文档库 最新最全的文档下载
当前位置:文档库 › 材料力学习题(1)2-6章

材料力学习题(1)2-6章

材料力学习题(1)2-6章
材料力学习题(1)2-6章

材料力学习题

第2章

2-1 试求出图示各杆Ⅰ—Ⅰ截面上的内力。

2-2图示矩形截面杆,横截面上正应力沿截面高度线性分布,截面顶边各点处的正应力均为MPa

100max =σ,底边各点处的正应力均为零。杆件横截面上存在何种内力分量,并确定其大小(C 点为截面形心)。

2-3 试指出图示各单元体表示哪种应力状态。

2-4 已知应力状态如图所示(应力单位为MPa ),试用解析法计算图中指定截面的应力。

2-5 试作应力圆来确定习题2-4图中指定截面的应力。 2-6已知应力状态如图所示(应力单位为MPa ),试用解析法求:(1)主应力及主方向;(2)主切应力及主切平面;(3)最大切应力。

2-7 已知应力状态如习题2-6图所示,试作应力圆来确定:(1)主应力及主方向; (2)主切应力及主切平面;(3)最大切应力。

2-8已知构件内某点处的应力状态为两种应力状态的叠加结果,试求叠加后所得 应力状态的主应力、主切应力。 2-9图示双向拉应力状态,

σ

σσ==y x 。试证明任一斜截面上的正应力均等

于σ,而切应力为零。

2-10 已知K 点处为二向应力状态,过K 点两个截面上的应力如图所示(应力单位为MPa )。试分别用解析法与图解法确定该点的主应力。

2-11 一点处的应力状态在两种坐标系中的表示方法分别如图 a)和b)所示。

试确定未知的应力分量

y y x xy '

''σττ、、的大小与方向。

2-12 图示受力板件,试证明尖角A 处各截面的正应力与切应力均为零。

2-13 已知应力状态如图所示(单位为MPa ),试求其主应力及第一、第二、第三不变量321I

I I 、、。

2-14 已知应力状态如图所示(单位为MPa ),试画三向应力圆,并求主应力、最大正应力与最大切应力。

第3章

3-1 已知某点的位移分量u = A , v = Bx +Cy +Dz , w = Ex 2+Fy 2+Gz 2+Ixy +Jyz +Kzx 。A 、B 、C 、D 、E 、F 、G 、I 、J 、K 均为常数,求该点处的应变分量。

3-2 已知某点处于平面应变状态,试证明2

222,,Bxy y Ax y Bx Axy xy y x +===γεε(其中,

B A 、为任意常数)可作为该点的三个应变分量。

3-3 平面应力状态的点O 处x ε=6×10-4

mm/m ,y ε=4×10

-4

mm/m ,

xy

γ=0;求:1)平面内以y x '

'、方向的线应变;2)以x '与

y '为两垂直线元的切应变;3)该平面内的最大切应变及其与x 轴

的夹角。

3-4 平面应力状态一点处的

x ε= 0,y ε= 0,xy γ=-1×10

-8

rad 。

试求:1)平面内以y x '

'

、方向的线应

变;2)以x '与

y '为两垂直线元的切应

变;3)该平面内的最大切应变及其与

x 轴的夹角。

3-5 用图解法解习题3-3。

3-6 用图解法解习题3-4。

m/m ,

y

ε=2×10-8

m/m ,

xy

γ=1×10-8

3-7 某点处的

x

ε=8×10-8

rad ;分别用图解法和解析法求该点xy 面内的:1)与x 轴夹角为45°方向的线应变和以45°方向为始边的直角的切应变;2)最大线应变的方向和线应变的值。

3-8 设在平面内一点周围任何方向上的线应变都相同,证明以此点为顶点的任意直角的切应变均为零。

3-9 试导出在xy 平面上的正方形微元面,在纯剪状态下切应变

xy

γ与对角线方向

的线应变之间的关系。

3-10 用电阻应变片测得某点在某平面内0°,45°和90°方向的线应变分别为-130×10-6

m/m ,75×

10-6m/m ,130×10-6

m/m ,求该点在该平面内的最大和最小线应变,最大和最小切应变。

3-11 用应变花测出1ε=280×10-6

m/m ,2ε=-30×10-6

m/m ,

4ε=110

×10-6

m/m 。求:1)

3ε的值;2)该平面内最大,最小线应变和最大切应变。

3-12 已知

1ε=-100×10

-6

m/m ,

2ε=720×10

-6

m/m ,3ε

=630×10-6

×

10-6m/m ,求该平面内的最大线应变。

3-13 已知

x ε=-360×10

-6

m/m ,

y ε=0,xy γ=150×10

-6

rad ,求

坐标轴x ,y 绕z 轴转过θ=-30°时,

新的应变分量

y x y x '

'''γεε、、。

3-14 已知

x ε=-64×10

-6

m/m ,

y ε=360×10

-6

m/m ,

xy

γ=160×10-6

rad ,求坐标轴x ,

y 绕z 轴转过

25-=θ时,新的应变分量y x y x ''''γεε、、。

3-15 已知1ε=480×10-6

m/m ,2ε=-120×10-6

m/m ,3ε=80×10-6

m/m ,求x ε。

3-16 证明应变花的应变满足c εεεε3321

=++。c ε为应变圆圆心的横坐标。

3-17 已知1)

x

ε=-0.00012m/m ,

y

ε=0.00112m/m ,

xy

γ=0.00020rad ;2)

x

ε=0.00080m/m ,

y ε=-0.00020m/m ,xy γ=-0.00080rad ,试求最大最小线应变及其方向。

3-18 在直角应变花的情况下,证明

?

??

??

??????---=-+-±+=900900452

90452450900min max 22tan 2

)()(2εεεεεαεεεεεεεεε

3-19 图示等角应变花,证明

?

?????????????---=

-+-+-±++=120600120602

01202120602600120600min max 2)

(32tan )()()(3

2

3εεεεεαεεεεεεεεεεεε

第4章

习 题

4-1 图示硬铝试样,厚度δ =2mm ,试验段板宽b = 20mm ,标距l =70mm 。在轴向拉力F = 6kN

的作

用下,测得试验段伸长? l =0.15mm,板宽缩短?b =0.014mm,试计算硬铝的弹性模量E与泊松比v。

习题4-1图

4-2一板状拉伸试件如图所示。为了测定试件的应变,在试件的表面贴上纵向和横向电阻丝片。在测定过程中,每增加3kN的拉力时,测得试件的纵向线应变ε1=120×10-6 和横向线应变ε2 = -38×10-6。求试件材料的弹性模量和泊松比。

4-3一钢试件,其弹性模量E = 200Gpa,比例极限σp=200MPa,直径d=10mm。用标距为l 0=100mm 放大倍数为500的引伸仪测量变形,试问:当引伸仪上的读数为25mm时,试件的应变、应力及所受载荷各为多少?

习题4-2 图习题4-3图4-4某电子秤的传感器为一空心圆筒形结构,如图所示。圆筒外径为

D=80mm,厚度δ =9mm,材料的弹性模量E=210Gpa。设沿筒轴线作用重物后,

测得筒壁产生的轴向线应变ε= -47.5×10-6,试求此重物的重量F。

4-5某构件一点处于平面应力状态,该点最大切应变γmax = 5×10-4,并

已知两互相垂直方向的正应力之和为27.5MPa。材料的弹性常数E=200GPa,

v =0.25。试计算主应力的大小。(提示:σn+σn+90?=σx+σy=σ′+σ")习题4-4图4-6求图示单元体的体积应变θ、应变比能e和形状应变比能e f。设E=200Gpa,v=0.3。(图中应力单位为MPa)

4-7下列图示的应力状态(图中应力的量纲为MPa)中,哪一应力状态只引起体积应变?哪一应力状态只引起形状应变?哪一应力状态既引起体积应变又引起形状应变?

4-8 试证明对于一般应力状态,若应力应变关系保持线性,则应变比能

)(21)](2[212

22222zx yz xy x z z y y x z y x G v E e τττσσσσσσσσσ+++++-++=

4-9 刚性足够大的块体上有一个长方槽(见图),将一个1×1×1cm 3

的铝块置于槽中。铝的泊松比v =0.33,弹性模量E =70GPa ,在钢块的顶

面上作用均布压力,其合力F = 6kN 。试求钢块内任意一点的三个主应力。

4-10 试求图示正方形棱柱体在下列两种情况下的主应力。

(1)棱柱体自由受压;(2)棱柱体放在刚性方模内受压,弹性常数E ,v 均为已知。

4-11 图示矩形板,承受正应力σx 与σy 作用,试求板厚的改变量

?δ。已知板件厚度δ =10mm ,宽度b =800mm ,高度h =600mm ,正应力σx =80MPa ,σy = -40MPa ,材料为铝,弹性模量E =70Gpa ,泊松比v =0.33。

4-12 已知微元体处于平面应力状态,σx = 100MPa ,σy = 80MPa ,τ xy = 50MPa ,E = 200Gpa ,v =0.3。

试求ε30?。

习题4-10图 习题4-11图 习题4-12图

第5章

5–1 试求图示各杆1-1、2-2、3-3截面上的轴力。

5–2 一等直杆的横截面面积为A ,材料的单位体积质量为ρ,受力如图所示。若gaA F ρ10=,试考虑杆的自重时绘出杆的轴力图。

5–3 图示边长a =10mm 的正方形截面杆,CD 段的槽孔宽度d =4mm ,试求杆的最大拉应力和最大压

应力。已知F 1=1kN ,F 2=3kN ,F 3=2kN 。

5–4 桅杆起重机,起重杆AB 为无缝钢管,横截面尺寸如图所示。钢丝绳CB 的横截面面积为10mm 2。

试求起重杆AB 和钢丝绳CB 横截面上正应力。

5–5 图示杆所受轴向拉力F =10kN ,杆的横截面面积A =100mm 2。以α表示斜截面与横截面的夹角,

试求

906045300、、、、

=α时各斜截面上的正应力和切应力。 5-6 变截面杆所受外力如图所示。两段截面直径分别为d 1=40mm 、d 2=20mm ,已知此杆的τmax =40MP a 。

试求拉力F 。

5-7 长为l 、内径d =500mm 、壁厚δ=5mm 的薄壁圆筒,受压强p =2MPa 的均匀内压力作用。试求圆筒过直径的纵向截面上的拉应力。

5–8 在图示结构中,钢拉杆BC 的直径为10mm ,试求此杆的应力。由BC 连接的1和2两部分可视为刚体。

5–9 同一根杆,两端外力作用的方式不同,如图中a)、b)、c)所示。试问截面1-1、2 -2的应力分布情况是否相同?为什么?

5–10 等直杆所受的外力如图所示。杆的横截面面积A和材料的弹性模量E及l、F均已知,试求杆自由端B的位移。

5–11 长为l的变截面杆,如图所示。左右两端的直径分别为d1、d2,杆只在两端作用着轴向拉力F,

材料的弹性模量为E,试求杆的总伸长。

5–12图示结构,AB为刚性杆,AC、BD杆材料相同E=200GPa,横截面面积皆为A=1cm2,力F=20kN,求AC 、BD杆的应力及力的作用点G的位移。

5–13 图示杆,全杆自重w=20kN,材料的弹性模量E=50GPa,已知杆的横截面面积A=1cm2,杆长l=2m,力F=20kN,计算在自重和载荷作用下杆的变形。

5–14 图示结构中,1、2两杆的直径分别为10mm和20mm,若AB、BC两横杆皆为刚杆,试求1、2杆内的应力。

5–15 三角架如图所示。斜杆AB由两根80?80?7等边角钢组成,杆长l=2m,横杆AC由两根10号槽钢组成,材料均为Q235钢,弹性模量E=200GPa,α=30o,力F=130kN。求节点A的位移。

5–16 打入粘土的木桩长l=12m ,上端荷载F =420kN ,设载荷全由摩擦力承担,且沿木桩单位长度的

摩擦力f 按抛物线f=Ky 2

变化, K 是常数。木桩的横截面面积A=640cm 2,弹性模量E =10Gpa ,试确定常数K ,并求木桩的缩短量。

5–17 等直杆所受外力及几何尺寸如图所示。杆的横截面面积为A ,两端固定。求杆的最大拉应力应力和最大压应力。

5–18 图示结构,AB 为刚性横梁,1、2两杆材料相同,横截面面积皆为A =300mm 2。载荷F =50kN ,

求1、2杆横截面的应力。

5–19 平行杆系1、2、3,悬吊着刚性横梁AB 。在横梁上作用着载荷F ,三杆的横截面面积A 、长度l 、弹性模量E 均相同。试求各杆横截面的应力。

5–20 图示桁架结构,杆1、2、3分别用铸铁、铜和钢制成,弹性模量分别为E 1=160GPa 、E 2=100GPa 、

E 3=200GPa ,横截面面积A 1= A 2= A 3=100mm 2

。载荷F =20kN 。试求各杆横截面的应力。

5–21 图示结构,各杆的横截面面积、长度、弹性模量均相同,分别为A 、l 、E ,在节点A 处受铅垂

方向载荷F 作用。试求节点A 的铅垂位移。

5–22 埋入合成树脂的玻璃纤维如图所示。求温度从–10oC 升至30oC 时在玻璃纤维中产生的拉应力。已知升温时玻璃纤维与合成树脂完全密接。玻璃纤维及合成树脂的横截面面积分别为A 及50A ,线膨胀系数分别为8×10–61/oC 及20×10–61/oC ,弹性模量分别为70GPa 及4Ga 。

5–23 图示结构中的三角形板可视为刚性板。1杆(长杆)材料为钢、2杆(短杆)材料为铜,两杆的横截面面积分别为A 1= 10cm 2,A 2=20cm 2,当F =200kN ,温度升高20oC 时,求1、2杆横截面的应力。(钢、

铜材料的弹性模量与线膨胀系数分别为E 1=200GPa ,1α=12.5×10–61/oC ;E 2=100 GPa ,2α=16×10–61/oC )。

5–24 一刚性梁放在三根混凝土支柱上如图所示。各支柱的横截面面积皆为400cm 2,弹性模量皆为14GPa 。未加载荷时,中间支柱与刚性梁之间有δ=1.5mm 的空隙。试求当载荷F =720kN 时各支柱内的应力。

5–25 图示桁架结构,由于制造误差使BC 杆比原设计短了δ,试求装配后各杆的应力。已知各杆的弹性模量E 、横截面面积A 均相同。AB=AD=AE=l 。

5–26 图中杆OAB 可视为不计自重的刚体。AC 与BD 两杆材料、尺寸均相同,A 为横截面面积,

E 为弹性模量,α为线膨胀系数,图中a 及l 均已知。试求当温度均匀升高C T

?时,杆AC 和BD 内

的温度应力。

5–27 长为l 、横截面面积为A 的匀质等截面杆,两端分别受F 1和F 2作用(F 1

5–28 平均直径为D 的薄壁圆环,以匀角速度ω绕通过圆心且垂直于圆环平面的轴转动。若圆环材料

的单位体积质量为ρ,弹性模量为E ,试求圆环的动应力及平均直径D 的改变量。

5–29 重W 的钢球装在长为l 的转臂的端部,以等角速度ω在光滑水平面上绕O 旋转。若转臂的抗拉刚度为EA ,试求转臂的总伸长(不计转臂的质量)。

第6章

6-1作图示各杆的扭矩图。

6-2如图,轴的转速为450rpm,最大切应力为45MPa,试求轴传递的功率。

6-3画出各杆横截面上的切应力分布图。

6-4直径50mm的圆轴,扭矩2.15kN·m,求在距离横截面中

心10mm处的切应力,并求横截面上最大切应力。

6-5实心轴和空心轴通过牙嵌式离合器连接在一起,已知

轴的转速n=100rpm,传递功率P=7.5KW,最大切应力为

40MPa,试选择实心轴直径d1和内外径之比为1/2的

空心轴外径D2。

6-6用横截面ABE,CDF和包含轴线的纵向面ABCD从受扭圆轴(图a)中截出一部分如图b所示,根据切应力互等定理,纵向截面上的切应力τ′将产生一个力偶矩,试问这个力偶矩与这一截出部分上的哪个力偶矩平衡?

6-7 直径50mm的钢圆轴,其横截面上的扭矩T=1.5KN·m,求横截面上的最大切应力。

6-8圆轴的直径d= 50mm ,转速为120rpm ,若该轴横截面上的最大切应力等于60MPa ,问所传递的功率是多少kW?

6-9圆轴的粗段外径为100mm ,内径为80mm ,细段直径为80mm ,在轮A处由电动机带动,输入

功率P1=150kW,在轮B ,C处分别负载P2=75kW,P3=75kW ,已知轴的转速为300rpm。

1)作扭矩图;

2)求该空心轴及实心轴的最大切应力。

6-10一直径为d=50mm的圆轴,其两端受力矩为1kN·m的外力偶作用而发生扭转,轴材料的切变模量G=8 ×104MPa.试求:1.横截面上ρA=d/4处的切应力和切应变;2. 最大切应力和和单位长度扭转角。

6-11材料相同的一根空心圆轴和一根实心圆轴.它们的横截面面积相同,扭矩相同,试分别比较这两根轴的最大切应力和单位长度扭转角。

6-12一电机轴的直径d= 40mm ,转速n=1400rpm ,功率为30kW ,.切变模量G=8×104MPa。试求此轴的最大切应力和单位长度扭转角。

6-13空心圆轴的外径D=100mm ,内径d=50mm ,已知间距为L=2.7m的两横截面的相对扭转角Ф=1.8°,材料的切变模量G = 80GPa ,求:1.轴内最大切应力;2.当轴以n=80rpm的速度旋转时,轴传递的功率。

6-14全长为L,两端面直径分别为d1,d2的圆锥形杆,其两端各受一矩为M的集中力偶作用,试求杆

的总扭转角。

6-15 一根轴转速360rpm,传递功率150kW,切变模量80GPa,设计其直径,使切应力不超过50MPa,并且在2.5m长度内扭转角不超过3°。

6-16图示矩形截面杆受M=3kN·m的一对外力偶作用,材料的切变模量G=80GPa。求:1.杆内最大切应力的大小,位置和方向;2.横截面短边中点的切应力;3.单位长度扭转角。

6-17图示一个T形薄壁截面杆,长L=2m,在两端受扭转

G=8×104MPa求此杆在自由扭转时的最大切应力及扭转

角。

6-18图示一等厚闭口薄壁杆,两端受扭转力偶作用,杆的最大切应力为60MPa.求:1.确定其扭转力偶

矩;2.若在杆上沿母线切开一条缝,试问开口后扭转力偶矩是多少?

材料力学第二章计算题

1. 杆系结构如图所示,已知杆AB 、AC 材料相同,[]160=σMPa ,横截面积分别为 9.706=1A mm 2,314=2A mm 2,试确定此结构许可载荷[P ]。(15分) 2. 在图示直径为d=10mm 的等直圆杆,沿杆件轴线作用F1、F2、F3、F4。已知:F1=6kN ,F2=18kN ,F3=8kN ,F4=4kN ,弹性模量E=210GPa 。试求各段横截面上的轴力及作轴力图并求杆的最大拉应力及压应力。 3.图示吊环,载荷F=1000KN ,两边的斜杆均由两个横截面为矩形的钢杆构成,杆的厚度和宽度分别为b=25mm ,h=90mm ,斜杆的轴线与吊环对称,轴线间的夹角为а=200 。钢的许用应力[б]=120Mpa 。试校核斜杆的强度。 4.钢质圆杆的直径d=10mm,F=5kN,弹性模量E=210GPa ,试作轴力图并求杆的最大正应力。 5.图示板状硬铝试件,中部横截面尺寸a =2mm ,b =20mm 。试件受轴向拉力P =6kN 作

用,在基长l =70mm 上测得伸长量?l =0.15mm ,板的横向缩短?b =0.014mm 。试求板材料的弹性模量E 及泊松比。 6.钢制直杆,各段长度及载荷情况如图。各段横截面面积分别为A 1=A 3=300mm 2,A 2=200mm 2。材料弹性模量E =200GPa 。材料许用应力[σ]=210MPa 。试作杆的轴力图并校核杆的强度。 7.图示钢杆的横截面面积为2 200mm A =,钢的弹性模量GPa E 200=,求各端杆的应变、伸长及全杆的总伸长 。 8.等截面实心圆截面杆件的直径d=40mm ,材料的弹性模量E=200GPa 。AB =BC =CD =1m ,在B 、C 、D 截面分别作用有P 、2P 、2P 大小的力,方向和作用线如图所示,P=10KN 。①做此杆件的轴力图;②求此杆件内的最大正应力;③求杆件C 截面的铅垂位移。 1m 1m 1m 3kN 7kN 6kN C B A D 2m 4m B A C q=5kN/m

工程材料力学性能-第2版课后习题答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 4、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 5、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 6、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。

材料力学习题册答案-第2章-拉压

第二章 轴向拉压 一、 选择题 1.图1所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D ) A.平动 B.转动 C.不动 D.平动加转动 2.轴向拉伸细长杆件如图2所示,则正确的说法是 ( C ) A.1-1、2-2面上应力皆均匀分布 B.1-1、2-2面上应力皆非均匀分布 C. 1-1面上应力非均匀分布,2-2面上应力均匀分布 D.1-1 面上应力均匀分布,2-2面上应力非均匀分布 F P P 1 1 2 2 图1 图2 3.有A 、B 、C 三种材料,其拉伸应力-应变实验曲线如图3所示,曲线( B )材料的弹性模量E 大,曲线( A )材料的强度高,曲线( C )材料的塑性好。 A B C 图3 ε σ B A C 图4 p α h b a 图5 4.材料经过冷却硬化后,其( D )。 A .弹性模量提高,塑性降低 B .弹性模量降低,塑性提高 C .比利极限提高,塑性提高 D .比例极限提高,塑性降低 5.现有钢铸铁两种杆件,其直径相同。从承载能力与经济效益两个方面考虑,图4所示结构中两种合理选择方案是( A )。 A .1杆为钢,2 杆为铸铁 B .1杆为铸铁,2杆为钢 C .2杆均为钢 D .2杆均为铸铁 6.如图5所示木接头,水平杆与斜杆成角,其挤压面积A 为( A )。 A .bh B .bh tg C .bh/cos D .bh/(cos -sin ) 7.如图6所示两板用圆锥销钉联接,则圆锥销钉的受剪面积为( C ),计算挤压面积为 ( D ) A . B . C . D (3d+D )

二、填空题 1.直径为d 的圆柱体放在直径为D =3d ,厚为t 的圆基座上,如图7所示低级对基座的支反力均匀分布,圆柱承受轴向压力P ,则基座剪切面的剪力 。 F F h h D d 图6 P d t D 图7 2.判断剪切面和挤压面应注意的是:剪切面是构件的两部分有发生 相对错动 趋势的平面;挤压面是构件 相互挤压 的表面。 三、试画下列杆件的轴力图 2 3 1 1 2 F F F F 3 + -解: 2KN 1 1 2 2 3 3 18KN 3KN 25KN 10KN + -15KN 10KN 解: 四、计算题 1.作出图示等截面直杆的轴力图,其横截面积为,指出最大正应力发生的截面,并计 算相应的应力值。 4KN 10KN 11KN 5KN A B C D 解:+ + -轴力图如下: 4KN 5KN

材料力学第二章习题【含答案】

浙江科技学院2015-2016学年第一学期考试试卷 A 卷 考试科目材料力学考试方式闭完成时限 2 小时拟题人陈梦涛审核人批准人2015 年9 月17 日建工学院2014年级土木工程专业 一、单项选择题(每小题3分,计30分) 1. 对于塑性材料来说,胡克定律(Hooke's law)使用的范围是。 A.p σσ <; B. p σσ >; C. s σσ <; D. s σσ > 2.实心圆截面杆直径为D,受拉伸时的绝对变形为mm l1 = ?。仅当直径变为2D时,绝对变形l?为。 、 A.1mm B.1/2 mm C.1/4 mm D.2mm 3. 下列有关受压柱截面核心的说法中,正确的是。 A.当压力P作用在截面核心内时,柱中只有拉应力。 B.当压力P作用在截面核心内时,柱中只有压应力。 C.当压力P作用在截面核心外时,柱中只有压应力。 D.当压力P作用在截面核心外时,柱中只有拉应力。 4. 构件的强度、刚度和稳定性。 A.只与材料的力学性质有关; B.只与构件的形状尺寸关; C.与二者都有关; D.与二者都无关。 5. 如右图所示,设虚线表示为单元体变形后的形状,则该单元体的剪 应变为。 A. α; B.π/2-α; C.π/2-2α; α 6. 图示一杆件的拉压刚度为EA,在图示外力作用下其 应变能U的下列表达式是。 7.应力-应变曲线的纵、横坐标分别为σ=FN /A,ε=△L / L,其中。 和L 均为初始值;和L 均为瞬时值; 为初始值,L 为瞬时值;为瞬时值,L 均为初始值。 8. 设一阶梯形杆的轴力沿杆轴是变化的,则发生破坏的截面上。 A.外力一定最大,且面积一定最小; B.轴力一定最大,且面积一定最小; # C.轴力不一定最大,但面积一定最小; D.轴力与面积之比一定最大。 9. 图示拉杆的外表面上画有一斜线,当拉杆受力变形时,斜线将 发生。 。 题5图 题6图 题9图

材料力学计算题库

第一章绪论 【例1-1】钻床如图1-6a所示,在载荷P作用下,试确定截面m-m上的内力。 【解】(1)沿m-m 截面假想地将钻床分成两部分。取m-m 截面以上部分进行研究(图1-6b),并以截面的形心O为原点。选取坐标系如图所示。 (2)为保持上部的平衡,m-m 截面上必然有通过点O的内力N和绕点O的力偶矩M。 (3)由平衡条件 ∴ 【例1-2】图1-9a所示为一矩形截面薄板受均布力p作用,已知边长=400mm,受力后沿x方向均匀伸长Δ=0.05mm。试求板中a点沿x方向的正应变。 【解】由于矩形截面薄板沿x方向均匀受力,可认为板内各点沿x方向具有正应力与正

应变,且处处相同,所以平均应变即a 点沿x 方向的正应变。 x 方向 【例1-3】 图1-9b 所示为一嵌于四连杆机构内的薄方板,b=250mm 。若在p 力作用下CD 杆下移Δb=0.025,试求薄板中a 点的剪应变。 【解】由于薄方板变形受四连杆机构的制约,可认为板中各点均产生剪应变,且处处相同。 第二章 拉伸、压缩与剪切 【例题2.1】 一等直杆所受外力如图2. 1 (a)所示,试求各段截面上的轴力,并作杆的轴力图。 解:在AB 段范围内任一横截面处将杆截开,取左段为脱离体(如图2. 1 (b)所示),假定轴力N1F 为拉力(以后轴力都按拉力假设),由平衡方程 0x F =∑,N1300F -= 得 N130kN F = 结果为正值,故N1F 为拉力。 同理,可求得BC 段内任一横截面上的轴力(如图2. 1 (c)所示)为 N2304070(kN)F =+= 在求CD 段内的轴力时,将杆截开后取右段为脱离体(如图2. 1 (d)所示),因为右段杆上包含的外力较少。由平衡方程 0x F =∑,N330200F --+=

第二章 金属材料力学性能基本知识及钢材的脆化

金属材料力学性能基本知识 及钢材的脆化 金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料,这不仅是由于其来源丰富,生产工艺简单、成熟,而且还因为它具有优良的性能。 通常所指的金属材料性能包括以下两个方面: 1.使用性能即为了保证机械零件、设备、结构件等能正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等),化学性能(耐蚀性、热稳定性等)。使用性能决定了材料的应用范围,使用安全可靠性和使用寿命。 2 工艺性能即材料在被制成机械零件、设备、结构件的过程中适应各种冷、热加工的性能,例如锻造,焊接,热处理,压力加工,切削加工等方面的性能。工艺性能对制造成本、生成效率、产品质量有重要影响。 1.1材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当外力达到或超过某一限度时,材料就会发生变形以至断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。锅炉压力容器材料的力学性能指标主要有强度、硬度、塑性、韧性等这些性能指标可以通过力学性能试验测定。 1.1.1强度 金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测 出。把一定尺寸和形状的金属试样(图1~2)装夹在试验机上,然后对试样逐渐施加拉伸载荷,直至把试样拉断为止。根据试样在拉伸过程中承受的载荷和产生的变形量之间的关系,可绘出该金属的拉伸曲线(图1—3)。在拉伸曲线上可以得到该材料强度性能的一些数据。图1—3所示的曲线,其纵坐标是载荷P(也可换算为应力d),横坐标是伸长量AL(也可换算为应变e)。所以曲线称为P—AL曲线或一一s曲线。图中曲线A是低碳钢的拉伸曲线,分析曲线A,可以将拉伸过程分为四个阶段:

工程力学--材料力学(北京科大、东北大学版)第4版第二章习题答案

第二章 习题 2-1 一螺栓连接如图所示,已知P=200 kN, =2 cm,螺栓材料的许用切应力[τ]=80Mpa,试求螺栓的直径。 2-2 销钉式安全离合器如图所示,允许传递的外力偶距 m=10kN·cm,销钉材料的剪切强度极限=360 Mpa,轴的直径D=30 mm,为保证m>30000 N·cm 时销钉被剪切断,求销钉的直径 d。

2-3 冲床的最大冲力为400 kN,冲头材料的许用应力[σ]=440 Mpa,被冲剪钢板的剪切强度极限=360 Mpa。求在最大冲力作用 下所能冲剪圆孔的最小直径D和钢板的最大厚度。 2-4 已知图示铆接钢板的厚度=10 mm,铆钉的直径为[τ]=140 Mpa,许用挤压应力[]=320 Mpa,P=24 kN,试做强度校核。2-5 图示为测定剪切强度极限的试验装置。若已经低碳钢试件的直径D=1 cm,剪断试件的外力P=50.2Kn,问材料的剪切强度极 限为多少? 2-6一减速机上齿轮与轴通过平键连接。已知键受外力P=12 kN,所用平键的尺寸为b=28 mm,h=16 mm,l=60 mm,键的许用应力[τ]=87 Mpa,[]=100 Mpa。试校核键的强度。

2-7图示连轴器,用四个螺栓连接,螺栓对称的安排在直径D=480 mm的圆周上。这个连轴结传递的力偶矩m=24 kN·m,求螺 栓的直径d需要多大?材料的许用切应力[τ]=80 Mpa。 (提示:由于对称,可假设个螺栓所受的剪力相等) 2-8 图示夹剪,销子C的之间直径为0.6 cm,剪直径与销子直径相同的铜丝时,若力P=200 N,a=3 cm,b=15 cm,求铜丝与销子横截面上的平均切应力。

材料力学性能复习重点汇总

第一章 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素 与以下三个方面相联系的因素都会影响到屈服强度 位错增值和运动 晶粒、晶界、第二相等 外界影响位错运动的因素 主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构)

单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。)2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系: 霍尔-派奇(Hall-Petch) σs= σi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化) 不可变形第二相 提高位错线张力→绕过第二相→留下位错环→两质点间距变小→流变应力增大。 不可变形第二相 位错切过(产生界面能),使之与机体一起产生变形,提高了屈服强度。 弥散强化:

材料力学第二章备课学案

2.1轴向拉压的概念和实例 杆件轴向拉压弯剪扭组成了各种工程实际问题。 轴向拉压特点: 外力特征:外力或其合力作用线沿杆件轴线 变形特征:拉伸变形,轴线方向伸长,横向尺寸缩短; 压缩变形,轴线方向缩短,横向尺寸增大。 通过几个题目,例子来表现轴力,必须要沿轴线 2.2拉伸与压缩时杆横截面上的内力和应力 1.轴力:通过横截面形心并沿杆件轴线的内力 符号规定:拉力为正, 压力为负。 注意:同一位置左、右侧截面内力分量必须具有相同的正负号。 截面法求内力(轴力):分二,留一,内力代弃,内外平衡,求内力。 举例,作杆件的内力图,画轴力图。 画轴力图注意事项: 1、两个力的作用点之间轴力为常量; 2、轴力只随外力的变化而变化;与材料变化,截面变化均无关; 3、只有沿轴线方向的外力才产生轴力; 4、x轴永远与轴线平行,且用外力的作用点将x轴分段; 5、每一次求内力时必须严格用截面法;且在整个杆件上分二留一; 轴向拉压时横截面上的应力 问题:已知轴力的大小,是否就可以判定构件是否发生破坏? 1.正应力和切应力 应力p 的法向分量-正应力σ 应力p 的切向分量-切应力τ 2.拉压杆横截面上的应力 试验观察:横线仍为直线;仍垂直于杆轴;横线间距增大。 变形后,横截面仍保持平面,仍与杆轴垂直,仅沿杆轴相对平移——平截面假设 正应力公式:横截面上各点处仅存在正应力,并沿横截面均匀分布。 拉压杆斜截面上的应力: 斜截面上的应力均匀分布: 最大正应力发生在杆件横截面上,其值为σ0 最大切应力发生在杆件45°斜截面上, 其值为σ0/2 正负符号规定:以x 轴为始边,逆时针转向者为正;斜截面外法线On沿顺时针方向旋转90。,与该方向同向之切应力为正。 1、只适用于轴向拉伸与压缩杆件,即外力的合力作用线与杆件的轴线重合。 2、只适用于离杆件受力区域稍远处的横截面 3、横截面沿轴线变化,但变化缓慢,外力作用线与轴线重合 力作用于杆端的方式不同,但只会使与杆端距离不大于杆的横向尺寸的范围内受到影响一些例题 O 20 ≤ α α σ σ α 2 cos =α σ τ α 2 sin 2 =

材料力学第二章计算题

1.杆系结构如图所示,已知杆AB、AC材料相同,丨-160 MPa,横截面积分别为 A i = 706.9 mm2,A2=314 mm2,试确定此结构许可载荷[P]。(15分) 2. 在图示直径为d=10mm的等直圆杆,沿杆件轴线作用F1、F2、F3、F4。已知:F仁6kN, F2=18kN, F3=8kN, F4=4kN,弹性模量E=210GPa试求各段横截面上的轴力及作轴力图并求杆的最大 ________ 拉应力及压应力。 3?图示吊环,载荷F=1000KN两边的斜杆均由两个横截面为矩形的钢杆构成,杆的厚度和宽度分别为b=25mm h=90mm斜杆的轴线与吊环对称,轴线间的夹角为 a =20°。钢的许用应力[6 ]=120Mpa。试校核斜杆的强度。 4.钢质圆杆的直径d=10mm,F=5kN,弹性模量E=210GPa试作轴力图并求杆的最大正应力。 5.图示板状硬铝试件,中部横截面尺寸a= 2mm , b = 20mm。试件受轴向拉力P = 6kN作

用,在基长I = 70mm 上测得伸长量 =1 = 0.15mm ,板的横向缩短 =b = 0.014mm 。试求板材 料的弹性模量E 及泊松比。 6 ?钢制直杆,各段长度及载荷情况如图。各段横截面面积分别为 =200mm 2。材料弹性模量 E = 200GPa 。材料许用应力[tr ]= 210MPa 。试作杆的轴力图 并校核杆的强度。 2 7.图示钢杆的横截面面积为 A =200mm ,钢的弹性模量E =200GP a ,求各端杆的应变、 伸长及全杆的总伸长 。 &等截面实心圆截面杆件的直径 d=40mm ,材料的弹性模量 E=200GPa 。AB = BC = CD = 1m ,在 B 、 C 、 D 截面分别作用有 P 、2P 、2P 大小的力,方向和作用线如图所示, P=10KN 。 ①做此杆件的轴力图;②求此杆件内的最大正应力;③求杆件 C 截面的铅垂位移。 9.图示为一轴心受力杆,横截面面积 A A B =A CD = 400mm, A Bc = 200mmo 材料的弹性模量 E=2 X 105MPa 求(1)杆各段横截面上的轴力;(2)杆端D 点的水平位移。 10 .角架受力如图所示。已知夹角为60度.F=20kN,拉杆BC 采用Q235圆钢,[匚钢]=140MPa, 压杆AB 采用横截面为正方形的松木,[■::木]=10MPa ,试用强度条件选择拉杆 BC 的直径d 和 压杆AB 的横截面边长a 。 2 A 1 = A 3 = 300mm , A 2 6 k N 7kN A E } C : [ 1m ■ *1 3kN q=5kN/m B C 4m 2m a 20k N

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、 解释下列名词。 2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落 后于应力的现象。 3?循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4?包申格效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规 定残余伸长应力降低的 现象。 11. 韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆 性断裂,这种现象称 为韧脆转变 2、 说明下列力学性能指标的意义。 答:E 弹性模量G 切变模量 r 规定残余伸长应力 0.2屈服强度 gt 金属材料拉伸时最大应力下的总伸长率 n 应 变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但 是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏 感。【P4】 4、 现有4 5、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么? 选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可 降低成本,提高生产效率。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程 中不断地消耗能量;而脆性断裂是突然发生的断裂, 断裂前基本上不发生塑性变形, 没有明显征兆,因而危害性很大。 6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形 态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源? 断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也 与裂纹扩展方向平行,其尖端指向裂纹源。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1 )应力状态软性系数—— 材料或工件所承受的最大切应力T max 和最大正应力(T max 比值,即: (3)缺口敏感度一一缺口试样的抗拉强度 T bn 的与等截面尺寸光滑试样的抗拉强度 T b 的比值,称为缺口敏感度,即:【P47 P55】 max 1 3 max 2 1 0.5 2 3 【新书P39旧书P46】

思考题2015年材料力学性能(重点标黄)

和。 4.滞弹性是指材料在范围内快速加载或卸载后,随时间延长产生附加 单向静拉伸时实验方法的特征是、、必须确定的。 .韧度是衡量材料韧性大小的力学性能指标,其中又分为、 和。 12.在α值的试验方法中,正应力分量较大,切应力分量较小,应力状态较硬。一般用于塑性变形抗力与切断抗力较低的所谓塑性材料试验;在α值的试验方法中,应力状态较软,材料易产生塑性变形,适用于在单向拉伸时容易发生脆断而不能充分反映其塑性性能的所谓脆性材料; 13.材料的硬度试验应力状态软性系数,在这样的应力状态下,几乎所有金属材料都能产生。 14. 硬度是衡量材料软硬程度的一种力学性能,大体上可以分为 、和三大类;在压入法中,根据测量方式不同又分为 、和。 15. 国家标准规定冲击弯曲试验用标准试样分别为试样 和试样,所测得的冲击吸收功分别用

22. 应力状态软性系数:用试样在变形过程中的测得 和的比值表示。 23.微孔聚集型断裂是包括微孔、直至断裂的过程。 24.缺口试样的与等截面光滑试样的的比值。称为“缺口敏感度”。 25.机件在冲击载荷下的断口形式仍为、和。 26.包申格应变是在给定应力下,正向加载和反向加载两曲线之间的应变差。 27.由于缺口的存在,在载荷作用下,缺口截面上的应力状态将发生变化的现象,被称为“缺口效应”。 28. 洛氏硬度是在一定的实验力下,将120o角的压入工件表面,用所得的来表示材料硬度值的工艺方法。 28.低温脆性是随的下降,材料由转变为的现象。 29. 缺口敏感性是指材料因存在缺口造成的状态和而变脆的 疲劳条带是疲劳断口的特征,贝纹线是断口的特征。 34. 金属材料的疲劳过程也是裂纹的和过程。 35.金属材料抵抗疲劳过载损伤的能力,用或表示。 36.金属在和特定的共同作用下,经过一段时间后所发生的 现象,成为应力腐蚀断裂。 37.应力腐蚀断裂的最基本的机理是和。 38.由于氢和应力的共同作用而导致金属材料产生脆性断裂的现象叫 钢的氢致延滞断裂过程可分为、、三个阶 按磨损模型分为:、、、五大类。 44.韧窝是微孔聚集型断裂的基本特征。其形状视应力状态不同分为下列、、三类。其大小决定于第二相质点的、基体材料的和以及外加应力的大小和形状。

材料力学 中国建筑工业出版社第二章 轴向拉压习题答案

2-1a 求图示各杆指截面的轴力,并作轴力图。 (c ') (e ') (d ') N (kN) 20 5 45 5 (f ') 解:方法一:截面法 (1)用假想截面将整根杆切开,取截面的右边为研究对象,受力如图(b)、(c)、(d)、(e)所示。列平衡方程求轴力: (b) 图:)(20020011 拉kN N N X =→=-→=∑ (c) 图:)(5252002520022 压kN N N X -=-=→=--→=∑ (d) 图:)(455025200502520033 拉kN N N X =+-=→=-+-→=∑ (e) 图: )(540502520040502520044 拉kN N N X =-+-=→=--+-→=∑ (2)杆的轴力图如图(f )所示。 方法二:简便方法。(为方便理解起见,才画出可以不用画的 (b ‘)、(c ‘)、(d ‘)、(e ‘) 图,作题的时候可用手蒙住丢弃的部份,并把手处视为固定端) (1)因为轴力等于截面一侧所有外力的代数和:∑= 一侧 F N 。故: )(201拉kN N = )(525202压kN N -=-=

)(455025203拉kN N =+-= )(5405025204拉kN N =-+-= (2)杆的轴力图如图(f ‘)所示。 2-2b 作图示杆的轴力图。 (c)图: (b)图: (3)杆的轴力图如图(d )所示。 2-5 图示两根截面为100mm ⅹ100mm 的木柱,分别受到由横梁传来的外力作用。试计算两柱上、中、下三段的应力。 (b) (c) (d) (f) 题2-5 - N图(kN) 6 108.5 N图(kN) 3 2 6.5- 解:(1)梁与柱之间通过中间铰,可视中间铰为理想的光滑约束。将各梁视为简支梁或外伸梁,柱可视为悬臂梁,受力如图所示。列各梁、柱的平衡方程,可求中间铰对各梁、柱的约束反力,计算结果见上图。 (2)作柱的轴力图,如(e)、(f)所示。 (3)求柱各段的应力。 解:(1)用1-1截面将整个杆切开,取左边部分为研究对象;再用x -x 截面整个杆切开,取右边部分为研究对象,两脱离体受力如图(b)、(c),建立图示坐标。 (2)列平衡方程求杆的轴力 P N 图 (d) 题2-2b () 2/0)(0011l x P N P N X <<=→=-→=∑拉() 2/32/))(2/(0)2/(0l x l l x q N N l x q X x x <<-=→=--→=∑拉

《材料力学》第2章_轴向拉(压)变形_习题解

第二章 轴向拉(压)变形 [习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。 (a ) 解:(1)求指定截面上的轴力 F N =-11 F F F N -=+-=-222 (2)作轴力图 轴力图如图所示。 (b ) 解:(1)求指定截面上的轴力 F N 211=- 02222=+-=-F F N (2)作轴力图 F F F F N =+-=-2233 轴力图如图所示。 (c ) 解:(1)求指定截面上的轴力 F N 211=- F F F N =+-=-222 (2)作轴力图 F F F F N 32233=+-=- 轴力图如图所示。 (d ) 解:(1)求指定截面上的轴力 F N =-11 F F a a F F F qa F N 22222-=+?--=+--=- (2)作轴力图 中间段的轴力方程为: x a F F x N ?- =)( ]0,(a x ∈ 轴力图如图所示。

[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。若横截面面积 2400mm A =,试求各横截面上的应力。 解:(1)求指定截面上的轴力 kN N 2011-=- )(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图 轴力图如图所示。 (3)计算各截面上的应力 MPa mm N A N 50400102023111 1-=?-==--σ MPa mm N A N 2540010102 3222 2-=?-==--σ MPa mm N A N 2540010102 3333 3=?==--σ [习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。若横截面面积 21200mm A =,22300mm A =,23400mm A =,并求各横截面上的应力。 解:(1)求指定截面上的轴力 kN N 2011-=- )(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图 轴力图如图所示。 (3)计算各截面上的应力 M P a mm N A N 10020010202311111-=?-==--σ MPa mm N A N 3.3330010102 32222 2-=?-==--σ MPa mm N A N 2540010102 3333 3=?==--σ

金属材料力学性能练习题

第二章第一节金属材料的力学性能 一、选择题 1.表示金属材料屈服强度的符号是()。 A.σ e B.σ s C.σ b D.σ -1 2.表示金属材料弹性极限的符号是()。 A.σ e B.σ s C.σ b D.σ -1 3.在测量薄片工件的硬度时,常用的硬度测试方法的表示符号是()。 A.HB B.HR C.HV D.HS 4.金属材料在载荷作用下抵抗变形和破坏的能力叫()。 A.强度 B.硬度 C.塑性 D.弹性 二、填空 1.金属材料的机械性能是指在载荷作用下其抵抗()或()的能力。 2.金属塑性的指标主要有()和()两种。 3.低碳钢拉伸试验的过程可以分为弹性变形、()和()三个阶段。 4.常用测定硬度的方法有()、()和维氏硬度测试法。 5.疲劳强度是表示材料经()作用而()的最大应力值。 三、是非题 1.用布氏硬度测量硬度时,压头为钢球,用符号HBS表示。() 2.用布氏硬度测量硬度时,压头为硬质合金球,用符号HBW表示。() 四、改正题 1. 疲劳强度是表示在冲击载荷作用下而不致引起断裂的最大应力。 2. 渗碳件经淬火处理后用HB硬度计测量表层硬度。 3. 受冲击载荷作用的工件,考虑机械性能的指标主要是疲劳强度。 4. 衡量材料的塑性的指标主要有伸长率和冲击韧性。

5. 冲击韧性是指金属材料在载荷作用下抵抗破坏的能力。 五、简答题 1.说明下列机械性能指标符合所表示的意思:σ S 、σ 0.2 、HRC、σ -1 。 2.说明下列机械性能指标符合所表示的意思:σ b 、δ 5 、HBS、a kv 。 2.2金属材料的物理性能、化学性能和工艺性能 一、判断题 1.金属材料的密度越大其质量也越大。() 2.金属材料的热导率越大,导热性越好。() 3.金属的电阻率越小,其导电性越好。() 二、简答题: 1.什么是金属材料的工艺性能?它包括哪些? 2.什么是金属材料的物理性能?它包括哪些? 3.什么是金属材料的化学性能?它包括哪些?

材料力学第二章习题

材料力学第二章习题

习 题 2.1试画出图示各杆的轴力图 题2.1图 2.2 图示中段开槽的杆件,两端受轴向载荷P 作用,试计算截面1 - 1和截面2 – 2上的正应力。已 知: ,mm b 20=,mm b 100=,mm t 4=。 题2.2图 2.3 图示等直杆的横截面直径mm d 50=,轴向载荷 。 ( 1 ) 计算互相垂直的截面AB 和BC 上正应力和切应力; ( 2 ) 计算杆内的最大正应力和最大切应力。 2.4图示为胶合而成的等截面轴向拉杆,杆的强度由胶缝控制,已知胶的许用切应力[]τ为许用正应力[]σ的1/2。问α为何值时,胶缝处的切应力和

正应力同时达到各自的许用应力。 2.5图示用绳索起吊重物,已知重物, 绳索直径。许用应力,试校核绳索的强度。绳索的直径应多大更经济。 , 2.6冷镦机的曲柄滑块机构如图所示。镦压工件时连杆接近水平位置,镦压力P=1100KN。连杆矩形截面的高度h与宽度b之比为:h/b=1.4。材料为45钢,许用应力【 】=58MPa,试确定截面尺寸h及b。 2.7图示结构杆1与杆2由同一种材料制成,其

许用应力[σ]=100MPa。杆1横截面面积A1=300mm2,杆2横截面面积A2=200mm2,CE=0.5m, ED=1.5m。试按杆1,杆2的强度确定许可载荷[F]。 2.8杆长,横截面积均相同的两杆,一为钢杆另一为灰铸铁杆。欲组装成图示等边三角架。已知 杆长=0.5m,杆的横截面积A=400mm2,钢的许用应力【σ】=160MPa,灰铸铁的许用拉应力 =30MPa,许用压应力=90MPa。试问如何安装较为合理?求这时的最大许可载荷[F]。 2.9图示桁架,由圆截面杆1与杆2组成,并在节点A承受外力F=80kN作用。杆 1,杆2的直径分别为d1=30mm和 d2=20mm,两杆的材料相同,屈服极 限σs=320MPa,安全系数n s=2.0。试校核桁架的强度。 2.9图

材料力学性能-第2版课后习题答案34499

第一章 单向静拉伸力学性能 1、 解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 4、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 5、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 6、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 7、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 8、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。

材料力学第二章训练题

第二章 拉伸、压缩与剪切训练题(拉伸与压缩) 一、填空及改错题: 1.如图所示多力杆上1-1、2-2、3-3截面上的轴力,分别为F N1 = ,F N2 = ;F N3 = ; A B C D 题1图 题2图 2.如图所示阶梯形杆AB 段横截面积为A 1,BC 段截面积为A 2=2A 1,CD 段截面积为A 3=3A 1,则1-1、2-2、3-3截面上的轴力和应力分别应为F N1= , σ1-1= ;F N2= , σ2-2= ;F N3= , σ3-3= 。 3.如图所示杆受力已知,若总变形量ΔL =0,则F 1与F 2的关系 为 。 题3图 题4图 4.如图所示直杆,受力为F ,AB 段弹性模量为E 1, 截面积为A 1,BC 和CD 段的弹性模量为E 2, CD 段截面积为A 2,则ΔL 的计算式为ΔL = 。 5.如图所示直杆,计算m - m 截面上的轴力时,有人得F N =500+800=1300kN 。这样计算是否正确,为什么?若不正确应如何改正。 题5图 6.如图所示圆形薄板的半径为R ,变形后R 的增量为ΔR ,则沿半径方 向的线应变εR 的计算式为εR = ,沿圆周方向的平均线应变ε的 计算式为ε= 。

题6图 7.如图抗拉压杆刚度为EA 的等直杆,受力如图。试问:下面的计算是否正确?若不正确应如何改正。 1)计算总变形量是否为EA L F EA L F L 2 211+= ?? 2)应变能为EA L F EA L F V 222 22121+=ε 题7图 二、计算题: 1.做(a )(b)图示多力杆的轴力图: F (a) (b) 2.汽车离合器踏板如图示。已知踏板受压力F 1=400N ,拉杆1的直径D =9mm, 杠杆臂长L =330mm, l =56mm, 拉杆的许用应力[σ]=50 MPa ,校核拉杆1的强度。

材料力学第二章轴向拉伸与压缩习题答案

第二章轴向拉伸与压缩 2-1 试求图示直杆横截面1-1、2-2、3-3上的轴力,并画出轴 ( (b) 2-2图示中部对称开槽直杆,试求横截面1-1和2-2上的正应 力。 解: 1.轴力 由截面法可求得,杆各横截面上的轴力为 kN 14 N - = - =F F 2.应力 4 20 10 143 1 1 N 1 1? ? - = = - -A F σMPa175 - =MPa ()4 10 20 10 143 2 2 N 2 2? - ? - = = - -A F σMPa350 - =MPa

2-3 图示桅杆起重机,起重杆AB 的横截面是外径为mm 20、内径为mm 18的圆环,钢丝绳BC 的横截面面积为2mm 10。试求起重杆AB 和钢丝绳 =2kN 解: 1.轴力 取节点B 为研究对象,受力如图所示, 0=∑x F : 045cos 30cos N N =++οοF F F AB BC 0=∑y F : 045sin 30sin N =--οοF F AB 由此解得: 83.2N -=AB F kN , 04.1N =BC F kN 2.应力 起重杆横截面上的应力为 () 223 N 18204 1083.2-??-= =πσAB AB AB A F MPa 4.47-=MPa 钢丝绳横截面上的应力为 10 1004.13 N ?==BC BC BC A F σMPa 104=MPa 2-4 图示由铜和钢两种材料组成的等直杆,铜和钢的弹性模量分别为GPa 1001=E 和GPa 2102=E 。若杆的总伸长为 mm 126.0Δ=l ,试求载荷F 和杆横截面上的应力。 解: 1.横截面上的应力 由题意有 ???? ??+=+= ?+?=?221 1221121E l E l A E Fl A E Fl l l l σ 由此得到杆横截面上的应力为 33221110210400 10100600126 .0?+?= + ?=E l E l l σMPa 9.15=MPa 2.载荷 2404 9.15??==π σA F N 20=kN

相关文档
相关文档 最新文档