文档库 最新最全的文档下载
当前位置:文档库 › 方阻

方阻

方阻
方阻

方阻

定义:在一长为l,宽w,高d(即为膜厚),R=ρ*L/S(电阻定义式),此时L=l,S=w*d,故

R=ρ*l/(w*d)=(ρ/d)*(l/w).令l=w于是定义了方块电阻R=ρ/d。

方阻测试仪

蒸发铝膜、导电漆膜、印制电路板铜箔膜等薄膜状导电材料,衡量它们厚度的最好方法就是测试它们的方阻。什么是方阻呢?方阻就是方块电阻,指一个正方形的薄膜导电材料边到边“之”间的电阻,如图一所示,即B边到C边的电阻值。方块电阻有一个特性,即任意大小的正方形边到边的电阻都是一样的,不管边长是1米还是0.1米,它们的方阻都是一样,这样方阻仅与导电膜的厚度等因素有关

[1]。

方块电阻指一个正方形的薄膜导电材料边到边“之”间的电阻。方块电阻有一个特性,即任意大小的正方形边到边的电阻都是一样的,不管边长是1米还是0.1米,它们的方阻都是一样,这样方阻仅与导电膜的厚度等因素有关。

方块电阻计算公式:R=ρL/S

ρ为物质的电阻率,单位为欧姆米(Ω. m)

L为长度,单位为米(m)

S为截面积,单位为平方米(m2)

方块电阻如何测试呢,可不可以用万用表电阻档直接测试图一所示的材料呢?不可以的,因万用表的表笔只能测试点到点之间的电阻,而这个点到点之间的电阻不表示任何意义。如要测试方阻,首先我们需要在A边和B边各压上一个电阻比导电膜电阻小得多的圆铜棒,而且这个圆铜棒光洁度要高,以便和导电膜接触良好。这样我们就可以通过用万用表测试两铜棒之间的电阻来测出导电薄膜材料的方阻。

如果方阻值比较小,如在几个欧姆以下,因为存在接触电阻以及万用表本身性能等因素,用万用表测试就会存在读数不稳和测不准的情况。这时就需要用专门的用四端测试的低电阻测试仪器,如毫欧计、微欧仪等。测试方法如下:用四根光洁的圆铜棒压在导电薄膜上,如图二所示。四根铜棒用A、B、C、D表示,它们上面焊有导线接到毫欧计上,我们使BC之间的距离L等于导电薄膜的宽度W,至于AB、CD之间的距离没有要求,一般在10--20mm就可以了,接通毫欧计以后,毫欧计显示的阻值就是材料的方阻值。这种测试方法的优点是:(1)用这种方法毫欧计可以测试到几百毫欧,几十毫欧,甚至更小的方阻值,(2)由于采用四端测试,铜棒和导电膜之间的接触电阻,铜棒到仪器的引线电阻,即使比被测电阻大也不会影响测试精度。(3)测试精度高。由于毫欧计等仪器的精度很高,方阻的测试精度主要由膜宽W和导电棒BC之间的距离L的机械精度决定,由于尺寸比较大,这个机械精度可以做得比较高。在实际操作时,为了提高测试精度和为了测试长条状材料,W和L不一定相等,可以使L比W大很多,此时方阻Rs=Rx*W/L,Rx为毫欧计读数。

此方法虽然精度比较高,但比较麻烦,尤其在导电薄膜材料比较大,形状不整齐时,很难测试,这时就需要用专用的四探针探头来测试材料的方阻,如图三所示。

探头由四根探针阻成,要求四根探针头部的距离相等。四根探针由四根引联接到方阻测试仪上,当探头压在导电薄膜材料上面时,方阻计就能立即显示出材料的方阻值,具体原理是外端的两根探针产生电流场,内端上两根探针测试电流场在这两个探点上形成的电势。因为方阻越大,产生的电势也越大,因此就可以测出材料的方阻值。需要提出的是虽然都是四端测试,但原理上与图二所示用铜棒测方阻的方法不同。因电流场中仅少部分电流在BC点上产生电压(电势)。所示灵敏度要低得多,比值为1:4.53。

影响探头法测试方阻精度的因素:

(1)要求探头边缘到材料边缘的距离大大于探针间距,一般要求10倍以上。

(2)要求探针头之间的距离相等,否则就要产生等比例测试误差。

(3)理论上讲探针头与导电薄膜接触的点越小越好。但实际应用时,因针状电极容易破坏被测试的导电薄膜材料,所以一般采用圆形探针头。

最后谈谈实际应用中存在的问题

1、如果被测导电薄膜材料表面上不干净,存在油污或材料暴露在空气中时间过长,形成氧化层,会影响测试稳定性和测试精度。在测试中需要引起注意。

2、如探头的探针存在油污等也会引起测试不稳,此时可以把探头在干净的白纸上滑动几下擦一擦可以了。

3、如果材料是蒸发铝膜等,蒸发的厚度又太薄的话,形成的铝膜不能均匀的连成一片,而是形成点状分布,此时方块电阻值会大大增加,与通过称重法计算的厚度和方阻值不一样,因此,此时就要考虑到加入修正系数。

方阻是表示导电油墨性能的重要数据,其计算公式为方阻=电阻R×线宽W÷线长L。其中R为电阻,W为线宽,L为线长。(标准厚度为干膜25.4μm)。

为了便于大家理解,给大家举个简单的例子。例如:线宽(W)2mm÷线长(L)4mm×阻值(R)600?=方阻300?/□

印碳油是指采用丝网印刷技术,在PCB板指定之位置印上碳油,经烤箱固化测试OK后形成合

格的具有一定阻值的碳膜代替原有的电阻元件。制作与字符丝印差不多,区别仅是碳油具有良好的导电性能,而字符为半导体材料,仅起到标识和隔焊的作用。编辑本段生产能力

1、碳油间隙:正因为碳油具有良好的导电性能,所以成品板上的碳油需有一定的间隙方可保证不短路,通常要求成品最小有8mil间隙(HOZ底铜)、12mil间隙(1-3OZ底铜),若生产菲林可以加大间隙,则尽量增加成品间隙以确保不短路。

2、碳油最小对位公差:+/-6mil

3、碳油窗大小及与铜PATTERN间隙:考虑对位公差及渗油等因素,碳油比铜PAD 单边需大6mil(HOZ底铜)、8mil(1-3OZ底铜),方可保证不露铜。相应地,碳油窗距离周边铜PATTERN也需有6mil(HOZ底铜)、8mil(1-3OZ底铜)的间隙,才能避免碳油覆盖周边的铜PATTERN,从而避免短路。

4、碳油厚度:一次丝印碳油厚度:0.3-1.0mil,一次丝印碳油厚度公差:+/-0.3mil;若要求碳油厚度为1.0mil以上,则需二次返印碳油,二次返印碳油厚度:1.0-2.0mil,厚度公差:+/-0.4mil,二次返印碳油菲林比第一次丝印碳油菲林单边小3mil,故MI上需写两套工具。

5、碳油板拼版注意事项:

1)生产尺寸尽量设计小于等于16”X18”;若受板材利用率等因素的影响,生产尺寸大于16”X18”,则需在白字后工序(碳油前)切板,注意在MI的LOT-CARD上备注,并注意设计切板线。

2)设计生产拼图时,尽量考虑使碳油方向一致性,以方便生产管控。编辑本段型号、阻值

1、无阻值要求时,通常选用雄震TU-30SK;

2、有阻值要求时,则选用欧克曼OAKMEN碳油OAK-1610(尽量使用TU30-SK)。

3、阻值计算公式:碳油阻值R=ρL/WT X 1.2

ρ:碳油方阻L:碳油长度W:碳油宽度T:碳油厚度 1.2:系数

注:碳油方阻ρ值越小越好,不同的供应商、不同的碳油型号有不同的碳油方阻ρ,我们使用的TU-30SK的碳油方阻是25-35欧姆;OAK-1610碳油方阻是约10欧姆。编辑

本段注意事项

表面处理为沉银、沉锡的板不可印碳油。

原因:沉银、沉锡表面处理易被氧化,为避免氧化和避免印碳油时擦花表面,必须印完碳油后再过沉银、沉锡工序,当过沉银或沉锡工序时,印碳油区域也会被沉上银或锡。

阻值=系数*(长/宽)*(标准厚度/实际厚度),其中标准厚度为0.015mm,系数为20,长宽单位是mm,例10mm长1mm宽厚为0.015mm的阻值为200Ω。

一般碳油的方阻为20Ω,也就是1mm长1mm宽的阻值为20Ω,10mm长1mm宽的阻值为200Ω,前提是印刷厚度为0.6mil,碳油厂商会提供方阻资料的。

(完整版)纯电动汽车动力性计算公式

XXEV 动力性计算 1 初定部分参数如下 2 最高行驶车速的计算 最高车速的计算式如下: mph h km i i r n V g 5.43/70295 .61487 .02400377.0.377.00 max ==??? =?= (2-1) 式中: n —电机转速(rpm ); r —车轮滚动半径(m ); g i —变速器速比;取五档,等于1; 0i —差速器速比。 所以,能达到的理论最高车速为70km/h 。 3 最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 00max 2.8)015.0487 .08.9180009 .0295.612400arcsin( ).....arcsin( =-?????=-=f r g m i i T d g tq ηα

所以满载时最大爬坡度为tan( m ax α)*100%=14.4%>14%,满足规定要求。 4 电机功率的选型 纯电动汽车的功率全部由电机来提供,所以电机功率的选择须满足汽车的最高车速、最大爬坡度等动力性能的要求。 4.1 以最高设计车速确定电机额定功率 当汽车以最高车速m ax V 匀速行驶时,电机所需提供的功率(kw )计算式为: max 2 max ).15.21....(36001 V V A C f g m P d n +=η (2-1) 式中: η—整车动力传动系统效率η(包括主减速器和驱动电机及控制器的工作效率),取0.86; m —汽车满载质量,取18000kg ; g —重力加速度,取9.8m/s 2; f —滚动阻力系数,取0.016; d C —空气阻力系数,取0.6; A —电动汽车的迎风面积,取2.550×3.200=8.16m 2(原车宽*车身高); m ax V —最高车速,取70km/h 。 把以上相应的数据代入式(2-1)后,可求得该车以最高车速行驶时,电机所需提供的功率(kw ),即 kw 1005.8970)15.217016.86.0016.08.918000(86.036001).15 .21....(360012 max 2 max <kw V V A C f g m P D n =???+???=+?=η (3-2) 4.2满足以10km/h 的车速驶过14%坡度所需电机的峰值功率 将14%坡度转化为角度:018)14.0(tan ==-α。 车辆在14%坡度上以10km/h 的车速行驶时所需的电机峰值功率计算式为:

二手车交易计算公式(很实用)

汽车的折旧率是很高的。最基本、简便方法是采用重置成本法来计算。即被评估车辆的现在市场价格=重置成本×成新率。 重置成本:购买一辆新的与被评估车辆相同相近的车辆所支付的金额(不含装饰)。 成新率:计算方法以使用年限法比较简单。成新率=1-已使用年限/规定使用年限×100%。计算时时间单位统一为月。汽车的规定使用年限为15年。 举例说明:2002年1月份购买的高尔夫1.6/5VAT舒适型,规定使用年限为15年,即180个月。使用3年后即2005年10月进行估价,那么它的成新率=1-(45个月/180个月)×100%=75%,而高尔夫1.6/5VAT舒适型现在的官方报价为14.5万,即为其重置成本。14.5×75%,即10.875万就是计算出的估价了。 当然,这只是考虑了年限后得出的数据。前面说了,汽车的折旧率非常高,所以,在计算成新率时使用更多的是成新率=1-折旧率,而折旧率就需要通过加权计算以下几项:年限折旧率,里程折旧率,故障折旧率,油耗及排污折旧率的综合数值。所以,我们通常情况下可以在刚才10.985万的基础上再乘75%,然后以此价格作为一个参考,也就8万多。 举此例子。你可以根据上面公式计算喽。

二手车车价格计算法则 发布时间:2009年1月40日访问次数:1220 1.理想状态下的“十年折旧法则”:即以一辆车的 使用年限为10年来计算。前三年每年按价值减少15% 来计算,中间4年(第4、5、6、7年)每年按价值减 少10%来计算,最后三年每年按价值减少5%来计算。 目前评估师在计算二手车价值时一般采用此方法。但是 由于理想状态不是时刻存在的,因此也有弊端。 2.设备残值的“54321法则”:假如一部车有效寿 命30万公里,将其分为5段,每段6万公里,每段价 值依序为新车价的5/15、4/15、3/15、2/15、1/15。 假设新车价10万元,已行驶12万公里,那么该车的 价值大体是:10×(3+2+1)÷15=4万元。例如:某 车买入价为10万,行驶2万公里,那么该车的价格可 计算为(4+3+2+1)×10/15=6.7万 然而这种方法也存在不足:二手车交易中,经常出 现里程表人为调低的情况。 如果怀疑里程表不准,还可以这样估算二手车的行驶里程数:非营运车每年2.5万公里左右;营运车(例如出租车)大概在18万公里/年。

汽车动力性设计计算公式

汽车动力性设计计算公式 动力性计算公式 变速器各档的速度特性: 0 377 .0i i n r u gi e k ai ??= ( km/h ) ......(1) 其中:k r 为车轮滚动半径,m; 由经验公式:?? ? ???-+=)1(20254.0λb d r k (m) d----轮辋直径,in b----轮胎断面宽度,in λ---轮胎变形系数 e n 为发动机转速,r/min ;0i 为后桥主减速速比; gi i 为变速箱各档速比,)...2,1(p i i =,p 为档位数,(以下同)。 各档牵引力 汽车的牵引力: 错误!未指定书签。 t k gi a tq a ti r i i u T u F η???= )()( ( N ) (2) 其中:)(a tq u T 为对应不同转速(或车速)下发动机输出使用扭矩,N ?m ;t η为传动效率。 汽车的空气阻力: 15 .212 a d w u A C F ??= ( N ) (3) 其中:d C 为空气阻力系数,A 为汽车迎风面积,m 2。 汽车的滚动阻力: f G F a f ?= ( N ) (4)

其中:a G =mg 为满载或空载汽车总重(N),f 为滚动阻尼系数 汽车的行驶阻力之和r F : w f r F F F += ( N ) (5) 注:可画出驱动力与行驶阻尼平衡图 各档功率计算 汽车的发动机功率: 9549 )()(e a tq a ei n u T u P ?= (kw ) (6) 其中: )(a ei u P 为第)...2,1(p i i =档对应不同转速(或车速)下发动机的功率。 汽车的阻力功率: t a w f r u F F P η3600)(+= (kw ) (7) 各档动力因子计算 a w a ti a i G F u F u D -= )()( (8) 各档额定车速按下式计算 .377 .0i i n r u i g c e k i c a = (km/h ) (9) 其中:c e n 为发动机的最高转速; )(a i u D 为第)...2,1(p i i =档对应不同转速(或车速)下的动力因子。 对各档在[0,i c a u .]内寻找a u 使得)(a i u D 达到最大,即为各档的最大动力因子m ax .i D 注:可画出各档动力因子随车速变化的曲线 最高车速计算 当汽车的驱动力与行驶阻力平衡时,车速达到最高。 根据最高档驱动力与行驶阻力平衡方程

汽车冷负荷计算方法

1 汽车空调的计算温度选择 按表1 数据作为微型汽车空调系统的计算温度(即车内平均温度)。从上表我们可以看到,微型车的计算温度在环境温度为35℃时定为27℃,而一般轿车在环境温度38℃时定为24℃~27℃ ,一般大中型客车定为27℃ ~28℃ ,可看到微型车车内温差都比它们要高,这其实是综合了多种因 素并经过很多次试验得出的较经 济合理的车内平均温度。因为对 微型车来说,如果计算温度定得 过高了,乘员就会明显感觉制冷 不足;而如果定得过低,势必需 要加大压缩机排量才能满足,这 样功耗必然增加,并影响到整车 的动力性,否则又很可能无法实 现。 2 计算方法 微型车车内与外界热交换示意图 为便于分析,绘制图1 的微型车热交换 示意图。 计算公式 2.2.1计算方法 考虑到汽车空调工作条件都很恶劣,其 热负荷与行车时间、地点、速度、行使 方向、环境状况以及乘员的数量随时发 生变化,以及要求在短时间内降温等特 殊性,按照常规方法来计算制冷量的计 算公式为: Q 0=kQ T =k(Q B + Q G + Q F +Q P + Q A +Q E + Q S )) ⑴ 式中:Q 0———汽车空调设计制冷量,单位为W ; k ———修正系数,可取k=~,这里取k= Q T ———总得热量,单位为W ; Q B ———通过车体围护结构传入的热量,单位为W ; Q G ———通过各玻璃表面以对流方式传入的热量,单位为W ; Q F ———通过各玻璃表面以辐射方式直接传入的热量,单位为W ; Q P ———乘员散发的热量,单位为W ; Q A ———由通风和密封性泄露进入车内的热量,单位为W ; Q E ———发动机室传入的热量,单位为W ; Q S ———车内电器散发的热量,单位为W ; 从公式中我们也可以看出它是通过分别计算各部分得热量求得总需求制冷量的。 3 计算示例 以五菱之光微型客车空调系统的制冷量计算为例,设计条件和工况见表3: (1)整车乘员7 人,各部分参数见下表:

专用汽车设计常用计算公式汇集

第一章专用汽车的总体设计 1总布置参数的确定 专用汽车的外廓尺寸(总长、总宽和总高) 1.1.1长 ①载货汽车w 12m ②半挂汽车列车w 16.5m 1.1.2宽W 2.5m (不含后视镜、侧位灯、示廓灯、转向指示灯、可折卸装饰线条、挠性 挡泥板、折叠式踏板、防滑链以及轮胎与地面接触部分的变形等) 1.1.3高W4m (汽车处于空载状态,顶窗、换气装置等处于关闭状态) 1.1.4车外后视镜单侧外伸量不得超出汽车或挂车最大宽度处250mm 1.1.5汽车的顶窗、换气装置等处于开启状态时不得超出车高300mm 1.2专用汽车的轴距和轮距 1.2.1轴距 轴距是影响专用汽车基本性能的主要尺寸参数。轴距的长短除影响汽车的总长外,还影响汽车的轴荷分配、装载量、装载面积或容积、最小转弯半径、纵向通过半径等,此外,还影响汽车的操纵性和稳定性等。 1.2.2轮距 轮距除影响汽车总宽外,还影响汽车的总重、机动性和横向稳定性。 1.3专用汽车的轴载质量及其分配 专用汽车的轴载质量是根据公路运输车辆的法规限值和轮胎负荷能力确定的。 1.3.1各类专用汽车轴载质量限值(JT701-88《公路工程技术标准》)

1.3.2基本计算公式 A 已知条件 a)底盘整备质量G i b)底盘前轴负荷g i c)底盘后轴负荷Z i d)上装部分质心位置L2 e)上装部分质量G2 f)整车装载质量G3 (含驾驶室乘员) g)装载货物质心位置L3 (水平质心位置) h)轴距 l(h I2) B上装部分轴荷分配计算(力矩方程式) 例图1 1 g2 (前轴负荷)X(I -l i )(例图1)=G2 (上装部分质量)X L2 (质心位置)

专用汽车设计常用计算公式汇集

专用汽车设计常用计算公 式汇集 Prepared on 24 November 2020

第一章专用汽车的总体设计 1 总布置参数的确定 专用汽车的外廓尺寸(总长、总宽和总高) 1.1.1 长 ①载货汽车≤12m ②半挂汽车列车≤16.5m 1.1.2 宽≤ 2.5m(不含后视镜、侧位灯、示廓灯、转向指示灯、可折卸装饰线条、挠性挡 泥板、折叠式踏板、防滑链以及轮胎与地面接触部分的变形等) 1.1.3 高≤4m(汽车处于空载状态,顶窗、换气装置等处于关闭状态) 1.1.4 车外后视镜单侧外伸量不得超出汽车或挂车最大宽度处250mm 1.1.5 汽车的顶窗、换气装置等处于开启状态时不得超出车高300mm 1.2专用汽车的轴距和轮距 1.2.1 轴距 轴距是影响专用汽车基本性能的主要尺寸参数。轴距的长短除影响汽车的总长外,还影响汽车的轴荷分配、装载量、装载面积或容积、最小转弯半径、纵向通过半径等,此外,还影响汽车的操纵性和稳定性等。 1.2.2 轮距 轮距除影响汽车总宽外,还影响汽车的总重、机动性和横向稳定性。 1.3专用汽车的轴载质量及其分配 专用汽车的轴载质量是根据公路运输车辆的法规限值和轮胎负荷能力确定的。 1.3.1 各类专用汽车轴载质量限值(JT701-88《公路工程技术标准》)

1.3.2 基本计算公式 A 已知条件 a ) 底盘整备质量G 1 b ) 底盘前轴负荷g 1 c ) 底盘后轴负荷Z 1 d ) 上装部分质心位置L 2 e ) 上装部分质量G 2 f ) 整车装载质量G 3(含驾驶室乘员) g ) 装载货物质心位置L 3(水平质心位置) h ) 轴距)(21l l l + B 上装部分轴荷分配计算(力矩方程式) g 2(前轴负荷)×(12 1l l +)(例图1)=G 2(上装部分质量)×L 2(质心位置) g 2(前轴负荷)=1222 1)()(l l L G +?上装部分质心位置上装部分质量 则后轴负荷222g G Z -= C 载质量轴荷分配计算 g 3(前轴负荷)×)2 1(1l l +=G 3×L 3(载质量水平质心位置) g 3(载质量前轴负荷)= 1332 1)()(l l L G +?装载货物水平质心位置整车装载质量 例图1

汽车设计计算

3 计算公式 3.1 动力性计算公式 3.1.1 变速器各档的速度特性: ( km/h) (1) 其中:为车轮滚动半径,m; 由经验公式: (m) d----轮辋直径,in b----轮胎断面宽度,in ---轮胎变形系数 为发动机转速,r/min;为后桥主减速速比; 为变速箱各档速比,,为档位数,(以下同)。 3.1.2 各档牵引力 汽车的牵引力: ( N ) (2) 其中:为对应不同转速(或车速)下发动机输出使用扭矩,N?m;为传动效率。 汽车的空气阻力: ( N ) .. (3) 其中:为空气阻力系数,A为汽车迎风面积,m2。 汽车的滚动阻力: ( N ) (4) 其中:=mg 为满载或空载汽车总重(N),为滚动阻尼系数汽车的行驶阻力之和:

( N ) (5) 注:可画出驱动力与行驶阻尼平衡图 3.1.3 各档功率计算 汽车的发动机功率: (kw) ... (6) 其中:为第档对应不同转速(或车速)下发动机的功率。 汽车的阻力功率: (kw) (7) 3.1.4 各档动力因子计算 .... ..(8) 各档额定车速按下式计算 (km/h) ...... (9) 其中:为发动机的最高转速; 为第档对应不同转速(或车速)下的动力因子。 对各档在[0,]内寻找使得达到最大,即为各档的最大动力因子 注:可画出各档动力因子随车速变化的曲线 3.1.5 最高车速计算 当汽车的驱动力与行驶阻力平衡时,车速达到最高。 3.1.5.1 根据最高档驱动力与行驶阻力平衡方程 ,

求解。舍去中的负值或非实数值和超过额定车速的值;若还有剩余的 值,则选择它们中最大的一个为最高车速,否则以最高档额定车速作为最高车速。 额定车速按下式计算 (km/h) (10) 其中:为发动机的最高转速 为最高档传动比 3.1.5.2 附着条件校验 根据驱动形式计算驱动轮的法向反力 驱动形式 4*4全驱: 4*2前驱: 4*2后驱: 其中:为轴距,为满载或空载质心距前轴的距离 若满足下式 其中:——道路附着系数 则表示“超出路面附着能力,达不到计算得出的最高车速值!” 3.1.6 爬坡能力计算 (11) 其中:为第档对应不同转速(或车速)下的爬坡度 3.1.6.1 各档爬坡度在[0,]中对寻优,找到最大值 3.1.6.2 附着条件校验 计算道路附着系数提供的极限爬坡能力 驱动形式 4*4:,计算 4*2 前驱:,计算

专用汽车设计常用计算公式汇集

第一章专用汽车的总体设计 1 总布置参数的确定 1.1 专用汽车的外廓尺寸(总长、总宽和总高) 1.1.1 长 ①载货汽车≤12m ②半挂汽车列车≤16.5m 1.1.2 宽≤ 2.5m(不含后视镜、侧位灯、示廓灯、转向指示灯、可折卸装饰线条、挠 性挡泥板、折叠式踏板、防滑链以及轮胎与地面接触部分的变形等) 1.1.3 高≤4m(汽车处于空载状态,顶窗、换气装置等处于关闭状态) 1.1.4 车外后视镜单侧外伸量不得超出汽车或挂车最大宽度处250mm 1.1.5 汽车的顶窗、换气装置等处于开启状态时不得超出车高300mm 1.2专用汽车的轴距和轮距 1.2.1 轴距 轴距是影响专用汽车基本性能的主要尺寸参数。轴距的长短除影响汽车的总长外,还影响汽车的轴荷分配、装载量、装载面积或容积、最小转弯半径、纵向通过半径等,此外,还影响汽车的操纵性和稳定性等。 1.2.2 轮距 轮距除影响汽车总宽外,还影响汽车的总重、机动性和横向稳定性。 1.3专用汽车的轴载质量及其分配 专用汽车的轴载质量是根据公路运输车辆的法规限值和轮胎负荷能力确定的。 1.3.1 各类专用汽车轴载质量限值(JT701-88《公路工程技术标准》) 1.3.2 基本计算公式 A 已知条件 a)底盘整备质量G 1 b)底盘前轴负荷g 1

c)底盘后轴负荷Z 1 d)上装部分质心位置L 2 e)上装部分质量G 2 f)整车装载质量G 3 (含驾驶室乘员) g)装载货物质心位置L 3 (水平质心位置) h)轴距) ( 2 1 l l l+ B 上装部分轴荷分配计算(力矩方程式) g 2 (前轴负荷)×( 1 2 1 l l+)(例图1)=G2(上装部分质量)×L2(质心位置) g 2 (前轴负荷)= 1 2 2 2 1 ) ( ) ( l l L G + ?上装部分质心位置 上装部分质量 则后轴负荷 2 2 2 g G Z- = C 载质量轴荷分配计算 g 3 (前轴负荷)×) 2 1 ( 1 l l+=G3×L3(载质量水平质心位置) g 3 (载质量前轴负荷)= 1 3 3 2 1 ) ( ) ( l l L G + ?装载货物水平质心位置 整车装载质量 则后轴负 3 3 3 g G Z- = D 空车轴荷分配计算 例图1

汽车的行驶阻力计算

创作编号:BG7531400019813488897SX 创作者: 别如克* 汽车行驶阻力模拟(包括惯量模拟) 一、 汽车在平坦路面行驶阻力的计算: 汽车在平坦路面行驶时受到滚动阻力、空气阻力和加速阻力,如下式所示: j w f F F F F ++= 1.滚动阻力:f G F a f ?= 其中a G 为汽车总重力,从驱G G G a +=,f 为滚动阻力系数,f 为速度的函数,对于轿车,f 的值可用下式计算 f=0.0116+0.000142V 对于货车,f 的值可用下式计算 f=0.0076+0.000056V 2.空气阻力:15 .212 a D w AV C F = 其中,D C 为空气阻力系数 轿车取 0.4-0.6;货车取 0.8-1.0;大客车取 0.6-0.7; Α为汽车迎风面积:H B A ?=1 Β为汽车的前轮距 Η为汽车的高度

a V 为汽车行驶速度 3. 加速阻力:dt dv g G F a j δ = 其中,δ为汽车旋转质量系数,2 2 022 1r i i I G g r I G g T g f a w a ηδ++ =∑ w I 为车轮的转动惯量,Kg.m 2 f I 为发动机飞轮的转动惯量,Kg.m 2 g i 变速器速比 0i 主减速器速比 T η汽车传动系的机械效率 r 为汽车轮胎的滚动半径 二、 测功机所需加的模拟力: 测功机所需加的模拟力有汽车的从动轮所受到的滚动阻力、汽车所受到的空气阻力以及部分加速阻力(除去滚筒和飞轮的惯量所产生的加速阻力和测功机的摩擦阻力),如下式所示: dt dv r I r I g G F AV C f G F c c w a c tr a D PAU )(15.2122 121-++-+?= 其中, a G 汽车总重 g 重力加速度 1G 汽车从动轮上的载苛 c tr F 测功机损耗 1w I 汽车从动轮转动惯量 c I 滚筒和测功器转子的转动惯量 r 汽车车轮滚动半径

汽车的动力性设计计算公式

汽车动力性设计计算公式 3.1 动力性计算公式 3.1.1 变速器各档的速度特性: 377.0i i n r u gi e k ai ??= ( km/h ) (1) 其中:k r 为车轮滚动半径,m; 由经验公式:?? ? ???-+=)1(20254.0λb d r k (m) d----轮辋直径,in b----轮胎断面宽度,in λ---轮胎变形系数 e n 为发动机转速,r/min ;0i 为后桥主减速速比; gi i 为变速箱各档速比,)...2,1(p i i =,p 为档位数,(以下同)。 3.1.2 各档牵引力 汽车的牵引力: 错误!未指定书签。 t k gi a tq a ti r i i u T u F η???= )()( ( N ) (2) 其中:)(a tq u T 为对应不同转速(或车速)下发动机输出使用扭矩,N ?m ;t η为传动效率。 汽车的空气阻力: 15 .212 a d w u A C F ??= ( N ) (3) 其中:d C 为空气阻力系数,A 为汽车迎风面积,m 2。 汽车的滚动阻力:

f G F a f ?= ( N ) ......(4) 其中:a G =m g 为满载或空载汽车总重(N),f 为滚动阻尼系数 汽车的行驶阻力之和r F : w f r F F F += ( N ) (5) 注:可画出驱动力与行驶阻尼平衡图 3.1.3 各档功率计算 汽车的发动机功率: 9549 )()(e a tq a ei n u T u P ?= (kw ) (6) 其中: )(a ei u P 为第)...2,1(p i i =档对应不同转速(或车速)下发动机的功率。 汽车的阻力功率: t a w f r u F F P η3600)(+= (kw ) (7) 3.1.4 各档动力因子计算 a w a ti a i G F u F u D -= )()( (8) 各档额定车速按下式计算 .377 .0i i n r u i g c e k i c a = (km/h ) (9) 其中:c e n 为发动机的最高转速; )(a i u D 为第)...2,1(p i i =档对应不同转速(或车速)下的动力因子。 对各档在[0,i c a u .]内寻找a u 使得)(a i u D 达到最大,即为各档的最大动力因子m ax .i D 注:可画出各档动力因子随车速变化的曲线

车辆折旧计算方法

车辆属于投资比较大的耐用消费品,折旧方法主要分为两大类,一类是采用平均计算的方法,包含“平均年限法”和“工作量法”;另一类是加速折旧法,包含“双倍余额递减法”和“年数总和法”。 平均年限法 每年折旧额=原值/预计使用年限 例如10万元的汽车预计使用10年,则每年应计算1万元的折旧。也就是说在第一年末,汽车的价值是九万元;第二年末,汽车的价值是八万元;以此类推。工作量法 按照行驶的里程计算折旧,折旧额=原值(已经行驶的里程/预计使用里程) 例如10万元的汽车预计行驶里程为10万公里,则每行驶1公里提取1元的折旧。也就是说在行驶1万公里后,汽车的价值是九万元;在行驶2万公里后,汽车的价值是八万元;以此类推。 双倍余额递减法 计算公式是:折旧的百分比=2/预计使用年限 每年的折旧额=年初时的价值(折旧的百分比) 在预计使用年限的最后两年平均分摊剩余的价值 例如10万元的汽车预计使用10年,折旧的百分比为20% 第一年末汽车的剩余价值是8万元。(10万-10万的20%) 第二年末汽车的剩余价值是6.4万元。(8万-8万的20%) 第三年末汽车的剩余价值是5.12万元。(6.4万-6.4万的20%) 第四年末汽车的剩余价值是4.096万元。 第五年末汽车的剩余价值是3.277万元。 第六年末汽车的剩余价值是2.6214万元。 第七年末汽车的剩余价值是2.097万元。 第八年末汽车的剩余价值是1.678万元。 第九年末汽车的剩余价值是0.839万元。 第十年末汽车报废。 年数总和法 公式是:折旧额=原值(还可以使用的年限/使用年限总和) 例如10万元的汽车预计使用10年,使用年限总和=10+9+8+7+6+5+4+3+2+1=55第一年末汽车的剩余价值是8.182万元。(10万-10万(10/55) 第二年末汽车的剩余价值是6.546万元。(8.182万-10万(9/55) 第三年末汽车的剩余价值是5.091万元。(6.546万-10万(8/55) 第四年末汽车的剩余价值是3.818万元。 第五年末汽车的剩余价值是2.727万元。 第六年末汽车的剩余价值是1.818万元。 第七年末汽车的剩余价值是1.091万元。 第八年末汽车的剩余价值是0.546万元。 第九年末汽车的剩余价值是0.182万元。 第十年末汽车报废。

汽车冷负荷计算方法

1 汽车空调的计算温度选择 按表1 数据作为微型汽车空调系统的计算温度(即车内平均温度)。从上表我们可以看到,微型车的计算温度在环境温度为35℃时定为27℃,而一般轿车在环境温度38℃时定为24℃~27℃ ,一般大中型客车定为27℃ ~28℃ ,可看到微型车车内温差都比它们要高,这其实是综合了多种因素 并经过很多次试验得出的较经济 合理的车内平均温度。因为对微 型车来说,如果计算温度定得过 高了,乘员就会明显感觉制冷不 足;而如果定得过低,势必需要 加大压缩机排量才能满足,这样 功耗必然增加,并影响到整车的 动力性,否则又很可能无法实现。 2 计算方法 2.1 微型车车内与外界热交换示意图 为便于分析,绘制图1 的微型车热交换 示意图。 2.2 计算公式 2.2.1计算方法 考虑到汽车空调工作条件都很恶劣,其 热负荷与行车时间、地点、速度、行使 方向、环境状况以及乘员的数量随时发 生变化,以及要求在短时间内降温等特 殊性,按照常规方法来计算制冷量的计 算公式为: Q 0=kQ T =k(Q B + Q G + Q F +Q P + Q A +Q E + Q S )) ⑴ 式中:Q 0———汽车空调设计制冷量,单位为W ; k ———修正系数,可取k=1.05~1.15,这里取k=1.1 Q T ———总得热量,单位为W ; Q B ———通过车体围护结构传入的热量,单位为W ; Q G ———通过各玻璃表面以对流方式传入的热量,单位为W ; Q F ———通过各玻璃表面以辐射方式直接传入的热量,单位为W ; Q P ———乘员散发的热量,单位为W ; Q A ———由通风和密封性泄露进入车内的热量,单位为W ; Q E ———发动机室传入的热量,单位为W ; Q S ———车内电器散发的热量,单位为W ; 从公式中我们也可以看出它是通过分别计算各部分得热量求得总需求制冷量的。 3 计算示例 以五菱之光微型客车空调系统的制冷量计算为例,设计条件和工况见表3: (1)整车乘员7 人,各部分参数见下表: (2)查文献[2],取水平面和垂直面的太

汽车理论计算题整理

1.3、确定一轻型货车的动力性能(货车可装用4档或5档变速器,任选其中的一种进行整车性能计算): 1)绘制汽车驱动力与行驶阻力平衡图。 2)求汽车的最高车速、最大爬坡度及克服该坡度时相应的附着率。 3)绘制汽车行驶加速倒数曲线,用图解积分法求汽车有Ⅱ档起步加速行驶至70km/h 的车速-时间曲线,或者用计算机求汽车用Ⅱ档起步加速至70km/h 的加速时间。 轻型货车的有关数据: 汽油发动机使用外特性的Tq —n 曲线的拟合公式为 4 32)1000 (8445.3)1000(874.40)1000(44.165)1000(27.25913.19n n n n Tq -+-+-= 式中, Tq 为发 功机转矩(N ·m);n 为发动机转速(r /min)。 发动机的最低转速nmin=600r/min ,最高转速nmax=4000 r /min 装载质量 2000kg 整车整备质量 1800kg 总质量 3880 kg 车轮半径 0.367 m 传动系机械效率 ηт=0.85 波动阻力系数 f =0.013 空气阻力系数×迎风面积 CDA =2.772m 主减速器传动比 i 0=5.83 飞轮转功惯量 If =0.218kg ·2m 二前轮转动惯量 Iw1=1.798kg ·2m 四后轮转功惯量 Iw2=3.598kg ·2m 变速器传动比 ig (数据如下表) 轴距 L =3.2m 质心至前铀距离(满载) α=1.947m 质心高(满载) h g =0.9m 解答: 1)(取四档为例) 由u F n u n Tq Tq F t t →??? ? ?? →→→ 即 r i i T F T o g q t η= 432) 1000 (8445.3)1000(874.40)1000(44.165)1000(27.25913.19n n n n Tq -+-+-= o g i i rn u 377.0=

汽车排放量计算方法.doc

地下停车场通风设计 2006-10-17【大中小】【打印】 简介:如何解决好地下停车场的通风和防排烟设计问题是地下停车场设计中的一个重要问题。要求设计既足满足平时通风要求,排除汽车尾气和汽油蒸气,送入新鲜空气;又要满足火灾时的排烟要求。另外,地下停车场应该同时考虑设计机械排风系统和机械排烟系统,并且要处理好二者的关系。为此,本文主要总结国内有关地下停车场通风设计中的一些问题。 关键字:机械排风系统机械排烟系统自然补风 前言 近年来,随着城市现代化建设的不断发展,城市交通中使用的中小型汽车数量飞速增长,因此,地下停车场、车库的建设也将随之而发展,以解决汽车存放与城市用地日益矛盾的问 题。 地下停车场的兴建,为暖通空调工程师提出了新任务。如何解决好地下停车场的通风和防排烟设计问题是地下停车场设计中的一个重要问题。要求设计既足满足平时通风要求,排除汽车尾气和汽油蒸气,送入新鲜空气,以使有害物含量达到国家规定的卫生标准的要求;又要满足火灾时的排烟要求,以保证火灾发生时迅速扑灭火源,防止火灾蔓延,限制烟气的扩散,排除已产生的烟气,以保证人员和车辆撤离现场,减少伤亡,保障消防人员安全有效地扑救。另外,地下停车场空间很大,又处于半封闭状态,轻此,一般来说,地下停车场应该同时考虑设计机械排风系统和机械排烟系统,并且要处理好二者的关系。为此,本文主要总结国内有关地下停车场通风设计中的一些问题。 1、地下停车场有害物的种类及危害地下停车场有害物的种类及危害地下停车场内汽车排放的有害物主要是一氧化碳(CO)、碳氢化合物(HC)、氮氧化物(NOX)等有害物。它们来源于曲轴箱及排气系统。燃油箱、化油器的污染物主要为碳氢化合物(HC),即由燃油气形成的。若控制不好,其污染物将达到总污染物的15%~20%;由曲轴箱泄漏的污染物同汽车尾气的成分相似,主要有害物为CO、HC、(NOX)等。有的汽油内加有四乙基铅作抗爆剂,致使排出的尾气中含有大量铅成分,其毒性比有机铅大100倍,对人体的健 康和安全很危害很大,其表现有: (1)一氧化碳是最易中毒且中毒情况最多的一种气体,它是碳不完全燃烧的产物。当人吸入一氧化碳,经肺吸收进入血液。因一氧化碳与血红蛋白的亲和能力比氧气大210倍,因而很快形成碳氧血色素,阻碍了血色素输送氧气的能力,导致人严重缺氧,发生中毒现象。 (2 )大量的氮氧化合物(NOX)排到空气中也引起人们的中毒,对粘膜、吸收道、 神经系统、造血系统引起损害。 (3 )汽油热气内毒性最大的是芳香的碳氢化合物,各种牌号的汽油内芳香的碳氢化合物的含量一般为2%~16%。当人们吸入汽油蒸气后,会引起人的特殊的刺激(以如麻醉)。 当中毒严重时,将会导致人们丧失知觉,并引起痉挛。

汽车爬坡度计算

汽车爬坡度计算

爬坡度计算 计算方法一: 根据汽车理论,坡度角计算公式为: α=arcsin[F t-(F f+F w)]/G 式中α----坡度角,° F t----各档最大驱动力,N F f----滚动阻力,N F w----空气阻力,N G----汽车总质量,N 下面分别讨论式中各项: 1、各档最大驱动力F t(本处只计算最低档) F t=M e*i g*i0*ηT/r 式中M e----发动机扭矩,Nm,对WD615发动机为: 1100(266PS)、1160(290PS)、1350(336PS) 1460(371PS)、1650(410PS) i g----变速器各档速比 8JS100B I档 11.4----266PS车型 9JS119 I档 12.11----290PS车型 RT11509C 爬行档 12.42----336、371、420PS 车型 12JS160T I档 15.53 16JS180T I档 17.04 5S111GP 爬行档 13.04 5S150GP 爬行档 13.04 i0----主减速器速比 ST16(HC16、铸钢) 6.72,5.73,4.8,4.42 HW12 5.833,4.875 HW16 4.22,3.73 注:计算时,公路车基本型按4.42,工程车基 本型按5.73 ηT----传动系统总效率 变速器 90%, 主减速器ST16(HC16)92%,HW12(HW16)96%

传动轴 96%(注:为简化计算,按平均两根计算) 故η T =0.9*0.96*0.96=0.83 r----车轮滚动半径,m 11.20-20 0.525;12.20-20 0.540 注:计算时按基本型12.00-20轮胎。 由此计算出驱动力 F t =85193N----266PS公路车 F t=110442N----266PS工程车 F t=90498N----290PS公路车 F t=117321N----290PS工程车 F t=113910N----336PS公路车 F t=147670N----336PS工程车 F t=123191N----371PS公路车 F t=159703N----371PS工程车 2、滚动阻力 F f=fW 式中 f----滚动阻力系数 0.015 良好沥青路面(公路车) 0.022 碎石路面(工程车) W----车辆对路面的正压力,N,即满载状态下整车总重(7300+34500)*9.8=409640N S35/4*2 (9300+39500)*9.8=478240N S29/6*4 25000*9.8=245000N O、B、K/6*4 31000*9.8=303800N O、B、K/8*4 注:计算时,未考虑载货车(O)拖挂。 由此,计算出滚动阻力 6144.6N S35/4*2 7173.6N S29/6*4 3675N O /6*4 5390N B、K/6*4 4557N O /8*4 6684N B、K/8*4 3、空气阻力 F w=C D AV a 2 /21.15

汽车的动力性设计计算公式

汽车动力性设计计算公式 3、1 动力性计算公式 3。1、1 变速器各档得速度特性: ( km/h)、、。。、、(1) 其中:为车轮滚动半径,m; 由经验公式: (m) d—-—-轮辋直径,in b---—轮胎断面宽度,in -——轮胎变形系数 为发动机转速,r/min;为后桥主减速速比; 为变速箱各档速比,,为档位数,(以下同)。 3、1。2 各档牵引力 汽车得牵引力: 错误!未指定书签。 ( N ) 。。.、.、(2) 其中:为对应不同转速(或车速)下发动机输出使用扭矩,N?m;为传动效率。 汽车得空气阻力: ( N ) 。。。。.。(3) 其中:为空气阻力系数,A为汽车迎风面积,m2。 汽车得滚动阻力: ( N) 、。。。、。(4) 其中:=mg 为满载或空载汽车总重(N),为滚动阻尼系数 汽车得行驶阻力之与: ( N ) 、、、。、、(5) 注:可画出驱动力与行驶阻尼平衡图 3、1、3 各档功率计算 汽车得发动机功率: (kw) 、、、、。.(6) 其中: 为第档对应不同转速(或车速)下发动机得功率。 汽车得阻力功率: (kw) 、.。。、.(7) 3。1、4 各档动力因子计算 。、。.。、(8) 各档额定车速按下式计算 (km/h)。。。、。、(9) 其中:为发动机得最高转速; 为第档对应不同转速(或车速)下得动力因子。 对各档在[0,]内寻找使得达到最大,即为各档得最大动力因子 注:可画出各档动力因子随车速变化得曲线 3、1、5 最高车速计算 当汽车得驱动力与行驶阻力平衡时,车速达到最高。

3。1.5。1 根据最高档驱动力与行驶阻力平衡方程 , 求解。舍去中得负值或非实数值与超过额定车速得值;若还有剩余得值,则选择它们中最大得一个为最高车速,否则以最高档额定车速作为最高车速、 额定车速按下式计算 (km/h)。、.。、、(10) 其中:为发动机得最高转速 为最高档传动比 附着条件校验 根据驱动形式计算驱动轮得法向反力 驱动形式4*4全驱: 4*2前驱: 4*2后驱: 其中: 为轴距,为满载或空载质心距前轴得距离 若满足下式 其中:——道路附着系数 则表示“超出路面附着能力,达不到计算得出得最高车速值!” 3.1。6 爬坡能力计算 、。。、、。(11) 其中:为第档对应不同转速(或车速)下得爬坡度 3、1、6.1 各档爬坡度在[0,]中对寻优,找到最大值 3。1。6。2 附着条件校验 计算道路附着系数提供得极限爬坡能力 驱动形式4*4: ,计算 4*2前驱: ,计算 4*2后驱: ,计算 其中: —-满载或空载质心到后轴得距离 ——道路附着系数 ——轴距 取、之小者作为一档或直接档得最大爬坡度 3。1。7 最大起步坡度 3、1、7。1 按下式计算最大起步驱动力 (N).、、、.、(12) 其中:为发动机得最大输出扭矩 为起步档位得传动比,这里分别取一档传动比与二档传动比 为主减速器得传动比 为起步档(一档或二档)得传动效率

汽车尾气计算公

汽车尾气计算公式 根据统计资料及类比调查,车辆进出车库(怠速<5km/h)平均耗油量为0.10L/min(90号无铅汽油的密度为0.713kg/L),正常行驶(车速>5km/h)平均耗油量为0.10L/km。根据对其它同类型车库的类比调查和有关资料,车库产生的主要污染物为汽车所排放的废气中所含的CO、HC和NO2,汽车尾气主要 污染因子及排放的浓度范围参见表4-2。 表4-2 汽车废气主要污染物浓度(容积比) 污染物单位汽油车 CO % <2 HC ppm <1000 NO2 ppm <2500 汽车库废气主要由风机抽送,另有部分废气经车库出入口向外扩散,属无组 织排放。 另一方面,在相同耗油量的情况下,汽车尾气污染物排放量还与空燃比有关。空燃比指汽车发动机工作时,空气与燃油的体积比。当空燃比较大时(>14.5),燃油完全燃烧,产生CO2及H2O,当空燃比较低时(<14.5),燃油不充分燃烧,将产生CO、HC和NO2等污染物。据调查,当汽车进出停车库时,平均空燃 比约为12:1。 汽车尾气中CO、HC和NO2浓度随汽车行驶状况不同而有较大差别,根据汽车尾气监测数据统计及有关资料,汽车在怠速与正常行驶时所排放的各污染物浓 度见表4-3。 表4-3 汽车废气中各污染物浓度(容积比) 污染物单位怠速正常行驶 CO % 4.07 2 HC ppm 1200 400 NO2 ppm 600 1000 ①汽车废气中污染物源强计算公式 废气排放量按下式计算 式中:D—废气排放量,m3/h; Q—汽车车流量,v/h; T—车辆在车库运行的时间,min; k—空燃比; A—燃油耗量,kg/min; 污染物排放量按下式计算 式中:G—污染物排放量,kg/h; C—污染物的排放浓度,容积比,ppm; f—容积与质量换算系数。 ②汽车尾气污染物排放源强计算结果 按上述有关参数和计算公式,并设车库每天开放时间为12h,则计算得到地

相关文档