文档库 最新最全的文档下载
当前位置:文档库 › 第2章线性方程组求解方法第2讲

第2章线性方程组求解方法第2讲

第一章 第二讲 矩阵及矩阵初等变换2

第二讲 矩阵及初等变换(4节) 在上一讲中,我们简单介绍了n 元线性方程组的求解过程是如何用数表的形式来表达的思想,这种既能简化求解方程组的过程又使得求解形式简单明了的数表,我们称之为矩阵。 矩阵是线性代数中重要的概念之一,它的理论与方法在数学、经济、工程技术等方面都有较广泛的应用。著名的列昂节夫投入—产出模型就是利用矩阵这一数学工具建立起来的。因此掌握矩阵这一数学工具是非常必要的。 本讲的主要内容就是给出矩阵的概念及运算性质,为下一步更好地利用矩阵理论与方法讨论线性方程组提供有力的理论支撑。 1.2.1矩阵的概念 定义2.1 由m n ?个数i j a (=1,2,,i m ;=1,2,j n )排成了m 行n 列的矩形数表 11121212221 2 n n m m m n a a a a a a a a a 称其为m 行n 列矩阵,记作 11121212221 2 n n m m m n m n a a a a a a a a a ??? ? ? ? ??? 。 其中称ij a 是矩阵的第i 行第j 列元素。矩阵常用大写字母m n A ?,m n B ?… ...表示,或简记m n A ?=()ij m n a ?,m n B ?=()ij m n b ?… … 等. 注意:矩阵的行数m 与列数n 可以不相等,行列相同的矩阵称为方阵. 例如 2行3列矩阵 23231 0-2=2 5 -3A ???? ??? , 2行2列矩阵 2222 2 1=1 6B ???? ?-??。 例2.1例:给个具体的矩阵表示实例 1.2.2矩阵的运算 矩阵也有加、减、数乘、乘法等基本运算法则,以及转置运算等.由于矩阵是个数表,所以它的运算法则与数之间的运算法则有本质上的区别。下面我们先给出矩阵的基本的运算. 定义2.2 若两个行列相同的矩阵() () ,ij ij m n m n A a B b ??==其对应元素相等,即

c 解线性方程组的几种方法

//解线性方程组 #include #include #include //----------------------------------------------全局变量定义区 const int Number=15; //方程最大个数 double a[Number][Number],b[Number],copy_a[Number][Number],copy_b[Number]; //系数行列式 int A_y[Number]; //a[][]中随着横坐标增加列坐标的排列顺序,如a[0][0],a[1][2],a[2][1]...则A_y[]={0,2,1...}; int lenth,copy_lenth; //方程的个数 double a_sum; //计算行列式的值 char * x; //未知量a,b,c的载体 //----------------------------------------------函数声明区 void input(); //输入方程组 void print_menu(); //打印主菜单 int choose (); //输入选择 void cramer(); //Cramer算法解方程组 void gauss_row(); //Gauss列主元解方程组 void guass_all(); //Gauss全主元解方程组 void Doolittle(); //用Doolittle算法解方程组 int Doolittle_check(double a[][Number],double b[Number]); //判断是否行列式>0,若是,调整为顺序主子式全>0 void xiaoqu_u_l(); //将行列式Doolittle分解 void calculate_u_l(); //计算Doolittle结果 double & calculate_A(int n,int m); //计算行列式 double quanpailie_A(); //根据列坐标的排列计算的值,如A_y[]={0,2,1},得sum=a[0][ A_y[0] ] * a[1][ A_y[1] ] * a[2][ A_y[2] ]=a[0][0]*a[1][2]*a[2][1]; void exchange(int m,int i); //交换A_y[m],A_y[i] void exchange_lie(int j); //交换a[][j]和b[]; void exchange_hang(int m,int n); //分别交换a[][]和b[]中的m和n 两行 void gauss_row_xiaoqu(); //Gauss列主元消去法 void gauss_all_xiaoqu(); //Gauss全主元消去法 void gauss_calculate(); //根据Gauss消去法结果计算未知量的值 void exchange_a_lie(int m,int n); //交换a[][]中的m和n列 void exchange_x(int m,int n); //交换x[]中的x[m]和x[n] void recovery(); //恢复数据 //主函数 void main() { int flag=1;

第2讲:方程与方程组

第二讲 方程与方程组 一、学习指引 1.知识要点 (1)一元一次方程 (2)二元一次方程组 (3)一元二次方程 (4)分式方程 (5)方程的整数根 (6)方程应用问题 2.方法指导 (1)一元一次方程经变形总可以化成ax=b 的形式,此时需注意对字母系数的讨论. (2)二元及多元(二元以上)一次方程组的求解,主要是通过同解变形进行消元,最终转化为一元一次方程来解决.所以,解方程组的基本思想是消元. (3)方程ax 2 +bx+c=0(a ≠0)称为一元二次方程:①一元二次方程的基本解法有开平方法、 配方法、公式法和因式分解法.②对于方程ax 2+bx+c=0(a ≠0), b 2 -4ac 称为该方程的根的判别式. (4)解分式方程的基本方法:①去分母;②求出整式方程未知数的值;③验根. (5)列方程(组)解应用题其具体步骤是: ①审--理解题意,弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么;②设--即找出题中和未知量,选择其中一个设为未知数;③列--找出题中和等量关系,列出方程;④解--解出所列的方程;⑤答--检验作答.其中列是关键,特别是找等量关系。找等量关系的方法是—用两种方式表达同一个量! 二、典型例题 例1.解关于x 的方程: (1)4x+b=ax-8; (2) 0232 =+-x x ; (3) 6,23 4()5() 2. x y x y x y x y +-?+=? ??+--=? (4)21124x x x -=-- 例2.若关于x ,y 的二元一次方程组? ??=-=+k y x , k y x 95的解也是二元一次方程632=+y x 的解, 求k 的值.

线性代数第3章_线性方程组习题解答

习题3 3-1.求下列齐次线性方程组的通解: (1)?? ? ??=--=--=+-087305302z y x z y x z y x . 解 对系数矩阵施行行初等变换,得 ???? ? ??-----?→?????? ??-----=144072021 1873153211A )(000720211阶梯形矩阵B =???? ? ??-?→? ??? ?? ??-?→?0002720211)(000271021101行最简形矩阵C =????? ? ???→? , 与原方程组同解的齐次线性方程组为 ??? ??? ?=+=+02702 11 z y z x , 即 ??? ??? ?-=-=z y z x 272 11(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系 T )1,2 7,211(-- =ξ, 所以,方程组的通解为

,)1,2 7,211(T k k -- =ξk 为任意常数. (2)??? ??=+++=+++=++++0 86530543207224321 432154321x x x x x x x x x x x x x . 解 对系数矩阵施行行初等变换,得 ???? ? ??--?→?????? ??=21202014101072211086530543272211A )(7000014101072211阶梯形矩阵B =????? ??-?→? ???? ? ??-?→?70000141010211201 )(100000101001201行最简形矩阵C =???? ? ???→?, 与原方程组同解的齐次线性方程组为 ??? ??==+=++00 025 42431x x x x x x , 即 ??? ??=-=--=025 4 2431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T ,得到方程组的一个基础解系 T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ, 所以,方程组的通解为

线性方程组的解法

线性方程组的解法 1 引言 在科学研究和大型工程设计中出现了越来越多的数学问题,而这些问题往往需要求数值解。在进行数值求解时,经离散后,常常归结为求解形如Ax= b的大型线性方程组。而如插值公式,拟合公式等的建立,微分方程差分格式的构造等,均可归结为求解线性方程组的问题.在工程技术的科学计算中,线性方程组的求解也是最基本的工作之一.因此,线性方程组的解法一直是科学和工程计算中研究最为普遍的问题,它在数值分析中占有极其重要的地位。20世纪50年代至70年代,由于电子计算机的发展,人们开始考虑和研究在计算机上用迭代法求线性方程组Ax =b的近似解,用某种极限过程去逐渐逼近精确解,并发展了许多非常有效的迭代方法,迭代法具有需要计算机存储单元少、程序设计简单、原始系数矩阵在计算过程中始终不变等优点。例如Jacobi方法、Gauss—Seidel 方法、SOR方法、SSOR 方法,这几种迭代方法是最常用的一阶线性定常迭代法。 2 主要算法 20世纪50年代至70年代,人们开始考虑和研究用迭代法求解线性方程组。 Ax = b (1) 的近似解,发展了许多有效的方法,其中有Jacobi方法、Gauss—Seidel方法,SOR方法、SSOR方法,这几种迭代方法均属一阶线性定常迭代法,即若系数矩阵A的一个分裂:A =M-N ;M 为可逆矩阵,线性方程组(1)化为: (M-N)X =b; →M X = NX + b; →X= M -1NX+ M-1b 得到迭代方法的一般公式: X(k+1)=HX(k)+d (2) 其中:H =MN-1,d=M-1b,对任意初始向量X(0) 一阶定常迭代法收敛的充分必要条件是: 迭代矩H的谱半径小于1,即ρ(H) < 1;又因为对于任何矩阵范数恒有ρ(H)≤‖H‖,故又可得到收敛的一个充分条件为:‖H‖< 1。 2.1 Jacobi迭代法 若D为A的对角素构成的对角矩阵,且对角线元素全不为零。系数矩阵A的一个分解:A =

线性方程组典型习题及解答

线性方程组 1. 用消元法解方程组?????? ?=- +-+=-- + - =-+-+ =- -+-5 2522220 21 22325 4 321 53 2 154321 5 4321x x x x x x x x x x x x x x x x x x x . 解: 方程组的增广矩阵 : ????? ???????---------→????????????---------→????????????---------420200110100112430211321312630202530112430211321512522110112121111211321? ??? ????? ???--------→60000 0110100112430211321,可知,系数矩阵的秩为3,增广矩阵的秩为4,系数矩阵的秩不等于增广矩阵的秩,从而方程组无解. 2. 讨论λ为何值时,方程组??? ??=++ = + +=++2 3 2 1 3 2 1 321 1 λλλλλx x x x x x x x x 有唯一解、无解和有无穷多解。 解:将方程组的增广矩阵进行初等行变换,变为行阶梯矩阵。 ()() ()()B A =??? ? ???? ? ?+------→→???? ????? ?→?? ??? ?????=22 2 2211210 1101 111 1 11111 1 1 1 111λλλλλλλ λλλ λλλλλλλ λλ λΛ于是,当2,1-≠λ时,系数矩阵的秩等于增广矩阵的秩,都等于3,等于未知量的个数,此 时方程组有唯一解;2 )1(,21,213 321++-=+=++- =λλλλλx x x 当2-=λ时,系数矩阵的秩为2,增广矩阵的秩为3,此时方程组无解; 当1=λ时,系数矩阵的秩等于增广矩阵的秩,都等于1,小于未知量的个数,此时方程组有无穷多解,即3211x x x --=,其中32,x x 为自由未知量。

Matlab线性方程组求解(Gauss消去法)

Matlab线性方程组求解 1. Gauss消元法: function x=DelGauss(a,b) % Gauss消去法 [n,m]=size(a); nb=length(b); det=1; %存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if a(k,k)==0 return end m=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-m*a(k,j); end b(i)=b(i)-m*b(k); end det=det*a(k,k); %计算行列式 end det=det*a(n,n); for k=n:-1:1 %回代求解 for j=k+1:n b(k)=b(k)-a(k,j)*x(j); end x(k)=b(k)/a(k,k);

end Example: >> A=[1.0170 -0.0092 0.0095;-0.0092 0.9903 0.0136;0.0095 0.0136 0.9898]; >> b=[1 0 1]'; >> x=DelGauss(A,b) x = 0.9739 -0.0047 1.0010 2. 列主元Gauss消去法: function x=detGauss(a,b) % Gauss列主元消去法 [n,m]=size(a); nb=length(b); det=1; %存储行列式值 x=zeros(n,1); for k=1:n-1 amax=0; %选主元 for i=k:n if abs(a(i,k))>amax amax=abs(a(i,k));r=i; end end if amax<1e-10 return; end if r>k %交换两行 for j=k:n

总结求线性方程组的方法

总结求线性方程组的方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

华北水利水电大学 总结求线性方程组的方法 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2014年12月31日

摘要:线性方程组的求解是当代代数学中的一个重要组成部分。它广泛应用在数学以及其他领域。它与矩阵、线性变换、行列式、向量组的线性相关性,二次型,这些型之间有着相当密切的联系。线性方程组是线性代数中一个相当基础的内容必须要学会以及熟悉内容。本文章主要说明和讨论线性方程组的基本结构,然后应用克拉莫法则,高斯消元法来来求解。 关键词:线性方程组、高斯消元法、克拉莫法则; Summary for the method of liner equations Abstract: Solution of the system of linear equations is an important component part of algebra. It is widely used in mathematics and other areas. It and determinant, matrix, linear transformation, linear correlation vector group, quadratic form, has the close relation. System of linear equations is a very basic content in linear algebra must grasp and familiar with the content. This article mainly explain and discuss the basic structure of system of linear equations, then apply law of kramer, gauss elimination method to solve.

第二章 第二讲 向量组的相关性

第二讲 向量组的线性相关性 2.2.1 向量组的线性相关性 向量的线性相关性是向量线性相关与线性无关的统称,它刻画的是n 维向量空间中向量之间是否存在线性关系.在两个向量之间, 最简单的线性关系是对应坐标是否成比例,如果存在数字k 使得k αβ=,我们就认为向量α与β之前存在线性关系,称他们是线性相关的,否则它们无线性关系.而在多个向量之间,这种成比例的关系则通过线性组合的形式来表现. 定义2.2.1 对s 个n 维向量12,,s ααα ,他们的线性组合 1122s s k k k ααα++= 0 ... ... (2.1) (1) 若,12,s k k k 不全为零(2.1)式成立,则称向量组12,,s ααα 线性相关; (2) 若当且仅当12,s k k k 全为零,(2.1)式成立,称向量组12,,s ααα 线性无关 . 定义2.2.1易验证以下结论的正确性: (1)任意一个包含零向量的向量组必线性相关. (2)两个非零向量线性相关的充分必要条件是它们的对应分量成比例. 定理2.2.1 (1) 如果向量组m ααα,,,21 中有一部分组线性相关,则向量组 m ααα,,,21 必线性相关. (2)如果向量组m ααα,,,21 线性无关,则任何部分组必线性无关. 证明(1) 假设该组向量中12,αα线性相关,由定义2.2.1必存在 12,k k 不全为零,使得1122+=0k k αα成立。取一组不全为零的数12,,0,0,,0k k ,有 11223m ++0++0=0k k αααα 成立,故 m ααα,,,21 线性相关。 证明(2)用反证法即可证得。 定理2.2.2 如果向量组m ααα,,,21 线性无关,而向量组βααα,,,,21m 线性相关,则β可由向量组m ααα,,,21 线性表出且表达式唯一.

线性方程组的解法及其应用

线性方程组的解法及其应用 The solution of linear equation and its application 专业:测控技术与仪器 班级: 2010-1班 作者:刘颖 学号: 20100310110105

摘要 线性方程组是线性代数的一个重要组成部分,也在现实生产生活中有着广泛的运用,在电子工程、软件开发、人员管理、交通运输等领域都起着重要的作用。在一些学科领域的研究中,线性方程组也有着不可撼动的辅助性作用,在实验和调查后期利用线性方程组对大量的数据进行处理是很方便简捷的选择。本文主要围绕如何解线性方程组来进行讲解,对于不同类型的线性方程组的不同方法,并简述线性方程组的一些实际应用。 关键词: 齐次线性方程组,非齐次线性方程组,克莱姆法则,消元法,矩阵,矩阵的秩,特解,通解。

Abstract Linear equations linear algebra is one of the important component parts, and in real life has extensive production use,and it plays an important role in electronic engineering, software development, personnel management, transportation, etc. In some discipline study, it also has the reigns of linear equations of the auxiliary function.In experiment and survey using the linear equations of the late on the data processing is very convenient simple choice. This article, focusing on how to solve linear equations to explain, for different types of linear equations of different methods, and briefly introduces some of the practical application of linear equations. Keywords: Homogeneous linear equations, Non homogeneous linear equation,Clem’s law,Elimination method,Matrix,Rank of matrix,Special solution,General solution.

线性方程组数值解法总结

好久没来论坛,刚刚发现以前的帖子现在那么火很欣慰,谢谢大家支持! 今天趁着不想做其他事情,把线性方程组的数值解法总结下,有不足的地方希望大神指教!数学建模中也会用到线性方程组的解法,你会发现上10个的方程手动解得话把你累个半死,而且不一定有结果,直接用matlab的函数,可以,关键是你不理解用着你安心吗?你怎么知道解得对不对? 我打算开个长久帖子,直到讲完为止!这是第一讲,如有纰漏请多多直接,大家一起交流!线性方程组解法有两大类:直接法和迭代法 直接法是解精确解,这里主要讲一下Gauss消去法,目前求解中小型线性方程组(阶数不超过1000),它是常用的方法,一般用于系数矩阵稠密,而有没有特殊结构的线性方程组。 首先,有三角形方程组的解法引入Gauss消去法,下三角方程组用前代法求解, 这个很简单,就是通过第一个解第二个,然后一直这样直到解出最后一个未知数,代码如下:前代法: function [b]= qiandai_method(L,b) n=size(L,1); %n 矩阵L的行数 for j=1:n-1 %前代法求解结果存放在b中 b(j)=b(j)/L(j,j); b(j+1:n)=b(j+1:n)-b(j)*L(j+1:n,j); end b(n)=b(n)/L(n,n); 上三角方程组用回代法,和前面一样就是从下面开始解x,代码: 后代法: function [y]=houdai_method(U,y) n=size(U,1); %n 矩阵L的行数 for j=n:-1:2 %后代法求解结果存放在y中 y(j)=y(j)/U(j,j); y(1:j-1)=y(1:j-1)-y(j)*U(1:j-1,j); end y(1)=y(1)/U(1,1); Gauss消去的前提就是这两个算法: 具体思想是把任何一个线性方程组的系数矩阵A,分解为一个上三角和一个下三角的乘积,即A=LU,其中L为下三角,U为上三角。 那么具体怎么做呢? 有高斯变换,什么是高斯变换?由于时间有限我不可能去输入公式,所以我用最平白的话把它描述出来。 你先想一下怎么把一个矩阵的某一列的从第j个分量后全部变0? 高斯变换就是通过每次一个矩阵Li把A的第i列对角线元素以下的都变为0,最后把这么多Li一次左乘起来就是一个矩阵L’=L(n-1)L(n-2)…L2L1,而L’A=U, 那么L=L’的转置,这样就得到了A得分解。 我们要求Ax=b A=LU

齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; $ 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=++ +1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

解线性方程组

课程设计阶段性报告 班级:学号:姓名:申报等级: 题目:线性方程组求解 1.题目要求:输入是N(N<256)元线性方程组Ax=B,输出是方程组的解,也可能无解或有多组解。可以用高斯消去法求解,也可以采用其它方法。 2.设计内容描述:将线性方程组做成增广矩阵,对增广矩阵进行变换然后采用高斯消元法消去元素,从而得到上三角矩阵,再对得到的上三角矩阵进行回代操作,即可以得到方程组的解。 3.编译环境及子函数介绍:我使用Dev-C++环境编译的,调用uptrbk() FindMax()和ExchangeRow(),uptrbk是上三角变换函数,FindMax()用于找出列向量中绝对值最大项的标号,ExchangeRow()用于交换两行 4. 程序源代码: #include #include #include //在列向量中寻找绝对值最大的项,并返回该项的标号 int FindMax(int p,int N,double *A) { int i=0,j=0; double max=0.0; for(i=p;imax) { j=i; max=fabs(A[i*(N+1)+p]); } } return j;

//交换矩阵中的两行 void ExchangeRow(int p,int j,double *A,int N) { int i=0; double C=0.0; for(i=0;i

第二讲 资产组合选择理论

第二讲 资产组合选择理论 本讲主要讲述以下内容: 收益与风险的度量 标准的Markowitz 均值—方差模型 推广的风险---收益组合选择模型 § 1.2 收益与风险的度量 1. 资产收益(Return,Income,Yield )度量 投资在某项资产上的收益(Return,Income)就是资产价格在一定时间上的绝对改变量,收益率(Yield)是资产价格的变化率。这里资产指的是一切负债工具、普通股股票、期权、期货、优先股、房地产、收藏品等。 常见资产价格过程: 无风险资产(银行存款,短期债券)的价格 离散时间 n f n r P P )1(0+=,T n ,...,2,1= 连续时间 ?=t du u t e P P 0)(0λ,],0[T t ∈; 其中)(t λ为t 时刻的利息力(定义为t t t t t t P P t P P P t t '?-→?= =?+0 lim )(λ) 特别,利息强度为常数即λλ=)(t 时,t t e P P λ0=; 当n t =时,n f n n r P e P P )1(00+==λ,所以)1ln(f r +=λ 风险资产(股票,长期债券)的价格 Black-Scholes 模型:)(t t t dW dt S dS σμ+= 解上述方程可得:t W t t e S S σσμ+-=)(022 1 其中t W 是概率空间),,(P F Ω上的标准Brown 运动(即t W 是零初值平稳的独立增量过程,且具有正态分布),0(~t N W t )。 股票价格模型的其他形式:带Possion 跳的几何Brown 运动模型、随机波动率模型、分式几何Brown 运动模型、一般的指数半鞅模型) 离散时间风险证券价格 )1),...(1)(1(210n t t t T R R R S S +++=

3线性方程组典型习题解析

3 线性方程组 3、1 知识要点解析(关于线性方程组的常用表达形式) 3.1.1 基本概念 1、方程组1111221n 1211222 2n 2m11m22mn m x x b x x b x x b a a a a a a a a a +++=??+++=? *???++ +=? 称为含n 个未知量m 个方程的线性方程组, i)倘若12m b ,b ,....,b 不全为零,则该线性方程组称为非齐次线性方程组; ii)若12m b =b = =b 0=,则该线性方程组就就是齐次线性方程组, 这时,我们也把该方程组称为1111221n 1211222 2n 2m11m22mn m x x x x x x a a a a a a a a a ++ +=??+++=? ???++ +=?c c c 的导出组, (其中12m c ,c ,...c 不全为零) 2、记1111 1221 n m x b x b ,x ,b x b n m mn a a A a a ???? ?? ? ? ? ? ?== ? ? ? ? ? ??? ???? = 则线性方程组(*)又可以表示为矩阵形式 x b A =** 3、又若记 1j 2j j mj ,j 1,2, n a a a α?? ? ? == ? ? ??? 则上述方程游客一写成向量形式 1122n n x x x b. ααα++ +=***。 同时,为了方便,我们记(,b)A A =,称为线性方程组(*)的增广矩阵。 3.1.2 线性方程组解的判断

1、齐次线性方程组x 0A =,(n=线性方程组中未知量的个数 对于齐次线性方程组,它就是一定有解的(至少零就就是它的解), i)那么,当r n A =秩()=时,有唯一零解; ii)当r n A =秩()<时,又非零解,且线性无关解向量的个数为n-r 、 2、非齐次线性方程组x b A = ()<() ()=()=n, ()=()()=()() A A A A A A A A A A A ?? ???????? ? ?秩秩无解;秩秩有唯一解, 秩秩秩秩有无穷多解,且基础解系个数为 -秩秩秩不可能 3.1.3 线性方程组的解空间 1、齐次线性方程组的解空间 (作为线性方程组的一个特殊情形,在根据其次线性方程与非齐次线性方程组解 的关系,我们这里首先讨论齐次线性方程组的解空间) 定理:对于数域K 上的n 元齐次线性方程组的解空间W 的维数为 A dim(W)=n-秩()=n-r , 其中A 就是方程组的系数矩阵。那么,当齐次线性方程组[(*)--ii)] 有 非零解时,它的每个基础解系所含解向量的数目都等于A n-秩()。 2、 非齐次线性方程组的解空间 我们已知线性方程组的解与非齐次线性方程组的解的关系,那么我们可 首先求出非齐次线性方程组的一个解γ0(称其为方程组特解);然后在求对应的导出组的解空间(设该解空间的基础解系为ηηη12n-r ,,...),则(*)解空间的维数为n-r,且非齐次线性方程组的每一个解都可以表示为: 2.................()k k k γηηη+?0112n-r n-r ++...+ 我们称其为该非齐次线性方程组(*)的通解、

浅析线性方程组的解法

目录 摘要................................................................................... I Abstract. ............................................................................. II 第一章绪论............................................................................ I 1.1引言 (1) 1.2线性方程组解的求解方法的研究现状 (1) 1.3本文对线性方程组解法的研究结构 (1) 第二章线性方程组理论基础 (2) 2.1 线性方程组概念 (2) 2.2 线性方程组的解的情况分析 (2) 2.3 齐次线性方程组解的结构 (4) 2.4非齐次线性方程组解的结构 (4) 第三章线性方程组的数值解 (5) 3.1 迭代法 (5) 3.1.1 Jacobi方法 (6) 3.2.2 高斯-赛德尔方法 (8) 第四章全文总结和展望 (10) 4.1 全文总结 (10) 4.2 未来展望 (10) 参考文献 (11) 致谢................................................................. 错误!未定义书签。

线性方程组的求解方法 学生:指导教师: 摘要:本文在对线性方程组解的结构的研究背景与意义分析的基础上,对线性方程组的求解方法的研究现状进行了介绍,之后针对线性方程组展开了研究,包括线性方程组的概念、线性方程组的求解方法以及线性方程组的作用等,在对线性方程组有了全面的认识后,基于线性方程组解的结构展开了研究,包括线性方程组解的基本定理,齐次和非齐次线性方程组解的结构形式,以及齐次和非齐次线性方程组解的结构,我们用迭代法中最常用的Jacobi方法中的相似上三角矩阵定理和迭代法中的收敛性讨论线性方程组的数值解法,并用高斯-赛德尔方法进行验证。得到线性方程组的数值解的一般方法。最后,对全文进行了总结和展望。 关键词:线性方程组;数值解;迭代法;Jacobi方法;高斯-赛德尔方法

解线性方程组的直接解法

解线性方程组的直接解法 一、实验目的及要求 关于线性方程组的数值解法一般分为两大类:直接法与迭代法。直接法是在没有舍入误差的情况下,通过有限步运算来求方程组解的方法。通过本次试验的学习,应该掌握各种直接法,如:高斯列主元消去法,LU分解法和平方根法等算法的基本思想和原理,了解它们各自的优缺点及适用范围。 二、相关理论知识 求解线性方程组的直接方法有以下几种: 1、利用左除运算符直接求解 线性方程组为b x\ =即可。 A Ax=,则输入b 2、列主元的高斯消元法 程序流程图: 输入系数矩阵A,向量b,输出线性方程组的解x。 根据矩阵的秩判断是否有解,若无解停止;否则,顺序进行; 对于1 p :1- =n 选择第p列中最大元,并且交换行; 消元计算; 回代求解。(此部分可以参看课本第150页相关算法) 3、利用矩阵的分解求解线性方程组 (1)LU分解 调用matlab中的函数lu即可,调用格式如下: [L,U]=lu(A) 注意:L往往不是一个下三角,但是可以经过行的变换化为单位下三角。 (2)平方根法

调用matlab 中的函数chol 即可,调用格式如下: R=chol (A ) 输出的是一个上三角矩阵R ,使得R R A T =。 三、研究、解答以下问题 问题1、先将矩阵A 进行楚列斯基分解,然后解方程组b Ax =(即利用平方根法求解线性方程组,直接调用函数): ??????? ??--------=19631699723723312312A ,?????? ? ??-=71636b 解答: 程序: A=[12 -3 2 1;-3 23 -7 -3;2 -7 99 -6;1 -3 -6 19]; R=chol(A) b=[6 3 -16 7]'; y=inv(R')*b %y=R'\b x=inv(R)*y %x=R\y 结果: R =3.4641 -0.8660 0.5774 0.2887 0 4.7170 -1.3780 -0.5830 0 0 9.8371 -0.7085 0 0 0 4.2514 y =1.7321 0.9540 -1.5945 1.3940 x =0.5463 0.2023 -0.1385 0.3279 问题 2、先将矩阵A 进行LU 分解,然后解方程组b Ax =(直接调用函数): ?????????? ??----=8162517623158765211331056897031354376231A ,????????? ? ??-=715513252b

线性方程组解题方法技巧与题型归纳

线性方程组解题方法技巧与题型归纳 题型一 线性方程组解的基本概念 【例题1】如果α1、α2是方程组 123131233231 2104 x x ax x x x ax x --=?? -=??-++=? 的两 个不同的解向量,则a 的取值如何 解: 因为α1、α2是方程组的两个不同的解向量,故方程组有无穷多解,r(A)= r(Ab)<3, 对增广矩阵进行初等行变换: 21131132031022352104002314510a a a a a a a ----???? ? ?-→-- ? ? ? ?-----???? 易见仅当a=-2时,r(A)= r(Ab)=2<3, 故知a=-2。 【例题2】设A 是秩为3的5×4矩阵, α1、α2、 α3是非齐次线性方程组Ax=b 的三个不同的解,若α1+α2+2α3=(2,0,0,0)T , 3α1+α2= (2,4,6,8)T ,求方程组Ax=b 的通解。 解:因为r(A)= 3,所以齐次线性方程组Ax=0的基础解系由4- r(A)= 1个向量构成, 又因为(α1+α2+2α3)-(3α1+α2) =2(α3-α1)=(0,-4,-6,-8)T , 是Ax=0的解, 即其基础解系可以是(0,2,3,4)T , 由A (α1+α2+2α3)=Aα1+Aα2+2Aα3=4b 知1/4

(α1+α2+2α3)是Ax=b 的一个解, 故Ax=b 的通解是 ()1,0,0,00,2,3,42T T k ?? + ??? 【例题3】已知ξ1=(-9,1,2,11)T ,ξ2=(1,- 5,13,0)T ,ξ3=(-7,-9,24,11)T 是方程组 12234411223441 234432332494x a x x a x d x b x x b x x x x c x d +++=?? +++=??+++=?的三个解,求此方程组的通解。 分析:求Ax=b 的通解关键是求Ax=0的基础解系,判断r(A)的秩。 解:A 是3×4矩阵, r(A)≤3,由于A 中第2,3两行不成比例,故r(A)≥2,又因为 η1=ξ1-ξ2=(-10,6,-11,11)T , η2=ξ2-ξ3= (8,4,-11,-11)T 是Ax=0的两个线性无关的解向量, 于是4- r(A)≥2,因此r(A)=2,所以ξ1+k 1η1+k 2η2是通解。 总结: 不要花时间去求方程组,太繁琐,由于ξ1-ξ2,ξ1-ξ3或ξ3-ξ1,ξ3-ξ2等都可以构成齐次线性方程组的基础解系,ξ1,ξ2,ξ3都是特解,此类题答案不唯一。 题型2 线性方程组求解

线性方程组的直接解法

第2章线性方程组的直接解法 2.1实验目的 理解线性方程组计算机解法中的直接解法的求解过程和特点,学习科学计算的方法和简单的编程技术。 2.2概念与结论 1. n阶线性方程组 如果未知量的个数为 n ,而且关于这些未知量x1,x2, …,x n的幂次都是一次的(线性的)那末, n 个方程 a11x1+a12x2+ … +a1n x n=b1 ┆┆┆ (1) a n1x1+a n2x2+ … +a nn x n= b n 构成一个含n个未知量的线性方程组,称为n阶线性方程组。其中,系数a11,…,a1n,a21, …,a2n, …,a n1, …,a nn 和b1, …,b n都是给定的常数。 方程组(1)也常用矩阵的形式表示,写为 Ax=b 其中,A是由系数按次序排列构成的一个n阶矩阵,称为方程组的系数矩阵,x和b都是n维向量,b称为方程组的右端向量。 2. n阶线性方程组的解 使方程组(1)中每一个方程都成立的一组数x1*,x2*, …,x n*称为式(1)的解,把它记为向量的形式,称为解向量. 3.一些特殊的线性方程组 1) 上三角方程组 2) 三对角方程组 ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - n n nn n n n n n n n n b b b x x x a a a a a a a a a a a a 2 1 2 1 1 1 1 2 1 2 23 22 1 1 1 13 12 11

4.矩阵的Doolittle 分解 5.Doolittle 分解的紧凑格式 6.矩阵的Crout 分解 ????????? ? ??=?????????? ???????????? ? ?--n n n n n n d d d x x x b a c b c b a c b a c b 21 2111333 22211???? ?? ? ? ???????? ??=??????? ??nn n n n n nn n n n n u u u u u u l l l a a a a a a a a a 222 11211 2 1 21 2 1 2222111211111 ???? ?? ? ? ???????? ??=??????? ??11 1 21122 1 2221 11 2 1 2222111211 n n nn n n nn n n n n u u u l l l l l l a a a a a a a a a ????? ?? ? ??nn n n n n n n u l l l u u l l u u u l u u u u 3 2 1 333323122322211131211

相关文档
相关文档 最新文档