraction from tissue or cells is a key step to achieve high2res olution protein separation in tw o dimensional electrophoresis(22DE).Three routine cellular total protein extraction methods were com pared in order to determine an optimal one for human breast cancer cell line MCF27.The cultured MCF27cells were lysed by M2PER kit,standard lysis buffer or im proved lysis buffer,respectively.Then the extracted total proteins were subjected to22DE,and the best extraction method was determined by the indexes of protein distribution and abundance on corresponding silver2stained gel.Data showed that use of M2PER kit gave the lowest res olution,in which m ost proteins were distributed in the pI ranging from417to613with m olecular weight between15kD and70kD.Standard lysis bu ffer im proved protein res olution with broader protein distribution pattern.Im proved lysis bu ffer generated the best res olution am ong these three methods,especially for the high2abundance and high m olecular weight proteins.Based on above results,we concluded that the im proved lysis bu ffer has the best protein s olubilization ability,which renders it much m ore suitable for cellular protein extraction from MCF27,and is m ore com patible with the conditions of22DE. K ey w ords protein extraction,tw o dimensional electrophoresis,MCF27,optimization 收稿日期:2004212203,接收日期:2005203221 国家自然科学基金项目(N o.50137030,30170792),浙江省自然科学基金项目(N o.301524)和浙江省卫生厅重点项目(N o.2004Z D006)资助 3联系人 T el:0571287217386,Fax:0571287217410,E2mail:zpxu@https://www.wendangku.net/doc/ea4250771.html, Received:December3,2004;Accepted:M arch21,2005 Supported by National Natural Science F oundation of China(N o.50137030,30170792),and Natural Science F oundation of Zhejiang Province(N o.301524),and K ey Program of Health Bureau of Zhejiang Province(N o.2004Z D006) 3C orresponding author T el:0571287217386,Fax:0571287217410,E2mail:zpxu@https://www.wendangku.net/doc/ea4250771.html,

单细胞凝胶电泳——彗星实验方法的建立、改良与应用

陕西师范大学 硕士学位论文 单细胞凝胶电泳——彗星实验方法的建立、改良与应用 姓名:罗明志 申请学位级别:硕士 专业:动物学 指导教师:齐浩 20050501

单细胞凝胶电泳——彗星实验方法的建立、改良与应用 罗明志 摘要单细胞凝胶电泳(singlecellgelelectrosis,SCGE),又称彗星实验(cometassay),是一种在单细胞水平进行DNA损伤的检测方法,具有简便、灵敏、快捷、样品用量小等优点,广泛用于遗传毒性检测、环境毒性检测、分子流行病学和DNA损伤与修复等研究领域。 我们在本实验室建立了单细胞凝胶电泳技术,并对部分操作流程进行了改良,包括(1)制胶方法改良;(2)增加水洗;(3)进行梯度酒精脱水。在上述改良过程中,我们用“灌胶”法在载玻片上制胶,替代了传统的使用磨砂载玻片上“三明治”制胶,解决了彗星实验中常见的脱胶现象,脱水后有利于获得平整胶面:在裂解后增加了水洗步骤,以消除裂解液中的高盐和去垢剂对后续实验操作的影响;采用直流稳压电源进行单细胞电泳,保证了实验结果的可重复性;对染色的条件进行了筛选,确定了使用EB作为细胞DNA的荧光染料;以CASP(免费)作为彗星图像的分析软件,建立了图像分析的方法。这些实验步骤的改良以及实验流程的优化或标准化.简化了操作程序,节省了时间,并使结果分析更加简便。 为了验证上述改良后的实验系统是否可靠,我们用紫外线作为损伤因子处理细胞,诱导细胞DNA损伤,然后用彗星实验检测这一损伤。从这~阳性模型的结果分析来看,发现细胞损伤呈现出很好的时间依赖性,表明该实验系统的可靠性。我们同时筛选并评价了彗星实验中有关的DNA损伤分析指标,发现TailLength,CometLength,TailMoment和OliveTailMoment作为DNA损伤的评价指标比较可靠。 我们建立了肝细胞的组织块原代培养系统。在建立肝细胞组织块原代培养实验流程中,我们对实验的各个步骤,例如组织块贴壁需要的时间、细胞生长所需的培养基种类、培养基添加剂以及动物组织供体年龄等进行了筛选,建立了小鼠肝细胞组织块的原代培养系统。 我们用单细胞凝胶电泳方法对磁场和抗癌药物对人自血病细胞K562以及小鼠原代肝细胞的DNA损伤进行了检测。结果发现,K562细胞在9mT稳恒磁场中处理12h即可引起细胞的DNA损伤,这一损伤随处理时间的延长而增加,具有时间依赖效应;同样条件下对原代肝细胞的处理以及更长时间的处理(36h、48h、72h)均未发现细胞的DNA损伤。在使用较低浓度紫杉醇(50ng/mL)处理K562细胞12h后,即可导致细胞DNA损伤,并表现出时间依赖效应,而仅在高浓度长时阳J的紫杉醇(800ng/mL,24h)处理下才会引起肝细胞的DNA损伤。80099/mL环磷酰胺处理K562细胞12h即可引起细胞的DNA损伤,而在120099/mL时方才引起肝细胞的DNA损伤。 关键词:单细胞凝胶电泳;DNA损伤:UV;细胞培养;磁场;抗癌药物

凝胶电泳实验报告模板

凝胶电泳实验报告模板

降低了对流运动,故电泳的迁移率又是同分子的摩擦系数成反比的。已知摩擦系数是分子的大小、极性及介质粘度的函数,因此根据分子大小的不同、构成或形状的差异,以及所带的净电荷的多少,便可以通过电泳将蛋白质或核酸分子混合物中的各种成分彼此分离开来。在生理条件下,核酸分子的糖-磷酸骨架中的磷酸基因呈离子状态从这种意义上讲,D N A 和RNA多核苷酸链可叫做多聚阴离子( Polyanions ) 。因此,当核酸分子被放置在电场中时,它们就会向正电极的方向迁移。由于糖- 磷酸骨架结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因而它们能以同样的速度向正电极方向迁移。在一定的电场强度下,DNA分子的这种迁移速度,亦即电泳的迁移率,取决于核酸分子本身的大小和构型,分子量较小的DNA分子比分子量较大的DNA 分子迁移要快些。这就是应用凝胶电泳技术分离DNA片段的基本原理。 聚丙烯酰胺凝胶电泳,普遍用于分离蛋白质及较小分子的核酸。琼脂糖凝胶孔径较大适用于分离同工酶及其亚型,大分子核酸等应用较广。琼脂糖和聚丙烯酰胺可以制成各种形状、大小和孔隙度。琼脂糖凝胶分离DNA度大小范围较广,不同浓度琼脂糖凝胶可分离长度从200bp至近50kb的DNA段。琼脂糖通常用水平装置在强度和方向恒定的电场下电泳。聚丙烯酰胺分离小片段DNA(5-500bp)效果较好,其分辩力极高,甚至相差1bp的DNA段就能分开。聚丙烯酰胺凝胶电泳很快,可容纳相对大量的DNA,但制备和操作比琼脂糖凝胶困难。聚丙烯酰胺凝胶采用垂直装置进行电泳。目前,一般实验室多用琼脂糖水平平板凝胶电泳装置进行DNA电泳。 3.1 凝胶电泳的分类 按照分离物质来分凝胶电泳可以分为核酸凝胶电泳和蛋白质凝胶电泳;按照分离介质来分可以分为琼脂糖凝胶电泳技术和PAGE凝胶电泳。本次实验我们采用按介质的分类方法来学习的。 3.1.1琼脂糖凝胶电泳 琼脂糖凝胶电泳是用琼脂糖作支持介质的一种电泳方法。其分析原理与其他

彗星实验又称单细胞凝胶电泳实验

彗星实验又称单细胞凝胶电泳实验,是由Ostling等于1984年首次提出的一种通过检测DNA链损伤来判别遗传毒性的技术。它能有效地检测并定量分析细胞中DNA单,双链缺口损伤的程度。当各种内源性和外源性DNA损伤因子诱发细胞DNA链断裂时,其超螺旋结构受到破坏,在细胞裂解液作用下,细胞膜、核膜等膜结构受到破坏,细胞内的蛋白质、RNA以及其他成分均扩散到细胞裂解液中,而核DNA由于分子量太大只能留在原位。在中性条件下,DNA片段可进入凝胶发生迁移,而在碱性电解质的作用下,DNA发生解螺旋,损伤的DNA断链及片段被释放出来。由于这些DNA的分子量小且碱变性为单链,所以在电泳过程中带负电荷的DNA会离开核DNA 向正极迁移形成“彗星”状图像,而未受损伤的DNA部分保持球形。DNA受损越严重,产生的断链和断片越多,长度也越大,在相同的电泳条件下迁移的DNA量就愈多,迁移的距离就愈长。通过测定DNA迁移部分的光密度或迁移长度就可以测定单个细胞DNA损伤程度,从而确定受试物的作用剂量与DNA损伤效应的关系。该法检测低浓度遗传毒物具有高灵敏性,研究的细胞不需处于有丝分裂期。同时,这种技术只需要少量细胞。 彗星实验又称单细胞凝胶电泳实验,是由Ostling等于1984年首次提出的一种通过检测DNA链损伤来判别遗传毒性的技术。它能有效地检测并定量分析细胞中DNA单,双链缺口损伤的程度。当各种内源性和外源性DNA损伤因子诱发细胞DNA链断裂时,其超螺旋结构受到破坏,在细胞裂解液作用下,细胞膜、核膜等膜结构受到破坏,细胞内的蛋白质、RNA以及其他成分均扩散到细胞裂解液中,而核DNA由于分子量太大只能留在原位。在中性条件下,DNA片段可进入凝胶发生迁移,而在碱性电解质的作用下,DNA发生解螺旋,损伤的DNA断链及片段被释放出来。由于这些DNA的分子量小且碱变性为单链,所以在电泳过程中带负电荷的DNA会离开核DNA 向正极迁移形成“彗星”状图像,而未受损伤的DNA部分保持球形。DNA受损越严重,产生的断链和断片越多,长度也越大,在相同的电泳条件下迁移的DNA量就愈多,迁移的距离就愈长。通过测定DNA迁移部分的光密度或迁移长度就可以测定单个细胞DNA损伤程度,从而确定受试物的作用剂量与DNA损伤效应的关系。该法检测低浓度遗传毒物具有高灵敏性,研究的细胞不需处于有丝分裂期。同时,这种技术只需要少量细胞。 我最近做彗星实验,总是解决不了脱胶问题,要么是铺第二三层胶的时候第一层胶就松动,要么侥幸没动,在裂解、解旋、电泳、中和过程中都会出现胶脱落的现象,我愁死了,不知道是什么原因?我的步骤这样,请帮我分析分析好吗? 1.5%正常熔点琼脂糖120微升乘热滴于磨砂载玻片上,盖玻片,4度20分钟,0.8%低熔点琼脂糖和 细胞混合液80微升,0.8%低熔点琼脂糖80微升铺第二、三层胶,裂解液和电泳液中和液都按配方来

凝胶电泳实验原理与步骤

一、实验目的 学习和掌握琼脂糖电泳法鉴定DNA的原理和方法。 二、实验原理 琼脂糖凝胶电泳是用于分离、鉴定和提纯DNA片段的标准方法。琼脂糖是从琼脂中提取的一种多糖,具亲水性,但不带电荷,是一种很好的电泳支持物。DNA在碱性条件下(pH8.0的缓冲液)带负电荷,在电场中通过凝胶介质向正极移动,不同DNA分子片段由于分子和构型不同,在电场中的泳动速率液不同。溴化乙锭(EB)可嵌入DNA分子碱基对间形成荧光络合物,经紫外线照射后,可分出不同的区带,达到分离、鉴定分子量,筛选重组子的目的。 三、实验材料 实验14提取的DNA样品, 四、器具及药品 电泳仪,电泳槽,紫外透射反射仪,恒温水浴锅,微波炉,微量进样器,三羟甲基氨基甲烷,盐酸,醋酸钠,EDTA,琼脂糖,溴酚蓝,溴化乙锭。 五、实验步骤 1、安装电泳槽 将有机玻璃的电泳凝胶床洗净,晾干,用胶带将两端的开口封好,放在水平的工作台上,插上样品梳。 2、琼脂糖凝胶的制备 称取琼脂糖溶解在电泳缓冲液中,(按0.3-1.5%的琼脂糖含量,1-25kb大小的DNA用1%的凝胶,20-100kb的DNA用0.5%的凝胶,200-2000bp的DNA用1.5%的凝胶)置微波炉或沸水浴中加热至完全溶化(不要加热至沸腾),取出摇匀。 3、灌胶 将冷却到60℃的琼脂糖溶液轻轻倒入电泳槽水平板上。 4、待琼脂糖胶凝固后,在电泳槽内加入电泳缓冲液,然后拔出梳子。 5、加样 将DNA样品与加样缓冲液按4:1混匀后,用微量移液器将混合液加到样品槽中,每槽加10-20μl,记录样品的点样次序和加样量。 6、电泳 安装好电极导线,点样孔一端接负极,另一端接正极,打开电源,调电压至3-5V/cm,电泳1-3hr,当溴酚蓝移到距凝胶前沿1-2cm时,停止电泳。 7、染色和观察 取出凝胶,放在含有溴化乙锭的染色液中染色30min,即可在254nm的紫外灯下观察,有橙红色荧光条带的位置,即为DNA条带,或在紫外灯下照相记录电泳图谱。溴化乙锭是致癌剂,操作时要小心,必须戴手套。 附: ⑴5×TBE(tris-硼酸及EDTA)缓冲液的配制(1000ml): Tris 54g,硼酸27.5g,0.5mol/L EDTA 20ml,将pH调到8.0,定容至1000ml,4℃冰箱保存,用时稀释10倍。 ⑵加样缓冲液的配制: 0.25%溴酚蓝,40%(W/V)蔗糖水溶液,4℃冰箱保存。 ⑶溴化乙锭的配制: 称取0.1g溴化乙锭,溶于10ml水,配成终浓度为10mg/ml的母液,4℃冰箱保存。染

脉冲场凝胶电泳

脉冲场凝胶电泳(PFGE实验原理、操作步骤和注意事项 【实验原理】 大分子DNA(一般长度超过20kb ,在某些情况下,超过40kb 在电场作用下通过孔径小于分子大小的凝胶时,将会改变无规卷曲的构象,沿电场方向伸直,与电场平行从而才能通过凝胶。此时,大分子通过凝胶的方式相同,迁移率无差别(也称“极限迁移率”,不能分离。脉冲场凝胶电泳技术解决了这一难题,它应用于分离纯化大小在10~2000kb 之间的DNA 片段。 这种电泳是在两个不同方向的电场周期性交替进行的,DNA 分子在交替变换方向的电场中作出反应所需的时间显着地依赖于分子大小,DNA 越大,这种构象改变需要的时间越长,重新定向的时间也越长,于是在每个脉冲时间内可用于新方向泳动的时间越少,因而在凝胶中移动越慢。反之,较小的DNA 移动较快,于是不同大小的分子被成功分离。在许多实用的PFGE 方法中,倒转电场凝胶电泳是最简单最常用的方法(FIGE。通过把一个在不同电场方向有不同脉冲方式的脉冲电场加在样品上,倒转电场凝胶电泳(FIGE设备能把大小范围在10~2000kb 的DNA 片段分开。FIGE 也可通过重新确定一个对准完全固定好角度的电场,这样会进一步扩展其分离极限达到10Mb 。 【仪器、材料与试剂】 1. 制备DNA 样品所需材料 1TEN 缓冲液(0.1mol/LTris,pH7.5;0.15mol/LNaCl;0.1mol/LEDTA。 2Seaplaque 琼脂糖(EC 缓冲液中浓度为2%。 3EC 缓冲液(6mol/LTris,pH7.5;lmol/L NaCl;0.5% 4ESP 缓冲液(0.5mol/L EDTA,1%十二烷基肌氨酸钠,lmg/mL 蛋白酶K 。 5 溶葡萄球菌素(5mg/mL。 6RNase(10mg/mL。

彗星实验

彗星实验(Comet assay),又称单细胞凝胶电泳(Single cell gel electrophoresis,SCGE),各种理化因子作用细胞后引起的DNA链的断裂可用该方法检测[1~3],并在统计学基础上对损伤程度做出评估[4]。本实验对Singh 等[5]建立的碱性彗星实验的一些步骤作了改良。用超净工作台上的紫外消毒灯[可发射波长为254 nm的紫外线(Ultraviolet,UV),属于UVC波段范围]作为DNA损伤的诱导因子[7~9],诱导K562细胞DNA损伤,用改良彗星实验检测损伤程度,验证改良的实验系统是否可靠,同时筛选并评价DNA损伤的分析指标。 1 材料与方法 细胞K562细胞,来源于第四军医大学免疫学教研室,37 ℃、5% CO2培养箱中培养,取对数期细胞进行实验。 紫外线照射装置紫外消毒灯(ZSZ-20型,20 W,天津市紫晶特种光源有限公司)。 主要试剂和仪器培养基:10%新生牛血清(杭州四季青公司),90%RPMI-1640培养液(Hyclone公司);双抗(青、链霉素,100 UI/ml);Triton X-100(Genview分装);二甲基亚砜、肌苷酸钠(Sigma分装);低熔点琼脂糖(FMC 分装);常熔点琼脂糖(Spanish分装)。其余生化试剂均为分析纯。电泳仪:由西北大学物理系提供;电泳槽:DYC33A型(北京市六一仪器厂);显微镜:Leica DM LB 2 (Leica 公司);彗星图象分析软件:CASP软件(casp-1.2.2,下载);CO2培养箱:BB16HF型(上海力申科学仪器有限公司);环地牌紫外辐照计(北京师范大学光电仪器厂)。 实验分组及UV处理 收集对数生长的K562细胞,台盼蓝染色计数,细胞活力大于95%,用Hank's 调整细胞密度至1×105/ml,接种于塑料培养皿中(ф=35 mm,2 ml/plate),然后进行紫外线照射 mW/cm2)。实验分为对照组和8个照射组,各照射组分别照射3、5、10、40,60、120、180、240 s,对照组不进行紫外线照射,之后进行彗星实验。 细胞活性检测台盼蓝拒染法[10]即时检测经UV处理后K562细胞的活性。 彗星实验1988年Singh等[5]建立了碱性彗星实验,我们对该实验流程进行改良,首先改变了制胶方法,并在裂解后加入水洗的操作步骤,中和完成后

SDS-PAGE电泳的基本原理及浓缩胶浓缩样品的原理

SDS-PAGE电泳的基本原理及浓缩胶浓缩样品的原理 SDS-PAGE(十二烷基硫酸钠-聚丙烯酰胺凝胶电泳)是目前最常用的分离蛋白质的电泳技术 SDS-聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进SDS,SDS能断裂分子内和分子间氢键,破坏蛋白质的二级和三级结构,强还原剂能使半胱氨酸之间的二硫键断裂,蛋白质在一定浓度的含有强还原剂的SDS溶液中,与SDS分子按比例结合,形成带负电荷的SDS-蛋白质复合物,这种复合物由于结合大量的SDS,使蛋白质丧失了原有的电荷状态形成仅保持原有分子大小为特征的负离子团块,从而降低或消除了各种蛋白质分子之间天然的电荷差异,由于SDS与蛋白质的结合是按重量成比例的,因此在进行电泳时,蛋白质分子的迁移速度取决于分子大小。当分子量在15KD到200KD之间时,蛋白质的迁移率和分子量的对数呈线性关系,符合下式:logMW=K-bX,式中:MW为分子量,X为迁移率,k、b均为常数,若将已知分子量的标准蛋白质的迁移率对分子量对数作图,可获得一条标准曲线,未知蛋白质在相同条件下进行电泳,根据它的电泳迁移率即可在标准曲线上求得分子量。 SDS-PAGE电泳成功的关键是什么? ①溶液中SDS单体的浓度 SDS在水溶液中是以单体和SDS-多肽胶束的混合形式存在,能与蛋白质分子结合的是单体。为了保证蛋白质

与SDS的充分结合,它们的重量比应该为1∶4或1∶3。②样品缓冲液的离子强度因为SDS结合到蛋白质上的量仅仅取决于平衡时SDS单体的浓度,不是总浓度,而只有在低离子强度的溶液中,SDS 单体才具有较高的平衡浓度。所以,SDS电泳的样品缓冲液离子强度较低,常为10-100 mM。③二硫键是否完全被还原只有二硫键被完全还原以后,蛋白质分子才能被解聚,SDS才能定量地结合到亚基上从而给出相对迁移率和分子质量对数的线性关系。Sample buffer 中的β-巯基乙醇的浓度常为4-5%,二硫苏糖醇的浓度常为2-3%。前者有挥发性,最好使用前加入。 SDS-PAGE缓冲液系统的选择,Tris-Glycine、Tris-Tricine、Tris-硼酸盐或者其他? 一般来说,在被分析的蛋白质稳定的pH范围,凡是不与SDS发生相互作用的缓冲液都可以使用,但缓冲液的选择对蛋白带的分离和电泳的速度是非常关键的。Tris-甘氨酸系统是目前使用最多的缓冲系统。Tris-甘氨酸系统是目前使用最多的缓冲系统。如果要测定糖蛋白的分子量,最好采用Tris-硼酸盐缓冲系统,对于分子质量小于15 kDa的蛋白样品,可以使用SDS-尿素系统,也可以采用Tris-tricine缓冲系统。 积层胶(或称浓缩胶)的作用原理?

单细胞凝胶电泳技术

单细胞凝胶电泳技术的试验步骤 试剂及材料: 1)0.01M PBS pH7.3:8g NaCl、0.2g KCl、1.44g Na2HPO4和0.24g KH2PO4,溶于800ml蒸馏水中,用HCl调节溶液的pH值至7.3,最后加蒸馏水定容至1L即可。保存存于室温或4℃冰箱中。 2)0.8%正常熔点凝胶(PBS配制) 3)0.6%低熔点凝胶(PBS配制) 4)毛玻璃片5)盖玻片 6)碱性裂解液(2.5mol/L NaCl;100mmol/L Na2EDTA;10mmol/L Tris;1%肌氨酸钠),临用前加10%DNMSO,1%Triton X-100 7)电泳缓冲液(1mmol/L Na2EDTA;300mmol/L NaOH;Tris.Cl,pH7.5) 8)EB(2ug/ml) 步骤: 1.制备第一层胶:100ml 0.8%正常熔点胶,加盖盖玻片,4℃固化10min; 2.制备第二层胶:轻轻地去除盖玻片,在第一层胶上滴加75ul含1×10000个细胞的0.6%低熔点胶(cell 与凝胶比例为1:5),加盖盖玻片,4℃固化10min; 3.裂解:去掉盖玻片,将凝胶浸入冰冷的碱性裂解液

内(临用前加10%DMAO,1%Triton X-100),4℃裂解1h; 4.取出玻片,用PBS缓冲液漂洗3次后置于水平电泳槽内,加入pH13的电泳缓冲液(没过玻片2-3min),放置20min(黑闭)。 5.电泳:电压20V,300mA,30min 6.取出玻片,用PBS或Tris.Cl,pH 7.5漂洗3次,每次3min;或双蒸水漂洗2次,每次5~15min, 7.染色:胶上滴加3ulEB,加盖盖玻片,24h检测。或者4℃,潮湿,闭光的条件下保有胶片,观察时再染色,镜检。 1.2.5 改良彗星试验操作步骤为节省实验时间,本研究将铺三层胶法改为铺一层胶法,同时在中和及染色等步骤进行了改良,具体操作如下:将已染毒的淋巴细胞悬液与40℃的1%低溶点琼脂糖等浓度混匀后,取70μl混合液直接滴加在磨毛玻片上,加盖玻片,4℃冷凝,20min后揭盖片;4℃于碱性裂解液中裂解1h;解旋20min;4℃电泳(25V,300mA)30min;中和5min;加碘化丙啶,暗处染色10min,加盖片;于莹光显微镜下镜检,照像。

SDS-PAGE电泳实验步骤

垂直板聚丙烯酰胺凝胶电泳分离蛋白质 一、实验目的 学习SDS-聚丙烯酰胺凝胶电泳法(SDS—PAGE)测定蛋白质的分子量的原理和基本操作技术。 二、实验原理 蛋白质是两性电解质,在一定的pH条件下解离而带电荷。当溶液的pH大于蛋白质的等电点(pI)时,蛋白质本身带负电,在电场中将向正极移动;当溶液的pH小于蛋白质的等电点时,蛋白质带正电,在电场中将向负极移动;蛋白质在特定电场中移动的速度取决于其本身所带的净电荷的多少、蛋白质颗粒的大小和分子形状、电场强度等。 聚丙烯酰胺凝胶是由一定量的丙烯酰胺和双丙烯酰胺聚合而成的三维网状孔结构。本实验采用不连续凝胶系统,调整双丙烯酰胺用量的多少,可制成不同孔径的两层凝胶;这样,当含有不同分子量的蛋白质溶液通过这两层凝胶时,受阻滞的程度不同而表现出不同的迁移率。由于上层胶的孔径较大,不同大小的蛋白质分子在通过大孔胶时,受到的阻滞基本相同,因此以相同的速率移动;当进入小孔胶时,分子量大的蛋白质移动速度减慢,因而在两层凝胶的界面处,样品被压缩成很窄的区带。这就是常说的浓缩效应和分子筛效应。同时,在制备上层胶(浓缩胶)和下层胶(分离胶)时,采用两种缓冲体系;上层胶pH=6.7—6.8,下层胶pH=8.9;Tris —HCI缓冲液中的Tris用于维持溶液的电中性及pH,是缓冲配对离子;CI-是前导离子。在pH6.8时,缓冲液中的Gly-为尾随离子,而在pH=8.9时,Gly的解离度增加;这样浓缩胶和分离胶之间pH的不连续性,控制了慢离子的解离度,进而达到控制其有效迁移率之目的。不同蛋白质具有不同的等电点,在进入分离胶后,各种蛋白质由于所带的静电荷不同,而有不同的迁移率。由于在聚丙烯酰胺凝胶电泳中存在的浓缩效应,分子筛效应及电荷效应,使不同的蛋白质在同一电场中达到有效的分离。 如果在聚丙烯酰胺凝胶中加入一定浓度的十二烷基硫酸钠(SDS),由于SDS带有大量的负电荷,且这种阴离子表面活性剂能使蛋白质变性,特别是在强还原剂如巯基乙醇存在下,蛋白质分子内的二硫键被还原,肽链完全伸展,使蛋白质分子与SDS充分结合,形成带负电性的蛋白质—SDS复合物;此时,蛋白质分子上所带的负电荷量远远超过蛋白质分子原有的电荷量,掩盖了不同蛋白质间所带电荷上的差异。蛋白质分子量愈小,在电场中移动得愈快;反之,愈慢。蛋白质的分子量与电泳迁移率之间的关系是: M r =K(10-b·m) logM r =LogK—b·R m , 式中M r ——蛋白质的分子量; logK——截距; b——斜率; R m ——相对迁移率。 实验证明,蛋白质分子量在15,000—200,000的范围内,电泳迁移率与分子量

相关文档
相关文档 最新文档