文档库 最新最全的文档下载
当前位置:文档库 › 电镜练习题及参考答案

电镜练习题及参考答案

电镜练习题及参考答案
电镜练习题及参考答案

一、电镜练习题及答案

一、透射电镜标本取材的基本要求并简要说明。

答:取材的基本要求如下:

组织从生物活体取下以后,如果不立即进行及时固定处理,就有可能出现缺血缺氧后的细胞超微结构的改变,如细胞出现细胞器变性或溶解等现象,这些都可造成电镜观察中的人为假象,直接影响观察结果分析,甚至导致实验失败。此外,由于处理不当造成组织微生物污染,导致细胞的超微结构结构遭受破坏。

因此,为了使细胞结构尽可能保持生前状态,取材成败是关键,取材成功的关键在于操作者必须要注意把握“快、小、冷、准”四个取材要点。(1).快:就是指取材动作要迅速,组织从活体取下后应在最短时间 (争取在1~2分钟之内)投入前固定液。对于实验动物,最好在断血流、断气之前就进行取材,以免缺血缺氧后使细胞代谢发生改变而破坏细胞的超微结构。当然,最好是采用灌注固定法。为了使前固定的效果更佳,组织块要充分和固定液混合,应采用振荡固定10分钟以上,有条件的可采用微波固定法固定。

(2).小:由于常用的固定剂渗透能力较弱,组织块如果太大,块的内部将不能得到良好的固定。因此所取组织的体积要小,一般不超过1mm3。为便于定向包埋,可将组织修成大小约1mm×1mm×2m m长条形。

(3).冷:为了防止酶对自身细胞的酶解作用,取材操作最好在低温(5℃~15℃)环境下进行,这样可以降低酶的活性,防止细胞自溶。所采用的固定剂以及取材器械要预先在冰箱(5℃)中存放一段时间。

(4).准:就是取材部位要准确,这就要求取材者对所取的组织解剖部位要熟悉,必须取到与实验要求相关的部位,不同实验组别间要取相同部位,如需要定向包埋的标本,则要作好定向取材工作。

此外,还要求操作动作轻柔,熟练,尽量避免牵拉、挫伤与挤压对组织造成的人为损伤。

二、什么是瑞利准则电镜与光镜在原理上有何相似和不同之处

答:1、光线通过二个比较靠近的小孔时,这二个小孔的衍射图会重叠在一起。

当一个衍射图的中央亮斑正好落在另一个衍射图的第一暗环中心时,这二个点刚可以分辩。这就是显微镜分辩本领的瑞利准则。

2、相似点:光学显微镜是利用玻璃制作的透镜对光进行折射,将一物点发

出不同角度的光线最终会聚成一个像点。电子显微镜是以电子束作为光源,利用电磁透镜产生的电场或磁场折射电子束,并通过电子束轰击荧光屏激发荧光而达到成像目的。

不同点:光镜的照明源是可见光,而电镜是用电子束照明。光镜的透镜用玻璃制成,而电镜的透镜是轴对称的电场或磁场。

三、简述透射电镜及扫描电镜样品制作流程

答:1、透射电镜样品制作流程为取材——漂洗(生理盐水)——前固定(%戊二醛,4oC冰箱2小时以上)——漂洗(磷酸缓冲液,3次,45分钟)——后固定(1%锇酸1小时左右)——漂洗(磷酸缓冲液,3次,45分钟)——块染(1%醋酸铀2小时)——梯度脱水(50%、70%、80%、90%丙酮各15分

钟, 100%丙酮 2次,各10分钟)——浸透(丙酮:包埋液=1:1,37 oC 烘箱2小时;丙酮:包埋液=1:4, 37oC烘箱过夜;纯包埋液45oC烘箱2小时)——包埋聚合(45oC烘箱3小时,65oC烘箱48小时)。

2、扫描电镜样品制作流程为取材(做好样品观察面的标志)——漂洗(生理盐

水或缓冲液)——固定(%戊二醛2小时以上)——漂洗(磷酸缓冲液,3次,45分钟)——后固定(1%锇酸,2小时)——脱水( 50%、70%、80%、90%、95%各15分钟,换醋酸异戊酯15分钟或叔丁醇15分钟)——干燥(零界点干燥或冷冻干燥)——镀膜(真空镀膜仪或离子溅射仪)

四、常用的化学固定方法有哪些

答;常用的化学固定方法有

1、浸泡固定法(也称组织块固定):就是将组织块直接浸泡入固定液当中进行

固定。

2、游离细胞固定法:

适用于培养细胞、周围血、骨髓、胸腹水或其他渗出液。如为贴壁生长的培养细胞,应先用橡皮刮子将细胞从培养管壁上轻轻刮下,或用酶消化,使细胞脱离管壁。

3、原位固定法:

就是在组织未取下之前,在组织器官原来的位置进行预固定的方法。原位固定可分为点滴固定法和注射固定法两种。

点滴固定法:就是将实验动物麻醉后暴露出所需的器官表面,小心地剥开包膜,将预冷的固定液直接滴在组织的表面上,并保持固定液适当浓度不使挥发干燥。

注射固定法:就是将实验动物麻醉后,将固定液用细注射针直接注射到所需固定的组织中或空腔脏器的内部。

4、灌注固定法

就是利用血液循环的途径将固定液灌注到所需固定的组织中,其特点是灌注快速、均匀,缺点是固定操作复杂、要求高。

灌注固定法可分为全身固定和局部固定两种。通常采用的固定剂为2%~4%戊二醛溶液或者4%多聚甲醛溶液。

五、普通透射电镜包括那些结构请简要叙述。

答:透射式电子显微镜(简称透射电镜)由四部分组成,即电子光学系统(即镜筒)、真空排气系统、电源系统和水冷系统。

电子光学系统包括:照明系统、样品室、成像系统和观察记录系统。

真空排气系统包括:机械泵、油扩散泵、真空管道、阀门及检测系统组成。

电源系统包括:主要的电源供给包括高压电源、电子枪灯丝电源、控制极电源、透镜电源、真空系统电源等部分。

水冷系统主要靠冷却水循环装置来完成或者直接用自来水降温。

六、简述电镜在生命科学中的应用

答: 电镜在生命科学上的应用几乎包括所有的学科研究领域都已经用到或即将用到电镜技术。比如动物或植物细胞的超微结构(包括细胞核、细胞质

及其细胞器等内容物、细胞间的连接等)的形态观察,通过对比观察,对动植物形态在超微结构水平上进行分类、分型,以探讨遗传、变异及病理病因的机理或机制,为生命科学的基础研究所不可或缺的研究手段。

利用常规电镜技术和特殊电镜技术如免疫电镜技术、电镜酶细胞化学技术、电镜原位杂交技术等可以进行细胞细胞超微结构及超微病理分析,以及细胞内抗原、酶等的定位、定性甚至定量研究等。

七、简述电镜的球差和畸变及其形成原因。

答:1、球差:由于电子束光源通过透镜受到偏转,通过样品,从物平面向下发射,形成物点孔径角。从物点发出的射线,到达下一级透镜又被聚集。

如果透镜有缺陷或孔径角太大,则靠近光轴的射线和远离光轴的射线,受到电磁场的作用就会不同,这些射线在光轴上会聚的位置不同,结果远离光轴的射线就会在像面上形成一个最小模糊圈。此时可有图象中央凸起感。球差是目前影响电镜分辨率的一个主要因素。

2、畸变:由于离轴较远处的径向磁场的作用力强,使放大倍数随物点离轴

的距离而变化,进而使图象发生改变而产生的。畸变常见的有枕形畸变、桶形畸变和S形畸变等。

八、简述电磁透镜及其聚焦原理

答:由于轴对称弯曲磁场对电子束有聚焦作用,因而可以得到电子光学像。

我们称这种具有轴对称弯曲磁场装置构成的电子透镜为电磁透镜(electron magnetic lenses)。由于电磁透镜磁场非均匀分布,物、像点在磁场之外,电子在磁场中既受到轴向分量的作用,又受到径向分量的作用,使平行于轴进入磁场的电子束可获得聚焦。

九、什么是反差简述电镜荧光图像反差形成的原因。

答:1、人的眼睛在区分物体时,主要根据物体不同部位或物体之间的光强度与波长的差别,这些差别构成了物体的反衬度,又称为“反差”。电镜与光镜一样也存在反差现象。

2、由于电镜标本上的不同部位的物质结构不同,经过电子染色后,其疏密度

也不同,它们散射电子的能力也各不相同,散射电子能力强的地方,显现为暗像;相反,散射能力弱的地方,显现为亮像。因此,在荧光屏上所看到的是由暗像与亮像组成的具有一定反差的荧光图像。

十、游离细胞取材方法有哪些并简述其处理方法。

答:血浆凝集法:将抗凝全血离心分层(2000转/每分钟,10—20分钟),用毛细吸管沿着管壁轻轻的将上清夜吸取(不要破坏白细胞层),接着用吸管吸取固定液,并沿着管壁将%戊二醛固定液慢慢地加入进行固定,然后把它放在4℃冰箱内保存。

血浆(血清)混合法:如为细菌、病毒、脱落细胞、培养细胞则先将它们制成悬液放置于离心管内(最好是玻璃的),离心成团(1000~3000转/分钟,10分钟,

下同),去上清液后加入%戊二醛固定10分钟左右,离心,再弃去多余的固定液,然后和少量抗凝血浆或血清混合均匀,离心成团,去上清液(留少许),用吸管吸取%戊二醛固定液沿着离心管壁缓慢滴入,尽量避免团块分散,静置于4℃冰箱内保存备用。

十一、简述超薄切片流程并简要说明。

答:超薄切片流程包括以下几个步骤:

1、切片前的准备:铜网清洗(用丙酮和乙醇浸洗)

2、支持膜制备:常用Formvar膜(用聚乙烯醇缩甲醛和氯仿配置,浓度为%)

3、玻璃刀制备:专用制刀机制作。

4、半薄切片光镜定位(主要确定超薄切片的位置)。

5、修块(表面修成梯形或长方形)。

6、超薄切片:专用超薄切片机切片,厚度在 50—100 nm 之间较为合适。

7、捞片:将超薄切片捞在载网上。

8、染色:铅-铀双重染色法,如已有过块染,则只需铅染色30分钟即可。

十二、简述负染技术及其应用。

答:负染技术是利用重金属盐(常用磷钨酸盐或醋酸铀溶液)沉积到样品四周,样品四周散射电子的能力就较强,因而表现为暗区;样品本身散射电子的能力较弱,则表现为亮区,这样便能把样品的外形与表面结构清楚地衬托出来。是观察微小颗粒状生物材料的外部形状常用的染色方法。主要应用于病毒、支原体、细菌等微生物外部形态的观察以及纳米级生物材料的形态观察。

十三、简述石蜡块做超薄切片的样品制作流程

答、石蜡块做超薄切片的样品制作流程如下:

1、取材:从石蜡块上相应部位切下约1mm3 的小块。

2、溶蜡:将取下的标本放在一张滤纸上,40℃烘箱内烘1小时,然后转放入二

甲苯溶液中40℃烘箱内继续浸泡8—12h。

3、水化:纯丙酮30分钟、90%、80%、70%丙酮各15分钟。

4、漂洗:用缓冲液漂洗(磷酸缓冲液PBS)3次,每次15分钟。

5、固定:%戊二醛固定2小时,PBS漂洗3次,而后1%锇酸后固定1—2小时。

6、漂洗、块染、脱水、浸泡、包埋聚合同常规透射电镜标本制作方法。

二、选择题及答案

1、人眼的平均分辨率为(B)

A B C D μm E μm

2、电子枪产生的电子是(A )

A 入射电子

B 透射电子

C 弹性散射电子

D 二次电子

E 俄歇电子

3、用来显示组织和细胞的内部超微结构像的电子为(B)

A 入射电子

B 透射电子

C 弹性散射电子

D 二次电子

E 反射电子

4、下面哪项不属于透射电镜样品制备技术( A )

A 镀膜

B 负染技术

C 电镜细胞化学技术

D 超薄切片技术

E 半薄切片技术

5、下面哪项不属于扫描电镜样品制备技术(B )

A 表面干燥法

B 浸透包埋

C 冷冻复型

D 冷冻割断法

E 组织导电法

6、下面哪种电镜可以在观察结构的同时,对组织细胞内的元素成分进行分析(C)

A 透射电镜

B 扫描电镜

C 分析电镜

D 超高压透射电镜

E 原子力显微镜

7、观察组织细胞内部超微结构应选用哪种电镜(B)

A 原子力显微镜

B 透射电镜

C 扫描电镜

D 磁力显微镜

E 侧向力显微镜

8、下面哪项不是超高压电子显微镜的优点(E )

A 可用于观察厚切片

B 可以提高分辨率

C 可提高图像质量

D 可观察复杂的结构

E 减少辐射损伤范围

9、下面对扫描电镜的描述错误的是(B)

A 利用反射电子和二次电子成像

B 用于观察组织细胞表面形貌

C 样品室大,可用于观察块状样品

D 景深长,立体感强

E 样品可被升降和倾斜

10、电子枪由(D)组成

A 阴极、阳极

B 阴极、栅极

C 阳极、栅极

D 阴极、阳极、栅极

E 正极、负极、栅极

11、二次电子监测系统不包括(E)

A 检测器

B 阴极射线管

C 闪烁器

D 光电倍增器

E 视频放大器

12、固定液中戊二醛的常用浓度为(C)

A %

B %

C %

D 4%

E 10%

13、下面对透射电镜描述不正确的是(D)

A 利用透射电子成像

B 观察细胞内部超微结构

C 可观察负染标本

D 景深长、立体感强

E 分辨率高,性能最完善

14、透射电镜的反差取决于样品对(B)的散射能力

A 二次电子

B 入射电子

C 透射电子

D 散射电子

E 反射电子

15、观察生物样品时,透射电镜的加速电压一般为(C)

A 20-50KV

B 50-80KV

C 80-100KV

D 100-120KV

E 120KV以上

16、超薄切片是指厚度小于( D)的切片

A 200nm

B 300nm

C 400nm

D 100nm

E 500nm

17、超薄切片技术的步骤为(B)

A 取材、固定、脱水、包埋、切片、染色

B 取材、固定、脱水、浸透、包埋、切片、染色

C 取材、脱水、固定、包埋、切片、染色

D 取材、固定、脱水、浸透、包埋、切片

E 取材、脱水、固定、包埋、切片

18、不属于透射电镜标本取材要求的(C)

A 动作快

B 组织小 C切割狠 D部位准 E环境冷

19、下列试剂中属于强氧化剂以及对粘膜损伤最严重的是(C )

A 戊二醛

B 环氧树脂

C 锇酸

D 磷酸缓冲液

E MNA

20、负染技术中最常用的染色剂是(C)

A 锇酸

B 甲苯胺蓝

C 磷钨酸

D 柠檬酸铅

E 溴化银

扫描电镜的原理及其在材料科学领域的应用

一、扫描电镜的原理 扫描电镜(Scanning Electron Microscope),简写为SEM,是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。 扫描电镜的基本工作过程如图1,用电子束在样品表面扫描,同时,阴极射线管内的电子束与样品表面的电子束同步扫描,将电子束在样品上激发的各种信号用探测器接收,并用它来调制显像管中扫描电子束的强度,在阴极射线管的屏幕上就得到了相应衬度的扫描电子显微像。电子束在样品表面扫描,与样品发生各种不同的相互作用,产生不同信号,获得的相应的显微像的意义也不一样。入射电子与试样相互作用产生图2所示的信息种类[1-4]。 这些信息的二维强度分布随试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等),是将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面。 图1 扫描电子显微镜的工作原理图2 电子束探针照射试样产生的各种信息 扫描电子显微镜(SEM)中的各种信号及其功能如表1所示 表1 扫描电镜中主要信号及其功能 二、扫描电镜的构成

图3给出了电镜的电子光学部分的剖面图。主要包括以下几个部分: 1.电子枪——产生和加速电子。由灯丝系统和加速管两部分组成 2.照明系统——聚集电子使之成为有一定强度的电子束。由两级聚光镜组合而 成。 3.样品室——样品台,交换,倾斜和移动样品的装置。 4.成像系统——像的形成和放大。由物镜、中间镜和投影镜组成的三级放大系 统。调节物镜电流可改变样品成像的离焦量。调节中间镜电流可以改变整个系统的放大倍数。 5.观察室——观察像的空间,由荧光屏组成。 6.照相室——记录像的地方。 7.除了上述的电子光学部分外,还有电气系统和真空系统。提供电镜的各种电 压、电流及完成控制功能[3]。 图3 电镜的电子光学部分剖面图

电子显微部分思考题及答案

电子显微部分思考题-2011 *1. 什么是分辨率?提高显微镜分辨的途径有哪些? 分辨本领又称分辨率,是指显微镜能分辨的样品上两点间的最小距离。 根据瑞利公式:Δr=(0.61λ)/(N·sinα) 其中:Δr:最小可分辨距离; λ:光源的波长; N:介质的折射率; α:孔径半角,即透镜对物点的张角的一半; Nsinα:称为数值孔径,常用N.A表示。 提高分辩率,即减小Δr值的途径有: (1)增大N.A(物镜的数值孔径) ,即增大N和α; (2)减小λ。 *2. 什么是像差?解释其成因。 像差有分为几何像差和色差,几何像差又包括球差和像散。 球差是由于电子波经过透镜成像时,离开透镜主轴较远的电子(远轴电子)比主轴附近的电子(近轴电子)被折射程度要大。当物点P通过透镜成像时,电子就不会会聚到同一焦点上,从而形成了一个散焦斑。 像散是由于透镜磁场几何形状上的缺陷而造成的。像散是由透镜磁场的旋转对称性被破坏而引起的。透镜磁场不对称,可能是由于磁透镜极靴被污染、光镧被污染,或极靴加工的机械不对称性,或极靴材料各向磁导率差异引起(由制造精度引起)。 色差是由于电子波的波长(或能量)发生一定幅度的波动而造成的。引起电子束能量变化的主要有两个原因:一是电子的加速电压不稳定;二是电子束照射到试样时,和试样相互作用,一部分电子发生非弹性散射,致使电子的能量发生变化。 *3. 电磁透镜与光学透镜有何显著不同?解释电磁透镜的聚焦原理。 运动的电子在磁场中会受磁场力的作用产生偏折,从而达到会聚和发散。通电短线圈产生对称不均匀磁场,可以使电子束聚焦,因此通电短线圈制成的可使电子束聚焦成像的装置叫电磁透镜。改变激磁电流,电磁透镜的焦距将发生相应变化。因此,电磁透镜是一种变焦距或变倍率的会聚透镜,这正是它有别于光学透镜的一大特点。 沿电磁透镜轴线方向的电子通过电磁透镜时运动状态不发生改变;与轴线平行但不在轴线上的的电子通过电磁透镜时,将受到与初始运动方向垂直的切向力和指向轴向的向轴力作用,绕轴作螺旋运动并将最终聚焦于一点。

扫描电镜及其在储层研究中的应用分析

扫描电镜测试技术原理及其在储层研究中的应用 1、扫描电镜的结构和工作原理 扫描电镜的主要构成分为四部分:镜筒、电子信号的显示与记录系统、电子信号的收集与处理系统、真空系统及电源系统(图1)。以下是各部分的简介和工作原理。 1.1扫描电镜结构 1.1.1镜筒 镜筒包括电子枪、聚光镜、物镜及扫描系统,其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面进行扫描,同时激发出各种信号。 1.1.2电子信号的收集与处理系统 在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、X射线、吸收电子、俄歇(Auger)电子等。在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几nm 至几十nm 的区域,其产生率主要取决于样品的形貌和成份。通常所说的扫描电镜图像指的就是二次电子像,它是研究样品表面形貌的最有用的电子信号。检测二次电子的检测器的探头是一个闪烁体,当电子打到闪烁体上时,就在其中产生光,这种光被光导管传送到光电倍增管,光信号即被转变成电流信号,再经前置放大及视频放大,将电流信号转变成电压信号,最后被送到显像管的栅极。 1.1.3电子信号的显示与记录系统 扫描电镜的图像显示在阴极射线管(显像管)上,并由照相机拍照记录。显像管有两个,一个用来观察,分辨率较低,是长余辉的管子;另一个用来照相记录,分辨率较高,是短余辉的管子。 1.1.4真空系统及电源系统 扫描电镜的真空系统由机械泵和油扩散泵组成,其作用是使镜筒内达到10 托的真空度。电源系统则供给各部件所需的特定电源。

图1 扫描电镜结构图 1.2扫描电镜的基本原理 扫描电镜的电子枪发射出电子束,电子在电场的作用下加速,经过两次电磁透镜的作用后在样品表而聚焦成极细的电子束。该细小的电子束在末透镜的上方的双偏转线圈作用下在样品表而进行扫描,被加速的电子与样品相互作用,激发出各种信号,如二次电子,背散射电子,吸收电子、X射线、俄歇电子、阴极发光等。这些信号被按顺序、成比例的交换成视频信号、检测放大处理成像,从而在荧光屏上观察到样品表而的各种特征图像。 2、扫描电镜在矿物岩石学领域的应用 2.1矿物研究 不同矿物在扫描电镜中会呈现出其特征的形貌,这是在扫描电镜中鉴定矿物的重要依据。如高岭石在扫描电镜中常呈假六方片状、假六方板状、假六方似板状;埃洛石常呈管状、长管状、圆球状;蒙脱石为卷曲的薄片状;绿泥石单晶呈六角板状,集合体呈叶片状堆积或定向排列等。王宗霞等在扫描电镜下观察了硅藻上的形貌,硅藻上多呈圆盘状、板状,根据这一特征即可将它鉴定出来。 矿物特征及残余结构可以推断其成岩环境和搬运演化历史,扫描电镜可对矿 物的结构和成分进行分析,为推断矿物的成岩环境和搬运演化历史提供基础资

科学六年级下册作业本参考答案

科学六年级下册作业本参考答案 六年级下册 郑重说明: 由浙江教育出版社出版的教科版小学科学作业本,一直是科学老师进行教学的得力助手,能有效记录和评价学生学习情况.近几年,由于该作业本数次修订,之前由科学老师志愿者编写的作业本参考答案已不便继续使用,许多地方都出现题目和答案不一致的现象.为此,我们重新招募科学老师编写2018年下册科学配套作业本参考答案,在此罗列志愿者名单,并表示衷心地感谢. 三下:姚力军(小兔子)、张淑飞(灰灰恢) 四下:陈晓吉、孙小宝(叨叨客)、曹建清(清心) 五下:陈亚飞(海阔天空)、吴凤(happy小豌豆)、朱建英(小七) 六下:许剑珍(葫芦)、李雪颖(捕风)、刘竹英(代玳) 统稿:陈建秋(不睡觉的兔) 本册作业本参考答案由许剑珍(葫芦)、李雪颖(捕风)、刘竹英(代玳)负责提供,若有异议可联系相关老师交流,也可以到小学科学教学论坛发贴讨论.论坛地址: 本册参考答案目录: 六下第一单元,2—13面,许剑珍(葫芦)编写,14—17面,李雪颖(捕风)编写 六下第二单元,18—26面,许剑珍(葫芦)编写 六下第三单元,27—31面,李雪颖(捕风)编写,32—36面,刘竹英(代玳)编写六下第四单元,37—42面,刘竹英(代玳)编写 六下综合练习:43面,刘竹英(代玳)编写 微小世界

1、放大镜 2、用肉眼和放大镜观察物体的特点,并填表(可用文字描述或用图表 示). 物体名称 肉眼观察的发现 放大镜下的新发现 报纸 字的笔划很清晰, 纸面呈灰色,有颗粒感 字的笔划是由放多黑色小点组成,纸面灰面,凹凸不平,撕开的口子能看到清晰的毛边. 布料 能清楚的看到交错的线,表面有细毛. 横竖交错的线很清晰,能清楚的看到表面卷曲 的细毛. 3、选择题. (1)( C )发明了眼镜. A 、格罗斯泰斯特 B 、牛顿 C 、培根 D 、伽利略 (2)下列透明玻璃片具有放大作用的是( C D ). 观察微小零件 查看胚芽 拆除危险物品 考古学家 研究文物 学生 探险家 部队指挥官 查看微缩地图 观察小动物 聚光取火

电子显微作业

透射电子显微镜和扫描电子显微镜分析 摘要:透射电子显微镜(Transmission Electron Microscope,简称TEM),可以看到在光学显微镜下无法看清的小于0.2nm的细微结构,要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska发明了以电子束为光源的透射电子显微镜,电子束的波长要比可见光和紫外光短得多,目前TEM的分辨力可达0.2nm。扫描电子显微镜(Scanning Electron Microscope,简称SEM),是依据电子与物质的相互作用。利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。 关键词:透射电子显微镜;扫描电子显微镜;实例分析。 第一章透射电子显微镜 透射电子显微镜是利用电子的波动性来观察固体材料内部的各种缺陷和直接观察原子结构的仪器,同时提供物理分析和化学分析所需要全部功能的仪器。特别是选区电子衍射技术的应用,使得微区形貌与微区晶体结构分析结合起来,再配以能谱或波谱进行微区成份分析,得到全面的信息。 实验中所用到的是Tecnai G2 F30—透射电子显微镜。它的主要性能指标为:(1)主机:点分辨率0.205nm,先分辨率0.102nm,信息分辨率0.14nm,加速 (2)附件:CCD数字成像系统,像素2048x2048,电压最高300KV最低小于等于50KV; 高角环形暗场探测器,STEM模式分辨率0.17nm,X射线能谱仪—能量分辨率136eV,分析元素范围B—U,电子能量损失谱仪—能量分辨率0.7eV,分析元素范围H—U。 §1.1透射电子显微镜的结构和成像原理 透射电子显微镜由照明系统、成像系统、真空系统、记录系统、电源系统五部分构成,如果细分的话,主体部分是电子透镜和显像记录系统,由置于真空中的电子枪、聚光镜、物样室、物镜、衍射镜、中间镜、投影镜、荧光屏和照相机

扫描电镜技术及其在材料科学中的应用

扫描电镜在材料分析中的应用 摘要:随着科学技术的发展进步,人们不断需要从更高的微观层次观察、认识周围的物质世界。细胞、微生物等微米尺度的物体直接用肉眼观察不到,显微镜的发明解决了这个问题。目前,纳米科技成为研究热点,集成电路工艺加工的特征尺度进入深亚微米,所有这些更加微小的物体光学显微镜也观察不到,必须使用电子显微镜。电子显微镜可分为扫描电了显微镜简称扫描电镜(SEM)和透射电子显微镜简称透射电镜(TEM)两大类。本文主要介绍扫描电子显微镜工作原理、结构特点及其发展,阐述了扫描电子显微镜在材料科学领域中的应用。 关键词:电子显微镜;扫描电镜;材料;应用 引言: 自从1965年第一台商品扫描电镜问世以来,经过40多年的不断改进,扫描电镜的分辨率从第一台的25nm提高到现在的0.01nm,而且大多数扫描电镜都能通X射线波谱仪、X射线能谱仪等组合,成为一种对表面微观世界能过经行全面分析的多功能电子显微仪器。扫描电镜已成为各种科学领域和工业部门广泛应用的有力工具。从地学、生物学、医学、冶金、机械加工、材料、半导体制造、陶瓷品的检验等均大量应用扫描电镜作为研究手段。 在材料领域中,扫描电镜技术发挥着极其重要的作用,被广泛应用于各种材料的形态结构、界面状况、损伤机制及材料性能预测等方面的研究。利用扫描电镜可以直接研究晶体缺陷及其生产过程,可以观察金属材料内部原子的集结方式和它们的真实边界,也可以观察在不同条件下边界移动的方式,还可以检查晶体在表面机械加工中引起的损伤和辐射损伤等。 1.扫描电镜的原理 扫描电镜(Scanning Electron Microscope),简写为SEM,是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。 扫描电镜的基本工作过程如图1,用电子束在样品表面扫描,同时,阴极射线管内的电子束与样品表面的电子束同步扫描,将电子束在样品上激发的各种信号用探测器接收,并用它来调制显像管中扫描电子束的强度,在阴极射线管的屏幕上就得到了相应衬度的扫描电子显微像。电子束在样品表面扫描,与样品发生各种不同的相互作用,产生不同信号,获得的相应的显微像的意义也不一样。入射电子与试样相互作用产生图2所示的信息种类[1-4]。 这些信息的二维强度分布随试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等),是将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图如果将探测器接收到的信号进行数字化处理即转变成数字

思考题解答

复 习 的 重 点 及 思 考 题 第一章 X 射线的性质 X 射线产生的基本原理。 ● X 射线的本质―――电磁波 、 高能粒子 、 物质 ● X 射线谱――管电压、电流对谱的影响、短波限的意义等 ● 高能电子与物质相互作用可产生哪两种X 射线?产生的机理? 连续X 射线:当高速运动的电子(带电粒子)与原子核内电场作用而减速时会产生电磁辐射,这种辐射所产生的X 射线波长是连续的,故称之为~ 特征(标识)X 射线:由原子内层电子跃迁所产生的X 射线叫做特征X 射线。 X 射线与物质的相互作用 ● 两类散射的性质 ● 吸收与吸收系数意义及基本计算 ● 二次特征辐射(X 射线荧光)、饿歇效应产生的机理与条件 二次特征辐射(X 射线荧光):由X 射线所激发出的二次特征X 射线叫X 射线荧光。 俄歇电子:俄歇电子的产生过程是当原子内层的一个电子被电离后,处于激发态的电 子将产生跃迁,多余的能量以无辐射的形式传给另一层的电子,并将它激发出来。这种效应称为俄歇效应。 ● 选靶的意义与作用 第二章 X 射线的方向 晶体几何学基础 ● 晶体的定义、空间点阵的构建、七大晶系尤其是立方晶系的点阵几种类型 在自然界中,其结构有一定的规律性的物质通常称之为晶体 ● 晶向指数、晶面指数(密勒指数)定义、表示方法,在空间点阵中的互对应 ● 晶带、晶带轴、晶带定律,立方晶系的晶面间距表达式 ● 倒易点阵定义、倒易矢量的性质 ● 厄瓦尔德作图法及其表述,它与布拉格方程的等同性证明 (a) 以λ1= 为半径作一球; (b) 将球心置于衍射晶面与入射线的交点。 (c) 初基入射矢量由球心指向倒易阵点的原点。 (d) 落在球面上的倒易点即是可能产生反射的晶面。 (e) 由球心到该倒易点的矢量即为衍射矢量。 布拉格方程 ● 布拉格方程的导出、各项参数的意义,作为产生衍射的必要条件的含义。 布拉格方程只是确定了衍射的方向,在复杂点阵晶脆中不同位置原子的相同方向衍 射线,因彼此间有确定的位相关系而相互干涉,使得某些晶面的布拉格反射消失即 出现结构消光,因此产生衍射的充要条件是满足布拉格方程的同时结构因子不为零 ● 干涉指数引入的意义,与晶面指数(密勒指数)的关系 干涉指数 HKL 与 Miller 指数 hkl 之间的关系有 : H= nh , K = nk , L = nl 不同点:(1)密勒指数是实际晶面 的指数,而干涉晶面指数不一定;

材料微观分析作业题答案(二)

第一章 1、电子波有何特征与可见光有何异同 答: ·电子波特征:电子波属于物质波。电子波的波长取决于电子运动的速度和质量, = h mv 若电子速度较低,则它的质量和静止质量相似;若电子速度具有极高,则 必须经过相对论校正。 ·电子波和光波异同: 不同:不能通过玻璃透镜会聚成像。但是轴对称的非均匀电场和磁场则可以让电子束折射,从而产生电子束的会聚与发散,达到成像的目的。电子波的波长较短,其波长取决于电子运动的速度和质量,电子波的波长要比可见光小5个数量级。另外,可见光为电磁波。 相同:电子波与可见光都具有波粒二象性。 补充:光学显微镜的分辨本领取决于照明光源的波长。 2、分析电磁透镜对电子波的聚焦原理,说明电磁透镜的结构对聚焦能力的影响。 聚焦原理:电子在磁场中运动,当电子运动方向与磁感应强度方向不平行时,将产生一个与运动方向垂直的力(洛仑兹力)使电子运动方向发生偏转。在一个电磁线圈中,当电子沿线圈轴线运 动时,电子运动方向与磁感应强度 方向一致,电子不受力,以直线运 动通过线圈;当电子运动偏离轴线 时,电子受磁场力的作用,运动方 向发生偏转,最后会聚在轴线上的 一点。电子运动的轨迹是一个圆锥 螺旋曲线。 右图短线圈磁场中的电子运动显示 了电磁透镜聚焦成像的基本原理: 结构的影响: 1)增加极靴后的磁线圈内的磁场强度可以有效地集中在狭缝周围几毫米的范围内; 2)电磁透镜中为了增强磁感应强度,通常将线圈置于一个由软磁材料(纯铁或低碳钢)制成的具有内环形间隙的壳子里,此时线圈的磁力线都集中在壳内,磁感应强度得以加强。狭缝的间隙越小,磁场强度越强,对电子的折射能力越大。 3)改变激磁电流可以方便地改变电磁透镜的焦距 3、电磁透镜的像差是怎样产生的,如何消除和减少像差 像差有几何像差(球差、像散等)和色差 球差是由于电磁透镜的中心区域和边沿区域对电子的会聚能力不同而造成的;为了减少 由于球差的存在而引起的散焦斑,可以通过减小球差系数和缩小成像时的孔径半角来实现 像散是由透镜磁场的非旋转对称而引起的;透镜磁场不对称,可能是由于极靴内孔不圆、上下极靴的轴线错位、制作极靴的材料材质不均匀以及极靴孔周围局部污染等原因导致的。像散可通过引入一个强度和方向都可以调节的矫正电磁消像

扫描电镜在材料表面形貌观察及成分分析中的应用

扫描电镜在材料表面形貌观察及成分分析中的应用 一、实验目的 1)了解扫描电镜的基本结构和工作原理,掌握扫描电镜的功能和用途; 2)了解能谱仪的基本结构、原理和用途; 3)了解扫描电镜对样品的要求以及如何制备样品。 二、实验原理 (一)扫描电镜的工作原理和结构 1. 扫描电镜的工作原理 扫描电镜是对样品表面形态进行测试的一种大型仪器。当具有一定能量的入射电子束轰击样品表面时,电子与元素的原子核及外层电子发生单次或多次弹性与非弹性碰撞,一些电子被反射出样品表面,而其余的电子则渗入样品中,逐渐失去其动能,最后停止运动,并被样品吸收。在此过程中有99%以上的入射电子能量转变成样品热能,而其余约1%的入射电子能量从样品中激发出各种信号。如图1所示,这些信号主要包括二次电子、背散射电子、吸收电子、透射电子、俄歇电子、电子电动势、阴极发光、X射线等。扫描电镜设备就是通过这些信号得到讯息,从而对样品进行分析的。 图1 入射电子束轰击样品产生的信息示意图

从结构上看,扫描电镜主要由七大系统组成,即电子光学系统、探测、信号处理、显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。 由图2我们可以看出,从灯丝发射出来的热电子,受2-30KV电压加速,经两个聚光镜和一个物镜聚焦后,形成一个具有一定能量,强度和斑点直径的入射电子束,在扫描线圈产生的磁场作用下,入射电子束按一定时间、空间顺序做光栅式扫描。由于入射电子与样品之间的相互作用,从样品中激发出的二次电子通过收集极的收集,可将向各个方向发射的二次电子收集起来。这些二次电子经加速并射到闪烁体上,使二次电子信息转变成光信号,经过光导管进入光电倍增管,使光信号再转变成电信号。这个电信号又经视频放大器放大,并将其输入到显像管的栅极中,调制荧光屏的亮度,在荧光屏上就会出现与试样上一一对应的相同图像。入射电子束在样品表面上扫描时,因二次电子发射量随样品表面起伏程度(形貌)变化而变化。 故视频放大器放大的二次电子信号是一个交流信号,用这个交流信号调制显像管栅极电,其结果在显像管荧光屏上呈现的是一幅亮暗程度不同的,并反映样品表面起伏程度(形貌)的二次电子像。应该特别指出的是:入射电子束在样品表面上扫描和在荧光屏上的扫描必须是“同步”,即必须用同一个扫描发生器来控制,这样就能保证样品上任一“物点”样品A点,在显像管荧光屏上的电子束恰好在A’点即“物点”A与“像点” A’在时间上和空间上一一对应。通常称“像点”A’为图像单元。显然,一幅图像是由很多图像单元构成的。 扫描电镜除能检测二次电子图像以外,还能检测背散射电子、透射电子、特征x射线、阴极发光等信号图像。其成像原理与二次电子像相同。 在进行扫描电镜观察前,要对样品作相应的处理。扫描电镜样品制备的主要要求是:尽可能使样品的表面结构保存好,没有变形和污染,样品干燥并且有良好导电性能。

微生物思考题

第一章绪论 1.用具体事例说明人类与微生物的关系。 2.为什么说巴斯德和柯赫是微生物学的奠基人? 3.为什么微生物学比动、植物学起步晚,但却发展非常迅速? 4.简述微生物学在生命科学发展中的地位。 5.试述微生物学的发展前景 1.微生物与人类关系的重要性,可以从它们在给人类带来巨大利益的同时也可能带来极大的危害两方面进行分析。能够例举:面包、奶酪、啤酒、抗生素、疫苗、维生素及酶等重要产品的生产;微生物使得地球上的物质进行循环,是人类生存环境中必不可少的成员;过去瘟疫的流行,现在一些病原体正在全球蔓延,许多已被征服的传染病也有“卷土重来”之势;食品的腐败等等具体事例说明。 2.这是由于巴斯德和柯赫为微生物学的建立和发展做出了卓越的贡献,使微生物学作为一门独立的学科开始形成。巴斯德彻底否定了“自然发生”学说;发现将病原菌减毒可诱发免疫性,首次制成狂犬疫苗,进行预防接种;证实发酵是由微生物引起的;创立巴斯德消毒法等。柯赫对病原细菌的研究做出了突出的成就:证实了炭疽病菌是炭疽病的病原菌,发现了肺结核病的病原菌,提出了证明某种微生物是否为某种疾病病原体的基本原则——柯赫原则,创建了分离、纯化微生物的技术等。 3.其原因从下列几方面分析:微生物具有其他生物不具备的生物学特性;微生物具有其他生物共有的基本生物学特性;微生物个体小、结构简单、生长周期短,易大量培养,易变异,重复性强等优势,十分易于操作。动、植物由于结构的复杂性及技术方法的限制而相对发展缓慢。微生物的广泛的应用性,能迅速地符合现代学科、社会和经济发展的需求。 4.20世纪40年代,随着生物学的发展,许多生物学难以解决的理论和技术问题十分突出,特别是遗传学上的争论问题,使得微生物这样一种简单而又具完整生命活动的小生物成了生物学研究的“明星”。微生物学很快与生物学主流汇合,并被推到了整个生命科学发展的前沿,获得了迅速的发展,为整个生命科学的发展做出了巨大的贡献(可举例说明),在生命科学的发展中占有重要的地位。 5.可从以下几方面论述微生物学的发展前量景:微生物基因组学研究将全面展开;以了解微生物之间、微生物与其他生物、微生物与环境的相互作用为研究内容的微生物生态学、环境微生物学、细胞微生物学等,将在基因组信息的基础上获得长足发展,为人类的生存和健康发挥积极的作用;微生物生命现象的特性和共性将更加受到重视;与其他学科实现更广泛的交叉,获得新的发展;微生物产业将呈现全新的局面。培养物能较好地被研究、利用和重复结果。 第二章微生物的纯培养和显微镜技术 1.一般说来,严格的无菌操作是一切微生物工作的基本要求,但在分离与培养极端嗜盐菌时常在没有点酒精灯的普通实验台上倾倒培养平板、在日常环境中直接打开皿盖观察和挑取菌落,而其研究结果并没有因此受到影响,你知道这是为什么吗? 2.如果希望从环境中分离得到厌氧固氮菌,你该如何设计实验? 3,为什么光学显微镜的目镜通常都是15X?是否可以采用更大放大倍率的目镜(如30x)来进一步提高显微镜的总放大倍数? 4.为什么透射电镜和扫描电镜对样品厚度与大小的要求有如此大的差异?能否用扫描电镜来

材料表征方法思考题答案

第一章XRD 1.X射线的定义、性质、连续X射线和特征X射线的产生、特点。 答:X射线定义:高速运动的粒子与某种物质相撞击后猝然减速,且与该物质中的内层电子相互作用而产生的。性质:看不见;能使气体电离,使照相底片感光,具有很强的穿透能力,还能使物质发出荧光;在磁场和电场中都不发生偏转;当穿过物体时只有部分被散射;能杀伤生物细胞。 连续X射线产生:经典物理学解释——由于极大数量的电子射到阳极上的时间和条件不相同,因而得到的电磁波将具有连续的各种波长,形成连续X射线谱。量子力学解释——大量的电子在到达靶面的时间、条件均不同,而且还有多次碰撞,因而产生不同能量不同强度的光子序列,即形成连续谱。特点:强度随波长连续变化 特征X射线产生:当管电压达到或高于某一临界值时,阴极发出的电子在电场的加速下,可以将物质原子深层的电子击到能量较高的外部壳层或击出原子外,使原子电离。此时的原子处于激发态。处于激发态的原子有自发回到激发态的倾向,此时外层电子将填充内层空位,相应伴随着原子能量降低。原子从高能态变为低能态时,多出的能量以X射线的形式释放出来。因物质一定,原子结构一定,两特定能级间的能级差一定,故辐射出波长一定的特征X射线。特点:仅在特定的波长处有特别强的强度峰。 2.X射线与物质的相互作用 答:X射线与物质的相互作用,如图所示 一束X射线通过物体后,其强度因散射和吸收而被衰减,并且吸收是造成强度衰减的主要原因。 散射分为两部分,即相干散射和不相干散射。当X射线照射到物质的某个晶面时可以产生反射线,当反射线与X射线的频率、位相一致时,在相同反射方向上的各个反射波相互干涉,产生相干散射;当X射线经束缚力不大的电子或自由电子散射后,产生波长比入射X射线波长长的X射线,且波长随着散射方向的不同而改变,这种现象称为不相干散射。其中相干散射是X射线在晶体中产生衍射现象的基础。 物质对X射线的吸收是指X射线通过物质时,光子的能量变成了其它形式的能量,即产生了光电子、俄歇电子和荧光X射线。当X射线入射到物质的内层时,使内层的电子受激发而离开物质的壳层,则该电子就是光电子,与此同时产生内层空位。此时,外层电子将填充到内层空位,相应伴随着原子能量降低,放出的能量就是荧光X射线。当放出的荧光X射线回到外层时,将使外层电子受激发,从而产生俄歇电子而出去。产生光电子和荧光X射线的过程称为光电子效应,产生俄歇电子的过程称为俄歇效应。示意图见下:

材料微观分析作业题答案(二)

第一章 1、电子波有何特征?与可见光有何异同? 答: ·电子波特征:电子波属于物质波。电子波的波长取决于电子运动的速度和质量, = h mv 若电子速度较低,则它的质量和静止质量相似;若电子速度具有极高,则 必须经过相对论校正。 ·电子波和光波异同: 不同:不能通过玻璃透镜会聚成像。但是轴对称的非均匀电场和磁场则可以让电子束折射,从而产生电子束的会聚与发散,达到成像的目的。电子波的波长较短,其波长取决于电子运动的速度和质量,电子波的波长要比可见光小5个数量级。另外,可见光为电磁波。 相同:电子波与可见光都具有波粒二象性。 补充:光学显微镜的分辨本领取决于照明光源的波长。 2、分析电磁透镜对电子波的聚焦原理,说明电磁透镜的结构对聚焦能力的影响。 聚焦原理:电子在磁场中运动,当电子运动方向与磁感应强度方向不平行时,将产生一个与运动方向垂直的力(洛仑兹力)使电子运动方向发生偏转。在一个电磁线圈中,当电子沿线圈轴线运 动时,电子运动方向与磁感应强度 方向一致,电子不受力,以直线运 动通过线圈;当电子运动偏离轴线 时,电子受磁场力的作用,运动方 向发生偏转,最后会聚在轴线上的 一点。电子运动的轨迹是一个圆锥 螺旋曲线。 右图短线圈磁场中的电子运动显 示了电磁透镜聚焦成像的基本原理: 结构的影响: 1)增加极靴后的磁线圈内的磁场强度可以有效地集中在狭缝周围几毫米的范围内; 2)电磁透镜中为了增强磁感应强度,通常将线圈置于一个由软磁材料(纯铁或低碳钢)制成的具有内环形间隙的壳子里,此时线圈的磁力线都集中在壳内,磁感应强度得以加强。狭缝的间隙越小,磁场强度越强,对电子的折射能力越大。 3)改变激磁电流可以方便地改变电磁透镜的焦距 3、电磁透镜的像差是怎样产生的,如何消除和减少像差? 像差有几何像差(球差、像散等)和色差 球差是由于电磁透镜的中心区域和边沿区域对电子的会聚能力不同而造成的; 为了减少 由于球差的存在而引起的散焦斑,可以通过减小球差系数和缩小成像时的孔径半角来实现 像散是由透镜磁场的非旋转对称而引起的;透镜磁场不对称,可能是由于极靴内孔不圆、上下极靴的轴线错位、制作极靴的材料材质不均匀以及极靴孔周围局部污染等原因导致的。像散可通过引入一个强度和方向都可以调节的矫正电磁消像

扫描电镜技术及其在材料科学中的应用

扫描电镜技术及其在材料科学中的应用 摘要:随着科学技术的发展进步,人们不断需要从更高的微观层次观察、认识周围的物质世界。细胞、微生物等微米尺度的物体直接用肉眼观察不到,显微镜的发明解决了这个问题。目前,纳米科技成为研究热点,集成电路工艺加工的特征尺度进入深亚微米,所有这些更加微小的物体光学显微镜也观察不到,必须使用电子显微镜。电子显微镜可分为扫描电了显微镜简称扫描电镜(SEM)和透射电子显微镜简称透射电镜(TEM)两大类。本文主要介绍扫描电子显微镜工作原理、结构特点及其发展,阐述了扫描电子显微镜在材料科学领域中的应用。 关键词:电子显微镜;扫描电镜;材料;应用 二十世纪60年代以来,出现了扫描电子显微镜(SEM)技术,这样使人类观察微小物质的能力发生质的飞跃依靠扫描电子显微镜的高分辨率、良好的景深和简易的操作方法,扫描电子显微镜(SEM)迅速成为一种不可缺少的工具,并且广泛应用于科学研究和工程实践中近年来,随着现代科学技术的不断发展,相继开发了环境扫描电子显微镜(ESEM)、扫描隧道显微镜(SEM)、原子力显微镜(AFM)等其它一些新的电子显微技术这些技术的出现,显示了电子显微技术近年来自身得到了巨大的发展,尤其是大大扩展了电子显微技术的使用范围和应用领域在材料科学中的应用使材料科学研究得到了快速发展,取得了许多新的研究成果[1-3]。 一、扫描电镜的原理 扫描电镜(Scanning Electron Microscope),简写为SEM,是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。 扫描电镜的基本工作过程如图1,用电子束在样品表面扫描,同时,阴极射线管内的电子束与样品表面的电子束同步扫描,将电子束在样品上激发的各种信号用探测器接收,并用它来调制显像管中扫描电子束的强度,在阴极射线管的屏幕上就得到了相应衬度的扫描电子显微像。电子束在样品表面扫描,与样品发生各种不同的相互作用,产生不同信号,获得的相应的显微像的意义也不一样。入射电子与试样相互作用产生图2所示的信息种类[1-4]。 这些信息的二维强度分布随试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等),是将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图如果将探测器接收到的信号进行数字化处理即转变成数字

扫描电镜的基本结构和工作原理

扫描电镜的基本结构和工作原理 扫描电子显微镜利用细聚焦电子束在样品表面逐点扫描,与样品相互作用产行各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。 扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 扫描电镜的基本结构可分为电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统六大部分。这一部分的实验内容可参照教材第十二章,并结合实验室现有的扫描电镜进行,在此不作详细介绍。 三、扫描电镜图像衬度观察 1.样品制备 扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可以直接进行观察。但在有些情况下需对样品进行必要的处理。 1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。 2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。 3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5-10nm 为宜。 2.表面形貌衬度观察 二次电子信号来自于样品表面层5~l0nm,信号的强度对样品微区表面相对于入射束的取向非常敏感,随着样品表面相对于入射束的倾角增大,二次电子的产额增多。因此,二次电子像适合于显示表面形貌衬度。 二次电子像的分辨率较高,一般约在3~6nm。其分辨率的高低主要取决于束斑直径,而实际上真正达到的分辨率与样品本身的性质、制备方法,以及电镜的操作条件如高匝、扫描速度、光强度、工作距离、样品的倾斜角等因素有关,在最理想的状态下,目前可达的最佳分辩率为lnm。 扫描电镜图像表面形貌衬度几乎可以用于显示任何样品表面的超微信息,其应用已渗透到许多科学研究领域,在失效分析、刑事案件侦破、病理诊断等技术部门也得到广泛应用。在材料科学研究领域,表面形貌衬度在断口分析等方面显示有突出的优越性。下面就以断口分析等方面的研究为例说明表面形貌衬度的应用。 利用试样或构件断口的二次电子像所显示的表面形貌特征,可以获得有关裂纹的起源、裂纹扩展的途径以及断裂方式等信息,根据断口的微观形貌特征可以分析裂纹萌生的原因、裂纹的扩展途径以及断裂机制。图实5-1是比较常见的金属断口形貌二次电子像。较典型的

#材料分析技术作业题(含答案)

第一章 1、名词解释: (1)物相:在体系内部物理性质和化学性质完全均匀的一部分称为“相”。在这里,更明白的表述是:成分和结构完全相同的部分才称为同一个相。 (2)K系辐射:处于激发状态的原子有自发回到稳定状态的倾向,此时外层电子将填充内层空位,相应伴随着原子能量的降低。原子从高能态变成低能态时,多出的能量以X射线形式辐射出来。当K电子被打出K层时,原子处于K激发状态,此时外层如L、M、N……层的电子将填充K层空位,产生K系辐射。 (3)相干散射:由于散射线和入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件 (4)非相干散射:X射线经束缚力不大的电子(如轻原子中的电子)或自由电子散射后,可以得到波长比入射X射线长的X射线,且波长随散射方向不同而改变。 (5)荧光辐射:处于激发态的原子,要通过电子跃迁向较低的能态转化,同时辐射出被照物质的特征X射线,这种由入射X射线激发出的特征X射线称为二次特征X射线即荧光辐射。 (6)吸收限:激发K系光电效应时,入射光子的能量必须等于或大于将K电子从K层移至无穷远时所作的功WK,即将激发限波长λK和激发电压VK联系起来。从X射线被物质吸收的角度,则称λK为吸收限。 (7)★俄歇效应:原子中K层的一个电子被打出后,它就处于K激发状态,其能量为EK。如果一个L层电子来填充这个空位,K电离就变成L电离,其能量由EK变成EL,此时将释放EK-EL的能量。释放出的能量,可能产生荧光X 射线,也可能给予L层的电子,使其脱离原子产生二次电离。即K层的一个空位被L层的两个空位所代替,这种现象称俄歇效应. 2、特征X射线谱和连续谱的发射机制之主要区别? 特征X射线谱是高能级电子回跳到低能级时多余能量转换成电磁波。 连续谱:高速运动的粒子能量转换成电磁波。 3、计算0.071nm(MoKα)和0.154nm(CuKα)的X射线的振动频率和能量 4、x射线实验室用防护铅屏,若其厚度为1mm,试计算其对Cukα、Mokα辐射的透射因子(I透射/I入射)各为多少? 第二章 1.名词解释: 晶面指数:用于表示一组晶面的方向,量出待定晶体在三个晶轴的截距并用点阵周期a,b,c度量它们,取三个截距的倒数,把它们简化为最简的整数h,k,l,就构成了该晶面的晶面指数。 晶向指数:表示某一晶向(线)的方向。 干涉面:为了简化布拉格公式而引入的反射面称为干涉面。 2下面是某立方晶系物质的几个晶面,试将它们的面间距从大到小按次序重新排列:(123),(100),(200),(311),(121),(111),(210),(220),(130),(030),(221),(110)。 排序后: (100)(110)(111)(200)(210)(121)(220)(221)(030)(130)(311)(123)3当波长为λ的x射线照射到晶体并出现衍射线时,相邻两个(hkl)反射线的波程差是多少?相邻两个(hkl)反射线的波程差又上多少? 相邻两个(hkl)晶面的波程差为nλ,相邻两个(HKL)晶面的波程差为λ。 4原子散射因数的物理意义是什么?某元素的原子散射因数和其原子序数有何关系? 原子散射因数f是以一个电子散射波的振幅为度量单位的一个原子散射波的振幅。它表示一个原子在某一方向上散射波的振幅是一个电子在相同条件下散射波振幅的f倍。它反应了原子将X射线向某一方向散射时的散射效率。 关系:z越大,f越大。因此,重原子对X射线散射的能力比轻原子要强。 第三章 5、衍射仪测量在入射光束、试样形状、试样吸收以及衍射线记录等方面和德拜法有何不同? 入射X射线的光束:都为单色的特征X射线,都有光栏调节光束。 不同:衍射仪法:采用一定发散度的入射线,且聚焦半径随2?变化。 德拜法:通过进光管限制入射线的发散度。 试样形状:衍射仪法为平板状,德拜法为细圆柱状。 试样吸收:衍射仪法吸收时间短,德拜法时间长。 记录方式:衍射仪法采用计数率仪作图,德拜法采用环带形底片成相,而且它们的强度(I)对(2?)的分布曲线也不同。 2.用直径5.73cm的德拜相机能使Cukα双重线分离开的最小角是多少?(衍射线宽为0.03cm,分离开即是要使双重线间隔达到线宽的两倍)。 3.试述x射线衍射物相分析步骤?及其鉴定时应注意问题? 步骤:(1)计算或查找出衍射图谱上每根峰的d值和i值 (2)利用i值最大的三根强线的对应d值查找索引,找出基本符合的物相名称及卡片号。 (3)将实测的d、i值和卡片上的数据一一对照,若基本符合,就可以定为该物相。 注意问题:(1)d的数据比i/i0数据重要(2)低角度线的数据比高角度线的数据重要(3)强线比弱线重要,特别要重视d值大的强线(4)应重视特征线(5)应尽可能地先利用其他分析、鉴定手段,初步确定出样品可能是什么物相,将它局限于一定的范围内。 第四章 4、电子束入射固体样品表面会激发哪些信号?它们有哪些特点和用途? 1)背散射电子:能量高;来自样品表面几百nm深度范围;其产额随原子序数增大而增多.用作形貌分析、成分分析以及结构分析。 2)二次电子:能量较低;来自表层5—10nm深度范围;对样品表面化状态十分敏感。 不能进行成分分析.主要用于分析样品表面形貌。 3)吸收电子:其衬度恰好和SE或BE信号调制图像衬度相反。和背散射电子的衬度互补。 吸收电子能产生原子序数衬度,即可用来进行定性的微区成分分析.

实验十六 扫描电镜对材料组织的分析

实验十六扫描电镜对材料组织的分析(验证性) 一、试验目的 1.了解扫描电子显微镜结构原理,以及在金相分析中的应用。 2.掌握马氏体、贝氏体、回火马氏体、回火托氏体、回火索氏体在扫描电子显微镜中的形貌。 二、实验原理 1、扫描电子显微镜的结构 扫描电子显微镜可粗略分为镜体和电源电路系统及冷却系统。如图3-1所示,镜体是由电子光学系统、样品室、检测器以及真空抽气系统组成。电子光学系统包括电子枪、电磁透镜、扫描线圈等。电源电路系统由控制镜体部分的各种电源、信号处理、图象显示和记录系统以及用于全部电气部分的操作面板构成。真空系统由用于低真空抽气的旋转机械泵(RP)和高真空抽气的油扩散泵(DP)或离子泵构成。 2、扫描电子显微镜的工作原理 图3-2是扫描电镜的原理示意图。由最上边电子枪发射出来的电子束,经栅格聚焦后,在加速电压作用下,经过二至三个电磁透镜所组成的电子光学系统,电子束会聚成一个细的电子数聚焦在样品表面。在末级透镜上边装有扫描线圈,在它的作用下使电子束在样品表面扫描。由于高能电子束与样品物质的交互作用,结果产生了各种信息:二次电子、背散射电子、吸收电子、X射线、俄歇电子、阴极荧光和透射电子等。这些信号被相应的接收器接收,经放大后送到显像管的栅极上,调制显像管的亮度。由于经过扫描线圈上的电流是与显像管相应的亮度一一对应,也就是说,电子束打到样品上一点时,在显像管荧光屏上就出现了一个亮点。扫描电镜就是这样采用逐点成像的方法,把样品表面不同的特征,按顺序,成比例地转换为视频信号,完成一帧图像,从而使我们在荧光屏上观察到样品表面的各种特征图像。 图3-1 扫描电子显微镜的结构图图3-2扫描电子显微镜的工作原理图

2018年科学六年级下册作业本参考答案

教科版2018年科学作业本参考答案 六年级下册 郑重说明: 由浙江教育出版社出版的教科版小学科学作业本,一直是科学老师进行教学的得力助手,能有效记录和评价学生学习情况。近几年,由于该作业本数次修订,之前由科学老师志愿者编写的作业本参考答案已不便继续使用,许多地方都出现题目和答案不一致的现象。为此,我们重新招募科学老师编写2018年下册科学配套作业本参考答案,在此罗列志愿者名单,并表示衷心地感谢。 三下:姚力军(小兔子)、张淑飞(灰灰恢) 四下:陈晓吉、孙小宝(叨叨客)、曹建清(清心) 五下:陈亚飞(海阔天空)、吴凤(happy小豌豆)、朱建英(小七) 六下:许剑珍(葫芦)、李雪颖(捕风)、刘竹英(代玳) 统稿:陈建秋(不睡觉的兔) 本册作业本参考答案由许剑珍(葫芦)、李雪颖(捕风)、刘竹英(代玳)负责提供,若有异议可联系相关老师交流,也可以到小学科学教学论坛发贴讨论。论坛地址:本册参考答案目录: 六下第一单元,2—13面,许剑珍(葫芦)编写,14—17面,李雪颖(捕风)编写 六下第二单元,18—26面,许剑珍(葫芦)编写 六下第三单元,27—31面,李雪颖(捕风)编写,32—36面,刘竹英(代玳)编写 六下第四单元,37—42面,刘竹英(代玳)编写 六下综合练习:43面,刘竹英(代玳)编写 微小世界 1、放大镜

2、用肉眼和放大镜观察物体的特点,并填表(可用文字描 述或用图表示)。 (1)( C )发明了眼镜。 A 、格罗斯泰斯特 B 、牛顿 C 、培根 D 、伽利略 (2)下列透明玻璃片具有放大作用的是( C D )。

2、放大镜下的昆虫世界 1、用放大镜观察昆虫的身体构造并画下来。 2、选择题 (1)在放大镜下观察,可以看到蝇的复眼是由许多小眼组成的,每只小眼都呈(D)

相关文档