文档库 最新最全的文档下载
当前位置:文档库 › 同济版-高等数学-课后习题解析

同济版-高等数学-课后习题解析

同济版-高等数学-课后习题解析
同济版-高等数学-课后习题解析

书后部分习题解答 P21页

3.(3)n

n

n b b b a a a ++++++++∞→ 2211lim (1,1<

知识点:1)等比级数求和)1(1)1(1

2

≠--=++++-q q

q a aq

aq aq a n n (共n 项)

2)用P14例4的结论:当1

→n

n q

解:n

n

n b b b a a a ++++++++∞→ 2211lim

a

b

b

b a a n n n --=----=++∞→111111lim 11

5.(1)判断下列数列是否收敛,若收敛,则求出极限:

设a 为正常数,00>x ,)(211n

n n x a x x +=

+ 证:由题意,0>n x ,a x a x x a x x n

n n n n =??≥+=

+221)(211(数列有下界) 又02)(212

1≤-=-+=-+n

n n n n n n x x a x x a

x x x (因a x n ≥+1)

(数列单调减少) 由单调有界定理,此数列收敛;记b x n n =∞

→lim ,对)(211n

n n x a

x x +=

+两边取极限,

得)(21b a b b +=,解得a b =(负的舍去)

,故此数列的极限为a . P35页4.(8)极限=-++-+→211)1()1(lim x n x n x n x 211)

1()1()]1(1[lim -++--++→x n

x n x n x 21

221111)1()1()1()1()1(1lim -++--+-+-+=+++→x n x n x x C x C n n n x 2

)

1(21+=

=+n n C n (若以后学了洛必达法则(00型未定型),则211)

1()1(lim -++-+→x n

x n x n x 2

)

1(2)1(lim )1(2)1())1(lim 111+=

+=-+-+=-→→n n nx n x n x n n x n x ) 书后部分习题解答2 P36页 8.已知当0→x

时,1cos ~1)1(3

12--+x ax ,求常数a .

知识点:1)等价无穷小的概念;

2)熟记常用的等价无穷小,求极限时可用等价无穷小的替换定理。

解:由题意:1

322

31lim 1cos 1)1(lim 2

203

120=-=-=--+→→a x ax

x ax x x 得23-=a 或13

2]1)1()1[(2

1

1lim 1

cos 1)1(lim 31

232

22203

1

20=-

=++++?--+=--+→→a

ax ax x ax x ax x x (根式有理化)

P42页3(4) 关于间断点:

x

x x f 1sin 1)(=

0=x 为第二类间断点

说明:x

x x 1

sin 1lim 0→不存在(在0→x 的过程中,函数值不稳定,不趋向与∞)

P43页7(1)证明方程042

=-x x

在)2

1

,0(内必有一实根。

知识点:闭区间(一定要闭)上连续函数的根的存在定理

证明:设x x f x 42)(-=,易知,)(x f 在]2

1

,0[上连续; (注:设函数,闭区间)

01)0(>=f ,022)2

1

(<-=f ,

故由根的存在定理,至少在)21

,0(内存在一点ξ,使0)(=ξf ,

即方程042=-x x

在)2

1,0(内必有一实根.

P61页 3.设

)(0x f '存在,求:

(1)

x x x f x f x ??--→?)()(lim

000

(2)h h x f h x f h )

()(lim 000--+→

(3)t

x f t x f t )

()3(lim

000

-+→

分析:因

)(0x f '存在,则极限x

x f x x f x ?-?+→?)

()(lim

000

的值为)(0x f '。

把(1)(2)(3)化为相应可用极限的形式 解:(1)

x x x f x f x ??--→?)()(lim

000

)()

()

())((lim 0000x f x x f x x f x '=?--?-+=→?

(2)h h x f h x f h )()(lim

000

--+→h

x f h x f x f h x f h )

()()()(lim 00000+---+=→ )

1)(()

())(()()(lim

00000

----+-

-+=→h x f h x f h x f h x f h )(2)()(000x f x f x f '='+'=

(3)t x f t x f t )()3(lim

000

-+→)(333)

()3(lim 0000x f t

x f t x f t '=?-+=→

8.用导数的定义求

?

?

?≥+<=0,)1ln(0,

)(x x x x x f 在0=x 处的导数.(可参看P51例1-2) 知识点:1)导数在一点0x 处的定义:

x

x f x x f x f x ?-?+='→?)

()(lim

)(000

0;

2)点0x 处的左右导数的定义与记号:

左导数

x x f x x f x f x ?-?+='-

→?-)

()(lim )(000

右导数

x

x f x x f x f x ?-?+='+

→?+)

()(lim )(000

3)分段函数在分界点(具体的点)处的导数必须用导数的定义或左右导数的定义做。 解:因

0)0(=f (先写出0=x 处的函数值)

10

lim )0()0(lim )0(00=?-?=?-?+='--

→?→?-x

x x f x f f x x

(在0=x 处的左导数定义)

10

)1ln(lim )0()0(lim )0(00=?-?+=?-?+='-+→?→?+x

x x f x f f x x

(在0=x 处的右导数定义)

1)0()0()0(=''='+-f f f 故

10.设函数

???>+≤=1

,1,)(2x b ax x x x f ,为了使函数在1=x 处连续且可导,b a ,应取什么值?

题型:分段函数在分界点处的连续性与导数的求法。 解:由题意,函数在1=x

处连续,则1)1()01()01(==+=-f f f ,即

1lim )(lim )01(21

1

===--

-→→x x f f x x b a b ax x f f x x +=+==++

+→→)(lim )(lim )01(1

1

,得1=+b a

又函数在1=x

处可导,则)1()1(+-'='f f

21

)1(lim )1()1(lim )1(200=?-?+=?-?+='--→?→?-x

x x f x f f x x

a x

b x a x f x f f x x =?-+?+=?-?+='--

→?→?+1

)1(lim )1()1(lim )1(00

(用到了1=+b a ) 故1,2-==b a

书后部分习题解答3(关于隐函数求导)

P62页

14. 设032=+-y x e xy ,求

=x dx

dy .

分析:1)隐函数求导;2)由0=x 代入方程要求出y 的值。 解:方程两边对x 求导:

032)1(2=?+-?+?dx dy y x dx dy x y e xy

得:2

32y

xe ye x dx dy xy

xy +-= 又由0=x 代入方程,得1-=y ,所以:

3

10

=

=x dx

dy

20.已知0)sin(2

=-y xy π,求

)1,0(-dx

dy

)

1,0(2

2-dx y d .

要点:求隐函数二阶导数的方法。 解:方程两边对x 求导:

02)cos()1(2=??-?

+?dx

dy y y dx dy x y ππ (1) 把1,0-==y x 代入式(1),解得π

21

)

1,0(-=-dx dy (或由式(1)解得:

x y y y

dx dy -=

)cos(22ππ (2) 再把点代入得

π

21)

1,0(-

=-dx

dy ) (求隐函数二阶求导的方法)

方法1:式(1)两边对x 求导,(记y dx dy '=,y dx

y

d ''=22) 02)cos(2)cos(22)sin(222=''??-'?'?-'??'?+''?+'+'y y y y y y y y y y y y x y y πππππππ

把1,0-==y x ,

π21)

1,0(-=-dx

dy

代入,得

2

)

1,0(2

241π

-

=-dx y d

(代入:0)1(2)1(1)21

(2)1(0021212=''?-??-?--?--++--

y ππ

πππ) 方法2:式(2)对x 求导:

2

222222])cos(2[]

12)sin(2)cos(2[])cos(2[x y y y y y y y y y x y y y dx y d --'?-'--'=

πππππππππ, 点、一阶导数直接代入(不用化简,注意式中有0处的值)即可.

P62页15题.利用对数求导法求导 (3)x

x

x

y +-=112

说明:1)一定要用对数求导法求导;2)取对数后,先化简. 解:取对数:)]1ln()1[ln(2

1

ln 2ln x x x y +--+=(化简) 两边对x 求导:

)1111(21121x

x x y y +---+='? 所以:)11

2(112

2

x x x x x

y --+-=' (y 代入) 书后部分习题解答4(关于中值定理与未定式极限) P82页

1.检验罗尔定理对函数)3)(2)(1()(---=x x x x f 是否成立? 分析:1)即检验是否符合罗尔定理的条件; 2)若符合,ξ是否存在?

解:易知)3)(2)(1()(---=x x x x f 在[1,2],[2,3]上连续,(1,2),(2,3)内可导,且

0)3()2()1(===f f f ,故符合罗尔定理的条件。

又由011123)(2

=+-='x x x f ,得3

3

=ξ,故有)2,1(;0)(11∈='ξξf )3,2(;0)(22∈='ξξf ,符合罗尔定理的结论.

故罗尔定理对函数)3)(2)(1()(---=x x x x f 成立。 4.(3)证:b a b a -≤-arctan arctan

证:设x x f arctan )(=,当b a =时,等式成立;

若b a <,则易知x x f arctan )(=在],[b a 上连续,在),(b a 内可导,则由拉格朗日定理 存在),(b a ∈ξ,使)(11

))(()()(2

a b a b f a f b f -+=

-'=-ξξ

取绝对值,得a b a b a b -≤-+=

-)(11

arctan arctan 2

ξ 同理b a >,可证b a b a -≤-arctan arctan 综合:有b a b a -≤-arctan arctan

6.设函数)(x f 在闭区间[1,2]上可微,证明:ξ

ξ2)

(3)1()2(f f f '=

-,其中21<<ξ. 提示:对)(x f ,2)(x x g =用柯西中值定理.

8.证明:π=--)43arccos(arccos 33x x x ,其中2

1

≤x . 题型:证明函数为常数;

用到的知识:书78页定理3.4(3)的结论,若0)(≡'x f ,则C x f ≡)(.()(0x f C =) 证明:设)43arccos(arccos 3)(3x x x x f --=,则

)123()43(11)11(3)(22

32

x x x x x f ---+

--

=',

整理,当21<

x ,0)(='x f ,故C x f ≡)(,又ππ

π=-?=2

23)0(f 所以:π=--)43arccos(arccos 33x x x ,当2

1

≤x .

P89页(用洛必达法则求极限时,可以适当的化简、整理等,目的简化计算) 2(3)x

x

x 3tan tan lim

2

π

解:x x x x x x x x cos 3sin 3cos sin lim 3tan tan lim

2

2

ππ

→→

=x

x

x cos )1(3cos 1lim

2

?-?=→π (用到连续性与极限的运算,相当于2

π

=

x 代入)

3sin 3sin 3lim

2

=-=→

x

x

x π

(5))0(sin ln sin ln lim 0

>+

→m x

mx

x

解:x

x

m

mx mx

x mx x x sin cos sin cos lim sin ln sin ln lim 00?=+

+→→ 1cos cos lim cos sin sin cos lim

00=??=??=++→→x

mx x

mx m x mx x mx m x x (整理,等价无穷小的代换)

3.(2))1

(cot lim 0x

x x -→ (函数差的极限,一定要整理成函数商的极限)

解:)1(cot lim 0x x x -→=x x x x x x sin sin cos lim 0-→20sin cos lim x

x

x x x -=→ (用了等价无穷小的代换) 02sin lim 2cos )sin (cos lim

00=-=--+=→→x

x

x x x x x x x x

4.(3)x

x x

)]1

[ln(lim 0

+

→ (幂指函数的极限) 解:x x x

)]1[ln(lim 0+→=)]1

ln[ln(lim 0x x x e +

→ 先求0)ln (lim 1)

1

(ln 1lim

1)ln ln(lim )]1ln[ln(lim 02

000=-=---=-=++++→→→→x

x x

x x x x x x x x x x (用到x x ln )1ln(-=,+

→0x 时,-∞→x ln ,无穷大量的倒数为无穷小)

故1)]1[ln(lim 00==+→e x

x x (4)x

x x )arctan 2(lim π

+∞→

解:)

arctan 2

ln(lim )arctan 2

(

lim x x x

x x e

x π

π

+∞

→=+∞

而22

1

11

arctan 1lim 1)

ln(arctan )2

ln(lim

)arctan 2

ln(lim x

x x x

x x x x x x -+?=+=+∞→+∞

→+∞

→π

π

π2arctan )1(lim 22-=+-=+∞→x x x x (用到1)

1(lim 22

-=+-+∞→x x x ,2arctan lim π=+∞→x x ) 故π

π

2

)arctan 2

(

lim -

+∞

→=e

x x

x

7.试确定常数b a ,,使得2)

()1ln(lim

2

20=+-+→x bx ax x x .

解:因=+-+→220)

()1ln(lim x bx ax x x x

bx a x x 2)

2(11

lim 0+-+→, 又0→x ,上式分母02→x ,且极限存在,则必须分子

0211

→--+bx a x

得1=a ;则

x

bx a x x 2)2(11lim 0+-+→=222122)1(1lim

2

0=--=-+-→b b x x ,得25-=b 书后部分习题解答4(关于中值定理与未定式极限)

P82页

1.检验罗尔定理对函数)3)(2)(1()(---=x x x x f 是否成立? 分析:1)即检验是否符合罗尔定理的条件; 2)若符合,ξ是否存在?

解:易知)3)(2)(1()(---=x x x x f 在[1,2],[2,3]上连续,(1,2),(2,3)内可导,且

0)3()2()1(===f f f ,故符合罗尔定理的条件。

又由011123)(2=+-='x x x f ,得3

3

=ξ,故有)2,1(;0)(11∈='ξξf )3,2(;0)(22∈='ξξf ,符合罗尔定理的结论.

故罗尔定理对函数)3)(2)(1()(---=x x x x f 成立。 4.(3)证:b a b a -≤-arctan arctan

证:设x x f arctan )(=,当b a =时,等式成立;

若b a <,则易知x x f arctan )(=在],[b a 上连续,在),(b a 内可导,则由拉格朗日定理 存在),(b a ∈ξ,使)(11

))(()()(2

a b a b f a f b f -+=

-'=-ξ

ξ 取绝对值,得a b a b a b -≤-+=

-)(11

arctan arctan 2

ξ

同理b a >,可证b a b a -≤-arctan arctan 综合:有b a b a -≤-arctan arctan

6.设函数)(x f 在闭区间[1,2]上可微,证明:ξ

ξ2)

(3)1()2(f f f '=

-,其中21<<ξ.

提示:对)(x f ,2)(x x g =用柯西中值定理.

8.证明:π=--)43arccos(arccos 33x x x ,其中2

1

≤x . 题型:证明函数为常数;

用到的知识:书78页定理3.4(3)的结论,若0)(≡'x f ,则C x f ≡)(.()(0x f C =) 证明:设)43arccos(arccos 3)(3x x x x f --=,则

)123()43(11)11(3)(22

32

x x x x x f ---+

--

=',

整理,当21<

x ,0)(='x f ,故C x f ≡)(,又ππ

π=-?=2

23)0(f 所以:π=--)43arccos(arccos 33x x x ,当2

1

≤x .

P89页(用洛必达法则求极限时,可以适当的化简、整理等,目的简化计算) 2(3)x

x

x 3tan tan lim

2

π

解:x x x x x x x x cos 3sin 3cos sin lim 3tan tan lim

2

2

ππ

→→

=x

x

x cos )1(3cos 1lim

2

?-?=→π (用到连续性与极限的运算,相当于2

π

=

x 代入)

3sin 3sin 3lim

2

=-=→

x

x

x π

(5))0(sin ln sin ln lim 0>+

→m x

mx

x

解:x

x

m

mx mx

x mx x x sin cos sin cos lim sin ln sin ln lim 00?=++→→ 1cos cos lim cos sin sin cos lim

00=??=??=++→→x

mx x

mx m x mx x mx m x x (整理,等价无穷小的代换)

3.(2))1

(cot lim 0x

x x -

→ (函数差的极限,一定要整理成函数商的极限)

解:)1(cot lim 0x x x -→=x x x x x x sin sin cos lim 0-→20sin cos lim x

x

x x x -=→ (用了等价无穷小的代换)

02sin lim 2cos )sin (cos lim 00=-=--+=→→x

x

x x x x x x x x

4.(3)x

x x

)]1

[ln(lim 0

+

→ (幂指函数的极限) 解:x x x

)]1[ln(lim 0+

→=)]1

ln[ln(lim 0x x x e +

→ 先求0)ln (lim 1)

1

(ln 1lim

1)ln ln(lim )]1ln[ln(lim 02

000=-=---=-=++++→→→→x

x x

x x x x x x x x x x (用到x x ln )1ln(-=,+

→0x 时,-∞→x ln ,无穷大量的倒数为无穷小)

故1)]1[ln(lim 00==+

→e x

x x (4)x

x x )arctan 2(lim π

+∞→

解:)

arctan 2

ln(lim )arctan 2

(

lim x x x x x e x π

π

+∞

→=+∞

而22

1

11

arctan 1lim 1)

ln(arctan )2

ln(lim

)arctan 2

ln(lim x

x x x

x x x x x x -+?=+=+∞→+∞

→+∞

→π

π

π

2arctan )1(lim 22-=+-=+∞→x x x x (用到1

)1(lim 22

-=+-+∞→x x x ,2arctan lim π=+∞→x x ) 故π

π

2

)arctan 2

(

lim -

+∞

→=e

x x

x

7.试确定常数b a ,,使得2)

()1ln(lim 220=+-+→x

bx ax x x . 解:因=+-+→220)

()1ln(lim x bx ax x x x

bx a x x 2)

2(11

lim 0+-+→, 又0→x ,上式分母02→x ,且极限存在,则必须分子

0211

→--+bx a x

得1=a ;则

x

bx a x x 2)2(11lim 0+-+→=222122)1(1lim

2

0=--=-+-→b b x x ,得25-=b

同济大学高等数学1期末试题(含答案)

1. 若82lim =?? ? ??--∞→x x a x a x ,则_______.2ln 3- 2. =+++→)1ln()cos 1(1 cos sin 3lim 20x x x x x x ____.2 3 3.设函数)(x y y =由方程4ln 2y x xy =+所确定,则曲线)(x y y =在)1,1(处的切线方程为________.y x = 4. =-++∞→))1(sin 2sin (sin 1lim n n n n n n πππ Λ______.π2 5. x e y y -=-'的通解是____.x x e e y --=21C 二、选择题(每题4分) 1.设函数)(x f 在),(b a 内连续且可导,并有)()(b f a f =,则(D ) A .一定存在),(b a ∈ξ,使 0)(='ξf . B. 一定不存在),(b a ∈ξ,使 0)(='ξf . C. 存在唯一),(b a ∈ξ,使 0)(='ξf . D.A 、B 、C 均不对. 2.设函数)(x f y =二阶可导,且 ,)(),()(,0)(,0)(x x f dy x f x x f y x f x f ?'=-?+=?<''<', 当,0>?x 时,有(A ) A. ,0<>?dy y C. ,0?>y dy 3. =+?-dx e x x x ||2 2)|(|(C) A. ,0B. ,2C. ,222+e D. 26e 4. )3)(1()(--=x x x x f 与x 轴所围图形的面积是(B ) A. dx x f ?3 0)( B. dx x f dx x f ??-3110)()( C. dx x f ?-30)( D. dx x f dx x f ??+-3110)()( 5.函数Cx x y +=361 ,(其中C 为任意常数)是微分方程x y =''的(C ) A . 通解B.特解C.是解但非通解也非特解D.不是解

同济大学2009高数B期末考试题

同济大学2009-2010学年第一学期高等数学B(上)期终试卷 一. 填空题(4'416'?=) 1. 设函数()f x 具有二阶导数, 且1'0, 'dx y dy y ≠=, 则223 " 'd x y dy y =- . 2. 设函数()f u 为可导函数, 且'(0)0f ≠, 由参数方程3(sin 2)(1) t x f t y f e π =-?? =-?所确定的函数的 导数 32 t dy dx ==. 3. 极限111lim( )ln 2 12 n n n n n →∞ +++ =+++. 4. 微分方程22"5'6sin x y y y xe x -++=+的特解形式为(不需确定系数) 2()cos2sin 2x x Ax B e C x D x E -++++. 二. 选择题(4'416'?=) 5. 设函数sin ()bx x f x a e = +在(,)-∞+∞内连续, 且lim ()0x f x →-∞=, 则常数,a b 满足: [D ]. ()0,0A a b <>; ()0,0B a b ><; ()0,0C a b ≤>; ()0,0D a b ≥< 6. 曲线1 ln(1)x y e x -= ++, [D ] ()A 没有水平渐近线但有铅直渐近线; ()B 没有铅直渐近线但有水平渐近线; ()C 没有水平和铅直渐近线; ()D 有水平和铅直渐近线 7. 将0x + →时的无穷小量2 sin ,,(1)x x t tdt tdt e dt αβγ= ==-? ?排列起来, 使 得后面的是前一个的高阶无穷小, 则正确的排列顺序是: [C ] (),,A αβγ; (),,B αγβ; (),,C βαγ; (),,D γβα 8. 设函数()f x 在点0x =的某个邻域内有定义, 且20 () (0)0,lim 2x f x f x →==-, 则在该点处 ()f x : [C ] ()A 不可导; ()B 可导且'(0)0f ≠; ()C 取得极大值; ()D 取得极小值.

同济大学大一 高等数学期末试题 (精确答案)

学年第二学期期末考试试卷 课程名称:《高等数学》 试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟 适用层次: 适用专业; 阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不 得分则在小题 大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。 课程名称:高等数学A (考试性质:期末统考(A 卷) 一、单选题 (共15分,每小题3分) 1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( ) A .(,)f x y 在P 连续 B .(,)f x y 在P 可微 C . 0 0lim (,)x x f x y →及 0 0lim (,)y y f x y →都存在 D . 00(,)(,) lim (,)x y x y f x y →存在 2.若x y z ln =,则dz 等于( ). ln ln ln ln .x x y y y y A x y + ln ln .x y y B x ln ln ln .ln x x y y C y ydx dy x + ln ln ln ln . x x y y y x D dx dy x y + 3.设Ω是圆柱面2 2 2x y x +=及平面01,z z ==所围成的区域,则 (),,(=??? Ω dxdydz z y x f ). 21 2 cos .(cos ,sin ,)A d dr f r r z dz π θθθθ? ? ? 21 2 cos .(cos ,sin ,)B d rdr f r r z dz π θθθθ? ? ? 212 2 cos .(cos ,sin ,)C d rdr f r r z dz π θπθθθ-?? ? 21 cos .(cos ,sin ,)x D d rdr f r r z dz πθθθ?? ? 4. 4.若1 (1)n n n a x ∞ =-∑在1x =-处收敛,则此级数在2x =处( ). A . 条件收敛 B . 绝对收敛 C . 发散 D . 敛散性不能确定 5.曲线2 2 2x y z z x y -+=?? =+?在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1) 二、填空题(共15分,每小题3分) 系(院):——————专业:——————年级及班级:—————姓名:——————学号:————— ------------------------------------密-----------------------------------封----------------------------------线--------------------------------

同济大学高等数学习题答案共49页

习题一解答 1.在1,2,3,4,四个数中可重复地先后取两个数,写出这个随机事件的样本空间及事件A=“一个数是另一个数的2倍”,B=“两个数组成既约分数”中的样本点。 解Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1)(4,2),(4,3),(4,4)}; A={(1,2),(2,1),(2,4),(4,2)}; B={(1,2),(1,3},(1,4),(2,1),(2,3),(3,1),(3,2),(3,4),(4,1)(4,3)} 2. 在数学系学生中任选一名学生.设事件A={选出的学生是男生},B={选出的学生是三年级学生},C={选出的学生是科普队的}. (1)叙述事件ABC的含义. (2)在什么条件下,ABC=C成立? (3)在什么条件下,C?B成立? 解 (1)事件ABC的含义是,选出的学生是三年级的男生,不是科普队员. (2)由于ABC?C,故ABC=C当且仅当C?ABC.这又当且仅当C?AB,即科普队员都是三年级的男生. (3)当科普队员全是三年级学生时,C是B的子事件,即C?B成立. 3.将下列事件用A,B,C表示出来: (1)只有C发生;

(2)A 发生而B ,C 都不发生; (3)三个事件都不发生; (4)三个事件至少有一个不发生; (5)三个事件至少有一套(二个不发生)发生; (6)三个事件恰有二个不发生; (7)三个事件至多有二个发生; (8)三个事件中不少于一个发生。 解 (1)ABC ; (2)ABC : (3)ABC (4)A B C U U ; (5)AB BC AC U U ; (6)ABC ABC ABC U U ; (7)ABC ; (8)A B C U U 。 4.设 A , B , C 是三个随机事件,且 =====)()(,4 1)()()(CB P AB P C P B P A p 0,81 )(=AC P ,求A ,B ,C 中至少有 一个发生的概率. 解 设D ={A ,B ,C 中至少有一个发生},则D =A +B +C ,于是 P (D )=P (A +B +C ) =P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ). 又因为

同济大学高等数学2

同济大学高等数学(下)期中考试试卷2 一.简答题(每小题8分) 1.求曲线?????+=+=-=t z t y t t x 3cos 12sin 3cos 在点??? ??1,3,2 π处的切线方程. 2.方程1ln =+-xz e y z xy 在点)1,1,0(的某邻域内可否确定导数连续的隐函数),(y x z z =或),(x z y y =或),(z y x x =?为什么? 3.不需要具体求解,指出解决下列问题的两条不同的解题思路: 设椭球面1222222 =++c z b y a x 与平面0=+++D Cz By Ax 没有交点,求椭球面与平面 之间的最小距离. 4.设函数),(y x f z =具有二阶连续的偏导数,3x y =是f 的一条等高线,若 1)1,1(-=y f ,求)1,1(x f . 二.(8分)设函数f 具有二阶连续的偏导数,),(y x xy f u +=求y x u ???2 . 三.(8分)设变量z y x ,,满足方程),(y x f z =及0),,(=z y x g ,其中f 与g 均具有连续的偏导数,求dx dy . 四.(8分)求曲线 ???=--=01, 02y x xyz 在点)110(,,处的切线与法平面的方程. 五.(8分)计算积分) ??D y dxdy e 2,其中D 是顶点分别为)0,0(.)1,1(.)1,0(的 三角形区域. 六.(8分)求函数22y x z +=在圆9)2()2(22≤- +-y x 上的最大值和最小值. 七.(14分)设一座山的方程为2221000y x z --=,),(y x M 是山脚0=z 即等量线 1000222=+y x 上的点. (1)问:z 在点),(y x M 处沿什么方向的增长率最大,并求出此增长率; (2)攀岩活动要山脚处找一最陡的位置作为攀岩的起点,即在该等量线上找一点M 使得上述增长率最大,请写出该点的坐标. 八.(14分) 设曲面∑是双曲线2422=-y z (0>z 的一支)绕z 轴旋转而成,曲面上一点M 处的切平面∏与平面0=++z y x 平行. (1)写出曲面∑的方程并求出点M 的坐标; (2)若Ω是∑.∏和柱面122=+y x 围成的立体,求Ω的体积.

高等数学同济第七版7版下册习题 全解

数,故 /, =Jj( x2 + y1)3d(j =2jj(x2+ y1) 3dcr. fh i)i 又由于D3关于;t轴对称,被积函数(/ +r2)3关于y是偶函数,故jj(x2 +j2)3dcr=2j(x2+y2)3da=2/2. Dy 1): 从而得 /, = 4/2. (2)利用对称性来计算二重积分还有以下两个结论值得注意: 如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y) = -f(x,y) ,PJ jf/(x,y)da =0; D 如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则 =0. D ?3.利用二重积分定义证明: (1)jj da=(其中(7为的面积); IJ (2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数); o n (3 )JJ/( x,y)clcr = JJ/( x,y)drr +jJ/( x ,y) dcr ,其中 /) = /)! U /)2,, A 为两个 I) b\ lh 尤公共内点的WK域. 证(丨)由于被枳函数./U,y)=1,故山二t积分定义得 n"

jj'ltr = Hm y^/( ,rji) A

同济大学版高等数学期末考试试卷

同济大学版高等数学期 末考试试卷 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数() 00x f x a x ≠=?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211 f dx x x ??' ????的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ??+ ??? (D )1f C x ?? -+ ???

(完整word版)同济大学版高等数学期末考试试卷

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数() 00x f x a x ≠=?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( ).

高等数学同济第七版7版下册习题全解

第十章重积分9 5 y 2 D2 -1 O i T -2 图 10 - 1 数,故 /, = Jj( x 2 + y 1 ) 3 d(j = 2jj ( x2 + y 1 )3 dcr. fh i)i 又由于 D 3关于 ; t 轴对称,被积函数 ( / + r2) 3关于 y 是偶函数,故jj( x2 + j2 ) 3dcr = 2j( x2+ y2) 3 da =2/ 2 . Dy 1): 从而得 /, = 4/ 2 . ( 2)利用对称性来计算二重积分还有以下两个结论值得注意: 如果积分区域关于 ^ 轴对称,而被积函数 / ( x, y) 关于 y 是奇函数,即 fix, -y) = -f(x,y) , PJ jf/ ( x, y)da = 0; D 如果积分区域 D 关于: K 轴对称,而被积函数 / ( x, y) 关于: c 是奇函数,即 / ( ~x, y) = - / ( 太, y) ,则 = 0. D ? 3. 利用二重积分定义证明: ( 1 ) jj da = ( 其 中 ( 7 为的面积 ) ; IJ (2) JJ/c/( X , y) drr = Aj | y’ (

A: , y) do■ ( 其 中 A :为常数 ) ; o n (3 ) JJ/( x,y)clcr = JJ/( x,y)drr + jJ/( x ,y) dcr ,其中/) = /)! U /) 2,, A 为两个 I) b \ lh 尤公共内点的 WK 域 . 证 ( 丨 ) 由于被 枳函数. / U, y) = 1 , 故山 二 t 积分定义得n "

9 6 一、 《高等数学》 (第七版 )下册习题全解 jj'ltr = Hm y^/( ,rji) A

同济大学2015-2016学年高等数学(B)上期末考试试卷

本资料仅供参考复习练手之用,无论是重修只求及格,还是为了拿优保研,复习课本上的基础知识点和例题、课后习题才是重中之重,作为一个重修过高数的学长,望大家不要舍本求末,记住这样一句话,只有当你付出了,你才可能有收获。 同济大学2015-2016学年第一学期高等数学B(上)期终试卷 一. 填空选择题(3'824'?=) 1. 极限1 2 02lim( )23h h h e h -→-=+. 2. 积分(12sin ) cos '(12sin )2 f x x f x dx C --?-=+? . 3. 函数2 20 ()sin(1)x F x t dt = +? 的导函数4'()2sin(1)F x x x =+. 4. 曲线3 22 (1)1(12)3 y x x =++-≤≤的弧长14 3 s = . 5. 极限0 lim ()x x f x -→=+∞的定义是 【D 】 () 0,0A εδ?>?>, 当00x x δ<-<时, 有()f x A ε-<; () 0,0B εδ?>?>, 当x δ>时, 有()f x ε>; () 0,0C M X ?>?>, 当x X >时, 有()f x M >; () 0,0D M δ?>?>, 当00x x x δ-≤<时, 有()f x M >. 6. 若123(),(),()y x y x y x 是二阶微分方程"()'()()y a x y b x y c x =++的三个线性无关的解, 则该方程的通解为 【D 】 112233()()()( )A C y x C y x C y x ++, 其中123,,C C C 是任意常数; 11223 ()()()()B C y x C y x y x ++, 其中12,C C 是任意常数; 11223 ()()[()()]C C y x C y x y x ++, 其中12,C C 是任意常数; 112233()()()( )D C y x C y x C y x ++ , 其中任意常数1231C C C ++=.

高等数学同济第六版上册课后答案

2018年湖南省怀化市中考物理试卷 一、选择区 1. 下图中符合安全用电原则的是() A. 雷雨时在大树下躲雨 B. 在高压线下钓鱼 C. 在同一插座上同时使用多个大功率用电器 D. 发现有人触电时立即切断电源 【答案】D 【解析】A、雷雨时,不可以在大树下避雨,要注意防雷电,故A错误; B、高压线下钓鱼,鱼线很容易接触到高压线,容易发生触电事故,故B错误; C、在同一个插座上同时使用了多个大功率的用电器,由可得,会使干路中的电流过大,容易发生电路火灾,故C错误; D、当发现有人触电时,应该立即采取的措施是:迅速切断电源或用绝缘体挑开电线,因为人体是导体,不能用手拉开电线和触电的人,故D正确。 故选:D。 点睛:本题考查日常安全用电常识,关键是了解安全用电的基本原则“不接触低压带电体,不靠近高压带电体。” 2. 在北京8分钟的节目中,憨态可掬的大熊猫令人忍俊不禁。这只大熊猫是用一种特制的铝合金材料制成的,它的高度为2.35m,质量却只有10kg,它利用了铝合金的哪一种性质() A. 质量小 B. 密度小 C. 比热容小 D. 导热性能好 【答案】B 【解析】解:由题知,大熊猫是用一种特殊的铝合金材料制成的,它的高为2.35m,质量却只有10kg,也就是说它的体积很大,质量很小,根据ρ=可知,材料的体积相同时,质量越小,密度越小。所以它利用

了铝合金密度小的性质。故ACD错误,B正确。 故选:B。 点睛:密度是物质的一种特性,不同物质密度一般不同,常用密度来鉴别物质。解答本题时,要紧扣大熊猫高度大,质量小的特点进行分析。 3. 下列事例中不是利用大气压工作的是() A. 用塑料吸管吸饮料 B. 用抽水机抽水 C. 用注射器将药液注入病人体内 D. 钢笔吸墨水 【答案】C 【解析】解:A、用吸管吸饮料时,吸管内的气压小于外界大气压,饮料在外界大气压的作用下,被压入口腔内。利用了大气压。故A不合题意; B、抽水机抽水,通过活塞上移或叶轮转动使抽水机内水面上方的气压减小,水在外界大气压的作用下,被压上来,利用了大气压,故B不合题意。 C、用注射器将药液注入病人体内是利用人的压力将药液注入人体肌肉的,不是利用大气压来工作的,故C 符合题意。 D、用力一按橡皮囊,排出了里面的空气,当其恢复原状时,橡皮囊内部气压小于外界大气压,在外界大气压的作用下,墨水被压入钢笔内,利用了大气压。故D不合题意。 故选:C。 点睛:本题考查了大气压的应用,此类问题有一个共性:通过某种方法,使设备内部的气压小于外界大气压,在外界大气压的作用下出现了这种现象。 4. 自然界中有些能源一旦消耗就很难再生,因此我们要节约能源。在下列能源中,属于不可再生的能源的是 A. 水能 B. 风能 C. 太阳能 D. 煤炭 【答案】D D、煤炭属于化石燃料,不能短时期内从自然界得到补充,属于不可再生能源,故D符合题意。

高等数学同济课后答案

总习题一 1、 在“充分”、“必要”与“充分必要”三者中选择一个正确的填入下列空格内: (1)数列{x n }有界就是数列{x n }收敛的________条件、 数列{x n }收敛就是数列{x n }有界的________的条件、 (2)f (x )在x 0的某一去心邻域内有界就是 )(lim 0 x f x x →存在的________条件、 )(lim 0 x f x x →存在就是f (x ) 在x 0的某一去心邻域内有界的________条件、 (3) f (x )在x 0的某一去心邻域内无界就是 ∞=→)(lim 0 x f x x 的________条件、 ∞=→)(lim 0 x f x x 就是f (x ) 在x 0的某一去心邻域内无界的________条件、 (4)f (x )当x →x 0时的右极限f (x 0+)及左极限f (x 0-)都存在且相等就是)(lim 0 x f x x →存在的________条件、 解 (1) 必要, 充分、 (2) 必要, 充分、 (3) 必要, 充分、 (4) 充分必要、 2、 选择以下题中给出的四个结论中一个正确的结论: 设f (x )=2x +3x -2, 则当x →0时, 有( ). (A )f (x )与x 就是等价无穷小; (B )f (x )与x 同阶但非等价无穷小; (C )f (x )就是比x 高阶的无穷小; (D )f (x )就是比x 低阶的无穷小. 解 因为x x x x x f x x x x x x x x 13lim 12lim 232lim ) (lim 0000-+-=-+=→→→→ 3ln 2ln ) 1ln(lim 3ln )1ln(lim 2ln 00+=+++=→→u u t t u t (令2x -1=t , 3x -1=u ) . 所以f (x )与x 同阶但非等价无穷小, 故应选B . 3. 设f (x )的定义域就是[0, 1], 求下列函数的定义域: (1) f (e x ); (2) f (ln x ); (3) f (arctan x ); (4) f (cos x )、 解 (1)由0≤e x ≤1得x ≤0, 即函数f (e x )的定义域为(-∞, 0]. (2) 由0≤ ln x ≤1得1≤x ≤e , 即函数f (ln x )的定义域为[1, e ]、 (3) 由0≤ arctan x ≤1得0≤x ≤tan 1, 即函数f (arctan x )的定义域为[0, tan 1]、 (4) 由0≤ cos x ≤1得2 222π πππ+≤≤- n x n (n =0, ±1, ±2, ? ? ?), 即函数f (cos x )的定义域为[2 ,2 2ππππ+-n n ], (n =0, ±1, ±2, ? ? ?)、 4、 设

同济大学版高等数学期末考试试卷

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题 分,共 ?分) .下列各组函数中,是相同的函数的是( ) (?)()()2ln 2ln f x x g x x == 和 ( )()||f x x = 和 ( )g x = ( )()f x x = 和 ( )2 g x = ( )()|| x f x x = 和 ()g x = .函数( )() 20ln 10 x f x x a x ≠=+?? =? 在0x =处连续,则a = ( ) (?) ( ) 1 4 ( ) ( ) .曲线ln y x x =的平行于直线10x y -+=的切线方程为( ) (?)1y x =- ( )(1)y x =-+ ( )()()ln 11y x x =-- ( ) y x = .设函数()||f x x =,则函数在点0x =处( ) (?)连续且可导 ( )连续且可微 ( )连续不可导 ( )不连续不可微 .点0x =是函数4 y x =的( ) (?)驻点但非极值点 ( )拐点 ( )驻点且是拐点 ( )驻点且是极值点

.曲线1 || y x = 的渐近线情况是( ) (?)只有水平渐近线 ( )只有垂直渐近线 ( )既有水平渐近线又有垂直渐近线 ( )既无水平渐近线又无垂直渐近线 . 211 f dx x x ??' ???? 的结果是( ) (?)1f C x ?? -+ ??? ( )1f C x ?? --+ ??? ( )1f C x ?? + ??? ( )1f C x ?? -+ ??? . x x dx e e -+?的结果是( ) (?)arctan x e C + ( )arctan x e C -+ ( )x x e e C --+ ( ) ln()x x e e C -++ .下列定积分为零的是( ) (?)424arctan 1x dx x π π-+? ( )44 arcsin x x dx ππ-? ( )112x x e e dx --+? ( )()1 2 1 sin x x x dx -+? ?.设()f x 为连续函数,则 ()1 2f x dx '?等于( ) (?)()()20f f - ( )()()11102f f -????( )()()1 202f f -????( )()()10f f - 二.填空题(每题 分,共 ?分) .设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = .已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '= .21 x y x =-的垂直渐近线有条 . ()21ln dx x x = +?

同济大学高等数学期末考试题

《高数》试卷7(上) 一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ). A []1,2- B [)1,2- C (]1,2- D ()1,2- 2、极限x x e ∞→lim 的值是( ). A 、 ∞+ B 、 0 C 、∞- D 、 不存在 3、=--→211) 1sin(lim x x x ( ). A 、1 B 、 0 C 、 21- D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ). A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设 ?+=C x dx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x - 7、?=+dx x x ln 2( ). A 、C x x ++-22ln 212 B 、 C x ++2 )ln 2(21 C 、 C x ++ln 2ln D 、 C x x ++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、?104dx x π B 、?1 0ydy π C 、?-1 0)1(dy y π D 、?-104)1(dx x π

9、?=+1 01dx e e x x ( ). A 、21ln e + B 、2 2ln e + C 、31ln e + D 、221ln e + 10、微分方程 x e y y y 22=+'+'' 的一个特解为( ). A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 27 2=* 二、填空题(每小题4分) 1、设函数x xe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m . 3、=?-1 13cos xdx x ; 4、微分方程 044=+'+''y y y 的通解是 . 5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ; 三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0 ; 2、求x x y sin ln cot 2 12+= 的导数; 3、求函数 1133+-=x x y 的微分; 4、求不定积分?++1 1x dx ; 5、求定积分 ?e e dx x 1 ln ; 6、解方程 2 1x y x dx dy -= ; 四、应用题(每小题10分) 1、 求抛物线2x y = 与 2 2x y -=所围成的平面图形的面积. 2、 利用导数作出函数323x x y -= 的图象.

同济大学版高等数学期末考试试卷

《高数》试卷1 (上) (A) y =x —1 (B ) y=_(x 1) (C ) y = I n X -1 x -1 ( D ) y = x 4?设函数f x =|x|,则函数在点x=0处( ) 5 .点x = 0是函数y = x 4的( ) 1 6. 曲线y 的渐近线情况是( ). |x| (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. f — _2dx 的结果是( ). l x /X f 1 L f 1 L CL f 1 L (A ) f 一丄 C (B ) —f -丄 C (C ) f 1 C (D ) 一 f - C I X 丿 I X 丿 l x 丿 J x 丿 dx & 匚出的结果是( ). e e (A ) arctane x C (B ) arctane" C (C ) e x C ( D ) ln(e x e^) C 9.下列定积分为零的是( ). 1.下列各组函数中 ,是相同的函数的是 ( ). (A ) f (x ) = lnx 2 和 g (x ) = 2ln X (B ) f ( x ) =| x|和 g (x )=J? (C ) f (X )=X 和 g (x ) = (T X ) (D ) f (X )= |x| 和 X g (x )“ Jsinx+4 -2 x 式0 2.函数 f (X )= * In (1 +x ) 在X = 0处连续,则 a =( ) a x = 0 (A ) 0 ( B 1 - (C ) 1 (D ) 2 4 3?曲线y = xln x 的平行于直线x - y T = 0的切线方程为( ) (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 「?选择题(将答案代号填入括号内,每题 3分,共30分)

同济版高数课后习题答案1-9

习题1-9 1. 求函数6 33)(2 2 3-+--+= x x x x x x f 的连续区间, 并求极限)(lim 0 x f x →, )(lim 3 x f x -→及)(lim 2 x f x →. 解 ) 2)(3()1)(1)(3(6 33)(2 2 3 -++-+= -+--+= x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续 的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞). 在函数的连续点x =0处, 2 1)0()(lim 0 = =→f x f x . 在函数的间断点x =2和x =-3处, ∞ =-++-+=→→) 2)(3()1)(1)(3(lim )(lim 2 2 x x x x x x f x x , 5 82 ) 1)(1(lim )(lim 3 3 - =-+-=-→-→x x x x f x x . 2. 设函数f (x )与g (x )在点x 0连续, 证明函数 ?(x )=max{f (x ), g (x )}, ψ(x )=min{f (x ), g (x )} 在点x 0也连续. 证明 已知)()(lim 00 x f x f x x =→, )()(lim 00 x g x g x x =→. 可以验证 ] |)()(|)()([21 )(x g x f x g x f x -++=?, ] |)()(|)()([2 1 )(x g x f x g x f x --+=ψ. 因此 ] |)()(|)()([2 1 )(00000x g x f x g x f x -++=?, ] |)()(|)()([2 1 )(00000x g x f x g x f x --+=ψ. 因为 ] |)()(|)()([2 1lim )(lim 0 x g x f x g x f x x x x x -++=→→? ] |)(lim )(lim |)(lim )(lim [210 x g x f x g x f x x x x x x x x →→→→-++= ] |)()(|)()([2 1 0000x g x f x g x f -++==?(x 0), 所以?(x )在点x 0也连续. 同理可证明ψ(x )在点x 0也连续. 3. 求下列极限: (1)5 2lim 2 +-→x x x ;

最新同济大学高数试卷 大一下学期 期末考试

同济大学2009-2010学年第二学期高等数学C(下)期终试卷 一、选择题.(本题共有5小题,每小题3分,满分15分,每题只有一个正确答案) 1、下列微分方程为一阶线性方程的是: 【 D 】 :A '1yy =; :B 'e 1y y +=; :C 2 'y y y +=; :D 2 'y y x =+。 2、若向量()()()2,1,0,1,1,2,0,1,2a b c k =-=--=,且() 0a b c ??=,则k = 【 B 】 :1A ; :2B ; :3C ; :4D 。 3、若向量()1,2,a k =-在向量()2,1,2b =-上的投影为2-,则k = 【 C 】 :1A ; :2B ; :3C ; :4D 。 4、设e cos x x z x y y =+ -,则z y ?=? 【 A 】 :A 2e sin x x y y - +; :B 21e sin x x y y -+; :C 21e sin x y y -+; :D 2e sin x x y y -。 5、交换二次积分的次序:()2 220d ,d y y y f x y x =?? 【 A 】 ()4 2 : d ,d x A x f x y y ? ?; ()4 :d ,d x B x f x y y ?; ()2220 :d ,d x x C x f x y y ??; ()2 :d ,d x D x f x y y ?。 二、填空题(本题共4小题,每小题4分,满分16分,只需将答案填入空格) 6、微分方程"2'20y y y -+=的通解为y =() 12e cos sin x c x c x +. 7、设向量()()2,3,2,2,3,0a b =-=-,若,x a x b ⊥⊥,且7x =。则向量x =()3,2,6±。 8、空间直线240 329x y z x y z -+=?? --=?在xoy 面上的投影直线方程为: 7990x y z -=?? =? 。 9、设函数()2z f x y =-,其中函数f 具有二阶导数,则 2z x y ?=??() 2"2f x y --。

相关文档
相关文档 最新文档