文档库 最新最全的文档下载
当前位置:文档库 › 军事侦察无人机空气动力学

军事侦察无人机空气动力学

军事侦察无人机空气动力学
军事侦察无人机空气动力学

军事侦察无人机空气动力学

【摘要】在军事侦察领域,无人机得到了广泛的应用,为侦察工作的开展提供了更多的保障。而就目前来看,军事侦察无人机在空气动力学方面存在一些特殊问题,值得无人机设计和操纵人员给予更多的关注。基于这种情况,本文对军事侦察无人机的空气动力学展开了分析,以期为关注这一话题的人们提供参考。

【关键词】军事侦察无人机空气动力学

在世界范围内,军事侦察无人机多为低雷诺数无人机,具有一定的空气动力学特性。加强该类无人机的空气动力学研究,则能够帮助无人机设计人员更好的完成无人机翼型的设计选型,从而确保无人机的飞行性能。此外,也可以帮助无人机操纵人员更好的了解无人机的飞行特点,继而更好的完成军事侦察任务。

1 军事侦察无人机及其空气动力学特点

所谓的无人机,其实就是无人驾驶飞机的简称,是目前最热门的军事装备研究项目之一。在使用的过程中,无人机虽然无需人在飞机内部操纵,但是仍然需要人在地面或其他飞机上操纵。但不同于普通飞机,无人机只需要在关键时刻操纵,比如降落、判断目标或作重要决策等时刻。在其他时

刻,无人机则可以按照预装的程序执行不同的任务,无需人的过多干预。所谓的军事侦察无人机,则是在军事侦察活动中应用的无人机。目前,较多国家的海军、陆军和空军已经开始利用无人机进行海陆空的侦察。在美国,用于地面侦察的无人机有“全球鹰”,可以利用光电探测系统、地搜索雷达等机载设备每日完成约103700km2土地的探测,并且利用卫星将录取数据实时发送给地面站。在国内,目前服役的军用侦察无人机为无侦-5型无人远程侦察机。自上世纪70年代开始,我国就开始仿制“火蜂”无人机,并将其命名为WZ-5型,需要利用母机运载和发射。而现役无人机也是由该种无人机改进而来,装有全球定位系统和惯性导航系统,利用涡轮喷气发动机提供动力,装有红外摄像机、光学和电视等设备,续航时间可达3小时,飞行高度可达17500m。

从空气动力学角度来看,军事侦察无人机需要满足隐身要求,所以其气动设计需要同时考虑气动性能和隐身性能要求。所以,该类无人机在气动外形上需要满足高升阻比和隐身要求,并且满足高机动性要求。为满足这些要求,大多无人机采取的都是无尾设计方案,一些则采取了推力矢量控制方案。针对无尾型无人机,其在气动力方面需要寻求全新操纵机构,然后利用该机构进行垂直尾翼的替代,从而为机身提供足够的偏航力矩,继而使无人机能够灵敏完成不同的动作。而多数无人机都会遭遇小雷诺数空气动力学问题,这也

成为了军事侦察无人机的一大特点。所谓的雷诺数,则是决定机翼和边界层性质是否失速的参考数值,可以作为无人机空气动力学研究的参考依据[1]。想要获得该参数,还要对无人机的机翼失速问题展开分析,以便通过测量翼弦长度完成雷诺数的计算。如果无人机的机翼雷诺数保持在临界数值以上,其在飞行的过程中将拥有较好的性能。而临界雷诺数的大小,与翼型厚度和弯曲程度等参数有关。此外,在军事侦察无人机空气动力学研究方面,除了研究机翼的空气动力学问题,还要从整体角度对其空气动力学问题展开分析,才能更好的满足无人机的气动性能要求。

2 军事侦察无人机空气动力学研究

2.1 无人机机翼的空气动力学研究

2.1.1 翼型分析

在设计无人机机翼时,通常使用百分数进行翼型厚度、最高点和中弧线弯曲度等参数的表示,而机翼弦长则为基准长度,需要从前缘作出发点。目前,无人机的翼型有较多种类,通常要冠以研究单位或个人的名字。在对翼型外形坐标进行表示时,需要利用百分数完成翼型上、下弧线上的一些点的坐标的表示,坐标原点为前缘。在对翼型性能进行表示时,需要对其在不同迎角所具有的升阻比、升力系数、焦点力矩系数和阻力系数等参数进行表示。除了阻力和升力特性,还要了解翼型数据在压力中心上的位置。如果升力作用

点在翼弦上,则阻力也要作用于翼弦位置。通常的情况下,中小型无人机拥有较大的雷诺数,与普通飞机无过大气动力差别,在翼型选择上可以采取常规设计方法。但是,军事侦察无人机通常为高空长航时无人机,其雷诺数较小。因为,高空空气较为稀薄,长时间在高空飞行,将导致无人机需要由较大升力系数,需要使用喷气式发动机。在这一条件下,无人机翼型设计只能选取升力系数较大的机翼类型,以满足翼型升阻比大的?O计要求。在两种翼型拥有相当的升阻比的情况下,则可以进行对应升力系数较大的翼型。通常的情况下,可以选用新的层流翼型以满足该要求,比如“全球鹰”就是采取该种翼型,具有较大的机翼展弦比,并且翼弦较短,具有较大的升力系数。

2.1.2 翼型所受影响分析

无人机的机翼并非是无限长的翼展,其上翼面压力较小,下翼面则具有较大压力。所以在翼尖的位置,气流会向上流动,从而产生涡流。而整个机翼的气流流动,都会受到涡流的影响。首先,受涡流影响,机翼的上下压力分布将发生改变,从而导致上下面的压力差减小,继而导致机翼升力减小。其次,在涡流影响下,机翼的迎角会有所减小,靠近翼尖的位置的迎角减小的幅度更大,以至于机翼总升力系数会遭到减小。再者,在涡流的影响下,机翼后面气流会开始向下倾斜,从而导致机翼阻力增加。该阻力被称之为诱导阻

力,在无人机进行大迎角飞行的条件下,该阻力值将占据总阻力的1/3以上,因此会影响无人机飞行的稳定性。为克服涡流效应,则需要提高机翼的升力系数。而一般的情况下,机翼的升力系数就是沿着翼展方向各个剖面升力系数的平均值[2]。如果机翼为梯形,越靠近翼尖的位置弦长越小,其局部升力系数将较大,容易导致机翼失速。想要改善机翼升力系数分布,则要采取扭转翼平面的设计方法。具体来讲,就是沿着翼尖方向逐渐减少翼型安装角,从而使翼型根部具有较大的迎角,继而使翼尖过早失速的问题得到解决。

2.1.3 机翼性能改善方法

想要使无人机的机翼性能得到改善,还要采取良好翼型,并提高机翼雷诺数和加大展弦比。除此之外,还可以使用翼尖小翼的方法进行机翼升阻比的提高。从以往研究来看,通过加装翼尖小翼,就可以将小型无人机的最大升阻比提高至10.6%。但是,使用该种设计方法,将导致机翼流场复杂,从而导致小翼气动特性受到较多参数的影响,如倾斜角、安装角和小翼高度等,通常难以完成小翼气动特定的精确计算。想要获得最佳参数组合,则需要借助风洞试验进行参数确定。而在对无人机的气动特性进行改进时,则需要对根部弯矩增加问题和全机静稳定性对机翼空气动力特性产生的影响展开分析[3]。由于军事侦察机有着较高的机动性要求,所以不能只提高机翼升阻比,还要对其隐身要求和操纵

稳定性进行考虑,因此通常需要采用增加前后缘襟翼的方式进行机翼改进,并且配合以推力矢量控制方法。 2.2 无人机整体的空气动力学研究

对军事侦察无人机的空气动力特性展开分析可以发现,整个无人机受到的空气动力就是各部件受到的空气动力之和。而无人机的升力主要由机翼提供,包含尾翼在内的其他部件只会产生较小的升力。在阻力方面,无人机的各部分部件都会产生阻力。因为,各部件之间存在相互干扰作用,所以总的阻力可能要高于各部件阻力之和。因此在研究军事侦察无人机的空气动力学时,还要对无人机整体的空气动力学特点展开分析。

2.2.1 各部件阻力系数分析

在对无人机总的气动特性展开分析时,需要利用风洞试验完成各附着物体的阻力系数的测试。如果不开展风洞试验,则需要利用各种资料完成各物体阻力系数的汇总分析,然后进行阻力的计算。从机身阻力上来看,军事侦察无人机无座舱,但是需要完成各种侦察设备的安装,所以机身仍然有一定的大小。但是,该类机身都是流线型机身,拥有不小于表面摩擦阻力的机身阻力。在无人机雷诺数较小的情况下,可以将机身边界层当成是层流,可以边界层附近数值为摩擦力系数,然后结合机身横截面积进行机身阻力系数的求取。此外,由于军事侦察无人机需要安装各种探测器,所以

机身上将拥有整流鼓包[4]。根据设计参数,则可以完成鼓包截面积的计算,然后进行机身突出物阻力的计算。此外,还要根据轮胎截面积进行无人机起落架阻力的计算。

2.2.2 整体空气动力学分析

在对无人机的全机阻力系数进行分析时,可以将无人机的阻力划分为两部分,既各部件废阻力和机翼阻力。对各部件废阻力进行计算,就是需要完成无人机各部件与升力无关的废阻力的计算,包含各部件废阻力和各部件间的相互干扰废阻力。通常的情况下,需要通过试验才能得到干扰阻力。如果没有确切数据,可以假设干扰阻力位各部件废阻力和的10%。在实际计算的过程中,各部件拥有不同的参考面积,还要先完成与机翼面积对应的废阻力系数的求取,具体包含尾翼、机身和外整流包等。得到与升力无关的废阻力系数后,就可以将其与机翼的诱导阻力系数相加,从而得到全机的阻力系数。在实际设计无人机时,由于全机有利迎角将大于机翼有利迎角,所以在机身等部件拥有较大阻力的情况下,迎角角度增加的就越多[5]。假设无人机废阻力系数不随着迎角变化而变化,则可以完成无人机最大升阻比的计算。如下式(1)所示,Kmax为无人机最大升阻比,A为机翼展弦比,CDO,A?槲奕嘶?总的废阻力系数。由此可知,想要使无人机的最大升阻比得到提高,还要减少无人机的废阻力系数,也可以增加机翼展弦比。

2.2.3 动力装置的空气动力学分析

无人机在飞行的过程中,需要使用动力装置为飞机飞行提供动力。而使用电动机和内燃机等动力装置,需要依靠螺旋桨产生的拉力为无人机飞行提供动力。所以,螺旋桨的设计将直接影响无人机的性能。对螺旋桨的气动力进行考虑时,通常需要以桨叶半径0.7处的截面形状为基准。在无人机飞行时,通过螺旋桨旋转面的相对气流速度与气流速度的矢量和,则为翼型速度[6]。计算通过的气流速度,需要求取无人机前进速度和螺旋桨滑流速度的平均值,通常可以将滑流速度当成是前进速度的2/3。结合翼型速度、螺旋桨转速、桨叶半径处弦长、和螺旋桨直径,则能够完成螺旋桨雷诺数的求取。而军事侦察无人机的动力装置通常为无刷直流电动机,功率较小,螺旋桨直径为2m左右。由于雷诺数较低,通常使用较宽的桨叶。

在无人机飞行的过程中,如果作俯仰机等动作,机身将按照曲线飞行,螺旋桨则会高速旋转,并产生陀螺力矩。随着转速的升高,无人机飞行角度也会逐渐增大,从而导致螺旋桨产生更大的陀螺力矩。而该种力矩将导致无人机作出俯仰运动或偏转,继而使无人机能够顺利执行任务。分析其规律可以发现,在螺旋桨沿着顺时针方向转动时,其产生的力矩将使无人机向右偏转[7]。此时,如果是无人机低头,无人机就会向左偏转。在螺旋桨沿着逆时针方向旋转时,则会产

生相反的结果。对无人机进行飞行控制时,还要对这些因素进行综合考虑。通常的情况下,微型无人机具有较大的螺旋桨,需要对其产生的力矩进行考虑。如果使用双发动机,则需要使其螺旋桨相互反向旋转,从而进行力矩的抵消[8]。而军事侦察无人机的机身相对较大,螺旋桨相对较小,产生的影响并不明显。

3 结语

加强对军事侦察无人机的空气动力学研究,则可以更好的了解无人机的空气动力学原理,从而更好的完成无人机的设计和操纵。因此,相信本文对军事侦察无人机空气动力学展开的研究,可以为相关工作的开展带来一些启示。

参考文献:

[1]岳基隆,张庆杰,朱华勇.微小型四旋翼无人机研究进展及关键技术浅析[J].电光与控制,2010,10:46-52.

[2]梁爽.固定翼无人机定点飞行最优路径选择[J].自动化仪表,2016,05:13-15.

[3]苏新兵,周洲,王旭,等.变前掠翼无人机气动特性和动力学建模与仿真[J].计算机仿真,2014,02:78-82.

[4]关永亮,侯玉秀,贾宏光,等.无人机地面运动的动力学建模及仿真[J].兵工学报,2014,07:1021-1026.

[5]李悦,裴锦华.无人机气液压发射动力学数值仿真[J].机械工程学报,2011,08:183-190.

[6]李满,宋笔锋,焦景山,等.基于柔性梁模型的大展弦比无人机动力学建模与分析[J].西北工业大学学报,2013,06:858-864.

[7]卢伟,马晓平,周明,等.无人机气动弹射动力学仿真与优化[J].西北工业大学学报,2014,06:865-871.

[8]丁娣,钱炜祺,和争春,等.基于动力学仿真的无人机伞降回收系统设计[J].飞行力学,2012,06:511-514.

无人机侦察图像情报处理技术研究

无人机侦察图像情报处理技术研究 摘要:无人机是侦察作业开展期间常用的一项设备,在将无人机应用到侦察期间,为了使无人机的作用能够得到合理发挥,要做好图像情报处理技术的研究,更好的完成侦擦作业。 关键词:无人机;侦擦作业;图像;情报处理 侦察是一项对技术要求高,以及隐蔽性高的一项技术,在侦察期间,对无人机进行应用,具有时效性强、周期短,二十四小时不间断的多项优势。同时,在侦察作业开展期间,也能够实现全方位、多角度侦察,能够快速获取到准确的侦察信息。 1 目标定位技术的应用 在侦察期间对无人机进行应用的一项关键内容就是可以通过对无人机的侦察图像进行应用,从而获取到感兴趣的地理信息内容。在目标定位时对无人机进行应用,具体包含的内容如下: (1)在具有基准图像基础上,对图像匹配模式进行合理应用,实现非实时性定位,从而实现对目标所在位置的确定[1]。 (2)对采用的无人机位置、姿态,以及侦察转台参数等各项遥测数据内容,快速、实时等完成对侦察目标瞬时位置的快速计算,确保目标位置准确无误。 2 实时拼接技术的应用 在侦察期间对无人机进行应用,为了可以获取到典型情报,在侦察期间要获取侦察区域内大范围、高精度侦察图像。但是,从无人机在侦察作业中的具体应用情况来看,受无人机大小,以及无人机上安装的侦察设备性能的影响,在侦察时,难以利用无人机获取到广泛、精准的侦察信息内容[2]。针对这一现象,在采用无人机进侦察时,应对将利用无人机获取到的连续多帧图像进行拼接,通过合理的拼接,最终得到一副与实际情况相符的大图,通过对更多的场景结构信息进行利用,能够更加快速、精准的获取到大量的场景结构信息,这能够获取到更加精准的侦察信息,比较典型的无人机在侦察中,视频图像每秒约为25帧,视频序列相邻帧存在大量重叠区域,因此,在实际作业开展期间,为了能够在短时间内获取到准确图像拼接结果,对于获取到的图像,进行处理时,先配准相邻帧视频图像,完成配准后,将图像连接起来,直到将获取到的连续视频拼接成大范围图像为止。通过拼接能够获取到相应的图像,同时,结合参考图像,准确获取到无具体地理坐标数据的无人机飞行区域,完成相应的侦察任务[3]。 3 图像去雾技术的应用 侦察作业对无人机进行应用,要考虑天气因素对无人机应用造成的影响,例如,在对视频处理技术进行应用时,要雾天情况下,无人机在侦察时的视频可视化性问题进行全面分析,在雾天环境下,场景能见度降低明显,这也就会导致侦察中图像中目标对比度和颜色特征都会发生衰减,从而造成室外视频系统无法正常运行,可见,在视频图像中,要对雾气场景进行消除,避免雾气对图像造成不良影响[4]。从目前科技的发展情况来看,计算机视频领域在研究过程中对雾天、雨天等特殊天气环境下研究,未达到十分成熟状态。现阶段,图像去除雾方法主要分为以下两种类型: (1)图像增强法 该方法就是直接对图像进行增强,提高图像的清晰度,降低天气对图像清晰度的影响,从而获取到清晰图像。

飞机的空气动力学.

低速、亚音速飞机的空气动力 环境c091 王亚飞 飞机上的空气动力学和现在的流体力学有着相同的特点,研究空气动力学可以间接的学习流体力学,而空气动学上的最突出的应用就是飞机,所以现在着重讲述下飞机的空气学特点, 翼型的升力和阻力 飞机之所以能在空中飞行,最基本的事实是,有一股力量克服了它的重量把它托举在空中。而这种力量主要是靠飞机的机翼与空气的相对运动产生的。 迎角的概念飞行速度(飞机质心相对于未受飞机流场影响的空气的速度)在飞机参考平面上的投影与某一固定基准线(一般取机翼翼根弦线或机身轴线)之间的夹角,称为迎角(图2.3.5(a)),用α表示。当飞行速度沿机体坐标系(见2.4.1节)竖轴的分量为正时,迎角为正。 如果按照相对气流(未受飞机流场影响的气流)方向,则相对气流速度(未受飞机流场影响的空气相对于飞机质心的运动速度)在飞机参考平面上的投影与某一固定基准线之间的夹角就是迎角,且当相对速度沿机体坐标系竖轴的分量为负时,迎角为正(图2.3.5(b))。

图2.3.5 迎角图2.3.6小迎角α下翼剖面上的空气动力 1—压力中心 2—前缘 3—后缘 4—翼弦 升力和阻力的产生根据我们已经讨论过的运动的转换原理,可以认为在空中飞行的飞机是不动的,而空气以同样的速度流过飞机。如图2.3.6所示,当气流流过翼型时,由于翼型的上表面凸些,这里的流线变密,流管变细,相反翼型的下表面平坦些,这里的流线变化不大(与远前方流线相比)。根据连续性定理和伯努利定理可知,在翼型的上表面,由于流管变细,即流管截面积减小,气流速度增大,故压强减小;而翼型的下表面,由于流管变化不大使压强基本不变。这样,翼型上下表面产生了压强差,形成了总空气动力R,R的方向向后向上。根据它们实际所起的作用,可把R分成两个分力:一个与气流速度v垂直,起支托飞机重量的作用,就是升力L;另一个与流速v平行,起阻碍飞机前进的作用,就是阻力D。此时产生的阻力除了摩擦阻力外,还有一部分是由于翼型前后压强不等引起的,称之为压差阻力。总空气动力R与翼弦的交点叫做压力中心(见图 2.3.6)。好像整个空气动力都集中在这一点上,作用在翼型上。 根据翼型上下表面各处的压强,可以绘制出翼型的压强分布图(压力分布图),如图 2.3.7(a)所示。图中自表面向外指的箭头,代表吸力;指向表面的箭头,代表压力。箭头都与表面垂直,其长短表示负压(与吸力对应)或正压(与压力对应)的大小。由图可看出,上表面的吸力占升力的大部分。靠近前缘处稀薄度最大,即这里的吸力最大。

多旋翼无人机的结构和原理

多旋翼无人机的结构和原理 翼型的升力: 升力的来龙去脉这是空气动力学中的知识,研究的内容十分广泛,本文只关注通识理论,阐述对翼型升力和旋翼升力的原理。 根据流体力学的基本原理,流动慢的大气压强较大,而流动快的大气压强较小。由于机翼一般是不对称的,上表面比较凸,而下表面比较平(翼型),流过机翼上表面的气流就类似于较窄地方的流水,流速较快,而流过机翼下表面的气流正好相反,类似于较宽地方的流水,流速较上表面的气流慢。大气施加与机翼下表面的压力(方向向上)比施加于机翼上表面的压力(方向向下)大,二者的压力差便形成了升力。[摘自升力是怎样产生的]。所以对于通常所说的飞机,都是需要助跑,当飞机的速度达到一定大小时,飞机两翼所产生的升力才能抵消重力,从而实现飞行。 旋翼的升力飞机,直升机和旋翼机三种起飞原理是不同的。飞机依靠助跑来提供速度以达到足够的升力,而直升机依靠旋翼的控制旋转在不进行助跑的条件下实现垂直升降,直升机的旋转是动力系统提供的,而旋翼旋转会产生向上的升力和空气给旋翼的反作用力矩,在设计中需要提供平衡旋翼反作用扭矩的方法,通常有单旋翼加尾桨式(尾桨通常是垂直安装)、双旋翼纵列式(旋转方向相反以抵消反作用扭矩)等;而旋翼机则介于飞机和直升机之间,旋翼机的旋翼不与动力系统相连,由飞行过程中的前方气流吹动旋翼旋转产生升力(像大风车一样),即旋翼为自转式,传递到机身上的扭矩很小,无需专门抵消。 而待设计的四旋翼飞行器实质上是属于直升机的范畴,需要由动力系统提供四个旋翼的旋转动力,同时旋翼旋转产生的扭矩需要进行抵消,因此本着结构简单控制方便,选择类似双旋翼纵列式加横列式的直升机模型,两个旋翼旋转方向与另外两个旋翼旋转方向必须相反以抵消陀螺效应和空机动力扭矩。

空气动力学

空气动力学 科技名词定义 中文名称:空气动力学 英文名称:acerodynamics;aerodynamics 定义1:流体力学的分支学科,主要研究空气运动以及空气与物体相对运动时相互作用的规律,特别是飞行器在大气中飞行的原理。 所属学科:大气科学(一级学科);动力气象学(二级学科) 定义2:研究空气和其他气体的运动以及它们与物体相对运动时相互作用规律的科学。 所属学科:航空科技(一级学科);飞行原理(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片

同名书籍 空气动力学是力学的一个分支,它主要研究物体在同气体作相对运动情况下的受力特性、气体流动规律和伴随发生的物理化学变化。它是在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。 目录

编辑本段 1.动量理论 推导出作用在风机叶轮上的功率P和推力T(忽略摩擦阻力)。 由于受到风轮的影响,上游自由风速V0逐渐减小,在风轮平面内速度减小为U1。上游大气压力为P0,随着向叶轮的推进,压力逐渐增加,通过叶轮后,压力降低了ΔP,然后有又逐渐增加到P0(当速度为U1时)。 根据伯努力方程 H=1/2(ρv2)+P (1) ρ—空气密度 H—总压 根据公式(1), ρV02/2+P0=ρu2/2+p1 ρu12/2+P0=ρu2/2+p2 P1-p2=ΔP 由上式可得ΔP=ρ(V02- u12)/2 (2) 运用动量方程,可得作用在风轮上的推力为: T=m(V1-V2) 式中m=ρSV,是单位时间内的质量流量 所以:T=ρSu(V0-u1) 所以:压力差ΔP=T/S=ρu(V0-u1) 由(2)和(3)式可得: u=1/2[(V0-u1)] (4) 由(4)式可见叶轮平面内的风速u是上游风速和下游风速的平均值,因此,如果我们用下式来表示u。 u=(1-a)*V0 (5) a 称为轴向诱导因子,则u1可表示为: u1=(1-2a)*V0 (6)

无人机关键技术

旋翼飞行器控制到底有哪些关键技术难点 (1)机体优化设计问题。对于四旋翼飞行器机体设计时,主要考虑飞行器的质量、能耗及体积等因素。飞行器的质量与能耗及体积之间相互影响,因此首先需要确定飞行器机体参数,然后选择合适的直流无刷电机、螺旋桨及电池等材料。 (2)难以建立精确的四旋翼飞行器模型。建立精确的飞行器模型是研究飞行器控制算法的基础和前提,但由于四旋翼飞行器是一个强耦合、多变量的非线性复杂系统,同时在飞行过程中很难获得准确的空气动力学参数,且飞行器容易受到空气阻力和风速的影响,因此很难建立精确的四旋翼飞行器模型。 (3)飞行器所使用的传感器采集到的姿态数据存在误差。例如:陀螺仪采集角速度时存在零漂误差和温漂误差;加速度计采集角加速度时存在振动误差和零漂误差;当飞行器处于低空飞行情况下,采用气压高度计采集高度信息存在较大的误差。这些因素都会对飞行器姿态信息和位置信息的测量产生影响,进而影响飞行器的控制性能。 (4)飞行器控制算法设计。目前针对四旋翼飞行器控制算法的研究有很多,主要有经典PID控制算法、H¥控制算法、反步法等等。飞行器算法性能主要是从响应速度、稳定性及超调量等方面进行衡量,但响应速度、稳定性及超调量这三者之间相互影响、相互制约。 ------------------------------------------------------------------------------------------------------------------------------ 飞行原理就不多讲了,飞行器的飞行姿态多种多样,有花式摇摆,大雁南归,飞流直下等多种方式;

课题_无人机制作原理及过程

无人机制作原理及过程 今年4月份,由技装公司自主研制的无人机“翔雁”首次亮相第十三届中国东西部投资与贸易洽谈会,并与国家测绘局签约合作意向书。该项目拟投资2000多万元,分两个阶段实施:第一阶段为研制试验阶段,包括航摄设备材料购置、航摄系统研究开发、无人机平台完善和试飞,以及相关技术及配套软件开发研究投入;第二阶段为推广阶段,建立“翔雁”无人机及航摄设备生产线,拟订无人机航摄系统应用标准,在全国范围内推广。 此前,“翔雁”无人机已完成8个起落的飞行试验验证,飞行平衡,地面视频图像清晰完整,能按程序完成各项任务。这充分证明,“翔雁”无人机已跨入自主飞行的无人机行列。 那么,“翔雁”到底是一种什么样的机型,有什么功用呢? 据技装公司副总经理王俊介绍,“翔雁”无人机长2。7米,翼展4米,可以每小时110公里的速度进行大于15小时的巡航,采用菱形联结翼气动外形、前三点式起落架、发动机后推式布局,机身、机翼、起落架均可拆卸和组装。 “翔雁”利用航空制造工艺技术,采用全新的气动外形、模块化的任务系统、领先的飞行控制系统,形成自主飞行的能力,给它加载不同的任务系统就可以完成特定的任务。她可以用作气象探测、人工降雨、航空遥感、城市治安巡逻等多用途民用无人机平台,也可完成可执行目标指示、电子干扰、信号中继、战场侦察预警、战场评估、通信中断、空中监控、边境巡逻等军事任务。

当今,许多国家、机构对无人机研制和发展热情高涨,已研制出了50多种无人机,有55个国家军队装备了无人机。美国仅装备军队的就有“全球鹰”、“暗星”、“猎人”等十几个型号,波音公司是美国的主要无人机制造商之一。 由中国自主设计制造的长空一号、长空二号、无侦五、无侦九和ASN-206无人机正在服役,领先国内外水平的“暗箭”攻击型无人机正处于设计定型阶段。 面对竞争激烈的无人机市场,“翔雁”无人机此时“展翅”是否为时已晚? “暗箭”无人机 何以进军无人机市场 技装公司经营管理处处长王从福介绍,首先,“翔雁”无人机的低成本,为研发提供了可能。它不需要氧气、空调、增压、弹射座椅等座舱设备,降低了成本和重量;不需要生命保障系统,可以适应更

空气动力学

基于空气动力学的车身设计方法 14车辆卓越雷方龙1408032214 现如今工业技术急速进步,为汽车工业发展创造了良好的契机,汽车变得越来越普及、越来越高速,由此车身空气动力学曲线问题得到诸多研究人员的热点关注。 众所周知,车速越快阻力越大,空气阻力与汽车速度的平方成正比。如果空气阻力占汽车行驶阻力的比率很大,会增加汽车燃油消耗量或严重影响汽车的动力性能。据测试,一辆以100km/h速度行驶的汽车,发动机输出功率的80%将被用来克服空气阻力,减少空气阻力,就能有效地改善汽车的行驶经济性。如图1为空气流动对汽车的各方面影响。 图1 自卡尔·本次在1886年发明生产出世界上第一辆汽车起,汽车已有了百年的发展历史。从汽车造型角度而言,自最初的马车型汽车(无空气动力学阶段),到现如今的复合型汽车(空气动力学高度化阶段),车身空气动力学曲线发展收获了显著的成效[1]。车身空气动力学一方面重要影响着汽车的各式各样关键性能,好比动力性能、安全性能、环保性能以及经济性能等,另一方面也重要影响着汽车的外观转变及审美发展潮流。随着社会经济发展,人们生活水平日益改善,人们对于出行必备交通工具汽车的性能要求愈来愈高,汽车生产商对于车辆的气动特征也越来越关注,气动性能的好坏以转变成汽车行业竞争的关键因素。 汽车在行驶中由于空气阻力的作用,围绕着汽车重心同时产生纵向,侧向和垂直等三个方向的空气动力量,对高速行驶的汽车都会产生不同的影响,其中纵向空气力量是最大的空气阻力,大约占整体空气阻力的80%以上。

一、在研究汽车空气动力学的过程中的三种方法。 (1)、理论研究方法理论研究方法通过抓住所分析问题的主要影响因素,抽象出合理的简化理论模型,并根据总结出来的相关物理定律和有关介质性质的试验公式来建立描述介质运动规律的积分或微分方程。然后利用各种数学工具及相应的初始、边界条件解出方程组,通过对解分析来揭示各种物理量的变化规律,包括将它与实验或观察资料对照,确定解的准确度和适用范围。 (2)、数值计算研究方法由于数学发展水平的局限,理论研究只能建立较为简单的近似模型,无法完全满足研究更复杂更符合实际的气流的要求。于是近年来出现了依托快速电子计算机进行有效数值计算的方法CFD,其中包括有限元法、有限差分法等,它属于汽车计算机辅助空气动力学CAA的设计范畴,并已成为与理论分析和实验并列或具有同等重要性的研究方法。其优点是能够用来预测或解决一些理论及实验无法处理的复杂流动问题,取代部分实验环节,省时省工。但它要求事前对问题的物理特性有足够的理解,提炼出较精确的数学方程及相应的初始、边界条件等。但这些都离不开试验和理论方法的支持,并且数值方法通常无法直接反映同类问题中有普遍指导意义的结论或规律。 (3)、试验研究方法试验研究方法在空气动力学研究中占有重要地位,如风洞试验法、道路试验法。它使人们能在与所研究问题相同或相近条件下进行观测,提供建立运动规律及理论模型的依据,检验理论或计算结果的准确性、可靠性和适用范围,其作用是不可替代的。但试验方法受限于试验手段、设备和经费等物质条件,甚至有些问题尚无法在实验室中进行研究。 理论、数值计算和试验三种方法相互促进,彼此影响,取长补短从而推动汽车空气动力学的不断发展。 二、轿车外形设计的两种方法 (1)、局部最优化方法。基本思路是在满足功能、工艺学、人机工程学、安全法规以及美学造型等方面的要求下设计出汽车车身造型,然后再进行空气设计程序。此方法的优点是:操作简单,在流线型较差的车上有较好的效果。通过对原始模型仿真,从结果中得出某细节修改的模型,再重新进行仿真分析。像这样循环反复,最终达到自己预期的目标。这种方法在现实设计中运用广泛。 (2)、整体最优化方法。整体最优化是基于空气动力学原理,在汽车造型设计初期获得极佳的气动特性的理想外形,接着再根据功能结构需求,调整集合的局部外形,使其满足人机工程学、国家安全法规等各个必要因素的汽车[1]。所以,对于这种汽车的空气动力学设

南航直升机空气动力学习题集17页

直升机空气动力学习题集 绪论 (0-1)试计算Z-8直升机的旋翼实度σ、桨尖速度ΩR和海平面标准大气条件下的桨尖M数。 (0-2)Z-9直升机的旋翼桨叶为线性负扭转。试画出以桨距Ф7=11。作悬停飞行的桨叶上r=(0.29~1.0)一段的剖面安装角()rφ→分布。 (0-3)关于反扭矩的是非题: a) 尾桨拉力用以平衡发动机的反扭矩,所以尾桨的位置要比发动机高。() b) 尾桨拉力用以平衡旋翼的反扭矩,所以尾桨位置距旋翼轴很远。() c)双旋翼直升机的两付旋翼总是彼此反向旋转的。() d) 尾桨没有反扭矩。() (0-4) 关于旋翼参数的是非题: a)旋翼的半径就是桨叶的长度。() b) 测量桨叶的根部宽度及尖部宽度,就可以得到桨叶的根梢比。() c) 测量桨叶的根部及尖部之间的倾斜角之差,就得到桨叶的扭度。()

d) 台式电风扇实度接近1。 ( ) (0-5) 假定Y-2直升机在某飞行状态下,旋翼拉力T=1200公斤,试计算 其C T 值。(海平面标准大气) 第一章 (1-1) 论证在垂直上升状态旋翼的滑流形状是图(a )而不是图(b ) (1-2) 假定Y-2直升机在垂直飞行状态发动机的功率有84%传递给旋翼, 且悬停时悬疑的 型阻功率为诱导功率的一半,桨端损失系数к=0.92; a) 求在海平面标准大气条件下悬停时桨盘外的诱导速度; b) 求在海平面标准大气条件下悬停时的诱导功率、相对效率和直升机的单位马力载 荷; c) 若以V 0=(1/3)v 10的速度作垂直爬升,此时桨盘处的诱导速度多大?诱导功率多大? 若型阻功率与悬停时相同,旋翼消耗的总功率多大? (1-3) 上题中,若飞行重量增大20%,除增大桨距外保持其他条件及型阻 功率不变,那么其悬停诱导功率及相对效率将是多大? (1-4) 既然 a) 是否可以认为,只要把旋翼直径做得很大,就可以用很小功率的 发动机做成重型直升机? b) 直升机的发展趋势为什么是p 趋向增大? (1-5) 试根据0η的定义导出0η与桨盘载荷p 的关系。假定型阻功率与p

警用侦察无人机

一、介绍 无人机能利用承载的高灵敏度照相机可以进行不间断的画面拍摄,获取影像资料,并将所获得信息和图像传送回地面。应用于反恐维稳,如遇到突发事件、灾难性暴力事件,可迅速达到实时现场视频画面传输,传供指挥者进行科学决策和判断;成为一种不可多得的重要工具。进一步提高我公安干警的响应、决策、评估效率,推动公安的信息化建设进程。 二、应用 1、针对反恐处突对目标建筑物监控 2、针对应急突发暴力事件 当城市监控设备被破坏时,无人机作为独立的设备可以深入危险地区完成一系列复杂的侦查任务,也可以对现场情况不间断地拍摄,为警方提供第一手直观的宝贵资料。 3、针对防暴搜捕问题 无人机可以对逃犯采取的各种逃跑方式进行跟踪、监视,也可以搭载红外设备,对夜晚逃犯进行监控,可对躲藏在丛林里的犯罪嫌疑人进行扫描式飞行搜索。无人机将逃犯的逃跑路线提前通报警方,提高警方的抓捕速度与抓捕准确性。 4、针对聚众闹事事件 无人机飞抵事故目标区域上空对目标区域进行全方位不间断的监控,为公安干警全面掌控事态提供了先决条件。警方可根据无人机拍摄的资料对事故责任方进行举证。加装空投装置后,无人机还能进行特殊物品的投送,如播撒传单,向地面人员传递信息;小型旋翼无人机通过加装高音喇叭,可以进行空中喊话,传递政府信息。 5、针对大型集会监控 无人机可对会场空中监控,提供高清画面,并可以快速机动到任何需要的区域上空,搜索发现地面可疑人员、车辆,提供强有力的空中情报保障。将视频图像实时传输回指挥中

心,指挥中心根据无人机传输回的资料对现场实时掌控,一旦发现突发情况,无人机可以第一时间发现,提高了应急处理效率。 6、针对搜救问题 无人机可根据基本信息对目标地区进行事先侦查,确定救援对象地理位置与目标情况,为后续救援工作提供了信息保障。 三、优势 1. 采集现场数据,迅速将现场的视、音频信息传送到指挥中心,跟踪事件的发展态势,供指挥者进行判断和决策(空中电子眼)。无人机机载摄像头到达现场之后能够迅速展开还可以多角度大范围的进行现场观察,具有不可替代的作用,是一般监控设备无法比拟的。 2. 在媒介失灵的状态下,播撒传单,向现场群众传递信息。当一些大型群体骚乱事件出现时,由于参加的人群众多,容易缺乏理智,现场很难控制。必要时可利用无人机播撒传单,向现场群众传递有关信息,引导群众配合政府的施救行动,或驱散示威人群,投放驱散装备。 3. 进行空中喊话,传递政府领导者讲话,表达警方意图。突发事件具有不确定性,如果在处置过程中不能使用正常的宣传工具与群众进行沟通,可通过无人机搭载扩音设备对现场进行喊话,传达正确的舆论导向。 4. 保持监控地区的数据传输链路做通信中继。应急出警的通讯设备需要租用卫星线路提前申报手续繁杂,由于高楼林立通讯信号盲区多,导致信号不能及时传递到指挥中心,致使决策滞后。无人机搭载的小型通讯设备则起到了低空卫星的作用,对地面形成不间断的信号链接,使指挥系统能及时接收到事发现场的详细警情。

无人机载光学侦察系统实时目标定位器设计

文章编号:1671-637Ⅹ(2008)1120047203 无人机载光学侦察系统实时目标定位器设计 吴艳梅1,2, 李 刚3, 张 霞2 (1.昆明理工大学,昆明 650093; 2.装备指挥技术学院,北京 101416; 3.航天空气动力技术研究院第三研究 部,北京 100074) 摘 要: 介绍了无人机载光学侦察系统目标定位原理,并设计出基于DSP处理器的实时目标定位器,同时给出了目标定位的误差因素及精度分析。 关 键 词: 无人机; 目标定位器; DSP; 坐标变换; 误差 中图分类号: V271.4 文献标识码: A Design of a real2time object locator for optical reconnaissance system onboard UAV W U Y an2mei1,2, LI G ang3, ZH ANG X ia2 (1.Kunming Univer sity o f Science and Technology,Kunming650093,China; 2.Institute o f Command and Technology o f Equipment o f P LA,Beijing101416,China; 3.Aerospace Aerodynamic Technology Academy,Beijing100074,China) Abstract: Optical reconnaissance system is one of the im portant payloads of Unmanned Air Vehicle(UAV) for reconnaissance.Since the optical reconnaissance system is independent to UAV,m ost of the former systems had to trans fer the UAV information(position,attitude)and reconnaissance system information to the ground for calculating the position of the object.The time delays of data trans fer link and image com pression/ decom pression etc.are not consistent,thus may result in problems in ground analysis.Therefore,it is very im portant to obtain the location information of the object in real time.The principle of object locator for optical reconnaissance system onboard UAV is introduced.A real2time object locator is designed based on DSP. Factors that have effect on accuracy of object locating are analyzed. K ey w ords: Unmanned Air Vehicle(UAV); object locator; DSP; coordinate trans formation; error 0 引言 光学侦察系统作为重要的有效载荷之一,在无人侦察机中得到广泛应用[1]。在实际应用中,要求系统在提供区域侦察图像的同时,还能够提供锁定目标点的数字化定位信息(经度、纬度、高度)。然而由于光学侦察系统作为有效载荷独立于载机,在没有载机位置和姿态信息的情况下,它只能提供与目标点对应的云台角度信息和目标测距信息。原有系统多数通过数据传输系统将载机信息(位置、姿态)以及侦察系统信息(云台角度、测距值)传至地 收稿日期:2007201222 修回日期:2008208224 作者简介:吴艳梅(1975-),女,湖南新化人,博士生,研究方向为光学信息处理。面,在地面解算出目标的位置信息(经度、纬度、高度),然后将目标位置信息叠加在图像上。由于数传链路、信息解算、图像压缩解压缩等过程产生的延时不一致,导致解算得到的信息与实际图像很难匹配,给地面判读造成一定困难。为了实时得到目标的定位信息,需要将载机信息与侦察系统信息结合起来,解算出目标的位置信息(经度、纬度、高度),并将其叠加在图像上传回地面。 1 无人机光学侦察系统定位原理无人机载光学侦察系统定位过程如下:由地面根据侦察图像指定目标,侦察系统控制云台使目标处于图像中间位置,即使目标与镜头光轴重合;此时侦察系统输出云台的方位角、俯仰角以及目标的激光测距数值,飞控计算机输出飞机的大地坐标值(经 第15卷第11期2008年11月 电光与控制 E lectronics Optics&C ontrol V ol.15 N o.11 N ov.2008

第一课 无人机空气动力学

第一课空气动力学 一、飞行小故事 伯努利原理:丹尼尔·伯努利在1726年首先提出在水流或气流里,如果速度小,压强就大,如果速度大,压强就小。由此我们可以解释飞机为什么能够飞上天,因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。 二、飞行目标 1、通过实验理解伯努利原理。 2、动手制作雷鸟飞机,知道螺旋桨的迎风面,并且了解它产生的反冲力。 3、调试雷鸟飞机,尝试提高它的滞空时间。 三、飞行所需材料 一杯水、一个吸管、一把剪刀、一架雷鸟飞机 四、飞行练习 1、练习一:感知伯努利原理 我们接下来用一个小实验来体验一下伯努利原理,从而感知飞机上浮的原因。

左手拿着短的放在水中,右手拿着长的吹气,吸管吹气的那个地方空气速度很快,这样大气压力变小,但是短吸管下面的大气压力没有变化,就会把水压到吹气的地方。 实验完成后注意整理材料哦 2、练习二、雷鸟飞上天 我们组装雷鸟模型飞机,体验伯努利原理,让飞机上天。 步骤一:取出机翼,按照一下方法折叠。标注为为正折向下折,标注为反折向上折。注意动作要轻,切勿折断机翼。 你说说飞机在飞行过程中,空气在机翼的行走的路线吗?试试用皮尺测量机翼正反面翼的长度,用速度=路程÷时间来比较一下空气在机翼正反面的流速。 我们发现:空气在机翼上方路程比下方大,时间一样,所以流速要快。流速的快慢,形成了气压下方比上方大,就形成了向上的压力,飞机就会被往上推。 步骤二:定型主翼,先给翼型定型片贴上双面胶,再将定型片粘贴到机翼上反角背面,最后用加强胶带加固。

空气动力学

空气动力学 崔尔杰* (中国航天科技集团第701研究所) 本文简要回顾空气动力学发展的历史及其在航空航天飞行器研制中的作用,对现代空气动力学新的发展趋势和新一代航天飞行器研制中可能遇到的关键气动力问题进行探讨和分析,并对今后发展提出看法。 一、空气动力学与航空航天飞行器发展 空气动力学是研究空气和其他气体的运动规律以及运动物体与空气相互作用的科学,它是航空航天最重要的科学技术基础之一。 1.空气动力学推动20世纪航空航天事业的发展 1903年莱特兄弟研制成功世界上第一架带动力飞机,实现了人类向往已久的飞行梦想。为了研制这架飞机,他们进行过多次滑翔试验,还为此建造了一座试验段为0.01m2的小型风洞。正是这些努力,加上综合运用早期的空气动力学知识,最终获得了成功。 20世纪初,建立在理想流体基础上的环量和升力理论以及普朗特提出的边界层理论奠定了低速飞机设计基础,使重于空气的飞行器成为现实。40年代中期至50年代,可压缩气体动力学理论的迅速发展,以及对超声速流中激波性质的理论研究,特别是跨音速面积积律的发现和后掠翼新概念的提出,帮助人们突破“音障”,实现了跨音速和超音速飞行。50年代中期,美、苏等国研制成功性能优越的第一代喷气战斗机,如美国的F-86、F-100,苏联的米格-15、米格-19等。50年代以后,进入超音速空气动力学发展的新时期,第二代性能更为先进的战斗机陆续投入使用,如美国的的F-4、F-104,苏联的米格-21、米格-23,法国的幻影-3等。 1957年苏联发射第一颗地球人造卫星和1961年第一艘载人飞船“东方号”升空,被认为是空间时代的开始。美、苏两国在战略导弹和航天器发展方面的激烈角逐,促使超音速和高超音速空气动力学得到迅速发展。两个超级大国都投入巨大力量,致力于发展地面模拟设备,开邻近高超出音速空气动力学和空气热力学的研究。航天方面的研究重点放在如何克服由于高超音速飞行和再入大气层,严重气动加热所引起的“热障”问题上在钱学森先生倡导下诞生了一门新的学科,即物理力学,为航天器重返大气层奠定了科学基础。航空方面的研究重点则放在了发展高性能作战飞机、超音速客机、垂直短距起落飞机和变后掠翼飞机。这一时期,空气动力研究方面的另一项重要成就是“超临界机殿”新概念的提出,它可以显著提高机翼的临界马赫数。20世纪70年代后,脱体涡流型和非线性涡升力的发现和利用,是空气动力学的又一重要成果。它直接导致了第三代高机动性战斗机的产生,如美国的F-15、F-16,苏联苏-27、米格-29和法国的“幻影2000”。

直升机空气动力学现状和发展趋势

直升机空气动力学现状 二级学院:航空维修工程学院 班级:航修六班 学号:14504604 姓名:李达伦 日期:2015年6月30日

直升机空气动力学现状 (航修六班14504604 李达伦) 摘要:直升机空气动力学是直升机技术研究及型号研制的基础性学科和先进学 科,本文概述了国外的直升机气动理论与方法研究、基于气动理论和方法的应用基础研究、直升机气动试验技术的研究现状。 关键词:空气动力学;直升机 Abstract:Aerodynamics of helicopter is a helicopter technological research and model development of basic disciplines and advanced subject. This paper summarizes the foreign helicopters gas dynamic theory and method of research, based on the aerodynamic theory and methods of applied basic research, helicopter aerodynamic test technology research status. Key word:Air dynamics; helicopter 1 前言 飞行器的设计和研制必须以其空气动力学为主要依据,这是飞行器研制区别 于其它武器平台的典型特征。直升机以旋翼作为主要的升力面、推力面和操纵面, 这种独特的构型和旋翼驱动方式,更使其气动特征具有复杂的非定常特征,其气 动分析和设计技术固定翼飞行器更具挑战性。 直升机气动研究是指认识直升机与空气之间作用规律、解释直升机飞行原 理、获取提升直升机飞行能力和效率的新知识、新原理、新方法的研究活动,其 主要任务是获得直升机的空气动力学特性[1]。由于直升机气动特征性直接决定了 型号飞行性能、振动特性、噪声水平,且是结构设计、寿命评估等的直接依据, 因此直升机气动研究是直升机技术研究的重要方面,更是型号研制的基础。尤其 是要实现舒适、安全、便利、快捷的直升机型号研制目标,直升机空气动力学将 体现其核心推动作用。 2 内容和范围 直升机空气动力学专业发展涵盖的内容和范围主要有直升机气动理论与方 法的研究、基于气动原理的应用基础研究以及气动特性试验研究三大内容。 直升机气动理论与方法的研究重点关注旋翼与周围空气相互作用现象及机 理的分析模型和方法,通过对气动理论和方法的研究,实现对直升机及其流场的 深入了解,以准确地计算其空气动力学特性。 气动应用研究是指基于气动理论和方法,以直升机研制为目标所展开的应用 基础研究,涵盖气动特性、气动弹性、气动噪声、结冰模拟、流动控制等应用领

无人机涉及的GJB国军标标准

无人机概况和涉及的GJB国军标标准 随着军民融合战略的逐步深化,无人机产业得到了突破式的发展,并成为了贯彻"军民融合"的典。那么无人机关于GJB国军标和图书有哪些?也是很多用户相对比较关注的,下面融融网小编就推荐几个: 关于无人机相关的GJB国家军用标准 gjb 8265-2014 无人机机载电子测量设备通用规 gjb 4108-2000 军用小型无人机系统部队试验规程 gjb 5190-2004 无人机载有源雷达假目标通用规 gjb 7201-2011 舰载无人机雷达对抗载荷自动测试设备通用规 gjb 4994-2003 无人机载侦察装备定型试验规程 gjb 5433-2005 无人机系统通用要求 gjb 5309-2004 反辐射无人机被动雷达导引头通用规 gjb 6081-2007 通信对抗无人机训练模拟设备通用规 一、我国无人机发展概况 中国无人机的研究始于50年代后期,1959年已基本摸索出安一2和伊尔-28两种飞机的自驾起降规律。60年代中后期投入无人机研制,形成了长空l号靶机、无侦5高空照相侦察机和D4小型遥控飞机等系列,并以高等学校为依托建立了无人机设计研究机构,具有自行设计与小批生产能力。其中无侦5的研制在中国无人机发展史上具有重要意义。

为了国防建设和科学研究的需要,1969年国家下达研制高空无人驾驶照相侦察机的任务,研制工作由航空学院承担。主要用于军事侦察、高空摄影、靶机或地质勘测、大气采样等科学研究。无侦5是一种在高空、高亚音速条件下飞行,执行昼间高空摄影侦察任务的无人机。它使用的可见光照相机能绕其纵轴左右摇摆,从5个窗口进行拍摄。飞机上装有一台小型、短寿命的涡喷-II发动机;一整套自动控制系统和无线电遥控遥测系统。飞机本身无起落架等起飞着陆装置,由大型飞机带飞到4000—5000米的高度投放。空中投放后自动爬升到工作高度。在飞行中,按预编程序控制高度、航速、飞行时间和航程。完成任务后,自动返航,飞到回收区上空,可在程控或遥控状态下进行伞降回收。 航空学院承担研制飞机机体、窗体顶端窗体底端发动机和地面无线电控制站的任务,并负责飞机的总装、总调和飞行试验。为此,他们迅速组成工作班子,集中全院的技术力量投入研制工作。1972年制造出两架原型机并首飞成功:1973年的第二次试飞;1975年进行的大高度中航程科研试飞,达到了预定目的;1976年又制造的两架全部使用了国产材料的样机,同年航空学院正式成立无人机设计研究所,下设总体、结构、发动机、自动控制、无线电等研究室率和部装、总装车间及环境模拟试验室。无侦5于1978年完成定型。1980年国家批准无侦5设计定型。1981年起开始装备部队,在部队训练和战术侦察中发挥了作用,是中国在无人机技术领域里的一次飞跃。 20世纪末,中国无人机发展提速,除了航空学院外,爱生技术集团公司(无人机研究发展中心)成为国一家主要的无人机研制生产厂商。它是航空工业总公

无人机集群系统侦察监视任务规划方法

无人机集群系统侦察监视任务规划方法 如何将无人机集群系统部署于大范围环境中进行侦察监视,是未来无人机军事应用的重要问题之一。一方面,环境中往往分布着大量动态变化的子目标/子任务,亟需自动规划算法,实现无人机集群系统在不确定条件下进行连续侦察监视 的快速规划;另一方面,无人机在复杂的环境中进行搜索时,往往需要人辅助提供一些关于环境的知识,所以需要设计良好的人与无人机进行交互的方式,实现在 人辅助下进行搜索。 基于此,论文的主要工作和创新点如下:(1)针对具有子模性规划目标的多智能体部分可观马尔科夫决策过程(MultiAgent Partially Observable Markov Decision Process,MPOMDP),首次提出了一种近似最优的多智能体在线规划算法。这种算法通过顺次分配技术(Sequential Allocation Technique)来依次计算每个智能体的策略,贪婪地最大化单个智能体对团队任务目标的边际贡献(Marginal Contribution),从而避免了直接考虑团队的联合策略(其导致的计算代价与智能体个数呈指数关系),使得计算复杂度随智能体个数呈多项式关系。 论文通过理论证明该算法具有很好的近似最优性能。创新性工作为:使用顺次分配技术来计算智能体的策略,相比于其他的搜索团队联合策略空间的方法, 这种方法具有很好的可扩展性,并能够满足问题的实时性要求。 (2)针对传递函数解耦的部分可观马尔科夫决策过程 (Transition-Decoupled POMDP,TD-POMDP),首次提出了具有良好可扩展性的在 线规划算法——传递函数解耦的部分可观蒙特卡洛规划(Transition-Decoupled Partially Observable Monte-Carlo Planning,TD-POMCP),即一种基于蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)和max-sum的分散式在线算法。TD-POMCP

无人机多机协同侦察系统关键技术

收稿日期:2016-10-15 修回日期:2016-12-07 基金项目: 国家自然科学基金资助项目(61473227)作者简介:刘慧霞(1973-),女,陕西清涧人,博士,高级工程师。研究方向: 无人机目标跟踪及无人机侦察信息处理等。*摘 要:无人机作为信息战中的核心平台之一已经广泛应用于情报侦察、 战场监视以及地形测绘等领域,同时随着未来战争向信息化、网络化、体系化对抗的发展,单架无人机已无法满足情报侦察和战场监视任务中对复杂环境下信息、空间、时间的宽覆盖以及高分辨率需求,因此,无人机多协同或无人机与其他平台协同侦察将是未来战场上重要的军事侦察行动方式之一。回顾了无人机多机协同侦察的发展现状,讨论了多机协同侦察发展需要突破的关键技术。 关键词:无人机,多机,侦察协同,态势感知,信息融合中图分类号:TP753 文献标识码:A DOI :10.3969/j.issn.1002-0640.2017.12.001 无人机多机协同侦察系统关键技术* 刘慧霞1,马丽娜2,李大健1,田雪涛2,席庆彪1 (1.西北工业大学第365研究所,西安710072;2.西安爱生技术集团公司, 西安710065)Research on Technologies for Multi-UAV Cooperative Reconnaissance LIU Hui-xia 1,MA Li-na 2,LI Da-jian 1,TIAN Xue-tao 2,XI Qing-biao 1 (1.No.365Research Institute ,Northwest Polytechnical University ,Xi ’an 710072,China ; 2.Xi ’an ASN Technology Group Co.Ltd ,Xi ’an 710065,China ) Abstract :As one of the most important platform in the information warfare ,unmanned aerial vehicle (UAV )has been widely used in intelligence reconnaissance ,battlefield surveillance and terrain mapping and other fields ,With the development of the information ,networking ,systematic confrontation for the future war ,a single UAV is impossible to meet the reconnaissance and surveillance missions in the complex battlefield environment ,which needs wide coverage in information ,space and time and higher resolution ,therefore multi-UAV cooperative reconnaissance or UAV joint other platforms will be the most important way in the future battlefield reconnaissance.The status of development of multi-UAV cooperative reconnaissance is reviewed and the key technologies are discussed for the future development of multi-UAV cooperative reconnaissance. Key words :unmanned aerial vehicle ,multi-UAV ,cooperative reconnaissance ,situation awareness ,information fusion 0引言 无人机(UAV )作为现代战争中必不可少的军 事装备,已得到广泛的应用,例如:目标侦察、监视、目标定位、目标截获、火炮校射、 电子对抗与反辐射攻击、通信中继、心理战、地形测绘、气象探测、电网攻击和作战效果评估等各个领域[1-4]。目前,世界上已有美国、以色列、 俄罗斯、南非等30多个国家和地区研制和生产无人机[5]。 在无人机能够承担的多种角色中,情报侦察、战场监视以及地形测绘是目前UAV 系统主要的作 战任务之一。UAV 可以用于战略、战役和战术侦察,能潜入敌目标上空进行昼夜侦察, 并向作战指挥中心准确地传输实时目标图像和信息, 使战场指挥官及时掌握战场情况,制定作战计划, 为取得战斗的胜利起决定性作用。 在美军制定的《2005~2030年无文章编号:1002-0640(2017) 12-0001-04Vol.42,No.12Dec ,2017 火力与指挥控制 Fire Control &Command Control 第42卷第12期2017年12月 1··

相关文档