文档库 最新最全的文档下载
当前位置:文档库 › 实验六 电磁波极化

实验六 电磁波极化

实验六 电磁波极化
实验六 电磁波极化

实验六、电磁波极化

一、实验目的:

1、研究线极化波,圆极化波和椭圆极化波的产生和各自的特点。

2、学习线极化波,圆极化波和椭圆极化波特性参数的测量方法。

二、实验仪器:

1、DH926A型电磁波综合测试仪。

2、DH1211型3cm固态信号源。

3、水平、垂直金属丝栅。

三、实验原理:

平面电磁波的极化是指电磁波传播时,空间某点电场强度矢量E随时间变化的规律。若 E的末端总在一条直线上周期性变化,称为线极化波;若E末端的轨迹是圆(或椭圆),称为圆(或椭圆)极化波。若圆运动轨迹与波的传播方向符合右手(或左手)螺旋规则时,则称为右旋(或左旋)圆极化波。线极化波、圆极化波和椭圆极化波都可由两个同频率的正交线极化波组合而成。

设同频率的两个正交线极化波为:

(1)

(2)

1、线极化波的合成

当,的位相相同时,即,合成电场为:

合成电场的大小:

(3)

合成电场的方向:

(4)

由(3),(4)式可以看出,合成电场的大小随时间作周期性变化,但方向不变,始终在一条直线上,合成为线极化波,如图1所示。

2、圆极化波的合成

(1)式和(2)式中,当, 位相相差时

两式平方相加可得

(5)

合成电场的方向:

(6)

可以看出,合成电场的大小不变,但方向随时间变化。合成电场矢量的末端在一圆上以角速度旋转,这就是圆极化波,如图2所示。

设电磁波沿轴传播,当较滞后时,合成电场矢量沿逆时针方

向旋转,是右旋圆极化波;当较超前时,合成电场矢量沿顺时针方向旋转,是左旋圆极化波。

这就是椭圆极化波。若和位相相差不是,而是任一角度,可以证明合成电场仍然是椭圆极化波,但椭圆的长轴和短轴不与坐标轴重合,如图3(b)所示,

椭圆极化波也可按前面所诉的方法分为右旋极化波和左旋极化波。 四、实验装置介绍 实验装置如图4所示

P r1是垂直金属丝栅,反射垂直极化波(滤除水平极化波);

2r P 是水平金属丝栅,反射水平极化波(滤除垂直极化波)。 把发射天线

r P 转动一个角度α,可同时产生⊥E 和//E 两个同频率的入射波:

a E E sin 1++⊥=

a

E E cos 1//++=

+

⊥E 经介质板的反射,1r P 的反射和介质板的折射传射到接收喇叭天线3r P

场强为-

⊥2E ;+//E 经介质板的折射,2r P 的反射和介质板的反射传到3r P 处,场

强为-//2E 。适当调整转角α,可使-⊥2E 和+//2E 的幅度相等(注意: 45=α时,

-

+

⊥=//E E ,但由于 //R R ≠⊥ ,//T T ≠⊥ ,-⊥2E 和 +//2E 的幅度并不相等),这

时,只要前后调整 2r P 的位置,就可以改变 -

⊥2E 和 -//2E 的位相差?Φ,当

2/π±=?Φ时,产生圆极化波,π±=?Φ时,产生线极化波,其它情况下可

产生椭圆极化波。

五、实验内容

1、圆极化波的调试与测试

两个同频率的正交场,幅度相等,位相相差 时可产生圆极化波。

为此先把发射喇叭天线转大约

角(α),再把接收喇叭天线

的E 面垂直放置,可接收-

⊥2E ,然后把

的E 面水平放置,可接收

。若

,可是适当调整 角,使 。最后调整

的位置,

使 转动任何角度的输出指示值都相等,这就是圆极化波,当转

动角度为0、10、20、......170度时记录测量数据填入表一中。由于实验误差,和总有差别,用圆极化波的椭圆度

表示,

是输出指示的最小值,

是输出指示的最大值。

表一:

=α:0Pr 4/:2Pr 0λ±=l l

圆极化波的椭圆度

2、线极化波的调试与测试

在前面产生圆极化波实验的基础上,前后调整

的位置,使

即可产生线极化波。调整的位置产生的波程差为

,由此产生的位相差。由±π=2π/λ×2△L , 可以解出

所以把的位置前后调整 就可以产生线极化波。 当转动角度为0、10、20、......170度时记录测量数据填入表二中。

表二:

4

/:2Pr 0λ±=l l

2/1

在前两部分实验的基础上,改变

的位置,使004

L L L λ<<+或

004

L L L λ

>>-

即可产生椭圆极化波。 当转动角度为0、10、20、......170度时记录测量数据填入表三中并计算出椭圆极化波的椭圆度e 。 表三:

=l :2Pr

2/1

椭圆极化波的椭圆度

哈工大电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名: 同组人:

实验一电磁波的反射实验 1.实验目的: 任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。 2.实验原理: 电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。 如图(1-2)所示,微波由发射喇叭发出,以入射角i设到金属板M M',在反射方向的位置上,置一接收喇叭B,只有当B处在反射角i'约等于入射角i时,接收到的微波功率最大,这就证明了反射定律的正确性。 3.实验仪器: 本实验仪器包括三厘米固态信号发生器,微波分度计,反射金属铝制平板,微安表头。 4.实验步骤: 1)将发射喇叭的衰减器沿顺时针方向旋转,使它处于最大衰减位置; 2)打开信号源的开关,工作状态置于“等幅”旋转衰减器看微安表是否有显示,若有显示,则有微波发射; 3)将金属反射板置于分度计的水平台上,开始它的平面是与两喇叭的平面平行。 4)旋转分度计上的小平台,使金属反射板的法线方向与发射喇叭成任意角度i,然后将接收喇叭转到反射角等于入射角的位置,缓慢的调节衰减器,使微 μ)。 安表显示有足够大的示数(50A

5)熟悉入射角与反射角的读取方法,然后分别以入射角等于30、40、50、60、70度,测得相应的反射角的大小。 6)在反射板的另一侧,测出相应的反射角。 5.数据的记录预处理 记下相应的反射角,并取平均值,平均值为最后的结果。 5.实验结论:?的平均值与入射角0?大致相等,入射角等于反射角,验证了波的反射定律的成立。 6.问题讨论: 1.为什么要在反射板的左右两侧进行测量然后用其相应的反射角来求平均值? 答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。,不可能使圆盘和基座严格同轴。 在两者略有不同轴的情况下,只读取一个游标的读数,应该引入离轴误差加以考虑——不同轴的时候,读取的角度差不完全等于实际角度差,圆盘半径偏小

电磁场与电磁波概念题汇总解读

电磁场与电磁波概念题汇总 1.请写出B-D形式的场定律的微分形式及其相应的边界条件,并阐明每个方程(包括边界条件)的物理意义。(20分) 答:B-D形式的场定律的微分形式为 其物理意义为: (1式:时变的磁场是电场的涡旋源,可以产生涡旋电场; (2式:电流和时变的电场是磁场的涡旋源,可以产生涡旋磁场; (3式:电荷可以产生电场通量,电荷只有正、负两种; (4式:磁场没有通量源:磁荷; (5式:当空间点上的电荷密度减少时,必有电流密度的净通量。 在介质分界面上满足的边界条件为 其物理意义为: 边界两边电场切向分量连续;

边界上存在面电流时,两边磁场切向分量不连续; 边界上有面电荷存在时,电位移矢量法向分量不连续; 边界两边磁感应强度法向分量连续; 电荷守恒定律在边界上也是成立的。 2.写出简单媒质中关于正弦律时变场的复数形式的场定律。(10分) 答:简单媒质中关于正弦律时变场的复数形式的场定律为 3.写出时变电磁场的基本方程,并解释为什么电磁场的边值关系只能从积分形式的麦克斯韦方程组导出? 4.写出坡印廷矢量的定义式及微分形式坡印廷定理,并给出定理的物理解释。(P286~291)答:定义 微分形式 物理解释:电磁场在空间某点对运动电磁荷所提供的电磁功率密度等于该点电磁场能密度的减少率与外界向这点提供的电磁功率密度之和。 积分形式 物理解释:V内的电磁荷对电磁场所提供的总功率等于V内电磁场能量的增加率与从V内流出的电磁功率之和。 5.什么是均匀平面波?什么是TEM波?均匀平面波是TEM波吗?TEM波是均匀平面波吗?写出无源自由空间条件下均匀平面波的五个传播特性。 答:等相面与等幅面重合且为平面的电磁波称为均匀平面波;电场强度和磁场强度矢量在传播方向上分量为零的电磁波称为TEM波;均匀平面波是TEM波;TEM波不一定是均匀平面,如均匀柱面波、均匀平面波等都是TEM波。 无源自由空间条件下均匀平面波的五个传播特性(P355)

实验报告-偏振光学实验

实验报告 姓名:班级:学号:实验成绩: 同组姓名:实验日期:2008-3-3 指导老师:助教10 批阅日期: 偏振光学实验 【实验目的】 1.观察光的偏振现象,验证马吕斯定律 2.了解1/2波片,1/4波片的作用 3.掌握椭圆偏振光,圆偏振光的产生与检测. 【实验原理】 1.光的偏振性 光是一种电磁波,由于电磁波对物质的作用主要是电场,故在光学中把电场强度E 称为光矢量。在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为 偏振态。如果光在传播过程中,若光矢量保持在固定平面上振动,这种 振动状态称为平面振动态,此平面就称为振动面(见图1)。此时光矢 量在垂直与传播方向平面上的投影为一条直线,故又称为线偏振态。若 光矢量绕着传播方向旋转,其端点描绘的轨道为一个圆,这种偏振态称 为圆偏振态。如光矢量端点旋转的轨迹为一椭圆,就成为椭圆偏振态(见图2)。

2.偏振片 虽然普通光源发出自然光,但在自然界中存在着各种偏振光,目前广泛使用的偏振光的器件是人造偏振片,它利用二向色性获得偏振光(有些各向同性介质,在某种作用下会呈现各向异性,能强烈吸收入射光矢量在某方向上的分量,而通过其垂直分量,从而使入射的自然光变为偏振光介质的这种性质称为二向色性。)。偏振器件即可以用来使自然光变为平面偏振光——起偏,也可以用来鉴别线偏振光、自然光和部分偏振光——检偏。用作起偏的偏振片叫做起偏器,用作检偏的偏振器件叫做检偏器。实际上,起偏器和检偏器是通用的。 3.马吕斯定律 设两偏振片的透振方向之间的夹角为α,透过起偏器的线偏振光振幅为,则透过检偏器的线偏振光的振幅为A,A=ɑ,强度I=,I=ɑ= Iɑ=ɑ式中为进入检偏器前(检偏器无吸收时)线偏振光的强度。 这就是1809年马吕斯在实验中发现的,所以称马吕斯定律。显然,以光线传播方向为轴,转动检偏器时,透射光强度I将发生周期变化。

电磁场与电磁波习题目解答选

电磁场与电磁波习题目解答选

《电磁场与电磁波》(陈抗生)习题解答 第一章 引言——波与矢量分析 1.1 . ,,/)102102cos(102 6300p y v k f E m V x t y y E E 相速度相位常数度,频率波的传播方向,波的幅的方向,,求矢量设 --?+?==ππ 解:m /V )x 102t 102cos(10y y E z E y E x E E 26300y 0z 0y 0 x --?π+?π==++= ∴ 矢量E 的方向是沿Y 轴方向,波的传播方向是-x 方向; 波的幅度 m /V 10E E 3y -== 。 s /m 10102102k V ;102k ; MHZ 1HZ 1021022f 82 6 P 2 66=?π?π=ω=?π===π ?π=πω=-- 1.2 写出下列时谐变量的复数表示(如果可能的话) ) 6 sin()3 sin()()6(cos 1)()5() 2 120cos(6)()4(cos 2sin 3)()3(sin 8)()2() 4 cos(6)()1(π ωπ ωωπ πωωωπ ω+ + =-=-=-=-=+ =t t t U t t D t t C t t t A t t I t t V (1)解: 4/)z (v π=? j 23234 sin j 64cos 6e 6V 4 j +=π +π==π ∴ (2)解:)2 t cos(8)t (I π-ω-= 2 )z (v π- =? j 8e 8I j 2 =-= π-∴

(3)解:) t cos 13 2t sin 13 3( 13)t (A ω- ω= j 32e 13A 2)z () 2t cos(13)t (A 13 3 cos ) 2 (j v --==π - θ=?∴π -θ+ω==θπ-θ则则令 (4)解:)2 t 120cos(6) t (C π -π= j 6e 6C 2 j -==∴π (5)(6)两个分量频率不同,不可用复数表示 1.3由以下复数写出相应的时谐变量] ) 8.0exp(4)2 exp(3)3() 8.0exp(4)2(1)1(j j C j C j C +==+=π (1)解: t sin t cos j t sin j t cos )t sin j t )(cos j 1(e )j 1(t j ω-ω+ω+ω=ω+ω+=+ω t sin t cos )Ce (RE )t (C t j ω-ω==∴ω (2)解:)8.0t cos(4)e e 4(RE )Ce (RE ) t (C t j 8.0j t j +ω===ωω (3)解:)8.0t (j ) 2t (j t j 8 .0j j t j e 4e 3e )e 4e 3(Ce 2 +ωπ+ωωω+=+=π 得:)t cos(3)8.0t cos(4)8.0t cos(4)2 t cos(3)Ce (RE )t (C t j ω-+ω=+ω+π +ω==ω 1.4 ] Re[, )21(,)21(000000* *????++--=+++=B A B A B A B A z j y j x B z j y j x A ,,,求:假定 解:1B A B A B A B A z z y y x x -=++= ?

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

微波偏振实验报告

篇一:电磁场与微波实验六报告——偏振实验 偏振实验 1. 实验原理 平面电磁波是横波,它的电场强度矢量e和波长的传播方向垂直。如果e在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波称为线极化波,在光学中也称偏振波。电磁场沿某一方向的能量有sin2 φ的关系,这就是光学中的马吕斯定律:i=i0cos2 φ,式中i0为初始偏振光的强度,i为偏振光的强度,φ是i与i0之间的夹角。 2. 实验步骤 系统构建图 由于喇叭天线传输的是由矩形波导发出的te10波,电场的方向为与喇叭口天线相垂直的系列直线,中间最强。dh926b型微波分光仪的两喇叭天线口面互相平行,并与 地面垂直,其轴与偏振实验线在一条直线上。由于接收喇叭口天线是和一段旋转短波导 连在一起的,在旋转波导的轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭天线的转角可从此处读到。 在主菜单页面点击“偏振实验”,单击“ok”进入“输入采集参数”界面。 本实验默认选取通道3作为光栅通道插座和数据采集仪的数据接口。采集点数可根据提示选取。 顺时针或逆时针(但只能沿一个方向)匀速转动微波分光仪的接收喇叭,就可以得到转角与接收指示的一组数据。 终止采集过程后,按下“计算结果”按钮,系统软件将本实验根据实际采集过程处理得到的理论和实际参数。 注意事项: ①为避免小平台的影响,最好将其取下。 ②实验用到了接收喇叭天线上的光栅通道(光传感头),应将该通道与数据采集仪通道3用电缆线连接。 ③转动接收喇叭天线时应注意不能使活动臂转动。 ④由于轴承环处的螺丝是松的,读取电压值时应注意,接收喇叭天线可能会不自觉偏离原来角度。最好每隔一定读数读取电压值时,将螺丝重新拧紧。 ⑤接收喇叭天线后的圆盘有缺口,实验过程中应注意别将该缺口转动经过光栅通道,否则在该处软件将读取不到数据。 3. 实验结果

电磁场与电磁波试题及答案

电磁场与电磁波试题及答案

1.麦克斯韦的物理意义:根据亥姆霍兹定理,矢量场的旋度和散度都表示矢量场的源。麦克斯韦方程表明了电磁场和它们的源之间的全部关系:除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。 1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t t ρ????=+ ??=-??=??=??,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁 场也是电场的源。 1.简述集总参数电路和分布参数电路的区别: 2.答:总参数电路和分布参数电路的区别主要有二:(1)集总参数电路上传输的信号的波长远大于传输线的几何尺寸;而分布参数电路上传输的信号的波长和传输线的几何尺寸可以比拟。(2)集总参数电路的传输线上各点电压(或电流)的大小与相位可近似认为相同,无分布参数效应;而分布参数电路的传输线上各点电压(或电流)的大小与相位均不相同,呈现出电路参数的分布效应。 1.写出求解静电场边值问题常用的三类边界条件。 2.答:实际边值问题的边界条件可以分为三类:第一类是整个边界上的电位已知,称为“狄利克莱”边界条件;第二类是已知边界上的电位法向导数,称为“诺依曼”边界条件;第三类是一部分边界上电位已知,而另一部分上的电位法向导数已知,称为混合边界条件。 1.简述色散效应和趋肤效应。 2.答:在导电媒质中,电磁波的传播速度(相速)随频率改变的现象,称为色散效应。在良导体中电磁波只存在于导体表面的现象称为趋肤效应。 1.在无界的理想媒质中传播的均匀平面波有何特性?在导电媒质中传播的均匀平面波有何特性? 2. 在无界的理想媒质中传播的均匀平面波的特点如下:电场、磁场的振幅不随传播距离增加而衰减,幅度相差一个实数因子η(理想媒质的本征阻抗);时间相位相同;在空间相互垂直,与传播方向呈右手螺旋关系,为TEM 波。 在导电媒质中传播的均匀平面波的特点如下:电磁场的振幅随传播距离增加而呈指数规律衰减;电、磁场不同相,电场相位超前于磁场相位;在空间相互垂直,与传播方向呈右手螺旋关系,为色散的TEM 啵。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。 (或矢量式2n D σ=、20n E ?=、 2s n H J ?=、20n B =) 1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0B A A =????=;动态矢量位A E t ??=-?- ?或A E t ??+=-??。库仑规范与洛仑兹规范的作用都 是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. s A ds φ=??? 是矢量A 穿过闭合曲面S 的通量或发散量。若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。 1. 证明位置矢量 x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。 2. 证明在直角坐标系里计算 ,则有 ()()x y z x y z r r e e e e x e y e z x y z ? ? ?????=++?++ ?????? 3x y z x y z ???= ++=??? 若在球坐标系里计算,则 23 22 11()()()3r r r r r r r r r ????= ==??由此说明了矢量场的散度与坐标的选择无关。

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

电磁场与电磁波名词解释

学习必备欢迎下载 电磁场与电磁波名词解释: 1.亥姆赫兹定理(P26):在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,这就是亥姆赫兹定理的核心内容。 2.洛伦兹力(P40):当一个电荷既受到电场力同时又受到磁场力的作用时,我们称这样的合力为洛伦兹力。 3.传导电流(P48):自由电荷在导电媒质中作有规则运动而形成。 4.运流电流(P49):电荷在无阻力空间作有规则运动而形成。 5.位移电流(P49):电介质内部的分子束缚电荷作微观位移而形成。 6.电介质(P65):电介质实际上就是绝缘材料,其中不存在自由电荷,带电粒子是以束缚电荷形式存在的。 7.电介质的极化(P64):当把一块电介质放入电场中时,它会受到电场的作用,其分子或原子内的正、负电荷将在电场力的作用下产生微小的弹性位移或偏转,形成一个个小电偶极子,这种现象称为电介质的极化。 8.电介质的磁化(P64):当把一块介质放入磁场中时,它也会受到磁场的作用,其中也会产生一个个小的磁偶极子,这种现象称为介质的磁化。 9.对偶原理(P105):如果描述两种物理现象的方程具有相同的数学形式,并且有相似的边界条件或对应的边界条件,那么它们的数学解的形式也将是相同的,这就是对偶原理。10.叠加原理(P106):若φ1和φ2分别满足拉普拉斯方程,即▽2φ1=0和▽2φ2=0,则φ1和φ2的线性组合φ=aφ1+bφ2也必然满足拉普拉斯方程,即▽2(aφ1+bφ2)=0。11.唯一性原理(P107):对于任一静态场,在边界条件给定后,空间各处的场也就唯一地确定了,或者说这时拉普拉斯方程的解是唯一的。 12.镜像法(P107):通过计算由源电荷和镜象电荷共同产生的合成电场,而得到源电荷与实际的感应电荷所产生的合成电场,这种方法称为镜象法。 13.电磁波谱(P141):为了对各种电磁波有个全面的了解,人们按照波长或频率的顺序把这些电磁波排列起来,这就是电磁波谱。 14.相速(P155):我们将速度v (介质中的波速)称为相速,即正弦波的最大速度。一般情况下,速度v 是恒定相位面在波中向前推进的速度,所以也可以根据电场极小值通过空间一固定点的速度来定义这个速度。 15.群速(P159):定义为Vg=dw/dk。 16.色散现象(P157):不同频率的波将以不同的速率在介质中传播的现象称为色散 17.耗散介质(P148):非理想介质是有损耗介质也称为耗散介质,在这里是指电导率,但仍然保持均匀、线性及各向同性等特性。 18.穿透深度(P165):将电磁波的振幅衰减到e^-1时它的导电介质的深度定义为趋肤深度(穿透深度) 19.等离子体(P175):是除气体、液体和固体以外的第四种物态,它是由电子、负离子、正离子和未电离的中性分子组成的混合体。 20.全折射(P195):当电磁波以某一入射角入射到两种媒质交界面上时,如果反射系数为0,则全部电磁能量都进入到第二种媒质,这种情况称为全折射。 21.全反射(P195):当电磁波入射到两种媒质交界面上时,如果反射系数|R|=1,则投射到界面上的电磁波将全部反射回第一种媒质中,这种情况称为全反射。

电磁场与电磁波基础知识总结

第一章 一、矢量代数 A ?B =AB cos θ A B ?= AB e AB sin θ A ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) ()()()C A C C A B C B A ?-?=?? 二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++l e e e d x y z 矢量面元=++S e e e x y z d dxdy dzdx dxdy 体积元d V = dx dy dz 单位矢量的关系?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρ?ρρ?l 矢量面元=+e e z dS d dz d d ρρ?ρρ? 体积元dz d d dV ?ρρ= 单位矢量的关系?=??=e e e e e =e e e e z z z ρ??ρ ρ? 3. 球坐标系 矢量线元d l = e r d r + e θ r d θ + e ? r sin θ d ? 矢量面元d S = e r r 2sin θ d θ d ? 体积元 ?θθd d r r dV sin 2= 单位矢量的关系?=??=e e e e e =e e e e r r r θ? θ??θ 三、矢量场的散度和旋度 1. 通量与散度 =?? A S S d Φ 0 lim ?→?=??=??A S A A S v d div v 2. 环流量与旋度 =??A l l d Γ max n rot =lim ?→???A l A e l S d S 3. 计算公式 ????= ++????A y x z A A A x y z 11()z A A A z ?ρρρρρ?????= ++????A 22111()(s i n )s i n s i n ????= ++????A r A r A A r r r r ? θ θθθθ? x y z ? ????= ???e e e A x y z x y z A A A 1z z z A A A ρ?ρ?ρρ?ρ? ?? ??= ???e e e A

电磁场与电磁波实验实验六布拉格衍射实验

邮电大学 电磁场与微波测量实验报告

实验六布拉格衍射实验 一、实验目的 1、观察微波通过晶体模型的衍射现象。 2、验证电磁波的布拉格方程。 二、实验设备与仪器 DH926B型微波分光仪,喇叭天线,DH1121B型三厘米固态信号源,计算机 三、实验原理 1、晶体结构与密勒指数 固体物质可分成晶体和非晶体两类。任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关。 晶体的离子、原子或分子占据着点阵的结构,两相邻结点的距离叫晶体的晶 10m,与X射线的波长数量级相当。因此,格常数。晶体格点距离的数量级是-8 对X射线来说,晶体实际上是起着衍射光栅的作用,因此可以利用X射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构的了解。 图4.1 立方晶格最简单的晶格是立方体结构。 如图6.1这种晶格只要用一个边长为a的正立方体沿3个直角坐标轴方向重复即可得到整个空间点阵,a就称做点阵常数。通过任一格点,可以画出全同的晶面和某一晶面平行,构成一组晶面,所有的格点都在一族平行的晶面上而无遗漏。这样一族晶面不仅平行,而且等距,各晶面上格点分布情况相同。

为了区分晶体中无限多族的平行晶面的方位,人们采用密勒指数标记法。先找出晶面在x、y、z3个坐标轴上以点阵常量为单位的截距值,再取3截距值的倒数比化为最小整数比(h∶k∶l),这个晶面的密勒指数就是(hkl)。当然与该面平行的平面密勒指数也是(hkl)。利用密勒指数可以很方便地求出一族平行晶面的间距。对于立方晶格,密勒指数为(hkl)的晶面族,其面 间距 hkl d可按下式计算:2 2 2l k h a d hkl + + = 图6.2立方晶格在x—y平面上的投影 如图6.2,实线表示(100)面与x—y平面的交线,虚线与点画线分别表示(110)面和(120)面与x—y平面的交线。由图不难看出 2、微波布拉格衍射 根据用X射线在晶体原子平面族的反射来解释X射线衍射效应的理论,如有一单色平行于X射线束以掠射角θ入射于晶格点阵中的某平面族,例如图4.2所示之(100)晶面族产生反射,相邻平面间的波程差为 θ sin 2 100 d QR PQ= +(6.1) 式(6.1)中 100 d是(100)平面族的面间距。若程差是波长的整数倍,则二反射波有相长干涉,即因满足

电磁场与电磁波课设解读

目录 1.课程设计的目的与作用 1 1.1设计目的 1 1.2设计作 用 (1) 2 设计任务及所用maxwell软件环境介绍 2 2.1设计任务2 2.2maxwell软件环境: 2 3电磁模型的建立 3 4电磁模型计算及仿真结果后处理分析 7 5 设计总结和体会 12 6 参考文献13 1.课程设计的目的与作用 1.1设计目的: 随着经济的发展和社会的进步,人们的日常生活水平不断的提高,人们在充分享用现代生活方便,舒适的同时也越来越离不开电子产品了。对电子产品本身来

说,只要通电,就存在电磁之类干扰的问题,而电子产品对外界来说又存在着电磁辐射等问题,如何解决这类问题,趋利避害,更好地让电子产品为我们的服务器真是我们需要做的工作。 电磁场与电磁波课程理论抽象、数学计算繁杂,将Maxwell软件引入教学中,通过对典型电磁产品的仿真设计,并模拟电磁场的特性,将理论与实践有效结合,强化学生对电磁场与电磁波的理解和应用,提高教学质量。 1.2设计作用: 电磁场与电磁波主要介绍电磁场与电磁波的发展历史、基本理论、基本概念、基本方法以及在现实生活中的应用,内容包括电磁场与电磁波理论建立的历史意义、静电场与恒流电场、电磁场的边值问题、静磁场、时变场和麦克斯韦方程组、准静态场、平面电磁波的传播、导行电磁波以及谐振器原理等。全书沿着电磁场与电磁波理论和实践发展的历史脉络,将历史发展的趣味性与理论叙述和推导有机结合,同时介绍了电磁场与电磁波在日常生活、经济社会以及科学研究中的广泛应用。书中的大量例题强调了基本概念并说明分析和解决典型问题的方法;每章末的思考题用于测验学生对本章内容的记忆和理解程度;每章的习题可增强学生对于公式中不同物理量的相互关系的理解,同时也可培养学生应用公式分析和解决问题的能力。 2 设计任务及所用Maxwell软件环境介绍 2.1设计任务: 平板电容器电场仿真 平板电容器模型描述: 上下两极板尺寸:25mm×25mm×2mm,材料:pec(理想导体) 介质尺寸:25mm×25mm×1mm,材料:mica(云母介质)

电磁场与电磁波试题及答案

1.麦克斯韦的物理意义:根据亥姆霍兹定理,矢量场的旋度和散度都表示矢量场的源。麦克斯韦方程表明了电磁场和它们的源之间的全部关系:除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。 1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t t ρ????=+ ??=-??=??=??,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁 场也是电场的源。 1.简述集总参数电路和分布参数电路的区别: 2.答:总参数电路和分布参数电路的区别主要有二:(1)集总参数电路上传输的信号的波长远大于传输线的几何尺寸;而分布参数电路上传输的信号的波长和传输线的几何尺寸可以比拟。(2)集总参数电路的传输线上各点电压(或电流)的大小与相位可近似认为相同,无分布参数效应;而分布参数电路的传输线上各点电压(或电流)的大小与相位均不相同,呈现出电路参数的分布效应。 1.写出求解静电场边值问题常用的三类边界条件。 2.答:实际边值问题的边界条件可以分为三类:第一类是整个边界上的电位已知,称为“狄利克莱”边界条件;第二类是已知边界上的电位法向导数,称为“诺依曼”边界条件;第三类是一部分边界上电位已知,而另一部分上的电位法向导数已知,称为混合边界条件。 1.简述色散效应和趋肤效应。 2.答:在导电媒质中,电磁波的传播速度(相速)随频率改变的现象,称为色散效应。在良导体中电磁波只存在于导体表面的现象称为趋肤效应。 1.在无界的理想媒质中传播的均匀平面波有何特性?在导电媒质中传播的均匀平面波有何特性? 2. 在无界的理想媒质中传播的均匀平面波的特点如下:电场、磁场的振幅不随传播距离增加而衰减,幅度相差一个实数因子η(理想媒质的本征阻抗);时间相位相同;在空间相互垂直,与传播方向呈右手螺旋关系,为TEM 波。 在导电媒质中传播的均匀平面波的特点如下:电磁场的振幅随传播距离增加而呈指数规律衰减;电、磁场不同相,电场相位超前于磁场相位;在空间相互垂直,与传播方向呈右手螺旋关系,为色散的TEM 啵。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。 (或矢量式2n D σ=、20n E ?=、 2s n H J ?=、20n B =) 1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0B A A =????=;动态矢量位A E t ??=-?- ?或A E t ??+=-??。库仑规范与洛仑兹规范的作用都 是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. s A ds φ=??? 是矢量A 穿过闭合曲面S 的通量或发散量。若Ф> 0,流出S 面的通量大于流入的通量,即通 量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。 1. 证明位置矢量 x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。 2. 证明在直角坐标系里计算 ,则有 ()()x y z x y z r r e e e e x e y e z x y z ? ? ?????=++?++ ?????? 3x y z x y z ???= ++=??? 若在球坐标系里计算,则 23 22 11()()()3r r r r r r r r r ????===??由此说明了矢量场的散度与坐标的选择无关。 1. 在直角坐标系证明0A ????= 2.

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院: 班级: 组员: 撰写人: 学号: 序号:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 表格分析: (1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。 (2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角

实验报告偏振光学实验

实验报告 女姓名. *****班级:*****■学号. *****实验成绩: 同组姓名:*****实验日期:*****指导教师:批阅日期: 偏振光学实验 【实验目的】 1 ?观察光的偏振现象,验证马吕斯定律; 2.了解1 / 2波片、1 / 4波片的作用; 3 ?掌握椭圆偏振光、圆偏振光的产生与检测。 【实验原理】 1 .光的偏振性 光是一种电磁波,由于电磁波对物质的作用主要是电场,故在光学中把电场强度E称为光矢量。在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态。如果光在传播过程中,若光矢量保持在固定平面上振动,这种振动状态称为平面振动态,此平面就称为振动面(见图1)。此时光矢量在垂直与传播方向平面上的投影为一条直线,故又称为线偏振态。若光矢量绕着传播方向旋转,其端点描绘的轨道为一个圆,这种偏振态称为圆偏振态。如光矢量端点旋转的轨迹为一椭圆,就成为椭圆偏振态(见图2)。 2.偏振片 虽然普通光源发出自然光,但在自然界中存在着各种偏振光,目前广泛使用的偏振光的器件是人造偏振片,它利用二向色性获得偏振光(有些各向同性介质,在某种作用下会呈现各向异性,能强烈吸收入射光矢量在某方向上的分量,而通过其垂直分量,从而使入射的自然光变为偏振光,介质的这种性质称为二向色性。)。 偏振器件即可以用来使自然光变为平面偏振光一一起偏,也可以用来鉴别线偏振光、自然光和部分偏振光一一检偏。用作起偏的偏振片叫做起偏器,用作检偏的偏振器件叫做检偏器。实际上,起偏器和检偏器是通用的。 3?马吕斯定律 设两偏振片的透振方向之间的夹角为a,透过起偏器的线偏振光振幅为A0,则 透过检偏器 的线偏振光的强度为I

电磁场与电磁波必考重点填空题经典

一、填空题 ▲1.矢量的通量物理含义是矢量穿过曲面的矢量线的总和; 散度的物理意义是矢量场中任意一点处通量对体积的变化率; 散度与通量的关系是散度一个单位体积内通过的通量。 2.散度在直角坐标系z A y A x A A div Z Y X ??+??+??=散度在圆柱坐标系z A A r r rA r A div Z r ??+??+??=??1)(1 ▲3,矢量函数的环量定义 ??=l l d A C ;旋度的定义MAX l S l d A rot ??=?→?lim 0; 二者的关系 ???=???l S l d A S d A )(;旋度的物理意义:最大环量密度和最大环量密度方向。 4.旋度在直角坐标系下的表达式)()()(y A x A e x A z A e z A y A e z y z z x y y Z x ??-??+??-??+??-?? ▲5.梯度的物理意义:函数最大变化率和最大变化率方向 ; 等值面、方向导数与梯度的关系是:方向导数是标量场中某一点沿某一方向等值面的变化率,梯度是方向导数的最大值。 6.用方向余弦cos α 、cos β、cos γ写出直角坐标系中单位矢量l e 的表达式γβαcos cos cos z y x l e e e e ++= ▲7.直角坐标系下方向导数l u ??的数学表达式 γβαcos cos cos z u y u x u ??+??+??;梯度γβαcos cos cos z y x e e e ++ ▲8.亥姆霍茨定理表述在有限区域的任一矢量场由它的散度,旋度以及边界条件唯一地确定; 说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度 ▲9.麦克斯韦方程组的积分表达式分别为 1.?=?S Q S d D ;2.S d t B l d E l S ????-=?;3.0=??S S d B ;4.?????+=?S l S d t D J l d H )( 其物理描述分别为1.电荷是产生电场的通量源 2.变换的磁场是产生电场的漩涡源 3.磁感应强度的散度为0,说明磁场不可能由通量源产生; 4.传导电流和位移电流产生磁场,他们是产生磁场的漩涡源。 ▲10.麦克斯韦方程组的微分表达式分别为 1.ρ=??D ;2.t B E ??-=??; 3.0=??B ; 4.t D J H ??+=?? 其物理描述分别为同第九题 11.时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场; 一般采用时谐场来分析时变电磁场的一般规律,是因为1.任何时变周期函数都可以用正弦函数表示的傅里叶级数来描述 2.在线性条件下可以使用叠加原理 ▲12.坡印廷矢量的数学表达式 H E S ?=; 其物理意义 电磁能量在空间的能流密度; 表达式??S S d H E )(的物理意义单位时间内穿出闭合曲面S 的电磁能流大小 ▲13.电介质的极化是指在外电场作用下,电介质中出现有序排列的电偶极子,表面上出现束缚电荷的现象。 两种极化现象分别是 位移极化(无极分子的极化) ;转向极化(有极分子的极化)。 产生的现象分别有 1.电偶极子有序排列 2.表面上出现束缚电荷 3.影响外电场分布; 描述电介质极化程度或强度的物理量是极化矢量P

《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验 2016年11月 《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题 目录 一、电磁场仿真软件——Matlab的使用入门……………............................................... .4 二、单电荷的场分

布 (10) 三、点电荷电场线的图像 (12) 四、线电荷产生的电位 (14) 五、有限差分法处理电磁场问题 (17) 实验一电磁场仿真软件——Matlab的使用入门 一、实验目的 1. 掌握Matlab仿真的基本流程与步骤; 2. 掌握Matlab中帮助命令的使用。 二、实验原理 (一)MATLAB运算 1.算术运算 (1).基本算术运算 MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、 ^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是 一种特例。 (2).点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。 例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。 程序:x=linspace(0,6) y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2; plot(x,y1,x, y2,x, y3) (二)几个绘图命令 1. doc命令:显示在线帮助主题 调用格式:doc 函数名 例如:doc plot,则调用在线帮助,显示plot函数的使用方法。 2. plot函数:用来绘制线形图形 plot(y),当y是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。 plot(x,y),其中x和y为长度相同的向量,分别用于存储x坐标和y 坐标数据。 plot(x,y,s)

相关文档
相关文档 最新文档